TWI475708B - Methods and apparatus for depositing a uniform silicon film with flow gradient designs - Google Patents

Methods and apparatus for depositing a uniform silicon film with flow gradient designs Download PDF

Info

Publication number
TWI475708B
TWI475708B TW097133468A TW97133468A TWI475708B TW I475708 B TWI475708 B TW I475708B TW 097133468 A TW097133468 A TW 097133468A TW 97133468 A TW97133468 A TW 97133468A TW I475708 B TWI475708 B TW I475708B
Authority
TW
Taiwan
Prior art keywords
gas distribution
distribution plate
plate
chokes
gas
Prior art date
Application number
TW097133468A
Other languages
Chinese (zh)
Other versions
TW201011932A (en
Inventor
Soo Young Choi
Tae Kyung Won
John M White
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW097133468A priority Critical patent/TWI475708B/en
Publication of TW201011932A publication Critical patent/TW201011932A/en
Application granted granted Critical
Publication of TWI475708B publication Critical patent/TWI475708B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

利用流量梯度設計以沉積均勻矽膜之方法與設備Method and apparatus for depositing uniform enamel film using flow gradient design

本發明的實施方式一般涉及處理室中的配氣板元件及其製造方法。Embodiments of the present invention generally relate to a gas distribution plate component in a processing chamber and a method of making the same.

光電裝置(PV)或太陽能電池是將陽光轉化為直流(DC)電能的裝置。PV或太陽能電池一般具有一個或多個p-i-n接合區。在半導體材料中每個接合區包括兩個不同的區域,其中一側表示p-型區域而另一側表示n-型區域。當PV電池的p-i-n接合區暴露在陽光(由光能組成)下時,通過PV效應將陽光直接轉化為電。PV太陽能電池產生特定量的電能並且電池被搭建成一定尺寸的模式來輸送預定量的系統能量。PV模式通過連接多個PV太陽能電池然後使用特定框架和連接器接合區合在面板中而形成。Photovoltaic devices (PV) or solar cells are devices that convert sunlight into direct current (DC) electrical energy. PV or solar cells typically have one or more p-i-n junction regions. Each junction region in the semiconductor material includes two distinct regions, with one side representing the p-type region and the other side representing the n-type region. When the p-i-n junction of a PV cell is exposed to sunlight (composed of light energy), sunlight is directly converted into electricity by the PV effect. A PV solar cell produces a specific amount of electrical energy and the battery is built into a mode of size to deliver a predetermined amount of system energy. The PV mode is formed by joining a plurality of PV solar cells and then joining them in a panel using a specific frame and connector joint.

PV太陽能電池一般包括形成在大透明基板上的光電轉換單元。光電轉換單元包括順序沉積在透明基板上的p-型、本徵型(i-型)和n-型矽層。可用於形成光電轉換單元的矽膜可以包括多晶矽(多晶-矽)、微晶矽(μ c-Si)和非晶矽(a-Si)膜。一般利用電漿增強化學氣相沉積(PECVD)在透明基板上形成矽膜。PECVD處理是通過將前驅物氣體或氣體混合物導入包括透明基板的真空室而進行。前驅物氣體或氣體混合物由分佈板朝向透明基板供給。將RF能源施加到室中的分佈板和/或基板支撐元件來形成前驅物氣體或氣體混合物的電漿,接著在透明基板上沉積具有預定膜性質的矽層。PV solar cells generally include a photoelectric conversion unit formed on a large transparent substrate. The photoelectric conversion unit includes p-type, intrinsic type (i-type) and n-type germanium layers sequentially deposited on a transparent substrate. The ruthenium film which can be used to form the photoelectric conversion unit may include polycrystalline germanium (polycrystalline germanium), microcrystalline germanium (μ c-Si), and amorphous germanium (a-Si) film. A ruthenium film is typically formed on a transparent substrate by plasma enhanced chemical vapor deposition (PECVD). The PECVD treatment is performed by introducing a precursor gas or a gas mixture into a vacuum chamber including a transparent substrate. The precursor gas or gas mixture is supplied from the distribution plate toward the transparent substrate. An RF energy source is applied to the distribution plate and/or substrate support member in the chamber to form a plasma of the precursor gas or gas mixture, followed by deposition of a layer of tantalum having predetermined film properties on the transparent substrate.

由於對較大太陽能電基板的需求不斷增長,在越來越 大的基板的表面積上的PECVD處理期間保持均勻的電漿和/或處理氣流變得越來越困難。在沉積膜的中心和邊緣區域之間膜性質的差異對生產大型且高效的太陽能電池存在巨大挑戰。隨著不斷增加的基板尺寸,邊緣到中心的特性變化已變得更加不能預知的。As the demand for larger solar power substrates continues to grow, more and more It is increasingly difficult to maintain a uniform plasma and/or process gas flow during PECVD processing on the surface area of large substrates. The difference in film properties between the center and edge regions of the deposited film presents a significant challenge for producing large and efficient solar cells. With increasing substrate sizes, edge-to-center variations in characteristics have become more unpredictable.

因此,需要一種改進的裝置,用於在大面積基板上通過化學氣相沉積處理來沉積具有預定性質的均勻的膜。Accordingly, there is a need for an improved apparatus for depositing a uniform film having predetermined properties by chemical vapor deposition processing on a large area substrate.

本發明提供一種產生流速梯度的方法和裝置,該流速梯度從適於沉積用於太陽能電池應用的矽膜的配氣板產生。在一個實施例中,用於沉積太陽能電池用膜的裝置可以包括處理室,和設置在處理室中並具有至少四個由四個邊分隔的角的四邊形配氣板。配氣板還包括穿過配氣板形成的第一多個扼流器、位於角的第一多個扼流器,和通過配氣板形成的第二多個扼流器、沿角區域之間的配氣板一邊的第二多個扼流器,其中第一多個扼流器具有比第二多個扼流器更大的流動阻力。The present invention provides a method and apparatus for generating a flow rate gradient generated from a gas distribution plate suitable for depositing a tantalum film for solar cell applications. In one embodiment, an apparatus for depositing a film for a solar cell may include a processing chamber, and a quadrangular gas distribution plate disposed in the processing chamber and having at least four corners separated by four sides. The gas distribution plate further includes a first plurality of chokes formed through the gas distribution plate, a first plurality of chokes located at the corners, and a second plurality of chokes formed by the gas distribution plates, along the corner regions a second plurality of chokes on one side of the gas distribution plate, wherein the first plurality of chokes have greater flow resistance than the second plurality of chokes.

在另一個實施例中,用於沉積太陽能電池用膜的裝置可以包括處理室,和設置在處理室中並具有至少四個由四個邊分隔的角的四邊形配氣板。配氣板還包括通過配氣板形成的第一多個扼流器、位於角的第一多個扼流器,和通過配氣板形成的第二多個扼流器、沿角區域之間的配氣板一邊的第二多個扼流器,其中第一多個扼流器具有比第二多個扼流器更長的長度。In another embodiment, an apparatus for depositing a film for a solar cell may include a processing chamber, and a quadrangular gas distribution plate disposed in the processing chamber and having at least four corners separated by four sides. The gas distribution plate further includes a first plurality of chokes formed by the gas distribution plates, a first plurality of chokes located at the corners, and a second plurality of chokes formed by the gas distribution plates, between the corner regions a second plurality of chokes on one side of the gas distribution plate, wherein the first plurality of chokes have a longer length than the second plurality of chokes.

在另一個實施例中,用於沉積太陽能電池用膜的裝置可以包括處理室,和沉積在處理室中具有多個貫通形成的 扼流器的配氣板,佈置扼流器以界定至少三個不同流動阻力的區域,其中界定在配氣板角的第一區域具有比沿配氣板邊界定的第二區域更大的流動阻力,界定在配氣板中心的第三區域具有比第二區域更小的流動阻力。In another embodiment, the apparatus for depositing a film for a solar cell may include a processing chamber, and a plurality of through-forming layers deposited in the processing chamber a gas distribution plate of the choke, the choke being arranged to define at least three regions of different flow resistance, wherein the first region defined at the angle of the gas distribution plate has a larger flow than the second region defined along the boundary of the gas distribution plate The resistance, defined in the third region at the center of the gas distribution plate, has a smaller flow resistance than the second region.

在另一實施例中,在室中沉積太陽能電池用均勻膜的方法可以包括將基板提供至室中,該室具有面對設置在室中的基板支撐元件的配氣板;使處理氣體通過配氣板的角向基板以小於通過配氣板中心流動的處理氣體流速的流速流動;以及由處理氣體在基板上沉積矽膜。In another embodiment, a method of depositing a uniform film for a solar cell in a chamber may include providing a substrate into a chamber having a gas distribution plate facing a substrate supporting member disposed in the chamber; passing the processing gas through the dispensing The angular substrate of the gas plate flows at a flow rate less than a flow rate of the process gas flowing through the center of the gas distribution plate; and a ruthenium film is deposited on the substrate by the process gas.

本發明提供一種沉積適於太陽能電池用矽膜的方法和裝置。在一個實施例中,該裝置包括具有不同扼流器長度以產生向基板的氣體流動梯度的配氣板。有配氣板產生的流動梯度對通過配氣板向基板表面供應的處理氣體提供邊緣到中心分佈的靈活控制。跨越基板表面的控制氣體分佈增強了調整沉積在基板上的膜的厚度和/或分佈的能力。由配氣板上不同扼流器長度產生的流動梯度也提供製程控制特性,以利於控制在基板寬度範圍內的膜性質差異。The present invention provides a method and apparatus for depositing a tantalum film suitable for use in solar cells. In one embodiment, the apparatus includes a gas distribution plate having different choke lengths to create a gas flow gradient to the substrate. The flow gradient created by the gas distribution plate provides flexible control of the edge-to-center distribution of the process gas supplied to the substrate surface through the gas distribution plate. The control gas distribution across the surface of the substrate enhances the ability to adjust the thickness and/or distribution of the film deposited on the substrate. The flow gradients produced by the different choke lengths on the gas distribution plates also provide process control characteristics to facilitate control of membrane property differences over the width of the substrate.

圖1是電漿增強化學氣相沉積(PECVD)室100的一個實施例的截面示意圖,其中可以形成一個或多個適於製造太陽能電池或其他大面積裝置的膜。一個適合的電漿增強氣相沉積室可以使用來自加利福尼亞的聖大克勞拉拉(Santa Clara,California)的應用材料有限公司(Applied Materials Inc.)。可以理解可以利用包括其他製造商的其他的沉積室來實現本發明。也可以理解可以有利地應用在此描述的技術來製造其他結構或裝置。1 is a schematic cross-sectional view of one embodiment of a plasma enhanced chemical vapor deposition (PECVD) chamber 100 in which one or more membranes suitable for fabricating solar cells or other large area devices can be formed. A suitable plasma enhanced vapor deposition chamber can be used from Applied Materials Inc. of Santa Clara, California. It will be appreciated that other deposition chambers including other manufacturers may be utilized to implement the invention. It will also be appreciated that the techniques described herein may be advantageously employed to fabricate other structures or devices.

室100一般包括壁102和底104,壁102和底104界定一個處理空間106。配氣板110和基板支撐元件130設置在處理空間106中利用貫穿壁102形成的流量閥通道108進出處理空間106,該通道能使基板140進入或移出室100。The chamber 100 generally includes a wall 102 and a bottom 104 that define a processing space 106. The gas distribution plate 110 and the substrate support member 130 are disposed in the processing space 106 to enter and exit the processing space 106 by the flow valve passage 108 formed by the through wall 102, which enables the substrate 140 to enter or exit the chamber 100.

基板支撐元件130包括用於在其上支撐基板140的基板接收表面132。桿134使支撐元件130與升降系統136耦合,該升降系統136在基板傳輸和處理位置之間提升和降低基板支撐元件130。當處理防止沉積在基板140的邊緣時,遮蔽框架133可以任選地放置在基板140的邊緣上。舉升銷138通過基板支撐元件可移動地設置,並且舉升銷138用於將基板140從基板接收表面分隔以方便基板與機械手葉片的交換。基板支撐元件130還可以包括使用的加熱和/或冷卻元件139,加熱和/或冷卻元件139維持基板支撐元件130在預定溫度。基板支撐元件130還可以包括接地帶131,接地帶131提供繞基板支撐元件130周邊的RF接地。接地帶的實施例公開在2000年2月15日授予給Law等人的美國專利No.6,024,044和2006年12月20日提交的Park等人的美國專利申請No.11/613,934中。The substrate support member 130 includes a substrate receiving surface 132 for supporting the substrate 140 thereon. Rod 134 couples support member 130 to lift system 136, which lifts and lowers substrate support member 130 between substrate transport and processing positions. When the process prevents deposition on the edge of the substrate 140, the shadow frame 133 may optionally be placed on the edge of the substrate 140. The lift pins 138 are movably disposed through the substrate support members, and the lift pins 138 are used to separate the substrate 140 from the substrate receiving surface to facilitate exchange of the substrate with the robot blades. The substrate support member 130 may also include a heating and/or cooling element 139 that is used to maintain the substrate support member 130 at a predetermined temperature. The substrate support member 130 can also include a ground strap 131 that provides RF ground around the perimeter of the substrate support member 130. An example of a grounding strip is disclosed in U.S. Patent No. 6,024,044, issued to Law et al., issued Jan. 15, 2000, and to U.S. Pat.

配氣板110通過懸架114在背板112的周邊與背板112耦合。配氣板110還可以通過一個或多個中心支撐116與背板112耦合來幫助防止配氣板110的下垂和/或控制平直度/曲率。在一個實施例中,配氣板110可以為具有不同尺寸的不同結構。在一個示例性實施例中,配氣板110是四邊形配氣板。配氣板110具有上表面198和下游表面150。上表面198面對背板112的下表面196。氣體分背板110包括多個扼流器111,扼流器111貫穿配氣板110形成並 面對設置在基板支撐元件130的基板的上表面118。扼流器111可以具有不同的形狀、數量、密度、尺寸和跨越配氣板110的分佈。可以在大約0.01英寸到大約1英寸之間選擇扼流器111的直徑。氣源120與背板112耦合以將氣體供應給界定在配氣板110和背板112之間的氣室。來自氣源120的氣體從形成在配氣板110上的扼流器111流到處理空間106。The gas distribution plate 110 is coupled to the backing plate 112 at the periphery of the backing plate 112 by a suspension 114. The gas distribution plate 110 can also be coupled to the backing plate 112 by one or more central supports 116 to help prevent sagging of the gas distribution plate 110 and/or control flatness/curvature. In one embodiment, the gas distribution plates 110 can be of different configurations having different sizes. In an exemplary embodiment, the gas distribution plate 110 is a quadrilateral gas distribution plate. The gas distribution plate 110 has an upper surface 198 and a downstream surface 150. Upper surface 198 faces lower surface 196 of backing plate 112. The gas separation back plate 110 includes a plurality of chokes 111 formed through the gas distribution plate 110 and The upper surface 118 of the substrate disposed on the substrate support member 130 is faced. The chokes 111 can have different shapes, numbers, densities, sizes, and distribution across the gas distribution plate 110. The diameter of the choke 111 can be selected between about 0.01 inches and about 1 inch. Gas source 120 is coupled to backing plate 112 to supply gas to a plenum defined between gas distribution plate 110 and backing plate 112. The gas from the gas source 120 flows from the choke 111 formed on the gas distribution plate 110 to the processing space 106.

在一個實施例中,在板110的不同區域的扼流器111具有不同的流導,因此產生進入處理空間106的流動梯度。可以利用扼流器111的長度、形狀、外形、孔粗糙度和/或其他屬性來控制每個扼流器111的流導。由於扼流器111不同的流導可以允許不同容量的處理氣體流入處理空間106,因此跨越基板表面118的產生的流動梯度可以有效地被利用並且設置流動梯度來調整沉積在基板表面118上的外形、膜性質和厚度。已經發現通過使配氣板110的角具有相對於板110的邊緣不同的流導,可以改善膜的均勻性。In one embodiment, the chokes 111 in different regions of the plate 110 have different conductances, thus creating a flow gradient into the processing space 106. The conductance of each choke 111 can be controlled using the length, shape, shape, hole roughness, and/or other properties of the choke 111. Since different conductances of the chokes 111 can allow different volumes of process gas to flow into the process space 106, the resulting flow gradient across the substrate surface 118 can be effectively utilized and a flow gradient can be set to adjust the profile deposited on the substrate surface 118. , film properties and thickness. It has been found that by making the corners of the gas distribution plate 110 have different conductances relative to the edges of the plate 110, the uniformity of the film can be improved.

在一個實施例中,可以通過從板110的上表面198和/或下游表面加工板110的一部分來形成扼流器111的不同長度,因此接合區果是位於加工部分的扼流器111比位於非加工部分的扼流器111具有更短的長度。可選擇地,可以通過包括扼流器111中心形成的一個或多個孔來形成扼流器111的長度以在配氣板110中產生不同的通道外形,下面將接合區合圖7-10D更加詳細的描述。In one embodiment, different lengths of the choke 111 may be formed by processing a portion of the plate 110 from the upper surface 198 and/or the downstream surface of the plate 110, such that the land is located at the choke 111 of the machined portion. The choke 111 of the non-machined portion has a shorter length. Alternatively, the length of the choke 111 may be formed by one or more holes formed in the center of the choke 111 to produce different channel profiles in the gas distribution plate 110, which will be further described below. Detailed description.

真空泵109與室100耦合來維持處理空間106在預定壓力。RF電源122與背板112和/或配氣板110耦合以提供RF電能而在配氣板110和基板支撐元件130之間形成 電場,因此在配氣板110和基板支撐元件130之間可以由存在的氣體產生電漿。可以使用不同的RF頻率,例如在大約0.3MHz到大約200MHz之間的頻率。在一個實施例中設置RF電源為13.56MHz的頻率。配氣板的實施例公開在2002年11月12日授予給White等人的美國專利No.6,477,980、2005年11月17日公開的Choi等人的美國公開No.20050251990和2006年3月23日公開的Keller等人的美國公開No.2006/0060138中。Vacuum pump 109 is coupled to chamber 100 to maintain processing space 106 at a predetermined pressure. The RF power source 122 is coupled to the backing plate 112 and/or the gas distribution plate 110 to provide RF electrical energy to form between the gas distribution plate 110 and the substrate support member 130. The electric field, therefore, can be generated by the gas present between the gas distribution plate 110 and the substrate support member 130. Different RF frequencies can be used, such as frequencies between about 0.3 MHz and about 200 MHz. In one embodiment the RF power source is set to a frequency of 13.56 MHz. An example of a gas distribution plate is disclosed in U.S. Patent No. 6,477,980 issued to White et al. on November 12, 2002, and to U.S. Publication No. 20050251990, issued on Nov. 17, 2005. U.S. Publication No. 2006/0060138 to Keller et al.

也可以將遠端電漿源124,例如感應耦合遠端電漿源,耦合在氣源和背板之間。在處理的基板之間,可以在遠端的電漿源124中激發清潔氣體來提供利用遠端產生的電漿清潔室部件。清潔氣體還可以由通過電源122提供給配氣板110的RF電能激發。適和的清潔氣體包括,但不限於,NF3 、F2 和SF6 。在1998年8月4日授予給Shang等人的美國專利No.5,788,778中公開了遠端電漿源的實施例。A remote plasma source 124, such as an inductively coupled remote plasma source, can also be coupled between the gas source and the backing plate. Between the treated substrates, a cleaning gas can be excited in the remote plasma source 124 to provide a plasma cleaning chamber component that is generated using the distal end. The cleaning gas may also be excited by RF electrical energy supplied to the gas distribution plate 110 by the power source 122. Suitable cleaning gases include, but are not limited to, NF 3 , F 2 , and SF 6 . An embodiment of a remote plasma source is disclosed in U.S. Patent No. 5,788,778, issued to A.S.

在一個實施例中,可以在室100中處理的基板140可以具有10,000cm2 或更大,例如40,000cm2 或更大,例如55,000cm2 或更大的面積。可以理解處理之後基板可以被切開形成更小的太陽能電池或其他裝置。In one embodiment, the substrate may be processed in the chamber 100 or 140 may have a greater 10,000cm 2, e.g. 40,000cm 2 or more, e.g. 55,000cm 2 or a larger area. It will be appreciated that the substrate can be slit after processing to form smaller solar cells or other devices.

在一個實施例中,可以設置加熱和/或冷卻元件139來維持在沉積期間基板支撐元件大約400攝氏度或更少,例如約100攝氏度和約400攝氏度之間,或大約150攝氏度到大約300攝氏度之間,例如大約200攝氏度。In one embodiment, heating and/or cooling elements 139 may be provided to maintain the substrate support elements between about 400 degrees Celsius or less, such as between about 100 degrees Celsius and about 400 degrees Celsius, or between about 150 degrees Celsius and about 300 degrees Celsius during deposition. Between, for example, about 200 degrees Celsius.

在沉積期間,設置在基板接收表面132的基板上表面與配氣板110之間的間距可以在400密耳到大約1,200密耳之間,例如在400密耳到大約800密耳之間。The spacing between the upper surface of the substrate disposed on the substrate receiving surface 132 and the gas distribution plate 110 during deposition may be between 400 mils to about 1,200 mils, such as between 400 mils to about 800 mils.

為了矽膜的沉積,通過配氣板110提供矽基氣體和氫基氣體。適宜的矽基氣體包括,但不限於矽烷(SiH4 )、乙矽烷(Si2 H6 )、四氟矽烷(SiF4 )、四氯矽烷(SiCl4 )、二氯矽烷(SiH2 Cl2 )及其混合物。適宜的氫基氣體包括,但不限於氫氣(H2 )。p-型矽層的p-型摻雜劑可以包括Ⅲ族元素,例如硼或鋁。在一個實施例中,使用硼作為p-型摻雜劑。含硼源的實施例包括三甲基硼(TMB)、二硼烷(B2 H6 )、BF3 、B(C2 H5 )3 、BH3 、BF3 和B(CH3)3 及其類似化合物。在另一個實施例中,使用TMB作為p-型摻雜劑。n-型矽層的n-型摻雜劑可以包括V族元素,例如磷、砷或銻。含磷源的實施例包括磷化氫和類似化合物。一般摻雜劑由載氣,例如氫、氬、氦或其他適宜的化合物。在此公開的一個處理方案中,設置氫基氣體的總氣體流速。因此,如果氫基氣體諸如作為用於摻雜劑的載氣,則應當從氫基氣體的總氣體流速中減去載氣的流速來確定應當提供多少額外的氫基氣體給室。For the deposition of the ruthenium film, a ruthenium-based gas and a hydrogen-based gas are supplied through the gas distribution plate 110. Suitable sulfhydryl gases include, but are not limited to, decane (SiH 4 ), ethane hydride (Si 2 H 6 ), tetrafluoro decane (SiF 4 ), tetrachloro decane (SiCl 4 ), and dichloro decane (SiH 2 Cl 2 ). And mixtures thereof. Suitable hydrogen-based gases include, but are not limited to, hydrogen (H 2 ). The p-type dopant of the p-type germanium layer may include a group III element such as boron or aluminum. In one embodiment, boron is used as the p-type dopant. Examples of boron-containing sources include trimethylboron (TMB), diborane (B 2 H 6 ), BF 3 , B(C 2 H 5 ) 3 , BH 3 , BF 3 , and B(CH 3 ) 3 and Similar compound. In another embodiment, TMB is used as the p-type dopant. The n-type dopant of the n-type germanium layer may include a group V element such as phosphorus, arsenic or antimony. Examples of phosphorus containing sources include phosphine and similar compounds. Typically the dopant is a carrier gas such as hydrogen, argon, helium or other suitable compound. In one treatment scheme disclosed herein, the total gas flow rate of the hydrogen-based gas is set. Thus, if a hydrogen-based gas, such as a carrier gas for a dopant, should be subtracted from the total gas flow rate of the hydrogen-based gas, the flow rate of the carrier gas should be determined to determine how much additional hydrogen-based gas should be supplied to the chamber.

圖2A-C示出在製造順序的不同階段配氣板的截面圖。配氣板110具有上表面198,上表面198面對背板112並且與面對基板支撐元件130的下游表面150相對。在一個實施例中,上表面198和下游表面150可以是平行的平面。如上述所討論,扼流器111可以具有不同的構造、形狀、特徵和數量以滿足不同的處理需要。在圖2A所示的一個實施例中,既在板110的角部分224又在邊緣部分226的扼流器111可以具有等長度220、222的直壁。在板110的上表面198和/或下游表面150可以被加工或其他方式形成在相對於背板112更低表面196的凹面206和/或基板支撐元件130的上表面132中。如圖2B所示,在加工處理 移除板110上表面198一部分的實施例中,凹面206產生在板110中,導致板110的的中心部分226比角部分224更薄。在一個實施例中,可以設置在凹面206和初始平面(如假想線198中所示)之間的弦深(chord depth)254在大約0.05英寸到大約1英寸之間。凹面206和初始平面(如假想線198中所示)之間形成的的弦深254小於板110的尺寸。在一個實施方式中,可以控制最大弦深254在不大於板110的固有長度的大約百分之3,例如在大約百分之0.1到大約百分之2.0。為了比較矩形或圓形板110的弦深254,認為固有長度是“等效半徑”。對於圓形的分佈板,等效半徑等於板的半徑。對於正方形或矩形板,等效半徑等於對角線長的一半。在具有大約2200mm×1870mm尺寸的板110的一個實施例中,等效半徑是大約1440mm,以及最大弦深304是大約28.4mm。2A-C show cross-sectional views of the gas distribution plates at different stages of the manufacturing sequence. The gas distribution plate 110 has an upper surface 198 that faces the backing plate 112 and is opposite the downstream surface 150 that faces the substrate support member 130. In one embodiment, upper surface 198 and downstream surface 150 may be parallel planes. As discussed above, the chokes 111 can have different configurations, shapes, features, and numbers to meet different processing needs. In one embodiment shown in FIG. 2A, the chokes 111, both at the corner portion 224 of the plate 110 and at the edge portion 226, may have straight walls of equal lengths 220, 222. Upper surface 198 and/or downstream surface 150 of plate 110 may be machined or otherwise formed in concave surface 206 relative to lower surface 196 of backing plate 112 and/or upper surface 132 of substrate support member 130. As shown in Figure 2B, in processing In an embodiment where a portion of the upper surface 198 of the plate 110 is removed, a concave surface 206 is created in the plate 110, resulting in a central portion 226 of the plate 110 being thinner than the angular portion 224. In one embodiment, a chord depth 254 between the concave surface 206 and the initial plane (as shown in phantom line 198) may be disposed between about 0.05 inches to about 1 inch. The chord depth 254 formed between the concave surface 206 and the initial plane (as shown in imaginary line 198) is less than the size of the plate 110. In one embodiment, the maximum chord depth 254 can be controlled to be no more than about 3 percent of the inherent length of the panel 110, such as between about 0.1 percent and about 2.0 percent. To compare the chord depth 254 of the rectangular or circular plate 110, the intrinsic length is considered to be the "equivalent radius." For a circular distribution plate, the equivalent radius is equal to the radius of the plate. For square or rectangular plates, the equivalent radius is equal to half the length of the diagonal. In one embodiment of the panel 110 having a size of approximately 2200 mm by 1870 mm, the equivalent radius is approximately 1440 mm and the maximum chord depth 304 is approximately 28.4 mm.

形成在板邊緣部分226的扼流器204可以具有比形成在角部分224的扼流器250的長度220更短的長度222(因此,阻力更小)。另外,可以任選地設置板110的凹面206以使在板110邊緣部分的扼流器111的長度大於鄰近板110中心的扼流器的長度。扼流器逐漸變化的長度產生通過板110不同的流動阻力,因此導致通過配氣板110流入處理空間106的處理氣體不同的流速和/或體積速率特徵。特別是,設置扼流器110減少通過在相對板110邊緣的角的板110的流導。流經配氣板110的不同量的處理氣體在處理空間106中產生流動梯度。可以選擇梯度提供調整沉積膜外形、性質、膜的均勻性和厚度和/或沉積膜的物理屬性的處理控制按鈕。因此,可以利用配氣板的使用來提高沉積矽膜中面層到邊緣和邊緣到中心的晶體百分比配 額。The choke 204 formed at the plate edge portion 226 may have a shorter length 222 (and therefore less resistance) than the length 220 of the choke 250 formed at the corner portion 224. Additionally, the concave surface 206 of the plate 110 can optionally be disposed such that the length of the choke 111 at the edge portion of the plate 110 is greater than the length of the choke adjacent the center of the plate 110. The gradually varying length of the choke produces different flow resistance through the plate 110, thus resulting in different flow rate and/or volume rate characteristics of the process gas flowing into the process space 106 through the gas distribution plate 110. In particular, the choke 110 is provided to reduce the conductance of the plate 110 through the corners at the edges of the opposing plates 110. Different amounts of process gas flowing through the gas distribution plate 110 create a flow gradient in the processing space 106. The gradient can be selected to provide a process control button that adjusts the deposited film profile, properties, film uniformity and thickness, and/or physical properties of the deposited film. Therefore, the use of gas distribution plates can be used to increase the percentage of crystals from the top layer to the edge and edge to the center of the deposited tantalum film. amount.

還可以使用流動梯度助劑來調整沉積膜從中心到邊緣的均勻性。例如,在一個實施例中,其中使用傳統配氣板膜應當以一般拱形膜外形(例如,中心部分比邊緣部分厚的膜外形)沉積,可以利用相對鄰近邊緣部分226和角部分226設置的扼流器的在板110的中心部分的更短長度的扼流器來調整沉積形成在基板上的膜的外形為更平整的外形。相反,在一個實施例中,其中使用傳統的配氣板膜應當以一般凹面型膜外形(例如,具有中心部分比邊緣部分薄的膜)沉積,可以利用相對於鄰近邊緣部分設置的扼流器的在中心部分更長長度的扼流器250。Flow gradient aids can also be used to adjust the uniformity of the deposited film from center to edge. For example, in one embodiment, where a conventional gas distribution plate film is used, it should be deposited in a generally arched film configuration (e.g., a central portion is thicker than the edge portion), and may be disposed adjacent to the edge portion 226 and the corner portion 226. The shorter length of the choke of the choke in the central portion of the plate 110 adjusts the profile of the film deposited on the substrate to a more even profile. In contrast, in one embodiment, where a conventional gas distribution plate film is used, it should be deposited in a generally concave film shape (for example, a film having a central portion thinner than the edge portion), and a choke device disposed with respect to the adjacent edge portion can be utilized. The choke 250 of the longer length in the center portion.

在另一個實施例中,可以加工板110的下游表面110或以其他方式形成相對於基板支撐元件130上表面132的彎曲表面260。加工處理從板110的下游表面除去板110的一部分,以使板110的邊緣部分226的中心比角部分224薄,如圖2C所示。在室100中安裝板110時,板110的彎曲表面260在有彎曲表面260到基板支撐元件130之間產生逐漸變化的距離。在一個實施例中,在彎曲表面260和初始平面(如假想線198中所示)之間產生的弦深256在大約0.05英寸到大約1英寸之間。由於下游彎曲表面260和基板支撐元件130之間的距離跨越基板支撐表面132逐漸變化,因此可以控制膜的沉積外形。與彎曲的下游表面260組合的板110的彎曲上表面206在處理期間既產生跨越基板表面的流動梯度又產生跨越基板表面的梯度間隔,因此對跨越基板表面的氣體和/或電漿分佈提供增強的控制以允許控制沉積膜的外形、性質、膜的均勻性和厚度。In another embodiment, the downstream surface 110 of the panel 110 can be machined or otherwise formed with a curved surface 260 relative to the upper surface 132 of the substrate support member 130. The processing removes a portion of the panel 110 from the downstream surface of the panel 110 such that the center of the edge portion 226 of the panel 110 is thinner than the corner portion 224, as shown in Figure 2C. When the plate 110 is installed in the chamber 100, the curved surface 260 of the plate 110 produces a gradually varying distance between the curved surface 260 and the substrate support member 130. In one embodiment, the chord depth 256 produced between the curved surface 260 and the initial plane (as shown in phantom line 198) is between about 0.05 inches and about 1 inch. Since the distance between the downstream curved surface 260 and the substrate support member 130 gradually changes across the substrate support surface 132, the deposition profile of the film can be controlled. The curved upper surface 206 of the plate 110 in combination with the curved downstream surface 260 creates both a flow gradient across the substrate surface and a gradient spacing across the substrate surface during processing, thereby providing enhanced gas and/or plasma distribution across the substrate surface. Control to allow control of the shape, properties, uniformity and thickness of the deposited film.

在一個實施例中,扼流器111具有在產生中空陰極效 應的範圍內選擇的直徑258。在處理期間,產生電漿來使室中供應的混合氣體離子化。帶有選擇範圍的扼流器直徑,電漿可以滯留在配氣板110的扼流器111中因此增加電子發射、電子的振蕩運動和氣體離子化作用,這就是“中空陰極效應”。其他的選擇扼流器111的幾何形狀的實施例,例如具有小於或大於提供中空陰極效應的直徑,電漿不滯留在扼流器111中,因此消除了有害的過反應和/或過沉積。在一個實施例中,扼流器111的直徑238具有大約0.05英寸到大約0.5英寸之間的直徑來產生預定數量的中空陰極效應。In one embodiment, the choke 111 has a hollow cathode effect The diameter 258 is selected within the range of the application. During the treatment, plasma is generated to ionize the mixed gas supplied in the chamber. With a selected range of choke diameters, the plasma can be retained in the choke 111 of the gas distribution plate 110, thereby increasing electron emission, electron oscillating motion, and gas ionization, which is the "hollow cathode effect." Other embodiments that select the geometry of the choke 111, for example having a diameter that is less than or greater than providing a hollow cathode effect, are not retained in the choke 111, thus eliminating deleterious over-reaction and/or over-deposition. In one embodiment, the diameter 238 of the choke 111 has a diameter of between about 0.05 inches to about 0.5 inches to produce a predetermined number of hollow cathode effects.

在一些不期望中空陰極效應的實施例中,可以選擇扼流器111的直徑238在0.01英寸到大約0.05英寸之間。因此,如圖2B所示,形成在下游表面150上的扼流器111,和/或形成在圖2C中的下游彎曲表面260,可以具有不同的開口形狀以控制扼流器111中中空陰極效應的產生。參見圖7-9將更加詳細描述用於產生中空陰極效應和/或梯度的不同形狀。In some embodiments where a hollow cathode effect is undesirable, the diameter 238 of the choke 111 can be selected to be between 0.01 inches and about 0.05 inches. Thus, as shown in FIG. 2B, the chokes 111 formed on the downstream surface 150, and/or the downstream curved surface 260 formed in FIG. 2C, may have different opening shapes to control the hollow cathode effect in the choke 111. The production. The different shapes used to create the hollow cathode effect and/or gradient will be described in more detail with reference to Figures 7-9.

圖3A-B示出產生邊緣到中心流動梯度的配氣板300的製造過程的不同階段的配氣板300的截面圖。與圖1和圖2A-C中描述的配氣板110的設計相似,如圖3A所示,可以通過板300形成多個扼流器314。然後使板300變形和/或加工板300以從板300的平面(如假想線面302所示)形成彎曲上表面306。這一過程還可以產生板300的下游表面316成為凸起表面316。隨後,加工在邊緣部分310的凸起表面316以形成平面312,使上表面306形成預定的凸起形狀,這導致板300之邊緣部分310和角部分308的中心的扼流器314具有不同的長度318、320,如圖3B 所示。應當注意為了簡便,由製造過程產生的扼流器314的變形沒有在圖中描述。3A-B illustrate cross-sectional views of the gas distribution plate 300 at various stages of the manufacturing process of the gas distribution plate 300 that produces an edge to center flow gradient. Similar to the design of the gas distribution plate 110 described in FIGS. 1 and 2A-C, as shown in FIG. 3A, a plurality of chokes 314 may be formed through the plate 300. The plate 300 is then deformed and/or the plate 300 is machined to form a curved upper surface 306 from the plane of the plate 300 (as shown by the imaginary line 302). This process can also result in the downstream surface 316 of the plate 300 becoming the raised surface 316. Subsequently, the raised surface 316 of the edge portion 310 is machined to form a plane 312 such that the upper surface 306 forms a predetermined convex shape, which causes the edge portion 310 of the plate 300 and the center of the corner portion 308 to have different turbulators 314. Length 318, 320, as shown in Figure 3B Shown. It should be noted that for simplicity, the deformation of the choke 314 produced by the manufacturing process is not depicted in the figures.

與圖1和圖2A-C形成的扼流器111相似,在製造過程的開始在板300的角和邊緣部分308、310扼流器314可以具有等長320、318的直壁。為了解釋的方便,現在某些扼流器314將成為內扼流器322和外扼流器324。內扼流器322位於鄰近板300的邊緣部分310的中心,角扼流器324位於鄰近板300的角部分308。由於使板300變形使上表面302形成彎曲表面306,形成在板300中扼流器314的尺寸、長度、深度和形狀同樣通過變形過程而改變。例如,由於使板300的下游表面312彎曲以形成凸起表面,因此相應地加工了位於板300邊緣部分310的扼流器322,因此導致板300邊緣部分310的扼流器322的長度變得比角部分308的扼流器324的長度短。另外,由彎曲和/或變形過程在彎曲上表面306產生的扼流器322變形還可能導致扼流器322具有不同長度的內壁和/或內曲率,因此當氣體通過板300時有助於產生流動梯度。通過界定並計算好的加工和/或彎曲過程,可以預定扼流器的深度、長度、分佈、形狀和密度以產生跨越位於基板支撐元件130上的基板表面的預定的氣體和/或電漿的分佈,因此方便控制沉積在基板上的膜的厚度特徵和性質。Similar to the chokes 111 formed in Figures 1 and 2A-C, the chokes 314 at the corner and edge portions 308, 310 of the plate 300 may have straight walls of equal lengths 320, 318 at the beginning of the manufacturing process. For convenience of explanation, some of the chokes 314 will now be the inner choke 322 and the outer choke 324. The inner choke 322 is located adjacent the center of the edge portion 310 of the plate 300, and the corner choke 324 is located adjacent the corner portion 308 of the plate 300. Since the upper surface 302 is deformed such that the upper surface 302 forms a curved surface 306, the size, length, depth and shape of the choke 314 formed in the plate 300 are also changed by the deformation process. For example, since the downstream surface 312 of the plate 300 is bent to form a convex surface, the choke 322 located at the edge portion 310 of the plate 300 is correspondingly processed, thus causing the length of the choke 322 of the edge portion 310 of the plate 300 to become The length of the choke 324 is smaller than the angle portion 308. Additionally, deformation of the choke 322 created by the curved upper surface 306 by the bending and/or deforming process may also cause the choke 322 to have different lengths of inner and/or inner curvature, thus facilitating gas as it passes through the plate 300. A flow gradient is produced. By defining and calculating a processing and/or bending process, the depth, length, distribution, shape, and density of the choke can be predetermined to create a predetermined gas and/or plasma across the surface of the substrate on the substrate support member 130. Distribution, thus facilitating control of the thickness characteristics and properties of the film deposited on the substrate.

圖4A-B示出製造具有彎曲表面的配氣板400的流程的不同階段的配氣板400的截面圖。如圖4A所示,可以通過板400形成多個扼流器450。使板400變形以從板400的平面(如假想線面418所示)形成彎曲下游表面。這一過程還可以致使板400的上表面420變為從平面凸起的凸面420。隨後,加工在邊緣部分430中心的凸面420以形 成平面422,如圖4B所示,使下游表面402形成預定的彎曲形狀。應當注意為了簡便,由製造過程產生的扼流器450的變形沒有在圖中描述。界定在彎曲表面402和初始平面(如假想線418中所示)之間的弦深414在大約0.05英寸到大約1英寸之間,因此在彎曲表面402和面對的基板支撐元件130之間產生逐漸變化的距離。4A-B illustrate cross-sectional views of a gas distribution plate 400 at various stages of the process of fabricating a gas distribution plate 400 having a curved surface. As shown in FIG. 4A, a plurality of chokes 450 can be formed by the plate 400. The plate 400 is deformed to form a curved downstream surface from the plane of the plate 400 (as indicated by the imaginary line surface 418). This process can also cause the upper surface 420 of the panel 400 to become a convex surface 420 that is convex from the plane. Subsequently, the convex surface 420 at the center of the edge portion 430 is processed to be shaped The plane 422, as shown in Fig. 4B, causes the downstream surface 402 to form a predetermined curved shape. It should be noted that for the sake of simplicity, the deformation of the choke 450 produced by the manufacturing process is not depicted in the figures. The chord depth 414 defined between the curved surface 402 and the initial plane (as shown in phantom line 418) is between about 0.05 inches and about 1 inch, thus creating between the curved surface 402 and the facing substrate support member 130. Gradually changing distance.

扼流器450具有形成在板400上的第一孔406、408和第二孔410、412。由於使板400變形使下游表面418形成彎曲表面402,形成在板400中扼流器450的尺寸、長度和形狀同樣通過變形過程而改變。另外,由於加工板400得上表面,除去了一部分位於板400邊緣部分430中心的第一孔406,因此使得板400邊緣部分430中心的第一孔406的長度比為於中心部分408的第一孔406的長度短。另外,由彎曲過程產生的在彎曲表面402的第二孔410、412的變形還可能導致第二孔412、410具有錐形內壁和不同的空腔外形,因此產生中空陰極效應和/或中空陰極梯度(HCG),中空陰極梯度造成在跨越基板表面的電漿均勻性的梯度。通過預先界定的和計算好的壁的加工和/或彎曲過程,可以選擇孔的深度、分佈、形狀和密度以產生跨越位於基板支撐元件130上的基板表面的預定的氣體和/或電漿的分佈,因此在基板表面上沉積具有預定厚度特徵和膜性質的膜。The choke 450 has first holes 406, 408 and second holes 410, 412 formed on the plate 400. Since the deformation of the plate 400 causes the downstream surface 418 to form a curved surface 402, the size, length and shape of the choke 450 formed in the plate 400 are also altered by the deformation process. In addition, since the processing plate 400 has an upper surface, a portion of the first hole 406 at the center of the edge portion 430 of the plate 400 is removed, so that the length of the first hole 406 at the center of the edge portion 430 of the plate 400 is the first of the center portion 408. The length of the hole 406 is short. Additionally, deformation of the second apertures 410, 412 at the curved surface 402 resulting from the bending process may also result in the second apertures 412, 410 having a tapered inner wall and a different cavity profile, thus creating a hollow cathode effect and/or hollow Cathode gradient (HCG), the hollow cathode gradient creates a gradient of plasma uniformity across the surface of the substrate. The depth, distribution, shape and density of the holes can be selected by a pre-defined and calculated wall processing and/or bending process to create a predetermined gas and/or plasma across the surface of the substrate on the substrate support member 130. The distribution thus deposits a film having predetermined thickness characteristics and film properties on the surface of the substrate.

圖5示出用於製造具有彎曲表面的配氣板的熱處理的一個實施例的製程流程500。圖6A-B示出使用圖5所示熱處理製程500製造具有不同扼流器長度的配氣板的不同階段。FIG. 5 illustrates a process flow 500 of one embodiment of a heat treatment for fabricating a gas distribution plate having a curved surface. 6A-B illustrate different stages of fabricating a gas distribution plate having different choke lengths using the heat treatment process 500 illustrated in FIG.

流程500開始在步驟502將基本上平的配氣板602放 置在位於環境604中的外部支架608和內部支架610上。如圖6A所示,板602的邊緣部分606初始位於外部支架608上而內部支架610與板602間隔。任選地,外部支架可以僅僅支撐板602的角。可以由適於在大於500攝氏度下使用的材料形成內部支架610和外部支架608。外部支架608具有比內部支架610的高度630更高的高度632。由於板602位於通過邊緣部分606位於外部支架608上,板602的中心部分616懸在內部支架610上。在熱處理製程完成之後,可以選擇內部支架610和外部支架608的高度632、630之間的差產生板602的預定曲率。可選地,可以選擇環境中內部支架的位置來控制板602的曲率。例如,近鄰板602的中心線620設置內部支架610與近鄰板602的邊緣部分606設置內部支架510(相同的高度)相比可以產生更小的曲率。在一個示例性實施例中,可以選擇內部支架610和外部支架608的高度來產生具有大約0.05英寸到大約1英寸的弦深的板。Flow 500 begins by placing a substantially flat gas distribution plate 602 at step 502. The outer bracket 608 and the inner bracket 610 are located in the environment 604. As shown in FIG. 6A, the edge portion 606 of the plate 602 is initially located on the outer bracket 608 and the inner bracket 610 is spaced from the plate 602. Optionally, the outer bracket may only support the corners of the plate 602. The inner bracket 610 and the outer bracket 608 can be formed from a material suitable for use at greater than 500 degrees Celsius. The outer bracket 608 has a height 632 that is higher than the height 630 of the inner bracket 610. Since the plate 602 is located on the outer bracket 608 through the edge portion 606, the central portion 616 of the plate 602 overhangs the inner bracket 610. After the heat treatment process is completed, the difference between the heights 632, 630 of the inner bracket 610 and the outer bracket 608 can be selected to produce a predetermined curvature of the panel 602. Alternatively, the position of the inner bracket in the environment can be selected to control the curvature of the board 602. For example, the centerline 620 of the neighboring plate 602 provides that the inner bracket 610 can produce a smaller curvature than the edge portion 606 of the neighboring plate 602 provides the inner bracket 510 (the same height). In an exemplary embodiment, the height of the inner bracket 610 and the outer bracket 608 can be selected to produce a panel having a chord depth of about 0.05 inches to about 1 inch.

可以進行過程500的環境604可以是室、反應爐、金屬容器或任何其他適於進行熱處理的環境類型。在一個實施例中,在進行熱處理過程500之前可以形成穿過板602的扼流器。可以以任何次序進行鑽孔和熱處理過程順序。Environment 604 in which process 500 can be performed can be a chamber, a reactor, a metal vessel, or any other type of environment suitable for heat treatment. In one embodiment, a choke through plate 602 can be formed prior to performing heat treatment process 500. The drilling and heat treatment process sequence can be performed in any order.

在一個實施例中,當在室100中使用時板602的上表面612可以面對背板112。在室100中的安裝板602的下表面614可以面對基板支撐元件130。可選擇地,可以交換上游和下游表面以使彎曲表面面對背板112。In one embodiment, the upper surface 612 of the plate 602 can face the backing plate 112 when used in the chamber 100. The lower surface 614 of the mounting plate 602 in the chamber 100 can face the substrate support member 130. Alternatively, the upstream and downstream surfaces can be swapped such that the curved surface faces the backing plate 112.

在步驟504,升高並維持環境604中的溫度,例如在大約400攝氏度到大約600攝氏度之間,以軟化配氣板602。在一個實施例中,溫度可以逐漸爬升直到預定溫度, 例如大約每2到5分鐘升高10攝氏度,直到達到預定溫度。At step 504, the temperature in the environment 604 is raised and maintained, for example between about 400 degrees Celsius and about 600 degrees Celsius, to soften the gas distribution plate 602. In one embodiment, the temperature can gradually climb up to a predetermined temperature, For example, approximately 10 degrees Celsius is raised every 2 to 5 minutes until a predetermined temperature is reached.

熱處理一段時間之後,如圖6B所示,板602開始軟化並下垂。由於板602軟化,重力向下拉伸板602的中心部分616直到板602接觸到較低內部支架610的上表面。由於內部支架610和外部支架608具有預定的高度差,在板602中設置預定的曲率。同樣預期對板602施加真空或其他機械力來促使獲得預定板曲率。After a period of heat treatment, as shown in FIG. 6B, the plate 602 begins to soften and sag. As the plate 602 softens, gravity forces the central portion 616 of the plate 602 downward until the plate 602 contacts the upper surface of the lower inner bracket 610. Since the inner bracket 610 and the outer bracket 608 have a predetermined height difference, a predetermined curvature is set in the panel 602. It is also contemplated to apply a vacuum or other mechanical force to the plate 602 to induce a predetermined plate curvature.

一旦達到板602的曲率,在步驟506接合區束熱處理過程500。在一些實施例中,可以去除內部支架610,並且可以使板602彎曲直到達到環境604的底表面或環境604中板物理形狀的條件限制。Once the curvature of the plate 602 is reached, the beam heat treatment process 500 is engaged at step 506. In some embodiments, the inner bracket 610 can be removed and the plate 602 can be bent until the bottom surface of the environment 604 or the conditional constraints of the physical shape of the board in the environment 604 is reached.

可選擇地,可以通過真空中的彎曲過程或通過使用機械力形成板602的曲率。可以在環境中設置抽運通道(如圖6B的假想線650所示),並且使用抽運通道在環境604的一部分抽真空。跨越板602的壓力差使板602產生彎曲。板602可以通過支架610、608支撐在真空環境中。達到預定的曲率之後,釋放真空以從環境中移出板。適當的真空彎曲過程和熱處理過程的實施例適於在2005年11月17日公開的Choi等人的美國專利公開No.2005/0251990的發明中獲得利益。Alternatively, the curvature of the plate 602 may be formed by a bending process in a vacuum or by using a mechanical force. A pumping channel can be provided in the environment (as shown by phantom line 650 of Figure 6B) and a vacuum is applied to a portion of environment 604 using the pumping channel. The pressure differential across the plate 602 causes the plate 602 to bend. Plate 602 can be supported in a vacuum environment by brackets 610, 608. After the predetermined curvature is reached, the vacuum is released to remove the plate from the environment. Examples of suitable vacuum bending processes and heat treatment processes are suitable for use in the invention of US Patent Publication No. 2005/0251990 to Choi et al., issued Nov. 17, 2005.

彎曲板602之後,上表面612可以用作板602的上表面。板602的彎曲的下表面614可用作下游表面,或被加工成平的。After bending the plate 602, the upper surface 612 can serve as the upper surface of the plate 602. The curved lower surface 614 of the plate 602 can be used as a downstream surface or machined to be flat.

圖7示出具有在板702的邊緣和角之間產生流動梯度的扼流器706的配氣板702的另一個實施例的示意圖。配氣板702具有多個貫通形成的扼流器706。在一個實施例中,扼流器706可以通過電腦數位控制(CNC)加工形成 在板702上。可以選擇每個扼流器706的分佈和構造以產生排出板702的從角到邊緣的氣體流動梯度。FIG. 7 shows a schematic diagram of another embodiment of a gas distribution plate 702 having a choke 706 that creates a flow gradient between the edges and corners of the plate 702. The gas distribution plate 702 has a plurality of chokes 706 formed therethrough. In one embodiment, the choke 706 can be formed by computer numerical control (CNC) processing. On board 702. The distribution and configuration of each choke 706 can be selected to produce a gas-to-edge gas flow gradient from the discharge plate 702.

每個扼流器702包括與通道710(如板702的邊緣部分728和角部分710C和710E分別所示)耦合的孔708(如板702中心部分728的708C和角部分726的708E所示)。通道710C、710E和孔708C、708E共同形成流動通道,該流動通道允許氣體從氣源120通過板702並進入上述板支撐元件130的處理區域106。通道710C、710E具有形成在配氣板702中的上側732中的上開口730C、730E。可以選擇通道710C、710E和孔708C、708E的直徑來控制預定數量的氣體流過。在一個實施例中,通道710C、710E具有比孔708C、708E更小的直徑。可選擇地,可以以任何其他不同構造設計通道710C、710E和孔708C、708E的直徑。Each choke 702 includes an aperture 708 coupled to channel 710 (as shown by edge portion 728 and corner portions 710C and 710E, respectively, of board 702) (as shown at 708C of central portion 728 of board 702 and 708E of corner portion 726) . Channels 710C, 710E and apertures 708C, 708E collectively form a flow channel that allows gas to pass from gas source 120 through plate 702 and into processing region 106 of plate support member 130 described above. Channels 710C, 710E have upper openings 730C, 730E formed in upper side 732 in gas distribution plate 702. The diameter of channels 710C, 710E and holes 708C, 708E can be selected to control the flow of a predetermined amount of gas. In one embodiment, the channels 710C, 710E have a smaller diameter than the holes 708C, 708E. Alternatively, the diameters of channels 710C, 710E and holes 708C, 708E can be designed in any other different configuration.

通道710C、710E具有從上開口730C、730E到向下開口736C、736E延伸的第一深度724、716。下開口736C、736E與孔708C、708E的上開口730C、730E耦合。孔708C、708E具有從上開口740C、740E向形成在配氣板702的下游表面748上的下開口744C、744E延伸的第二深度720、718。Channels 710C, 710E have first depths 724, 716 that extend from upper openings 730C, 730E to lower openings 736C, 736E. Lower openings 736C, 736E are coupled to upper openings 730C, 730E of holes 708C, 708E. The apertures 708C, 708E have a second depth 720, 718 that extends from the upper openings 740C, 740E to the lower openings 744C, 744E formed on the downstream surface 748 of the gas distribution plate 702.

位於板702邊緣部分728中心和角部分726的扼流器706可以具有不同的通道710C、710E和孔708C、708E的深度,不同的深度在板702邊緣產生從邊緣到角的流動梯度。在一個實施例中,位於邊緣部分728的扼流器706具有比位於角部分726的第一深度716和第二深度718短的第一深度724和比位於角部分726的第一深度716和第二深度718長的第二深度720,可以設計和構造位於板702邊緣和角部分726、728的通道710C、710E和孔708C、 708E之間的深度差,來控制通過相對板702的邊緣的板702的角部分的氣體流動數量,由此產生跨越基板表面118的流動梯度。在一個實施例中,構造為面對背板112的上表面732和構造為面對基板支撐元件130的下游表面748可以是平的表面。由於上表面732和下游表面748是平的,橫跨板702的寬度750可以確定包括橫跨板702(例如,包括板702的邊緣部分728和中心部分726)的第一深度724、716和第二深度720、718的總深度。The choke 706 at the center of the edge portion 728 of the plate 702 and the corner portion 726 can have different depths of the channels 710C, 710E and the holes 708C, 708E, with different depths producing a flow gradient from edge to corner at the edge of the plate 702. In one embodiment, the choke 706 at the edge portion 728 has a first depth 724 that is shorter than the first depth 716 and the second depth 718 at the corner portion 726 and a first depth 716 and a portion that is located at the corner portion 726. A second depth 720 having a depth 718 that is long enough to design and construct channels 710C, 710E and holes 708C at the edges and corner portions 726, 728 of the plate 702, The depth difference between 708E controls the amount of gas flow through the angular portion of the plate 702 at the edge of the opposing plate 702, thereby creating a flow gradient across the substrate surface 118. In one embodiment, the upper surface 732 configured to face the backing plate 112 and the downstream surface 748 configured to face the substrate support element 130 can be a flat surface. Since the upper surface 732 and the downstream surface 748 are flat, the width 750 across the plate 702 can be determined to include a first depth 724, 716 and a portion across the plate 702 (eg, including the edge portion 728 and the central portion 726 of the plate 702) The total depth of the two depths 720, 718.

在圖7的一個實施例中,位於板702邊緣部分728的第一深度724可以比中心部分726的第一深度716短大約0.05英寸到大約1英寸之間。位於邊緣部分728和角部分726之間的通道710C、710E和孔708C、708E的長度和/或尺寸差可以在整個基板表面118上輸送來自氣源120的氣體。例如,在角部分726的第一孔710E的較長第一深度716可以在孔708E內側產生更高的阻力的流動(例如,更大的阻力),因此有效地允許調整沉積在基板上的膜的性質。在利用分佈板702沉積矽膜的實施例中,相對於通過邊緣728的流量減少在角部分726的氣體流量,導致與傳統的製程相比在沉積的矽膜的角中更高的結晶容積,同時增加的膜性質改變了邊緣均勻性,因此提高了基板的角和邊緣的結晶百比的均勻性。In one embodiment of FIG. 7, the first depth 724 at the edge portion 728 of the plate 702 can be between about 0.05 inches and about 1 inch shorter than the first depth 716 of the central portion 726. The length and/or size difference between the channels 710C, 710E and the apertures 708C, 708E between the edge portion 728 and the corner portion 726 can transport gas from the gas source 120 over the entire substrate surface 118. For example, the longer first depth 716 of the first aperture 710E at the corner portion 726 can create a higher resistance flow (eg, greater resistance) inside the aperture 708E, thus effectively allowing adjustment of the film deposited on the substrate. The nature. In embodiments in which the diaphragm is deposited using the distribution plate 702, the gas flow at the angular portion 726 is reduced relative to the flow through the edge 728, resulting in a higher crystallographic volume in the angle of the deposited tantalum film compared to conventional processes, At the same time, the increased film properties change the edge uniformity, thus increasing the uniformity of the crystallization ratio of the corners and edges of the substrate.

在一個實施例中,其中膜是以傳統沉積製程一般沉積為拱形膜特徵和/或非均勻膜性質(例如,具有邊緣部分比角邊緣部分厚的膜特徵和性質),如圖7所示,可以利用在邊緣部分728的孔710C的較短第一深度724使得在邊緣部分728比在角部分726產生更低的氣體節流,從而調整形成在基板140上的膜的性質和特徵等等,或者反之亦然。In one embodiment, wherein the film is typically deposited as an arched film feature and/or a non-uniform film property in a conventional deposition process (eg, having a film feature and properties that are thicker than the edge portion), as shown in FIG. The shorter first depth 724 of the aperture 710C at the edge portion 728 can be utilized such that a lower gas throttling occurs at the edge portion 728 than at the corner portion 726, thereby adjusting the properties and characteristics of the film formed on the substrate 140, and the like. Or vice versa.

圖8示出具有形成在其上的不同形狀的扼流器的配氣板802的另一實施例的示意圖。與圖7中的扼流器706相似,通過板802的扼流器810包括與通道(如板802的邊緣部分804的808C和角部分806的808E所示)耦合的孔(如板802邊緣部分804的中心的814C和角部分806的814E所示)。通道808C、808E和孔814C、814E共同形成流動通道,該流動通道允許氣體從氣源120通過板802到基板支撐元件130的上表面132。通道808C、808E具有形成在配氣板802上表面830的上開口826、828。通道808C、808E具有從上開口826、828向下開口834(如板802的邊緣部分804中的834C和角部分806中的834E所示)延伸的第一深度818、822。下開口808C、808E與形成在板802下游表面832上具有向外擴展的開口838、840的孔814C、814E相對應。孔814C、814E具有從下開口834C、834E向向外擴展的開口838、840延伸的第二深度820、824。Figure 8 shows a schematic view of another embodiment of a gas distribution plate 802 having differently shaped chokes formed thereon. Similar to the choke 706 of FIG. 7, the choke 810 through the plate 802 includes an aperture (such as the edge portion of the board 802) that is coupled to the channel (shown as 808C of the edge portion 804 of the board 802 and 808E of the corner portion 806). 814C of the center of 804 and 814E of the corner portion 806). Channels 808C, 808E and apertures 814C, 814E collectively form a flow channel that allows gas to pass from gas source 120 through plate 802 to upper surface 132 of substrate support member 130. Channels 808C, 808E have upper openings 826, 828 formed on upper surface 830 of gas distribution plate 802. The channels 808C, 808E have a first depth 818, 822 extending from the upper opening 826, 828 to the lower opening 834 (as shown by 834C in the edge portion 804 of the plate 802 and 834E in the corner portion 806). The lower openings 808C, 808E correspond to apertures 814C, 814E formed on the downstream surface 832 of the plate 802 with outwardly extending openings 838, 840. The apertures 814C, 814E have second depths 820, 824 that extend from the lower openings 834C, 834E toward the outwardly extending openings 838, 840.

與上述圖7的描述相似,形成在板802上的通道808C、808E和孔814C、814E可以具有不同的尺寸、形狀、深度和長度以滿足不同的製程要求。在圖8所示的實施例中,形成在板802的邊緣部分804和角部分806的孔814C、814E具有不同的深度,因此在孔814C、814E中形成不同的內容積和/或空腔。與位於中心部分806的孔814E相比,位於邊緣部分804的孔808C具有較短的第一深度818,因此在孔814C內部形成較大的容積和/或空腔。孔808C的較短的第一深度818提供較低的節流流量,因此消除鄰近板802邊緣部分804發生反應,接合區果是調整在此形成的不同膜的性質。形成在板上的扼流器的不同結構可以提 供跨越基板表面不同的流動梯度,因此有效地調整沉積在基板上的膜外形、性質、膜性質的均勻性和厚度。在一個實施例中,其中期望中空陰極效應和/或中空陰極梯度形成在扼流器810中,可以選擇跨越板802的下游表面832形成的扼流器810的直徑850,以提供預期的中空陰極效應和/或中空陰極梯度。Similar to the description of FIG. 7 above, the channels 808C, 808E and holes 814C, 814E formed on the board 802 can have different sizes, shapes, depths, and lengths to meet different process requirements. In the embodiment illustrated in FIG. 8, the apertures 814C, 814E formed in the edge portion 804 and the corner portion 806 of the panel 802 have different depths, thus forming different inner volumes and/or cavities in the apertures 814C, 814E. The aperture 808C at the edge portion 804 has a shorter first depth 818 than the aperture 814E located at the central portion 806, thus creating a larger volume and/or cavity within the aperture 814C. The shorter first depth 818 of the aperture 808C provides a lower throttling flow, thus eliminating the reaction of the edge portion 804 of the adjacent plate 802, which is the property of adjusting the different films formed therein. The different structures of the chokes formed on the board can be mentioned Different flow gradients across the surface of the substrate are provided, thus effectively adjusting the film profile, properties, uniformity and thickness of the film properties deposited on the substrate. In one embodiment, where a hollow cathode effect and/or a hollow cathode gradient is desired to be formed in the choke 810, the diameter 850 of the choke 810 formed across the downstream surface 832 of the plate 802 can be selected to provide the desired hollow cathode. Effect and / or hollow cathode gradient.

圖9A-C示出具有多個扼流器926的配氣板902的另一實施例,當氣體流過時配氣板902提供流動梯度。如圖9A所示,形成在板902上的扼流器926可以具有跨越板902的相同深度的通道(如板902的邊緣部分910的中心的914C和角部分912的914E所示)和孔(如板902的邊緣部分910的918C和角部分912的918E所示)。然而,孔918C、918E的直徑906、904、908在板902的下游表面928上變化,以提供流到基板表面不同氣流分佈。由於孔918C、918E的尺寸是不同的,因此提供經過基板表面的中空陰極梯度(HCG)。在另一個實施例中,可以加工板902的上表面930以形成凹面932,如圖9B所示,表面932具有比角部分912薄的板902的邊緣部分910。凹面932從板902中去除通道914的一部分,導致邊緣910部分的通道914C具有比角部分912的通道914E短的深度934和較小的流動阻力。由於邊緣部分910的通道914C相對於角912部分的通道914E中的較高流動阻力具有較低的流動阻力,可以有效地調整由氣體流動阻力和沉積在基板上膜性能的差異而產生的經過板902的流動梯度。例如,在通過傳統方式沉積在邊緣部分具有低結晶容積的矽膜的實施例中,如圖9B所示,可以利用在中心部分912的通道914E中具有高流動阻力(例如,具有比通道914C更長長 度的通道914E)的板902,沉積矽膜以在角部分獲得較高的結晶容積和更均勻的結晶百分比,因此補償和調整在此形成的膜的性質差異。由於在下游表面928上形成不同尺寸的孔918C、918E以提供中空陰極梯度(HCG),在圖9B的板902中可以產生中空陰極梯度(HCG)和流動梯度(例如,氣體流動阻力差)的共同效應。9A-C illustrate another embodiment of a gas distribution plate 902 having a plurality of chokes 926 that provide a flow gradient as the gas flows. As shown in FIG. 9A, the choke 926 formed on the plate 902 can have channels of the same depth across the plate 902 (shown as 914C of the center of the edge portion 910 of the plate 902 and 914E of the corner portion 912) and holes ( 918C of edge portion 910 of panel 902 and 918E of corner portion 912). However, the diameters 906, 904, 908 of the apertures 918C, 918E vary over the downstream surface 928 of the plate 902 to provide different airflow distribution to the substrate surface. Since the dimensions of the holes 918C, 918E are different, a hollow cathode gradient (HCG) is provided across the surface of the substrate. In another embodiment, the upper surface 930 of the plate 902 can be machined to form a concave surface 932 that has an edge portion 910 of the plate 902 that is thinner than the angular portion 912, as shown in Figure 9B. The concave surface 932 removes a portion of the channel 914 from the plate 902, resulting in the channel 914C of the edge 910 portion having a shorter depth 934 and less flow resistance than the channel 914E of the angular portion 912. Since the passage 914C of the edge portion 910 has a lower flow resistance relative to the higher flow resistance in the passage 914E of the corner portion 912 portion, the passage plate resulting from the difference in gas flow resistance and the film properties deposited on the substrate can be effectively adjusted. Flow gradient of 902. For example, in an embodiment in which a ruthenium film having a low crystallization volume at the edge portion is deposited by a conventional manner, as shown in FIG. 9B, it is possible to utilize a high flow resistance in the channel 914E of the center portion 912 (for example, having a channel 914C Long The plate 902 of the channel 914E) deposits a ruthenium film to achieve a higher crystallization volume and a more uniform crystallization percentage at the corner portions, thus compensating and adjusting the difference in properties of the film formed there. Due to the formation of different sized holes 918C, 918E on the downstream surface 928 to provide a hollow cathode gradient (HCG), a hollow cathode gradient (HCG) and a flow gradient (eg, poor gas flow resistance) can be created in the plate 902 of Figure 9B. Common effect.

圖9C示出其上開有扼流器的板902的下游表面928的仰視圖。形成在板902上的扼流器926的表面密度和分佈可以變化以滿足不同處理需要。在一個實施例中,在角邊緣部分912的扼流器926可以具有比板902的中心部分910的扼流器更高的表面密度,以便可以提供中空梯度(HCG)。相反,可以以許多可選擇的結構形成經過板902的扼流器926的分佈、密度、形狀和尺寸。任選地,板902的中心914可以比邊緣部分910或角部分912單位面積包括較少的扼流器926。相反,扼流器密度可以從角向邊緣向中心增加。Figure 9C shows a bottom view of the downstream surface 928 of the plate 902 with the choke open thereon. The surface density and distribution of the choke 926 formed on the plate 902 can be varied to meet different processing needs. In one embodiment, the choke 926 at the corner edge portion 912 can have a higher surface density than the choke of the central portion 910 of the plate 902 so that a hollow gradient (HCG) can be provided. Rather, the distribution, density, shape, and size of the choke 926 through the plate 902 can be formed in a number of alternative configurations. Optionally, the center 914 of the plate 902 can include fewer chokes 926 than the edge portion 910 or the angular portion 912 unit area. Conversely, the choke density can increase from the angular to the edge toward the center.

圖10A-D示出形成在板1017-1020中的扼流器1001-1004的不同實施例,扼流器1001-1004產生通過板的流動梯度。在一個實施例中,扼流器1001-1004可以通過電腦數位控制(CNC)加工形成在板1017-1020上。扼流器1001-1004一般包括通過節流孔1009-1012連接的第一孔1005-1008和第二孔1013-1016。第一孔1005-1008形成在板1017-1020的上部,第二孔1013-1016形成在板1017-1020的下部。第一孔1005-1008和第二孔1013-1016通過節流孔1009-1012相對應形成通過板1017-1020中的彙集流體流動通道。第一孔1005-1008和第二孔1013-1016可以分別具有經過板1017-1020形成的不同的結構、尺 寸、形狀、大小、數量和分佈,因此運送不同數量和/或使通過板1017-1020流動的不同流速的處理氣體到基板表面。不同數量和/或不同流速的處理氣體產生經過基板表面的流動梯度,因此便於沉積在基板表面的膜的外形和/或性質控制。Figures 10A-D illustrate different embodiments of chokes 1001-1004 formed in plates 10101020, which generate flow gradients through the plates. In one embodiment, the chokes 1001-1004 can be formed on the board 1017-1020 by computer numerical control (CNC) processing. The chokes 1001-1004 generally include a first bore 1005-1008 and a second bore 1013-1016 that are connected by orifices 1009-1012. The first holes 1005-1008 are formed on the upper portion of the plates 1010 to 1020, and the second holes 1013-1016 are formed on the lower portions of the plates 1070 to 1020. The first apertures 1005-1008 and the second apertures 1013-1016 are correspondingly formed through the orifices 1009-1012 to form a collection fluid flow passage through the plates 107-11020. The first hole 1005-1008 and the second hole 1013-1016 may have different structures and rulers formed by the plates 1017-1020, respectively. Ins, shape, size, number, and distribution, thus transporting different amounts and/or processing gases of different flow rates through plates 1017-1020 to the substrate surface. Different amounts and/or different flow rates of process gas produce a flow gradient across the surface of the substrate, thus facilitating the control of the shape and/or properties of the film deposited on the surface of the substrate.

在一個實施例中,節流孔1009-1012的深度和長度可以接合區合第一孔1005-1008和第二孔1013-1016的不同形狀而不同。通過調整由扼流器1001-1004的不同結構產生的流動梯度,因此可以控制沉積在基板表面的膜厚和外形。在一個實施例中,第一孔1005-1008和第二孔1013-1016可以具有不同的結構,例如帶有不同節流孔1009-1010深度的正方形1005-1006、1013-1014、帶有不同節流孔1011-1012深度的錐形1015-1019等等。孔1005-1008、1013-1016的深度可以改變以滿足不同的處理需求。In one embodiment, the depth and length of the orifices 1009-1012 may differ depending on the different shapes of the first aperture 1005-1008 and the second aperture 1013-1016. By adjusting the flow gradient generated by the different structures of the chokes 1001-1004, the film thickness and shape deposited on the surface of the substrate can be controlled. In one embodiment, the first aperture 1005-1008 and the second aperture 1013-1016 may have different configurations, such as squares 1005-1006, 1013-1014 with different orifices 1009-1010 depth, with different sections The flow holes 1011-1012 have a depth of the taper 1015-1019 and the like. The depth of the holes 1005-1008, 1013-1016 can be varied to meet different processing needs.

第二孔1013-1016的開口可以以預定角度或具有一定直徑向外擴展,因此有助於經過基板表面的處理氣體的分佈。可以以可能或不可能在其中產生中空陰極效應的方式控制第二孔1002的結構。可選擇地,可以以任何方式控制第二孔1013-1016的結構。The openings of the second holes 1013-1016 may expand outward at a predetermined angle or with a certain diameter, thus facilitating the distribution of process gases through the surface of the substrate. The structure of the second hole 1002 can be controlled in a manner that may or may not produce a hollow cathode effect therein. Alternatively, the structure of the second holes 1013-1016 can be controlled in any manner.

在一個實施例中,可選擇第二孔1013-1016的直徑在大約0.05英寸到大約0.5英寸的之間,以使電漿可滯留在第二孔1013-1016中,因此產生中空陰極效應。在一些不期望產生中空效應的實施例中,可以選擇第二孔1013-1016的直徑在大於大約0.01英寸或小於大約0.05英寸的範圍以防止第二孔1013-1016內的電子振蕩,因此防止在處理期間在第二孔1013-1016中產生中空陰極效應。In one embodiment, the diameter of the second holes 1013-1016 can be selected to be between about 0.05 inches and about 0.5 inches so that the plasma can remain in the second holes 1013-1016, thus creating a hollow cathode effect. In some embodiments where it is undesirable to create a hollow effect, the diameter of the second apertures 1013-1016 can be selected to be in the range of greater than about 0.01 inches or less than about 0.05 inches to prevent electronic oscillations within the second apertures 1013-1016, thus preventing A hollow cathode effect is produced in the second holes 1013-1016 during processing.

圖11A-B示出製造配氣板1100的製程的不同階段的配氣板1100的截面圖。如圖11A所示,多個扼流器1122可以穿過板1100形成。在圖11A-B中沒有示出經過板1100形成的全部扼流器,但是為了簡化僅示出在中心部分1104的代表性的扼流器和形成在邊緣部分1106的一些扼流器。扼流器1122包括通過節流孔相連接的通道(如邊緣部分1104的中心的1102C所示和角部分1106的1102E所示)和孔(邊緣部分1104的1114C所示和角部分1106的1114E所示)。孔1114C、1114E具有形成在板1100下游表面1110上的開口,配置該板1100以面對基板支撐元件130。在一個實施例中,形成在板1100上的孔1114C、1114E和節流孔1120C、1120E可以是相同的。在板110的邊緣部分1106中形成的通道1102E可以具有比形成在中心部分1104的通道1102C更窄的直徑,以在板1100的邊緣部分1106形成高流動阻力。板1100的通道1102C、1102E之間的尺寸差異提供產生通過它的流動梯度的方式,因此有效地調整沉積在基板上的膜性質和/或外形。應當注意可以通過為第一通道1102C、1102E或節流孔1120C、1120E選擇不同的尺寸產生主流動阻力。在通過由選擇節流孔1120C、1120E的尺寸而不是第一通道1102C、1102E產生主流動阻力的實施例中,形成在板1100上的第一通道1102C、1102E的尺寸差異不可能有效地產生供應氣體的流動阻力。因此,可以加工去除形成在板110中的一部分下游表面1110以產生凹面1112,如圖11B所示。凹面1112產生形成的不同結構的孔1114C、1114E,因此產生中空陰極梯度(HCG)。應當注意依據安裝進處理室100中的板1100,凹面112還提供向位於基板支撐元件130上基板的間隔梯度。因此, 流動梯度、中空陰極梯度(HCG)和/或板1100和基板支撐元件130之間的間隔梯度的接合區合可以通過控制通道1102C、1102E、孔1114C、1114E和形成下游表面1110上的彎曲表面的尺寸獲得。11A-B show cross-sectional views of the gas distribution plate 1100 at different stages of the process of manufacturing the gas distribution plate 1100. As shown in FIG. 11A, a plurality of chokes 1122 can be formed through the plate 1100. Not all of the chokes formed through the plate 1100 are shown in Figures 11A-B, but for purposes of simplicity only representative chokes in the central portion 1104 and some chokes formed in the edge portion 1106 are shown. The choke 1122 includes passages connected by orifices (shown as 1102C at the center of the edge portion 1104 and 1102E shown at the corner portion 1106) and holes (shown at 1114C of the edge portion 1104 and 1114E at the corner portion 1106). Show). The holes 1114C, 1114E have openings formed on the downstream surface 1110 of the plate 1100 that are disposed to face the substrate support member 130. In one embodiment, the holes 1114C, 1114E and the orifices 1120C, 1120E formed on the plate 1100 can be identical. The channel 1102E formed in the edge portion 1106 of the plate 110 may have a narrower diameter than the channel 1102C formed in the central portion 1104 to form a high flow resistance at the edge portion 1106 of the plate 1100. The difference in size between the channels 1102C, 1102E of the plate 1100 provides a means of creating a flow gradient therethrough, thus effectively adjusting the film properties and/or profile deposited on the substrate. It should be noted that the primary flow resistance can be created by selecting different sizes for the first passages 1102C, 1102E or the orifices 1120C, 1120E. In an embodiment in which the main flow resistance is generated by the size of the selected orifices 1120C, 1120E instead of the first passages 1102C, 1102E, the difference in size of the first passages 1102C, 1102E formed on the plate 1100 is unlikely to effectively produce a supply. The flow resistance of the gas. Accordingly, a portion of the downstream surface 1110 formed in the plate 110 can be processed to remove the concave surface 1112 as shown in FIG. 11B. Concave surface 1112 creates holes 1114C, 1114E of different configurations that are formed, thus creating a hollow cathode gradient (HCG). It should be noted that depending on the plate 1100 installed in the processing chamber 100, the concave surface 112 also provides a spacing gradient to the substrate on the substrate support member 130. therefore, The flow gradient, hollow cathode gradient (HCG), and/or the interfacial gradient of the spacing between the plate 1100 and the substrate support member 130 may pass through the control channels 1102C, 1102E, the holes 1114C, 1114E, and the curved surface on the downstream surface 1110. Size is obtained.

圖12A-B示出具有形成在板1200的邊緣部分1202和角部分1204的不同扼流器結構的配氣板1200的另一實施例的截面圖。在圖12A描述的實施例中,位於邊緣部分1202的扼流器1208可以具有通過扼流器1218連接的通道1206C和孔1216,如圖11所示的扼流器1122。至於形成在角部分1204的扼流器1208可以具有與具有形成在板1200下游表面1212上開口的孔1210相連的較長的通道1206E。較長的通道1206E提供比形成在中心部分1202中的通道1206C高的流動阻力,因此提供經過板1200從邊緣到中心的流動梯度。任選地,可以加工去除形成在板1200中部分下游表面1212產生凹面1214,如圖12B所示。與圖11B中的設計相似,依據室100的安裝凹面1214提供中空陰極梯度(HCG)和間隔梯度。12A-B illustrate cross-sectional views of another embodiment of a gas distribution plate 1200 having different choke configurations formed at edge portion 1202 and corner portion 1204 of plate 1200. In the embodiment depicted in FIG. 12A, the choke 1208 at the edge portion 1202 can have a channel 1206C and a bore 1216 connected by a choke 1218, such as the choke 1122 shown in FIG. As for the choke 1208 formed at the corner portion 1204, there may be a longer passage 1206E connected to the hole 1210 having an opening formed on the downstream surface 1212 of the plate 1200. The longer channel 1206E provides a higher flow resistance than the channel 1206C formed in the central portion 1202, thus providing a flow gradient from the edge to the center through the plate 1200. Optionally, a portion of the downstream surface 1212 formed in the plate 1200 can be machined to create a concave surface 1214, as shown in Figure 12B. Similar to the design in FIG. 11B, a hollow cathode gradient (HCG) and a spacing gradient are provided in accordance with the mounting recess 1214 of the chamber 100.

圖13示出配氣板的仰視示意圖。板被分割成N個同心區域。在每個區域中,扼流器可以是或相同可以不是相同的。區域可以是多角環形,例如方形、矩形或圓環。從1區到N區,貫穿板形成的扼流器可以具有逐漸增加的流動阻力(例如,較長和/或較大阻力扼流器形狀扼流器長度)。可選擇地,形成在扼流器的中空陰極空腔可以在尺寸(體積和/或表面積)上逐漸增加。流動阻力和中空陰極空腔可以通過不同的扼流器直徑、長度、擴口角度或這些參數的組合來獲得,如上述圖的接合區合所示。Figure 13 shows a bottom view of the gas distribution plate. The board is divided into N concentric areas. In each zone, the chokes may or may not be the same. The area can be a polygonal ring, such as a square, a rectangle or a ring. From zone 1 to zone N, the chokes formed through the plates may have progressively increased flow resistance (e.g., longer and/or larger resistance choke shape choke lengths). Alternatively, the hollow cathode cavity formed in the choke can be gradually increased in size (volume and/or surface area). The flow resistance and hollow cathode cavity can be obtained by different choke diameters, lengths, flare angles or a combination of these parameters, as shown by the junctions of the above figures.

圖14A-B示出具有形成在板不同區域的不同扼流器結 構的截面圖的示例性實施例,如圖13所述。在圖14A所示的實施例中,形成在中心區域例如圖13中的1區的扼流器1402,與形成在邊緣區域例如圖13中N區的角的扼流器1404相比可以具有更寬的尺寸。另外,帶有不同結構的扼流器1406,例如帶有形成在扼流器1406上部的孔1410,扼流器1406具有形成在板上表面1408上的開口,可以形成在相同的區域,例如圖13中的邊緣N區,其中有扼流器1404。應當注意每個區域可以具有足夠的不同扼流器結構以提供不同中心到角的流動梯度。而且,依據室100的佈置,加工除去形成在下游表面1412部分板以形成中空陰極梯度(HCG)和間隔梯度。14A-B illustrate different choke junctions formed in different regions of the panel An exemplary embodiment of a cross-sectional view of the configuration is illustrated in FIG. In the embodiment shown in Fig. 14A, the choke 1402 formed in the central region such as the region 1 in Fig. 13 may have more than the choke 1404 formed in the edge region such as the corner of the N region in Fig. 13. Wide size. In addition, a choke 1406 having a different configuration, for example, has a hole 1410 formed in an upper portion of the choke 1406, and the choke 1406 has an opening formed in the upper surface 1408, which may be formed in the same area, for example, The edge N zone of 13 has a choke 1404 therein. It should be noted that each zone may have sufficiently different choke configurations to provide different center-to-angle flow gradients. Moreover, depending on the arrangement of the chamber 100, portions of the plates formed on the downstream surface 1412 are removed to form a hollow cathode gradient (HCG) and a spacing gradient.

圖15示出配氣板1500的頂視圖的另一實施例。配氣板1500具有至少四個由板1500的四個邊分隔的角E1-E4。可以如上所述彎曲板1500的下游表面,在中心區域C1和沿板1500四個邊的邊緣貫穿角E1-E4形成的扼流器,可以具有不同的扼流器深度。在一個實施例中,穿過板1500的角E1-E4形成的第一多個扼流器具有比沿角E1-E4之間板的邊穿過邊緣形成的第二多個扼流器具有更長的扼流器長度。另為,第三多個扼流器可以形成在板1500的中心區域C1和/或形成在比第一和第二多個扼流器形成的位置更向內的位置。第三多個扼流器具有比穿過角E1-E4和沿角E1-E4之間的板1500的邊的邊緣形成的扼流器更短的扼流器長度。由於形成在角E1-E4的第一多個扼流器具有更長的長度,因此相對於通過第二和第三多個扼流器衝擊的流動阻力,通過板1500的第一多個角扼流器衝擊的流動阻力更高。另外,由於第二多個扼流器可以具有比第三多個扼流器更長的長度,當比第一多個扼流器更短 的長度,通過第二多個扼流器衝擊的流動阻力臂通過第三扼流器衝擊的流動阻力大,但小於通過第一多個扼流器衝擊的流動阻力。FIG. 15 shows another embodiment of a top view of the gas distribution plate 1500. The gas distribution plate 1500 has at least four corners E1-E4 separated by four sides of the plate 1500. The downstream surface of the plate 1500 can be curved as described above, and the chokes formed in the central region C1 and the edge crossing angles E1-E4 along the four sides of the plate 1500 can have different choke depths. In one embodiment, the first plurality of chokes formed through the corners E1-E4 of the plate 1500 have a second plurality of chokes formed through the edges of the plates between the corners E1-E4. Long choke length. Additionally, a third plurality of chokes may be formed at a central region C1 of the plate 1500 and/or at a position that is more inward than a position formed by the first and second plurality of chokes. The third plurality of chokes have a shorter choke length than the choke formed through the edges E1-E4 and the edges of the sides of the plate 1500 between the corners E1-E4. Since the first plurality of chokes formed at the corners E1-E4 have a longer length, the first plurality of corners passing through the plate 1500 with respect to the flow resistance through the impact of the second and third plurality of chokes The flow resistance of the flow impact is higher. In addition, since the second plurality of chokes can have a longer length than the third plurality of chokes, when shorter than the first plurality of chokes The length of the flow resistance arm impacted by the second plurality of chokes is greater than the flow resistance through the third choke impact, but less than the flow resistance through the first plurality of chokes.

可選擇地,可以在板1500的上表面和/或下表面利用固定板(adaptor plate)1506。在使用固定板1506的實施例中,板1500的下游表面可以是彎曲的或保持為平的。固定板1506具有形成在其上的多個扼流器,配合形成板1500上的扼流器來控制通過板1500角的流動阻力。可以以適於在板1500某些特定區域增加扼流器長度的任何不同大小、形狀或尺寸形成固定板1506。在圖15的所述的實施例中,固定板1506可以位於板1500的角E1-4,以提供通過板1500增加的流動阻力。固定板1506可以是具有兩個連接到板1500角E1-4尺寸的三角形形。在一個實施例中,固定板1506具有大約50mm到大約1000mm之間,例如大約500mm的長度1502的等邊三角形。可選擇地,固定板1506可以位於板1500的任何其他不同的區域。例如,固定板1506可以定位在板的中心區域C1。Alternatively, an adaptor plate 1506 can be utilized on the upper and/or lower surface of the plate 1500. In embodiments where the fixed plate 1506 is used, the downstream surface of the plate 1500 can be curved or kept flat. The fixed plate 1506 has a plurality of chokes formed thereon that cooperate to form a choke on the plate 1500 to control the flow resistance through the angle of the plate 1500. The fixed plate 1506 can be formed in any different size, shape or size suitable for increasing the length of the choke at certain regions of the plate 1500. In the illustrated embodiment of FIG. 15, the fixed plate 1506 can be located at an angle E1-4 of the plate 1500 to provide increased flow resistance through the plate 1500. The fixed plate 1506 may be in the shape of a triangle having two dimensions connected to the corners E1-4 of the plate 1500. In one embodiment, the fixed plate 1506 has an equilateral triangle of between about 50 mm and about 1000 mm, such as a length 1502 of about 500 mm. Alternatively, the fixed plate 1506 can be located in any other different area of the plate 1500. For example, the fixed plate 1506 can be positioned in the central region C1 of the plate.

圖16A-B示出沿A-A線的圖15中安裝在室100中的配氣板1500的截面圖。在圖16A所示的實施例中,固定板1506可以是具有多個形成在其上的扼流器1604、1606的白板形。形成在固定板1506上的扼流器1604、1606與形成在板110上的扼流器1608對準。板110上對準的扼流器1604、1606增加來自氣源120的處理氣體流動通過的扼流器1608的整個長度,因此在固定板1506所述的面積產生更高的氣體流動阻力。通過使用固定板1506,處理氣體可以流動通過的扼流器1608的總長度可以靈活調整的,因此提供調整特定點沉積膜的性質和/或外形的方式。可選擇 地,如圖16B所示,固定板1506可以分割成幾部分(1650,1652)以增加板110中選擇的某些扼流器1608的長度。16A-B show cross-sectional views of the gas distribution plate 1500 installed in the chamber 100 in Fig. 15 along the line A-A. In the embodiment illustrated in Figure 16A, the fixed plate 1506 can be in the shape of a whiteboard having a plurality of chokes 1604, 1606 formed thereon. The chokes 1604, 1606 formed on the fixed plate 1506 are aligned with the choke 1608 formed on the plate 110. The aligned chokes 1604, 1606 on the plate 110 increase the overall length of the choke 1608 through which the process gas from the gas source 120 flows, thus creating a higher gas flow resistance in the area described by the fixed plate 1506. By using the fixed plate 1506, the overall length of the choke 1608 through which the process gas can flow can be flexibly adjusted, thus providing a means of adjusting the properties and/or shape of the deposited film at a particular point. Optional Ground, as shown in FIG. 16B, the fixed plate 1506 can be divided into sections (1650, 1652) to increase the length of certain chokes 1608 selected in the panel 110.

圖17A-17C示出可以具有形成在其上的不同扼流器結構的固定板1700的不同實施例。在圖17A所示的實施例中,形成在固定板1700上的扼流器1704是直孔。固定板1700安裝在其上形成有扼流器1710的配氣板1702上。扼流器1710可以是所需的任何不同形狀、尺寸和結構。可選擇地,形成在固定板1700上的扼流器1704可以具有不同的結構,例如如圖17B所示的上部狹窄通道與下部寬闊通道相配合,或圖17C所示的上部寬闊通道與下部狹窄通道相配合。17A-17C illustrate different embodiments of a fixed plate 1700 that can have different choke configurations formed thereon. In the embodiment shown in Fig. 17A, the choke 1704 formed on the fixed plate 1700 is a straight hole. The fixing plate 1700 is mounted on a gas distribution plate 1702 on which the choke 1710 is formed. The choke 1710 can be any of a variety of different shapes, sizes, and configurations as desired. Alternatively, the choke 1704 formed on the fixed plate 1700 may have a different structure, for example, the upper narrow passage as shown in FIG. 17B cooperates with the lower wide passage, or the upper wide passage and the lower narrow as shown in FIG. 17C. The channels are matched.

圖18A-C示出沿B-B線的圖15中安裝在室100中的配氣板1500不同實施例的截面圖。在圖18A所示的實施例中,固定板1506連接板1500的上表面1814。固定板1506可選擇地在板1500的角部分E1、E3,例如角部分1808。形成在固定板1506上的扼流器1810與形成在板1500上的扼流器1812相配合以增加處理氣體的整個流動阻力,處理氣體從氣源120流動通過板1500的角部分1808。可選擇地,可以加工去除板1500上表面的部分以產生彎曲上表面,因此如圖18B所示,導致在邊緣和/或中心部分1806的扼流器1802具有比在角部分1808的扼流器1812短的長度。應當注意,為了簡便,增加了固定板1506所處的邊緣部分上表面1818的曲率。任選地,可以加工除去板1500的下游表面部分以產生彎曲下表面1820,導致扼流器1812具有不同的曲率和/或開口端截面增大的尺寸,因此產生中空陰極梯度(HCG)。另外,如上所述,在安裝至室100 中時彎曲下表面也產生面對基板支撐元件130的間隔梯度。18A-C show cross-sectional views of different embodiments of the gas distribution plate 1500 installed in the chamber 100 of Fig. 15 along line B-B. In the embodiment shown in FIG. 18A, the fixed plate 1506 connects the upper surface 1814 of the plate 1500. The fixed plate 1506 is optionally at the corner portions E1, E3 of the plate 1500, such as the corner portion 1808. The choke 1810 formed on the fixed plate 1506 cooperates with the choke 1812 formed on the plate 1500 to increase the overall flow resistance of the process gas flowing from the gas source 120 through the corner portion 1808 of the plate 1500. Alternatively, the portion of the upper surface of the plate 1500 can be machined to create a curved upper surface, thus causing the choke 1802 at the edge and/or central portion 1806 to have a choke at the corner portion 1808 as shown in Figure 18B. 1812 short length. It should be noted that the curvature of the upper surface 1818 of the edge portion where the fixing plate 1506 is located is increased for the sake of simplicity. Optionally, the downstream surface portion of the plate 1500 can be machined to create a curved lower surface 1820, resulting in the choke 1812 having a different curvature and/or an increased open end section size, thus creating a hollow cathode gradient (HCG). In addition, as described above, in the installation to the chamber 100 The mid-time bending of the lower surface also creates a spacing gradient that faces the substrate support member 130.

另外參照圖19A所示的配氣板1902的一個實施例,配氣板1902具有包括角1922、1924、1926、1928和邊緣1906、1908、1910、1912的參數。應當注意為了簡便沒有示出通過板1902形成的孔。板1902的邊緣部分1906的中心1914與基板支撐元件130隔離比板1902的邊緣1908、1910和角1922、1924、1926、1928還遠。與通過邊緣1906中心1914形成的孔相比,通過角1922、1924、1926、1928的孔具有更長的長度,因此具有更大的流導以使相對於通過角1912、1914、1926、1928的流更多的處理氣體通過板1902通過邊緣1906的中心1914。已經發現當使用電漿增強CVD製程沉積多晶矽時,利用具有邊緣到中心間隔梯度的配氣板比利用在板的周邊具有均勻間隔的配氣板相比獲得增加的結晶容積和百分比均勻性。儘管圖19A所示的實施例示出僅限於板1902兩個邊緣的邊緣到中心的間隔梯度,圖19B示出具有沿與角1960、1962、1964、1966線比的四個邊1950、1952、1954、1956界定的間隔梯度的配氣板1904的另一實施例。另外,儘管示出配氣板1902、1904面向帶有配氣板1902、1904面向的平面的基板的間隔梯度。可以理解配氣板1902、1904的平面可以朝向基板或配氣板1902、1904可以包括從邊緣到角的間隔梯度。Referring additionally to one embodiment of the gas distribution plate 1902 shown in FIG. 19A, the gas distribution plate 1902 has parameters including corners 1922, 1924, 1926, 1928 and edges 1906, 1908, 1910, 1912. It should be noted that the holes formed by the plate 1902 are not shown for the sake of simplicity. The center 1914 of the edge portion 1906 of the plate 1902 is further isolated from the substrate support member 130 than the edges 1908, 1910 and the corners 1922, 1924, 1926, 1928 of the plate 1902. The holes through the corners 1922, 1924, 1926, 1928 have a longer length than the holes formed through the center 1914 of the edge 1906, thus having a larger conductance relative to the pass angles 1912, 1914, 1926, 1928. More process gas flows through plate 1902 through center 1914 of edge 1906. It has been found that when a polycrystalline germanium is deposited using a plasma enhanced CVD process, increased crystallization volume and percent uniformity is achieved using a gas distribution plate having an edge to center spacing gradient compared to a gas distribution plate having even spacing at the periphery of the plate. Although the embodiment shown in FIG. 19A shows an edge-to-center spacing gradient limited to both edges of the plate 1902, FIG. 19B shows four sides 1950, 1952, 1954 having a line ratio to the angles 1960, 1962, 1964, 1966. Another embodiment of a spaced-apart gas distribution plate 1904 defined by 1956. In addition, although the gas distribution plates 1902, 1904 are shown facing the interval gradient of the substrate with the plane facing the gas distribution plates 1902, 1904. It will be appreciated that the plane of the gas distribution plates 1902, 1904 may be directed toward the substrate or the gas distribution plates 1902, 1904 may include a gradient of spacing from edge to corner.

在適於沉積太陽能電池用矽膜的示例性實施例中,可以設計沉積製程以使用板產生的流動梯度沉積微晶矽層。微晶矽層可以是形成在太陽能電池裝置的p-i-n接合區中的i-型層。可選擇地,可以利用微晶矽層形成其他裝置。依據通過分佈板的氣體供應,氣體分佈元件可以具有形成 其上的不同的結構(例如,尺寸、深度等)的扼流器以產生具有或不具有中空陰極效應的從邊緣到角的流動梯度。可以用至少一個配氣板的上表面上的上彎曲表面,或具有配置不同深度和/或長度的經過板的扼流器的配氣板產生流動梯度,以使在相對於配氣板的邊緣在配氣板的角產生的氣流是不同。在本發明所示的特定實施例中,在配氣板在配氣板的角部分提供比在配氣板的邊緣部分的中心的氣流阻力大的氣流阻力。可選擇地,也可以通過板與由板的下游表面的下凹面產生的流動梯度接合區合產生梯度間隔。下凹面具有大約0.05英寸到大約1英寸之間的弦深。可選擇地,選擇梯度間隔在配氣板和基板支撐元件之間的大約50密耳到大約500密耳之間距離。In an exemplary embodiment suitable for depositing a tantalum film for a solar cell, a deposition process can be designed to deposit a layer of microcrystalline germanium using a flow gradient generated by the sheet. The microcrystalline layer may be an i-type layer formed in the p-i-n junction region of the solar cell device. Alternatively, other devices can be formed using the microcrystalline germanium layer. The gas distribution element may have a formation according to the gas supply through the distribution plate Chokes of different structures (eg, size, depth, etc.) thereon are used to create an edge-to-angle flow gradient with or without a hollow cathode effect. The flow gradient may be generated by an upper curved surface on the upper surface of the at least one gas distribution plate, or a gas distribution plate having a turbulent flow through the plate configured with different depths and/or lengths so as to be at an edge relative to the gas distribution plate The airflow generated at the corners of the gas distribution plate is different. In the particular embodiment shown in the present invention, the air distribution plate provides a greater airflow resistance at the corner portion of the gas distribution plate than the airflow resistance at the center of the edge portion of the gas distribution plate. Alternatively, the gradient spacing may also be created by the flow gradient engagement of the plates with the concave surfaces of the downstream surface of the plates. The concave surface has a chord depth of between about 0.05 inches and about 1 inch. Optionally, the gradient spacing is selected to be between about 50 mils to about 500 mils between the gas distribution plate and the substrate support member.

在沉積本徵型微晶矽層的實施例中,可以將1:20到1:200之間比例的矽烷氣體和氫氣的氣體混和物通過具有上凹面的配氣板供給室100。在一個實施例中,凹面具有大約0.05英寸到大約1英寸之間的弦深。矽烷氣體可以以大約0.5 sccm/L到大約5 sccm/L之間的流速供應。氫氣可以以大約40 sccm/L到大約400 sccm/L之間的流速供應。在一些實施例中,在沉積期間矽烷氣體可以從第一流速升至第二流速。在一些實施例中,在沉積期間氫氣可以從第一流速降至第二流速。可以給配氣板提供在大約300千瓦/cm2 或更大,優選600千瓦/cm2 或更大的RF電源。在一些實施例中,在沉積期間能量密度可以從第一能量密度降至第二能量密度。室的壓力維持在大約1托到大約100托之間,優選在大約3托到大約20托之間,更優選在大約4托到大約12托之間。可選擇地,沉積期間的壓力可以分段成一個或多個步驟,例如預處理期間之後從第一壓力升至 第二壓力。本徵型微晶層的沉積速率可以是大約200/min,優選是500/min。適於使用配氣板產生的流動梯度沉積本徵型微晶的方法和裝置公開在2006年6月23日提交的、題目為“Methods and Appratus for Depositing a Microcrystalline Silicon Film for Photovoltaic Device(用沉積光電裝置用微晶矽層的方法和裝置)”的美國專利申請No.11/426,127。微晶矽本徵層具有大約百分之20到大約百分之80之間,例如大約百分之55到大約百分之75的結晶百分比。In the embodiment in which the intrinsic type microcrystalline germanium layer is deposited, a gas mixture of decane gas and hydrogen gas in a ratio of 1:20 to 1:200 may be supplied to the chamber 100 through a gas distribution plate having an upper concave surface. In one embodiment, the concave surface has a chord depth between about 0.05 inches and about 1 inch. The decane gas may be supplied at a flow rate between about 0.5 sccm/L and about 5 sccm/L. Hydrogen gas may be supplied at a flow rate between about 40 sccm/L and about 400 sccm/L. In some embodiments, the decane gas may rise from the first flow rate to the second flow rate during deposition. In some embodiments, hydrogen can be reduced from a first flow rate to a second flow rate during deposition. The gas distribution plate can be supplied with an RF power source of about 300 kW/cm 2 or more, preferably 600 kW/cm 2 or more. In some embodiments, the energy density can be reduced from a first energy density to a second energy density during deposition. The pressure of the chamber is maintained between about 1 Torr and about 100 Torr, preferably between about 3 Torr and about 20 Torr, and more preferably between about 4 Torr and about 12 Torr. Alternatively, the pressure during deposition may be segmented into one or more steps, such as from a first pressure to a second pressure after the pre-treatment period. The deposition rate of the intrinsic type microcrystalline layer may be about 200 /min, preferably 500 /min. A method and apparatus for depositing intrinsic crystallites using a flow gradient generated by a gas distribution plate is disclosed in "Methods and Appratus for Depositing a Microcrystalline Silicon Film for Photovoltaic Device", filed on June 23, 2006. U.S. Patent Application Serial No. 11/426,127, which is incorporated herein by reference. The microcrystalline germanium intrinsic layer has a percentage of crystallization of between about 20 and about 80 percent, such as between about 55 and about 75 percent.

在用此處描述的配氣板沉積本徵型微晶矽層的特定實施例中,沉積的微晶矽層的膜性質具有改善的膜均勻性。例如經常發現通過傳統技術沉積的本徵型微晶矽層具有較差的膜均勻性,例如在膜角處的非-均勻結晶容積。構造配氣板以相對於邊緣和中心在角處提供較高的流動阻力,因此導致沉積的膜相對於傳統技術形成的膜具有較高的結晶容積,因此提供通過基板表面的均勻的膜性質。在一個實施例中,用具有邊緣到中心流動梯度的配氣板沉積的微晶矽層的結晶容積已經表明從傳統技術中大約百分之70-90的結晶容積非均勻性改善到小於大約百分之3.5的結晶容積非均勻性。膜性質的改善的均勻性導致增加的轉化效率、填充因數以及形成在基板上的太陽能電池改善的電學性質,因此改善了電池的整個性能。In a particular embodiment of depositing an intrinsic type microcrystalline germanium layer with a gas distribution plate as described herein, the film properties of the deposited microcrystalline germanium layer have improved film uniformity. For example, it has often been found that intrinsic microcrystalline germanium deposited by conventional techniques has poor film uniformity, such as a non-uniform crystalline volume at the film corner. The gas distribution plates are configured to provide higher flow resistance at the corners relative to the edges and center, thus resulting in a deposited film having a higher crystallographic volume relative to conventionally formed films, thus providing uniform film properties through the substrate surface. In one embodiment, the crystalline volume of the microcrystalline germanium layer deposited with a gas distribution plate having an edge-to-center flow gradient has been shown to improve from about 70-90 percent of the crystalline volume non-uniformity to less than about one hundred percent from conventional techniques. A crystal volume non-uniformity of 3.5. The improved uniformity of film properties results in increased conversion efficiency, fill factor, and improved electrical properties of the solar cells formed on the substrate, thus improving the overall performance of the cell.

因此,本發明提供一種沉積矽膜的裝置,該裝置具有構建有扼流器的配氣板,該配氣板產生從邊緣到中心的氣體流動梯度。利用本發明沉積的矽膜特別適於太陽能電池用。該改善的裝置有利提供對沉積在基板上的膜外形和性質更好的控制,因此增加對膜的質量控制和增加光電轉換 效率和裝置性能。Accordingly, the present invention provides an apparatus for depositing a ruthenium membrane having a gas distribution plate constructed with a choke that produces a gas flow gradient from the edge to the center. The tantalum film deposited by the present invention is particularly suitable for use in solar cells. The improved device advantageously provides better control over the shape and properties of the film deposited on the substrate, thereby increasing the quality control of the film and increasing the photoelectric conversion Efficiency and device performance.

雖然前述針對本發明的實施例,但可以設計本發明的其他和進一步的實施例而不脫離本發明的範圍,並且本發明的範圍可藉由後附之申請專利範圍確定。While the foregoing is directed to the embodiments of the present invention, the invention may be construed as the scope of the invention, and the scope of the invention is defined by the scope of the appended claims.

100‧‧‧室Room 100‧‧

102‧‧‧壁102‧‧‧ wall

104‧‧‧底104‧‧‧ bottom

106‧‧‧處理空間106‧‧‧Processing space

108‧‧‧流量閥通道108‧‧‧Flow valve channel

109‧‧‧泵109‧‧‧ pump

110‧‧‧配氣板110‧‧‧ gas distribution board

111‧‧‧扼流器111‧‧‧Current

112‧‧‧背板112‧‧‧ Backplane

114‧‧‧懸架114‧‧‧suspension

116‧‧‧中心支撐116‧‧‧Center support

118‧‧‧基板表面118‧‧‧Substrate surface

120‧‧‧氣源120‧‧‧ gas source

122‧‧‧RF電源122‧‧‧RF power supply

124‧‧‧遠端電漿源124‧‧‧Remote plasma source

130‧‧‧基板支撐元件130‧‧‧Substrate support components

131‧‧‧接地帶131‧‧‧ Grounding belt

132‧‧‧接收表面132‧‧‧ Receiving surface

134‧‧‧桿134‧‧‧ rod

136‧‧‧升降系統136‧‧‧ Lifting system

138‧‧‧舉升銷138‧‧‧Upselling

139‧‧‧冷卻元件139‧‧‧Cooling element

140‧‧‧基板140‧‧‧Substrate

150‧‧‧下游表面150‧‧‧ downstream surface

196‧‧‧下表面196‧‧‧ lower surface

198‧‧‧上表面198‧‧‧ upper surface

204‧‧‧扼流器204‧‧‧Current

206‧‧‧凹面206‧‧‧ concave

220‧‧‧長度220‧‧‧ length

222‧‧‧長度222‧‧‧ length

224‧‧‧角部分224‧‧‧ corner section

226‧‧‧邊緣部分226‧‧‧Edge section

238‧‧‧半徑238‧‧‧ Radius

250‧‧‧扼流器250‧‧‧Current

254‧‧‧弦深254‧‧‧ string depth

256‧‧‧弦深256‧‧‧ string depth

258‧‧‧半徑258‧‧‧ radius

260‧‧‧彎曲表面260‧‧‧Bend surface

300‧‧‧配氣板300‧‧‧ gas distribution board

302‧‧‧上表面302‧‧‧Upper surface

304‧‧‧弦深304‧‧‧ string depth

306‧‧‧上表面306‧‧‧Upper surface

308‧‧‧角部分308‧‧‧ corner section

310‧‧‧邊綠部分310‧‧‧ side green part

312‧‧‧平面312‧‧‧ plane

314‧‧‧扼流器314‧‧‧Current

316‧‧‧下游表面316‧‧‧ downstream surface

318‧‧‧長度318‧‧‧ length

320‧‧‧長度320‧‧‧ length

322‧‧‧扼流器322‧‧‧Current

324‧‧‧扼流器324‧‧‧Current

400‧‧‧配氣板400‧‧‧ gas distribution board

402‧‧‧彎曲表面402‧‧‧Bend surface

406‧‧‧第一孔406‧‧‧ first hole

408‧‧‧第一孔408‧‧‧ first hole

410‧‧‧第二孔410‧‧‧second hole

412‧‧‧第二孔412‧‧‧second hole

414‧‧‧弦深414‧‧‧ string depth

418‧‧‧下游表面418‧‧‧ downstream surface

420‧‧‧上表面420‧‧‧ upper surface

422‧‧‧平面422‧‧‧ plane

430‧‧‧邊緣部分430‧‧‧Edge section

450‧‧‧扼流器450‧‧‧Current

500‧‧‧流程500‧‧‧ Process

502‧‧‧步驟502‧‧‧Steps

504‧‧‧步驟504‧‧‧Steps

506‧‧‧步驟506‧‧‧Steps

602‧‧‧配氣板602‧‧‧ gas distribution board

604‧‧‧環境604‧‧‧ Environment

606‧‧‧邊緣部分606‧‧‧Edge section

608‧‧‧外部支架608‧‧‧External bracket

610‧‧‧內部支架610‧‧‧Internal bracket

612‧‧‧上表面612‧‧‧ upper surface

614‧‧‧下表面614‧‧‧ lower surface

616‧‧‧中心部分616‧‧‧ central part

620‧‧‧中心線620‧‧‧ center line

630‧‧‧高度630‧‧‧ Height

632‧‧‧高度632‧‧‧ Height

650‧‧‧抽運通道650‧‧‧ pumping channel

702‧‧‧配氣板702‧‧‧ gas distribution board

706‧‧‧扼流器706‧‧‧Current

708C‧‧‧孔708C‧‧‧ hole

708E‧‧‧孔708E‧‧ hole

710C‧‧‧通道710C‧‧‧ channel

710E‧‧‧通道710E‧‧‧ channel

716‧‧‧第一深度716‧‧‧first depth

718,720‧‧‧第二深度718,720‧‧‧second depth

724‧‧‧第一深度724‧‧‧First Depth

726‧‧‧角部分726‧‧‧ corner section

728‧‧‧邊緣部分728‧‧‧Edge section

730C‧‧‧開口730C‧‧‧ openings

730E‧‧‧開口730E‧‧‧ openings

732‧‧‧上表面732‧‧‧ upper surface

736C‧‧‧下開口736C‧‧‧ opening

736E‧‧‧下開口736E‧‧‧ opening

740C‧‧‧上開口740C‧‧‧Opening

740E‧‧‧上開口740E‧‧‧Opening

744C‧‧‧下開口744C‧‧‧ opening

744E‧‧‧下開口744E‧‧‧ opening

748‧‧‧下游表面748‧‧‧ downstream surface

802‧‧‧配氣板802‧‧‧ gas distribution board

804‧‧‧邊緣部分804‧‧‧ edge part

806‧‧‧角部分806‧‧‧ corner section

808C‧‧‧通道808C‧‧‧ channel

808E‧‧‧通道808E‧‧ channel

810‧‧‧扼流器810‧‧‧Current

814C‧‧‧孔814C‧‧‧ hole

814E‧‧‧孔814E‧‧‧ hole

818‧‧‧深度818‧‧‧depth

820‧‧‧深度820‧‧ depth

822‧‧‧深度822‧‧ depth

824‧‧‧深度824‧‧ depth

826‧‧‧上開口826‧‧‧Opening

828‧‧‧上開口828‧‧‧Opening

832‧‧‧下游表面832‧‧‧ downstream surface

834C‧‧‧下開口834C‧‧‧ opening

834E‧‧‧下開口834E‧‧‧ opening

838‧‧‧開口838‧‧‧ openings

840‧‧‧開口840‧‧‧ openings

902‧‧‧配氣板902‧‧‧ gas distribution board

904‧‧‧半徑904‧‧‧ Radius

906‧‧‧半徑906‧‧‧ Radius

908‧‧‧半徑908‧‧‧ Radius

910‧‧‧邊緣部分910‧‧‧Edge section

912‧‧‧角部分912‧‧‧ corner section

914C‧‧‧通道914C‧‧‧ channel

914E‧‧‧通道914E‧‧‧ channel

918C‧‧‧孔918C‧‧‧ hole

918E‧‧‧孔918E‧‧ hole

926‧‧‧扼流器926‧‧‧Current

928‧‧‧下游表面928‧‧‧ downstream surface

930‧‧‧上表面930‧‧‧ upper surface

932‧‧‧凹面932‧‧‧ concave

934‧‧‧深度934‧‧‧depth

1001‧‧‧扼流器1001‧‧‧Current

1002‧‧‧扼流器1002‧‧‧Current

1003‧‧‧扼流器1003‧‧‧Current

1004‧‧‧扼流器1004‧‧‧Current

1005‧‧‧孔1005‧‧‧ hole

1006‧‧‧孔1006‧‧‧ hole

1007‧‧‧孔1007‧‧‧ hole

1008‧‧‧孔1008‧‧‧ hole

1009‧‧‧節流孔1009‧‧‧ orifice

1010‧‧‧節流孔1010‧‧‧ orifice

1011‧‧‧節流孔1011‧‧‧ orifice

1012‧‧‧節流孔1012‧‧‧ orifice

1012‧‧‧孔1012‧‧‧ hole

1014‧‧‧孔1014‧‧‧ hole

1015‧‧‧孔1015‧‧‧ hole

1016‧‧‧孔1016‧‧‧ hole

1017‧‧‧板1017‧‧‧ board

1018‧‧‧板1018‧‧‧ board

1019‧‧‧板1019‧‧‧ board

1020‧‧‧板1020‧‧‧ board

1100‧‧‧配氣板1100‧‧‧ gas distribution board

1102C‧‧‧通道1102C‧‧‧ channel

1102E‧‧‧通道1102E‧‧‧ channel

1104‧‧‧中心部分1104‧‧‧ central part

1106‧‧‧邊緣部分1106‧‧‧Edge section

1110‧‧‧板1110‧‧‧ board

1112‧‧‧凹面1112‧‧‧ concave

1114C‧‧‧孔1114C‧‧‧ hole

1114E‧‧‧孔1114E‧‧ hole

1120C‧‧‧節流孔1120C‧‧‧ orifice

1120E‧‧‧節流孔1120E‧‧‧ orifice

1122‧‧‧扼流器1122‧‧‧Current

1200‧‧‧配氣板1200‧‧‧ gas distribution board

1202‧‧‧邊緣部分1202‧‧‧Edge part

1204‧‧‧角部分1204‧‧‧ corner section

1206C‧‧‧通道1206C‧‧‧ channel

1206E‧‧‧通道1206E‧‧ channel

1208‧‧‧扼流器1208‧‧‧Current

1210‧‧‧孔1210‧‧‧ hole

1212‧‧‧下游表面1212‧‧‧ downstream surface

1214‧‧‧凹面1214‧‧‧ concave

1216‧‧‧孔1216‧‧‧ hole

1218‧‧‧節流孔1218‧‧‧ orifice

1402‧‧‧扼流器1402‧‧‧Current

1404‧‧‧扼流器1404‧‧‧Current

1406‧‧‧扼流器1406‧‧‧Current

1408‧‧‧上表面1408‧‧‧ upper surface

1410‧‧‧孔1410‧‧‧ hole

1412‧‧‧下游表面1412‧‧‧ downstream surface

1500‧‧‧配氣板1500‧‧‧ gas distribution board

1502‧‧‧長度1502‧‧‧ length

1506‧‧‧固定板1506‧‧‧fixed board

1604‧‧‧扼流器1604‧‧‧Current

1606‧‧‧扼流器1606‧‧‧Current

1608‧‧‧扼流器1608‧‧‧Current

1650‧‧‧部分Section 1650‧‧‧

1652‧‧‧部分Section 1652‧‧‧

1700‧‧‧固定板1700‧‧‧fixed board

1702‧‧‧配氣板1702‧‧‧ gas distribution board

1704‧‧‧扼流器1704‧‧‧Current

1710‧‧‧扼流器1710‧‧‧Current

1806‧‧‧中心部分1806‧‧‧ central part

1808‧‧‧邊緣部分1808‧‧‧Edge section

1810‧‧‧扼流器1810‧‧‧ Current Circulator

1812‧‧‧扼流器1812‧‧‧Current

1814‧‧‧上表面1814‧‧‧ upper surface

1816‧‧‧下游表面1816‧‧‧ downstream surface

1818‧‧‧上表面1818‧‧‧ upper surface

1820‧‧‧下表面1820‧‧‧ lower surface

1902‧‧‧板1902‧‧‧ boards

1904‧‧‧板1904‧‧‧ boards

1906‧‧‧邊緣1906‧‧‧ edge

1908‧‧‧邊緣1908‧‧‧ edge

1910‧‧‧邊緣1910‧‧‧ edge

1912‧‧‧邊緣1912‧‧‧ edge

1914‧‧‧中心1914‧‧ Center

1922‧‧‧角1922‧‧‧ corner

1924‧‧‧角1924‧‧‧ corner

1926‧‧‧角1926‧‧‧ corner

1928‧‧‧角1928‧‧‧ corner

1950‧‧‧邊緣Edge of 1950‧‧

1952‧‧‧邊緣1952‧‧‧ edge

1954‧‧‧邊緣1954‧‧‧ edge

1956‧‧‧邊緣1956‧‧‧ edge

1960‧‧‧邊緣1960‧‧‧ edge

1962‧‧‧邊緣1962‧‧‧ edge

1964‧‧‧邊緣1964‧‧‧ edge

1966‧‧‧邊緣1966‧‧‧ edge

為了實現並能詳細理解本發明上述特徵的方式,通過參照下面附圖所示的實施例可以進行上述簡要概括的本發明更詳細的描述。For a more detailed understanding of the aspects of the present invention, the invention may be described in detail.

圖1示出處理室的一個實施方式的截面示意圖;圖2A-C示出在產生流動梯度的製造的不同階段的配氣板的截面示意圖;圖3A-B示出產生流動梯度的配氣板在製造的不同階段的截面示意圖;圖4A-B示出產生流動梯度的配氣板在製造的不同階段的另一實施例的截面示意圖;圖5示出適於製造配氣板的熱處理的一個實施例;圖6A-B示出圖5中所示熱處理的不同階段;圖7示出可以形成在配氣板上的扼流器的一個實施例;圖8示出具有貫通形成的扼流器的不同結構的配氣板的另一實施例的截面圖;圖9A-C示出具有多個提供氣體流動梯度的扼流器的配氣板的另一實施例;圖10A-D示出可以形成在配氣板上的扼流器的不同實施例;圖11A-B示出製造配氣板的處理流程的不同階段的配 氣板的截面圖;圖12A-B示出具有形成在板的中心和邊緣區域的不同扼流器結構的配氣板的另一實施例;圖13示出配氣板的仰視示意圖;圖14A-B示出具有形成在板不同區域的不同扼流器結構的板的截面圖的示例性實施例;圖15示出配氣板的俯視圖的另一實施例;圖16A-B示出沿A-A線提取的圖15的配氣板1500的截面圖;圖17A-17C示出可以具有形成在其上的不同扼流器結構的適配板1700的不同實施例;圖18A-C示出沿B-B線提取的圖15的配氣板1500的截面圖;以及圖19A-19B示出刻槽的配氣板的不同實施例的平面圖。Figure 1 shows a schematic cross-sectional view of one embodiment of a processing chamber; Figures 2A-C show schematic cross-sectional views of a gas distribution plate at various stages of manufacturing that produce a flow gradient; Figures 3A-B show a gas distribution plate that produces a flow gradient A schematic cross-sectional view at different stages of manufacture; Figures 4A-B show a schematic cross-sectional view of another embodiment of a gas distribution plate that produces a flow gradient at various stages of manufacture; Figure 5 shows a heat treatment suitable for the manufacture of a gas distribution plate Embodiments; Figures 6A-B show different stages of the heat treatment shown in Figure 5; Figure 7 shows one embodiment of a choke that can be formed on a gas distribution plate; Figure 8 shows a choke with a through formation A cross-sectional view of another embodiment of a gas distribution plate of a different configuration; FIGS. 9A-C illustrate another embodiment of a gas distribution plate having a plurality of chokes providing a gas flow gradient; FIGS. 10A-D illustrate Different embodiments of the choke formed on the gas distribution plate; FIGS. 11A-B show the different stages of the process flow for manufacturing the gas distribution plate A cross-sectional view of the gas plate; FIGS. 12A-B illustrate another embodiment of a gas distribution plate having different choke structures formed in the center and edge regions of the plate; FIG. 13 is a bottom view of the gas distribution plate; FIG. -B shows an exemplary embodiment of a cross-sectional view of a plate having different choke structures formed in different regions of the plate; Figure 15 shows another embodiment of a top view of the gas distribution plate; Figures 16A-B show along A -A line extraction of a cross-sectional view of the gas distribution plate 1500 of Figure 15; Figures 17A-17C illustrate different embodiments of an adapter plate 1700 that may have different choke configurations formed thereon; Figures 18A-C illustrate A cross-sectional view of the gas distribution plate 1500 of Fig. 15 taken along line B-B; and Figs. 19A-19B are plan views of different embodiments of the grooved gas distribution plate.

為了方面理解,只要可能,所使用的相同的附圖標記代表附圖中同一元件。可以理解一個實施例的元件和特徵可以不需要進一步的描述而有利地合併到其他實施例中。For the sake of understanding, the same reference numbers are used to identify the same elements in the drawings. It can be appreciated that the elements and features of one embodiment may be beneficially incorporated into other embodiments without further description.

然而,值得注意,由於本發明可以允許其他等效實施例,因此附圖僅示出本發明的示例性實施例,並不意在界定其範圍。It is to be understood, however, that the appended claims

702‧‧‧配氣板702‧‧‧ gas distribution board

706‧‧‧扼流器706‧‧‧Current

708C‧‧‧孔708C‧‧‧ hole

708E‧‧‧孔708E‧‧ hole

710C‧‧‧通道710C‧‧‧ channel

710E‧‧‧通道710E‧‧‧ channel

716‧‧‧第一深度716‧‧‧first depth

718,720‧‧‧第二深度718,720‧‧‧second depth

724‧‧‧第一深度724‧‧‧First Depth

726‧‧‧角部分726‧‧‧ corner section

728‧‧‧邊緣部分728‧‧‧Edge section

730C‧‧‧開口730C‧‧‧ openings

730E‧‧‧開口730E‧‧‧ openings

732‧‧‧上表面732‧‧‧ upper surface

736C‧‧‧下開口736C‧‧‧ opening

736E‧‧‧下開口736E‧‧‧ opening

740C‧‧‧上開口740C‧‧‧Opening

740E‧‧‧上開口740E‧‧‧Opening

744C‧‧‧下開口744C‧‧‧ opening

744E‧‧‧下開口744E‧‧‧ opening

748‧‧‧下游表面748‧‧‧ downstream surface

Claims (23)

一種用於沉積膜的裝置,包括:一處理室;以及一四邊形配氣板,其設置在該處理室中,該配氣板具有:一第一複數扼流器,其穿過該配氣板形成,該第一複數扼流器設置於該配氣板的一角部分中;以及一第二複數扼流器,其穿過該配氣板形成,該第二複數扼流器沿該配氣板的一邊緣部分設置,其中該第一複數扼流器具有比該第二複數扼流器更大的流動阻力,其中穿過該配氣板形成之該等扼流器之每個扼流器具有與一孔耦合的一通道,其中該通道具有比該孔更小的直徑,及其中該第二複數扼流器之該等通道具有比該第一複數扼流器之該等通道更短的深度。 An apparatus for depositing a film, comprising: a processing chamber; and a quadrilateral gas distribution plate disposed in the processing chamber, the gas distribution plate having: a first plurality of chokes passing through the gas distribution plate Forming, the first plurality of chokes are disposed in a corner portion of the gas distribution plate; and a second plurality of chokes are formed through the gas distribution plate, the second plurality of chokes are along the gas distribution plate An edge portion is disposed, wherein the first plurality of chokes have greater flow resistance than the second plurality of chokes, wherein each of the chokes formed through the gas distribution plate has a channel coupled to a hole, wherein the channel has a smaller diameter than the hole, and wherein the channels of the second plurality of chokes have a shorter depth than the channels of the first plurality of chokes . 如申請專利範圍第1項所述之裝置,其中,該配氣板還包括:一凹上表面。 The device of claim 1, wherein the gas distribution plate further comprises: a concave surface. 如申請專利範圍第2項所述之裝置,其中,該配氣板的該凹上表面具有一弦深,該弦深界於大約0.05英寸到大約1英寸之間。 The device of claim 2, wherein the concave surface of the gas distribution plate has a chord depth that is between about 0.05 inches and about 1 inch. 如申請專利範圍第1項所述之裝置,其中,該配氣板還包括:一凹下游表面。 The device of claim 1, wherein the gas distribution plate further comprises: a concave downstream surface. 如申請專利範圍第1項所述之裝置,其中,該等扼 流器具有一配置,該配置選定為在電漿處理期間產生空心陰極梯度,並且其中該等扼流器具有界於大約0.01英寸到大約1英寸之間的直徑。 The device of claim 1, wherein the device is The flow device has a configuration selected to produce a hollow cathode gradient during the plasma processing, and wherein the turbulators have a diameter that is between about 0.01 inches and about 1 inch. 如申請專利範圍第1項所述之裝置,還包括:一基板支撐元件,其設置在該室中,其中配置該基板支撐元件和該配氣板以界定它們之間的梯度間隔。 The apparatus of claim 1, further comprising: a substrate support member disposed in the chamber, wherein the substrate support member and the gas distribution plate are disposed to define a gradient interval therebetween. 如申請專利範圍第1項所述之裝置,還包括:一固定板,其貼著該配氣板的一上表面或下表面中的至少一個設置,該固定板設置在該配氣板的該等角中。 The device of claim 1, further comprising: a fixing plate disposed adjacent to at least one of an upper surface or a lower surface of the gas distribution plate, the fixing plate being disposed on the gas distribution plate In the same angle. 如申請專利範圍第7項所述之裝置,其中,該固定板還包括:複數通道,其通過該固定板形成並與穿過該配氣板的該等角形成的該第一複數扼流器對準。 The apparatus of claim 7, wherein the fixing plate further comprises: a plurality of passages formed by the fixing plate and the first plurality of chokes formed through the equiangular angle of the gas distribution plate alignment. 如申請專利範圍第1項所述之裝置,其中,該配氣板還包括:一第三複數扼流器,其穿過位於該第一和第二複數扼流器內的該配氣板形成,其中該第三複數扼流器具有比該第一扼流器更小的流動阻力。 The apparatus of claim 1, wherein the gas distribution plate further comprises: a third plurality of chokes formed through the gas distribution plate located in the first and second plurality of chokes Wherein the third plurality of chokes have a lower flow resistance than the first choke. 一種用於沉積膜的裝置,包括:一處理室;以及一四邊形配氣板,其設置在處理室中,該配氣板具有:一第一複數扼流器,其穿過該配氣板形成,該第一複數扼流器定位於該配氣板的一角部分中;以及一第二複數扼流器,其穿過配氣板形成,該第二複數 扼流器沿該配氣板的一邊緣部分設置,其中該第一複數扼流器具有比該第二複數扼流器更長的長度,其中穿過該配氣板形成之該等扼流器之每個扼流器具有與一孔耦合的一通道,其中該通道具有比該孔更小的直徑,及其中該第二複數扼流器之該等通道具有比該第一複數扼流器之該等通道更短的深度。 An apparatus for depositing a film, comprising: a processing chamber; and a quadrilateral gas distribution plate disposed in the processing chamber, the gas distribution plate having: a first plurality of chokes formed through the gas distribution plate a first plurality of chokes positioned in a corner portion of the gas distribution plate; and a second plurality of chokes formed through the gas distribution plate, the second plurality a choke is disposed along an edge portion of the gas distribution plate, wherein the first plurality of chokes have a longer length than the second plurality of chokes, wherein the chokes formed through the gas distribution plate Each of the chokes has a passage coupled to a bore, wherein the passage has a smaller diameter than the bore, and wherein the passages of the second plurality of chokes have a ratio of the first plurality of chokes These channels have a shorter depth. 如申請專利範圍第10項所述之裝置,其中,該配氣板還包括:一彎曲下游表面。 The device of claim 10, wherein the gas distribution plate further comprises: a curved downstream surface. 如申請專利範圍第10項所述之裝置,其中,該配氣板具有一凹上表面,該凹上表面具有界於大約0.05英寸到大約1英寸之間的一弦深。 The device of claim 10, wherein the gas distribution plate has a concave surface having a chord depth bounded by between about 0.05 inches and about 1 inch. 如申請專利範圍第10項所述之裝置,其中,該等扼流器具有大約0.01英寸到大約1英寸之間的直徑。 The device of claim 10, wherein the chokes have a diameter of between about 0.01 inches and about 1 inch. 如申請專利範圍第10項所述之裝置,還包括:一固定板,其與該配氣板的一上表面連接。 The device of claim 10, further comprising: a fixing plate connected to an upper surface of the gas distribution plate. 如申請專利範圍第10項所述之裝置,還包括:一固定板,其與該配氣板的每個角相連接。 The device of claim 10, further comprising: a fixing plate connected to each corner of the gas distribution plate. 一種用於沉積膜的裝置,包括:一處理室;以及一配氣板,其設置在該處理室中並具有複數貫通形成的扼流器,佈置該等扼流器以界定至少三個不同區域的流動阻力,其中界定在該配氣板的一角部分的一第一區域具有比沿該配氣板的一邊緣部分界定的一第二區域更大的流 動阻力,以及界定在該配氣板的一中心部分的一第三區域具有比該第二區域更小的流動阻力,其中穿過該配氣板形成之該等扼流器之每個扼流器具有與一孔耦合的一通道,其中該通道具有比該孔更小的直徑,及其中該第二區域中之該等扼流器之該等通道具有比該第一區域中之該等扼流器之該等通道更短的深度。 An apparatus for depositing a film, comprising: a processing chamber; and a gas distribution plate disposed in the processing chamber and having a plurality of chokes formed through the passage, the chokes being arranged to define at least three different regions Flow resistance, wherein a first region defined at a corner portion of the gas distribution plate has a larger flow than a second region defined along an edge portion of the gas distribution plate a dynamic resistance, and a third region defined in a central portion of the gas distribution plate has a smaller flow resistance than the second region, wherein each of the turbulences of the chokes formed through the gas distribution plate The device has a passage coupled to a bore, wherein the passage has a smaller diameter than the bore, and wherein the passages of the chokes in the second region have a greater ratio than the first region The channels of the flow are of a shorter depth. 如申請專利範圍第16項所述之裝置,其中,形成在該配氣板的該第三區域的扼流器具有比形成在該配氣板的該第二區域的扼流器更大的直徑。 The apparatus of claim 16, wherein the choke formed in the third region of the gas distribution plate has a larger diameter than the choke formed in the second region of the gas distribution plate. . 如申請專利範圍第16項所述之裝置,其中,形成在該配氣板的該第三區域的扼流器具有比形成在該配氣板的該第二區域的扼流器更短的長度。 The apparatus of claim 16, wherein the choke formed in the third region of the gas distribution plate has a shorter length than the choke formed in the second region of the gas distribution plate. . 如申請專利範圍第16項所述之裝置,其中,該配氣板還包括:一彎曲下游表面。 The device of claim 16, wherein the gas distribution plate further comprises: a curved downstream surface. 一種在室中沉積一膜的方法,包括下列步驟:將一基板傳輸至一室中,該室中具有一配氣板,該配氣板面對設置在該室中的一基板支撐元件;以及使處理氣體通過該配氣板的角,向基板以小於通過該配氣板的中心流動的處理氣體流速的一流速流動,以沉積一層在該基板上。 A method of depositing a film in a chamber, comprising the steps of: transferring a substrate to a chamber having a gas distribution plate facing a substrate support member disposed in the chamber; The process gas is passed through the corner of the gas distribution plate to flow toward the substrate at a flow rate less than the flow rate of the process gas flowing through the center of the gas distribution plate to deposit a layer on the substrate. 如申請專利範圍第20項所述的方法,其中,上述使處理氣體通過該配氣板流動的步驟還包括下列步驟:使矽烷氣體和氫氣以1:20到1:200之間的比例流入該 室中。 The method of claim 20, wherein the step of flowing the processing gas through the gas distribution plate further comprises the step of flowing decane gas and hydrogen into the ratio between 1:20 and 1:200. In the room. 如申請專利範圍第20項所述的方法,其中,上述使處理氣體通過該配氣板流動的步驟還包括下列步驟:使處理氣體通過位於該配氣板的角的一固定板流動。 The method of claim 20, wherein the step of flowing the process gas through the gas distribution plate further comprises the step of flowing the process gas through a fixed plate located at a corner of the gas distribution plate. 如申請專利範圍第20項所述的方法,其中,上述使處理氣體流動的步驟還包括下列步驟:在該配氣板的角提供比該配氣板的中心的有阻力流動更高的有阻力流動。 The method of claim 20, wherein the step of flowing the processing gas further comprises the step of providing a higher resistance at a corner of the gas distribution plate than a resistive flow at a center of the gas distribution plate. flow.
TW097133468A 2008-09-01 2008-09-01 Methods and apparatus for depositing a uniform silicon film with flow gradient designs TWI475708B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097133468A TWI475708B (en) 2008-09-01 2008-09-01 Methods and apparatus for depositing a uniform silicon film with flow gradient designs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097133468A TWI475708B (en) 2008-09-01 2008-09-01 Methods and apparatus for depositing a uniform silicon film with flow gradient designs

Publications (2)

Publication Number Publication Date
TW201011932A TW201011932A (en) 2010-03-16
TWI475708B true TWI475708B (en) 2015-03-01

Family

ID=44828805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133468A TWI475708B (en) 2008-09-01 2008-09-01 Methods and apparatus for depositing a uniform silicon film with flow gradient designs

Country Status (1)

Country Link
TW (1) TWI475708B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477980B1 (en) * 2000-01-20 2002-11-12 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
US20070298590A1 (en) * 2006-06-23 2007-12-27 Soo Young Choi Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US20080020146A1 (en) * 2004-05-12 2008-01-24 Choi Soo Y Diffuser plate with slit valve compensation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477980B1 (en) * 2000-01-20 2002-11-12 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
US20080020146A1 (en) * 2004-05-12 2008-01-24 Choi Soo Y Diffuser plate with slit valve compensation
US20070298590A1 (en) * 2006-06-23 2007-12-27 Soo Young Choi Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device

Also Published As

Publication number Publication date
TW201011932A (en) 2010-03-16

Similar Documents

Publication Publication Date Title
KR100960756B1 (en) Methods and apparatus for depositing a uniform silicon film with flow gradient designs
US8142606B2 (en) Apparatus for depositing a uniform silicon film and methods for manufacturing the same
US7648892B2 (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US20110277690A1 (en) Multi-channel gas-delivery system
US20110135843A1 (en) Deposited Film Forming Device and Deposited Film Forming Method
US9243327B2 (en) Plasma CVD device and method of manufacturing silicon thin film
KR20100095426A (en) Plasma treatment between deposition processes
WO2010079766A1 (en) Plasma processing apparatus
JP4183688B2 (en) Method for manufacturing photoelectric conversion device and photoelectric conversion device
KR20110074854A (en) Methods and apparatus for depositing a uniform silicon film with flow gradient designs
JP2005150317A (en) Plasma cvd equipment and method of manufacturing photoelectric converter
EP2471973A1 (en) Apparatus for forming deposited film and method for forming deposited film
KR20120016955A (en) Apparatus for processing substrate using plasma
TWI475708B (en) Methods and apparatus for depositing a uniform silicon film with flow gradient designs
JP2013100564A (en) Film formation device
JP5862027B2 (en) Plasma CVD apparatus and method for manufacturing thin film substrate
JP4510242B2 (en) Thin film formation method
KR101430747B1 (en) Apparatus for Processing Substrate Using Plasma
JP2006086470A (en) Plasma generator

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees