TWI474941B - Method of dynamically adjusting and determining generation frequency for safety message(s) in vehicular network and structure thereof - Google Patents

Method of dynamically adjusting and determining generation frequency for safety message(s) in vehicular network and structure thereof Download PDF

Info

Publication number
TWI474941B
TWI474941B TW101143483A TW101143483A TWI474941B TW I474941 B TWI474941 B TW I474941B TW 101143483 A TW101143483 A TW 101143483A TW 101143483 A TW101143483 A TW 101143483A TW I474941 B TWI474941 B TW I474941B
Authority
TW
Taiwan
Prior art keywords
frequency
generating
lower limit
message
driving
Prior art date
Application number
TW101143483A
Other languages
Chinese (zh)
Other versions
TW201400337A (en
Inventor
Chung Hsien Hsu
Tsun Chieh Chiang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201400337A publication Critical patent/TW201400337A/en
Application granted granted Critical
Publication of TWI474941B publication Critical patent/TWI474941B/en

Links

Description

在車載網路環境中動態調整與決定安全訊息之產生 頻率的方法及其架構Dynamically adjust and determine the generation of security messages in the in-vehicle network environment Frequency method and its architecture

本揭露是有關於一種在車載網路環境中動態調整與決定安全訊息之產生頻率的方法及其架構。The disclosure relates to a method and an architecture for dynamically adjusting and determining the frequency of generation of security messages in an in-vehicle network environment.

以道路安全應用而言,行駛中的車輛可以在所規範的指定通道上(週期性地)發出/廣播具有『固定產生頻率』的安全訊息給其他鄰近的行駛車輛,藉以相互告知各別的行車狀態。然而,基於所發出/廣播之安全訊息具有『固定產生頻率』的緣故,故若一定數量的行駛車輛同一時間在所規範的指定通道上發出/廣播大量重複性安全訊息的話(例如:行駛車輛的狀態沒有太大的變化),則很有可能會導致通道壅塞(channel congestion)而引發安全訊息之封包的遺漏(packet loss),從而影響到道路安全應用的效果。In the case of road safety applications, a moving vehicle can periodically (periodically) issue/broadcast a safety message with a "fixed frequency" to other nearby vehicles to inform each other of each other. status. However, based on the transmitted/broadcast security message having a "fixed frequency of occurrence", if a certain number of vehicles are broadcasting/broadcasting a large number of repetitive security messages on the designated designated channel at the same time (for example, driving vehicles) The state does not change much.) It is likely to cause channel congestion and cause packet loss of security messages, thus affecting the effect of road safety applications.

本揭露之一示範性實施例提出一種在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其包括:從車載網路環境中的指定通道上接收關聯於指定通道的通道狀態資訊,並且根據所接收的通道狀態資訊以動態調整安全訊息的上限產生頻率;根據行車資訊以動態調整安全訊息的下限產生頻率;以及根據經調整的上限產生頻率與/ 或下限產生頻率以決定安全訊息的產生頻率。An exemplary embodiment of the present disclosure provides a method for dynamically adjusting and determining a frequency of generating a security message in an in-vehicle network environment, including: receiving channel status information associated with a specified channel from a designated channel in an in-vehicle network environment And dynamically adjusting the upper limit of the safety message according to the received channel status information; generating a frequency according to the driving information to dynamically adjust the lower limit of the safety message; and generating the frequency according to the adjusted upper limit and / Or the lower limit generates a frequency to determine the frequency of generation of the security message.

本揭露之另一示範性實施例提出一種在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其包括:底層、上層與應用層。其中,上層包括訊息產生頻率控制單元,且此訊息產生頻率控制單元經配置以:透過底層而從車載網路環境中的指定通道上接收關聯於指定通道的通道狀態資訊,並且根據所接收的通道狀態資訊以動態調整安全訊息的上限產生頻率;以及根據行車資訊以動態調整安全訊息的下限產生頻率。應用層經配置以根據經調整的上限產生頻率與/或下限產生頻率來決定安全訊息的產生頻率。Another exemplary embodiment of the present disclosure provides an architecture for dynamically adjusting and determining the frequency of generation of security messages in an in-vehicle network environment, including: an underlay, an upper layer, and an application layer. The upper layer includes a message generation frequency control unit, and the message generation frequency control unit is configured to: receive the channel status information associated with the designated channel from the designated channel in the in-vehicle network environment through the bottom layer, and according to the received channel The status information dynamically adjusts the upper limit of the safety message generation frequency; and the frequency of the safety information is dynamically adjusted according to the driving information. The application layer is configured to determine the frequency of generation of the security message based on the adjusted upper limit generation frequency and/or lower limit generation frequency.

為讓本揭露之上述特徵和優點能更明顯易懂,下文特舉具體的示範性實施例,並配合所附圖式,作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following detailed description.

然而,應瞭解的是,上述一般描述及以下具體實施方式僅為例示性及闡釋性的,其並不能限制本揭露所欲主張之範圍。However, it is to be understood that the foregoing general description and the claims

現將詳細參考本揭露之示範性實施例,在附圖中說明所述示範性實施例之實例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/符號代表相同或類似部分。The exemplary embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. In addition, wherever possible, the elements and/

圖1繪示為本揭露一示範性實施例之在車載網路環境 中動態調整與決定安全訊息之產生頻率的架構示意圖。請參照圖1,圖1所示之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構10可以包括:底層(lower layer)101、上層(upper layer)103、應用層(application layer)105,以及管理層(management layer)107。其中,管理層107可以與底層101、上層103以及應用層105進行溝通,藉以對底層101、上層103以及應用層105的運作進行管理。FIG. 1 illustrates an in-vehicle network environment according to an exemplary embodiment of the present disclosure. Schematic diagram of the dynamic adjustment and determination of the frequency of generation of security messages. Referring to FIG. 1, the architecture 10 for dynamically adjusting and determining the frequency of generating security messages in the in-vehicle network environment may include: a lower layer 101, an upper layer 103, and an application layer. ) 105, and a management layer 107. The management layer 107 can communicate with the bottom layer 101, the upper layer 103, and the application layer 105 to manage the operations of the bottom layer 101, the upper layer 103, and the application layer 105.

但是,較特殊的是,上層103中更包括有一訊息產生頻率控制單元(message generation frequency control unit)109,且此訊息產生頻率控制單元109經配置以:透過底層101而從車載網路環境中的指定通道(assigned channel)上接收關聯於指定通道的通道狀態資訊(channel status information)CSI(亦即,代表指定通道是否壅塞的資訊),並且根據所接收的通道狀態資訊CSI以動態調整安全訊息的上限產生頻率(upper generation frequency)FU ;以及根據行車資訊(例如:本體行車資訊IVI與/或鄰車行車資訊SVI)以動態調整安全訊息的下限產生頻率(lower generation frequency)FLHowever, more specifically, the upper layer 103 further includes a message generation frequency control unit 109, and the message generation frequency control unit 109 is configured to: pass through the bottom layer 101 from the in-vehicle network environment. The designated channel (accepted channel) receives the channel status information (CSI) associated with the specified channel (that is, information indicating whether the specified channel is blocked), and dynamically adjusts the security message according to the received channel status information CSI. An upper generation frequency F U ; and a lower generation frequency F L that dynamically adjusts the security message based on driving information (eg, body driving information IVI and/or adjacent driving information SVI).

如此一來,經由訊息產生頻率控制單元109動態調整過後的上限與/或下限產生頻率(FU ,FL )即可被提供至底層101、應用層105與管理層107使用,藉以使得底層101、應用層105與管理層107之任一者可以根據經由訊息產生頻率控制單元109動態調整過後的上限產生頻率FU 與/或 下限產生頻率FL 來決定安全訊息的產生頻率,從而產生符合美國標準(SAE J2735)或歐洲標準(ETSI TS 102 637-2)所定義之安全訊息的封包(packet)。甚至,管理層107亦可根據經由訊息產生頻率控制單元109動態調整過後的上限產生頻率FU 與/或下限產生頻率FL 而給出安全訊息之產生頻率的建議,一切端視實際設計/應用需求而論。In this way, the upper limit and/or lower limit generation frequency (F U , F L ) dynamically adjusted by the message generation frequency control unit 109 can be provided to the bottom layer 101, the application layer 105, and the management layer 107, thereby making the bottom layer 101 The application layer 105 and the management layer 107 can determine the frequency of generation of the security message according to the upper limit generation frequency F U and/or the lower limit generation frequency F L dynamically adjusted by the message generation frequency control unit 109, thereby generating a compliance with the United States. A packet of security messages defined by the standard (SAE J2735) or the European standard (ETSI TS 102 637-2). In addition, the management layer 107 can also give a recommendation of the frequency of generating the security message according to the upper limit generating frequency F U and/or the lower limit generating frequency F L dynamically adjusted by the message generating frequency control unit 109, and all the actual design/application In terms of demand.

顯然地,在車載網路環境中動態調整與決定安全訊息之產生頻率的架構10下,行駛中的車輛可以在所規範的指定通道上發出/廣播具有『非固定產生頻率』的安全訊息給其他鄰近的行駛車輛,從而趨緩通道壅塞(channel congestion)的情況。Obviously, in the architecture 10 for dynamically adjusting and determining the frequency of generation of security messages in an in-vehicle network environment, a traveling vehicle can issue/broadcast a security message having a "non-fixed generation frequency" to other specified channels. Adjacent driving vehicles, thereby slowing down channel congestion.

在本示範性實施例中,訊息產生頻率控制單元109透過底層101所接收之關聯於指定通道的通道狀態資訊CSI可以包括通道使用率(0%~100%),其中通道使用率(0%~100%)越大,則表示指定通道越壅塞。在此條件下,訊息產生頻率控制單元109可經配置以:根據通道使用率(0%~100%)來動態調整安全訊息的上限產生頻率FUIn the present exemplary embodiment, the channel state information CSI associated with the specified channel received by the message generation frequency control unit 109 through the bottom layer 101 may include channel usage rate (0%~100%), wherein the channel usage rate (0%~) The larger the 100%), the more the designated channel is blocked. Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the upper limit generation frequency F U of the security message according to the channel usage rate (0% to 100%).

以圖2(a)為例,當通道使用率為0%~P1%(0<P1<100)時,則安全訊息的上限產生頻率FU 可以保持在最大的上限產生頻率FU (max)。當通道使用率為P1%~P2%(P1<P2<100)時,則安全訊息的上限產生頻率FU 會從最大的上限產生頻率FU (max)線性下降。當通道使用率在P2%~100%時,則安全訊息的上限產生頻率FU 可以保持在最小的上限產生頻率FU (min)。Taking Figure 2(a) as an example, when the channel usage rate is 0%~P1% (0<P1<100), the upper limit generating frequency F U of the safety message can be kept at the maximum upper limit generating frequency F U (max). . When the channel usage rate is P1%~P2% (P1<P2<100), the upper limit generating frequency F U of the safety message will linearly decrease from the maximum upper limit generating frequency F U (max). When the channel usage rate is between P2% and 100%, the upper limit of the safety message generation frequency F U can be kept at the minimum upper limit generation frequency F U (min).

以圖2(b)與圖2(c)為例,當通道使用率為0%~P1%(0<P1<100)時,則安全訊息的上限產生頻率FU 可以保持在最大的上限產生頻率FU (T1 )。當通道使用率為P1%~P2%時(P1<P2<100),則安全訊息的上限產生頻率FU 會從最大的上限產生頻率FU (T1 )直接下降至次大的上限產生頻率FU (T2 )。當通道使用率為P2%~100%時,則安全訊息的上限產生頻率FU 會從次大的上限產生頻率FU (T2 )直接下降至最小的上限產生頻率FU (T3 )。Taking Figure 2(b) and Figure 2(c) as an example, when the channel usage rate is 0%~P1% (0<P1<100), the upper limit generating frequency F U of the safety message can be kept at the maximum upper limit. Frequency F U (T 1 ). When the channel usage rate is P1%~P2% (P1<P2<100), the upper limit generating frequency F U of the safety message will directly drop from the maximum upper limit generating frequency F U (T 1 ) to the next largest upper limit generating frequency. F U (T 2). When the channel usage rate is P2%~100%, the upper limit generating frequency F U of the safety message will directly drop from the next upper upper limit generating frequency F U (T 2 ) to the minimum upper limit generating frequency F U (T 3 ).

在圖2(b)中,上限產生頻率FU (T1 )、FU (T2 )之間的差異△FU (1)等於上限產生頻率FU (T2 )、FU (T3 )之間的差異△FU (2),亦即:△FU (1)=△FU (2)。但是,在圖2(c)中,上限產生頻率FU (T1 )、FU (T2 )之間的差異△FU (1)不等於上限產生頻率FU (T2 )、FU (T3 )之間的差異△FU (2),亦即:△FU (1)≠△FU (2)。在本揭露的其他示範性實施例中,訊息產生頻率控制單元109透過底層101所接收之關聯於指定通道的通道狀態資訊CSI可以包括通道負載狀態(S1 ,S2 ,S3 ),其中通道負載狀態S1 可以表示為指定通道的負載狀態為輕載;通道負載狀態S2 可以表示為指定通道的負載狀態為中載;以及通道負載狀態S3 可以表示為指定通道的負載狀態為重載。通道負載狀態(S1 ,S2 ,S3 )越高,則表示指定通道越壅塞。在此條件下,訊息產生頻率控制單元109可經配置以:根據通道負載狀態(S1 ,S2 ,S3 )來動態調整安全訊息的上限產生頻率FUIn FIG. 2 (b), the upper limit occurrence frequency F U (T 1), the difference between △ F U F U (T 2) (1 ) generates a frequency equal to the upper limit F U (T 2), F U (T 3 The difference between ΔF U (2), that is, ΔF U (1) = ΔF U (2). However, in Fig. 2(c), the difference ΔF U (1) between the upper limit generation frequencies F U (T 1 ) and F U (T 2 ) is not equal to the upper limit generation frequency F U (T 2 ), F U The difference ΔF U (2) between (T 3 ), that is, ΔF U (1) ≠ ΔF U (2). In other exemplary embodiments of the present disclosure, the channel state information CSI associated with the specified channel received by the message generation frequency control unit 109 through the bottom layer 101 may include a channel load state (S 1 , S 2 , S 3 ), where the channel The load state S 1 can be expressed as the load state of the designated channel is light load; the channel load state S 2 can be expressed as the load state of the designated channel is medium load; and the channel load state S 3 can be expressed as the load state of the designated channel is overloaded . The higher the channel load state (S 1 , S 2 , S 3 ), the more the designated channel is blocked. Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the upper limit generation frequency F U of the security message according to the channel load status (S 1 , S 2 , S 3 ).

以圖2(d)為例,當通道負載狀態為S1 (輕載)時,則安全訊息的上限產生頻率FU 可以保持在最大的上限產生頻率FU (S1 )。當通道負載狀態為S2 (中載)時,則安全訊息的上限產生頻率FU 可以保持在次大的上限產生頻率FU (S2 )。當通道負載狀態為S3 (重載)時,則安全訊息的上限產生頻率FU 可以保持在最小的上限產生頻率FU (S3 )。Taking Fig. 2(d) as an example, when the channel load state is S 1 (light load), the upper limit generating frequency F U of the safety message can be maintained at the maximum upper limit generating frequency F U (S 1 ). When the channel load state is S 2 (middle load), the upper limit generating frequency F U of the safety message can be maintained at the next largest upper limit generating frequency F U (S 2 ). When the channel load state is S 3 (heavy load), the upper limit generating frequency F U of the safety message can be maintained at the minimum upper limit generating frequency F U (S 3 ).

於此值得一提的是,雖然圖2(b)~圖2(d)僅以3個上限產生頻率FU 為例來進行說明,但本揭露並不限制於此。換言之,本揭露還可以設定更多或更少的上限產生頻率FU 來符合實際的應用需求。It is worth mentioning that although FIG. 2(b) to FIG. 2(d) are described by taking only three upper limit generating frequencies F U as an example, the disclosure is not limited thereto. In other words, the present disclosure can also set more or less upper limit generating frequency F U to meet the actual application requirements.

顯然地,安全訊息的上限產生頻率FU 會與通道使用率(0%~100%)的大小或通道負載狀態(S1,S2,S3)的高低呈現一反比關係。換言之,當通道使用率越小或者通道負載狀態越低,則安全訊息的上限產生頻率FU 越高;反之,當通道使用率越大或者通道負載狀態越高,則安全訊息的上限產生頻率FU 越低。Obviously, the upper limit generating frequency F U of the security message is inversely related to the channel usage rate (0%~100%) or the channel load state (S1, S2, S3). In other words, when the channel usage rate is smaller or the channel load state is lower, the upper limit of the safety message generation frequency F U is higher; conversely, when the channel usage rate is larger or the channel load state is higher, the upper limit of the safety message generates the frequency F The lower the U.

另一方面,(本體)行車資訊IVI可以包括行車速度(velocity)VV。在此條件下,訊息產生頻率控制單元109可經配置以:根據行車速度VV來動態調整安全訊息的下限產生頻率FLOn the other hand, the (ontology) driving information IVI may include a driving speed VV. Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the lower limit generation frequency F L of the security message according to the driving speed VV.

以圖3(a)為例,當行車速度VV在0~V1 時,則安全訊息的下限產生頻率FL 可以保持在最小的下限產生頻率FL (min)。當行車速度VV在V1 ~V2 時(V1 <V2 ),則 安全訊息的下限產生頻率FL 會從最小的下限產生頻率FL (min)線性上升至最大的下限產生頻率FL (max)。當行車速度VV在V2 以上時,則安全訊息的下限產生頻率FL 可以保持在最大的下限產生頻率FL (max)。In FIG. 3 (a) as an example, when the driving speed VV at 0 ~ V 1, the lower limit of the security message is generated frequencies may be maintained generation frequency F L F L (min) of the minimum limit. When the frequency F L driving speed VV at V 1 ~ V 2 when (V 1 <V 2), the security post limit occurrence frequency F L generated frequency F L (min) linear up to the maximum limit from the minimum lower limit is generated (max). When the driving speed VV is above V 2 , the lower limit generating frequency F L of the safety message can be maintained at the maximum lower limit generating frequency F L (max).

以圖3(b)與圖3(c)為例,當行車速度VV在0~V1 時,則安全訊息的下限產生頻率FL 可以保持在最小的下限產生頻率FL (min)。當行車速度VV在V1 ~V2 時(V1 <V2 ),則安全訊息的下限產生頻率FL 會從最小的下限產生頻率FL (min)直接上升至次小的下限產生頻率FL (T1 )。當行車速度VV在V2 ~V3 時(V2 <V3 ),則安全訊息的下限產生頻率FL 會從次小的下限產生頻率FL (T1 )直接上升至次大的下限產生頻率FL (T2 )。當行車速度VV在V3 以上時,則安全訊息的下限產生頻率FL 可以保持在最大的下限產生頻率FL (max)。In FIG. 3 (b) and FIG. 3 (c) as an example, when the driving speed VV at 0 ~ V 1, the lower limit of the security message is generated frequencies may be maintained generation frequency F L F L (min) of the minimum limit. When the driving speed VV is V 1 ~V 2 (V 1 <V 2 ), the lower limit generating frequency F L of the safety message will increase from the minimum lower limit frequency F L (min) to the next lower limit generating frequency F L (T 1). When the driving speed VV is V 2 ~V 3 (V 2 <V 3 ), the lower limit generating frequency F L of the safety message will rise directly from the second lower lower limit generating frequency F L (T 1 ) to the next lower limit. Frequency F L (T 2 ). When the driving speed VV is above V 3 , the lower limit generating frequency F L of the safety message can be maintained at the maximum lower limit generating frequency F L (max).

在圖3(b)中,下限產生頻率FL (min)、FL (T1 )之間的差異△FL (1)等於下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2),且下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2)等於下限產生頻率FL (T2 )、FL (max)之間的差異△FL (3),亦即:△FL (1)=△FL (2)=△FL (3)。另外,0~V1 之間的差異△V(1)大於等於V1 ~V2 之間的差異△V(2),且V1 ~V2 之間的差異△V(2)大於等於V2 ~V3 之間的差異△V(3),亦即:△V(1)≧△V(2)≧△V(3)。In Fig. 3(b), the difference between the lower limit generating frequency F L (min) and F L (T 1 ) ΔF L (1) is equal to the lower limit generating frequency F L (T 1 ), F L (T 2 ) The difference ΔF L (2), and the difference between the lower limit generating frequencies F L (T 1 ) and F L (T 2 ) ΔF L (2) is equal to the lower limit generating frequency F L (T 2 ), F △ F L L difference between (max) (3), namely: △ F L (1) = △ F L (2) = △ F L (3). Furthermore, 0 ~ V difference △ V between 1 (1) ~ 1 V or greater difference △ V (2) between 2 V, 1 V and the difference △ V between ~ 2 V (2) not less than V The difference between 2 and V 3 is ΔV(3), that is, ΔV(1) ≧ ΔV(2) ≧ ΔV(3).

但是,在圖3(c)中,下限產生頻率FL (min)、FL (T1 )之間的差異△FL (1)小於等於下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2),且下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2)小於等於下限產生頻率FL (T2 )、FL (max)之間的差異△FL (3),亦即:△FL (1)≦△FL (2)≦△FL (3)。另外,0~V1 之間的差異△V(1)等於V1 ~V2 之間的差異△V(2),且V1 ~V2 之間的差異△V(2)等於V2 ~V3 之間的差異△V(3),亦即:△V(1)=△V(2)=△V(3)。However, in Fig. 3(c), the difference between the lower limit generating frequency F L (min) and F L (T 1 ) ΔF L (1) is less than or equal to the lower limit generating frequency F L (T 1 ), F L ( The difference between T 2 ) is ΔF L (2), and the difference between the lower limit generating frequencies F L (T 1 ) and F L (T 2 ) ΔF L (2) is less than or equal to the lower limit generating frequency F L (T) 2 ), the difference between F L (max) ΔF L (3), that is, ΔF L (1) ≦ ΔF L (2) ≦ ΔF L (3). Further, the difference △ V between 0 ~ V 1 (1) is equal to V 1 ~ V difference △ V (2) between 2 and V 1 ~ V difference △ V (2) is equal to between 2 V 2 ~ △ V difference between V 3 (3), namely: △ V (1) = △ V (2) = △ V (3).

相似地,雖然圖3(b)與圖3(c)僅以4個下限產生頻率FL (min)、FL (T1 )、FL (T2 )、FU (max)為例來進行說明,但本揭露並不限制於此。換言之,本揭露還可以設定更多或更少的下限產生頻率FL 來符合實際的應用需求。Similarly, although FIG. 3(b) and FIG. 3(c) only take the four lower limit generating frequencies F L (min), F L (T 1 ), F L (T 2 ), F U (max) as an example. The description is made, but the disclosure is not limited thereto. In other words, the present disclosure can also set more or less lower limit generating frequency F L to meet the actual application requirements.

顯然地,安全訊息的下限產生頻率FL 會與行車速度VV的快慢呈現一正比關係。換言之,當行車速度VV越快,則安全訊息的下限產生頻率FL 越高;反之,當行車速度VV越慢,則安全訊息的下限產生頻率FL 越低。Obviously, the lower limit generating frequency F L of the safety message will have a proportional relationship with the speed of the driving speed VV. In other words, the faster the driving speed VV, the higher the lower limit generating frequency F L of the safety message; conversely, the slower the driving speed VV, the lower the lower limit generating frequency F L of the safety message.

另一方面,(本體)行車資訊IVI可以包括行車方位角(heading angle)VA(可解釋為車輛行進方向的相對改變角度,即行車轉向的角度大小)。在此條件下,訊息產生頻率控制單元109可經配置以:根據行車方位角VA來動態調整安全訊息的下限產生頻率FLOn the other hand, the (body) driving information IVI may include a heading angle VA (which may be interpreted as a relative change angle of the vehicle traveling direction, that is, an angle of the steering direction of the vehicle). Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the lower limit generation frequency F L of the security message according to the driving azimuth VA.

以圖4(a)為例,當行車方位角VA在0~θ1 時,則安全訊息的下限產生頻率FL 可以保持在最小的下限產生頻 率FL (min)。當行車方位角VA在θ12 時(θ12 ),則安全訊息的下限產生頻率FL 會從最小的下限產生頻率FL (min)線性上升至最大的下限產生頻率FL (max)。當行車方位角VA在θ2 以上時,則安全訊息的下限產生頻率FL 可以保持在最大的下限產生頻率FL (max)。In FIG. 4 (a) as an example, when the road azimuth angle VA 0 1 ~ θ, the security message generation frequency lower limit may be maintained generation frequency F L F L (min) of the minimum limit. When the driving azimuth VA is θ 1 ~ θ 21 < θ 2 ), the lower limit of the safety message generation frequency F L will generate a frequency F L (min) from the minimum lower limit to the maximum lower limit. L (max). When the driving azimuth angle VA is θ 2 or more, the lower limit generating frequency F L of the safety message can be maintained at the maximum lower limit generating frequency F L (max).

以圖4(b)與圖4(c)為例,當行車方位角VA在0~θ1 時,則安全訊息的下限產生頻率FL 可以保持在最小的下限產生頻率FL (min)。當行車方位角VA在θ12 時(θ12 ),則安全訊息的下限產生頻率FL 會從最小的下限產生頻率FL (min)直接上升至次小的下限產生頻率FL (T1 )。當行車方位角VA在θ23 時(θ23 ),則安全訊息的下限產生頻率FL 會從次小的下限產生頻率FL (T1 )直接上升至次大的下限產生頻率FL (T2 )。當行車方位角VA在θ3 以上時,則安全訊息的下限產生頻率FL 可以保持在最大的下限產生頻率FL (max)。In FIG. 4 (b) and FIG. 4 (c) as an example, when the road azimuth angle VA 0 1 ~ θ, the security message generation frequency lower limit may be maintained generation frequency F L F L (min) of the minimum limit. When the driving azimuth angle VA is θ 1 ~ θ 21 < θ 2 ), the lower limit generating frequency F L of the safety message will increase from the minimum lower limit generating frequency F L (min) to the next smaller lower limit generating frequency. F L (T 1 ). When the driving azimuth angle VA is θ 2 ~ θ 32 < θ 3 ), the lower limit generating frequency F L of the safety message will rise directly from the second lower lower limit generating frequency F L (T 1 ) to the next lower limit. The frequency F L (T 2 ) is generated. When the driving azimuth angle VA is above θ 3 , the lower limit generating frequency F L of the safety message can be maintained at the maximum lower limit generating frequency F L (max).

在圖4(b)中,下限產生頻率FL (min)、FL (T1 )之間的差異△FL (1)等於下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2),且下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2)等於下限產生頻率FL (T2 )、FL (max)之間的差異△FL (3),亦即:△FL (1)=△FL (2)=△FL (3)。另外,0~θ1 之間的差異△θ(1)大於等於θ12 之間的差異△θ(2),且θ12 之間的差異△θ(2)大於等於θ23 之間的差異△θ(3),亦即:△θ(1)≧△θ(2)≧△θ(3)。In Fig. 4(b), the difference between the lower limit generating frequency F L (min) and F L (T 1 ) ΔF L (1) is equal to the lower limit generating frequency F L (T 1 ), F L (T 2 ) The difference ΔF L (2), and the difference between the lower limit generating frequencies F L (T 1 ) and F L (T 2 ) ΔF L (2) is equal to the lower limit generating frequency F L (T 2 ), F The difference between L (max) ΔF L (3), that is, ΔF L (1) = ΔF L (2) = ΔF L (3). Further, the difference △ θ between 0 ~ θ 1 (1) not less than θ 1 ~ difference △ θ (2) between the θ 2, and θ 1 ~ difference △ θ (2) between the θ 2 is equal to [theta] is greater than The difference between 2 and θ 3 is Δθ(3), that is, Δθ(1) ≧ Δθ(2) ≧ Δθ(3).

但是,在圖4(c)中,下限產生頻率FL (min)、FL (T1 )之間的差異△FL (1)小於等於下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2),且下限產生頻率FL (T1 )、FL (T2 )之間的差異△FL (2)小於等於下限產生頻率FL (T2 )、FL (max)之間的差異△FL (3),亦即:△FL (1)≦△FL (2)≦△FL (3)。另外,0~θ1 之間的差異△θ(1)等於θ12 之間的差異△θ(2),且θ12 之間的差異△θ(2)等於θ23 之間的差異△θ(3),亦即:△θ(1)=△θ(2)=△θ(3)。However, in Fig. 4(c), the difference between the lower limit generating frequency F L (min) and F L (T 1 ) ΔF L (1) is less than or equal to the lower limit generating frequency F L (T 1 ), F L ( The difference between T 2 ) is ΔF L (2), and the difference between the lower limit generating frequencies F L (T 1 ) and F L (T 2 ) ΔF L (2) is less than or equal to the lower limit generating frequency F L (T) 2 ), the difference between F L (max) ΔF L (3), that is, ΔF L (1) ≦ ΔF L (2) ≦ ΔF L (3). Further, the difference △ θ between 0 ~ θ 1 (1) is equal to θ 1 ~ difference △ θ (2) between the θ 2, and θ 1 ~ difference △ θ between θ 2 (2) is equal to θ 2 ~ difference △ θ between θ 3 (3), namely: △ θ (1) = △ θ (2) = △ θ (3).

相似地,雖然圖4(b)與圖4(c)僅以4個下限產生頻率FL (min)、FL (T1 )、FL (T2 )、FU (max)為例來進行說明,但本揭露並不限制於此。換言之,本揭露還可以設定更多或更少的下限產生頻率FL 來符合實際的應用需求。Similarly, although FIG. 4(b) and FIG. 4(c) only take the four lower limit generating frequencies F L (min), F L (T 1 ), F L (T 2 ), F U (max) as an example. The description is made, but the disclosure is not limited thereto. In other words, the present disclosure can also set more or less lower limit generating frequency F L to meet the actual application requirements.

顯然地,安全訊息的下限產生頻率FL 會與行車方位角VA的大小呈現一正比關係。換言之,當行車方位角VA越大,則安全訊息的下限產生頻率FL 越高;反之,當行車方位角VA越小,則安全訊息的下限產生頻率FL 越低。Obviously, the lower limit generating frequency F L of the safety message will have a proportional relationship with the magnitude of the driving azimuth VA. In other words, when the driving azimuth VA is larger, the lower limit generating frequency F L of the safety message is higher; conversely, when the driving azimuth VA is smaller, the lower limit generating frequency F L of the safety message is lower.

另一方面,(本體)行車資訊IVI可以同時包括行車速度VV與行車方位角VA。在此條件下,訊息產生頻率控制單元109可經配置以:根據行車速度VV與行車方位角VA來動態調整安全訊息的下限產生頻率FLOn the other hand, the (main body) driving information IVI can include both the driving speed VV and the driving azimuth VA. Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the lower limit generation frequency F L of the safety message according to the driving speed VV and the driving azimuth angle VA.

如圖5(a)所示,對應於相異行車速度VV(V1 ,V2 )之安全訊息的下限產生頻率FL 可以表示為FL (V);另外, 如圖5(b)所示,對應於相異行車方位角VA(θ12 )之安全訊息的下限產生頻率FL 可以表示為FL1 )與FL2 );再者,如圖5(c)所示,對應於相異行車速度VV(V1 ,V2 )與相同行車方位角VA(θ1 )之安全訊息的下限產生頻率FL 可以表示為FL (V+θ1 ),而對應於相異行車速度VV(V1 ,V2 )與相同行車方位角VA(θ2 )之安全訊息的下限產生頻率FL 可以表示為FL (V+θ2 )。As shown in Fig. 5(a), the lower limit generating frequency F L of the safety message corresponding to the different driving speed VV (V 1 , V 2 ) can be expressed as F L (V); in addition, as shown in Fig. 5(b) It is shown that the lower limit generating frequency F L of the safety message corresponding to the different driving azimuth angle VA(θ 1 , θ 2 ) can be expressed as F L1 ) and F L2 ); further, as shown in FIG. 5 ( c) that the lower limit generating frequency F L corresponding to the safety information of the different driving speed VV (V 1 , V 2 ) and the same driving azimuth angle VA (θ 1 ) can be expressed as F L (V + θ 1 ), The lower limit generating frequency F L corresponding to the safety information of the different driving speeds VV (V 1 , V 2 ) and the same driving azimuth angle VA (θ 2 ) can be expressed as F L (V + θ 2 ).

從圖5(c)可以清楚地看出,行車方位角VA(θ12 )在低行車速度VV(V1 )對於安全訊息之下限產生頻率FL 的影響程度(δ12 )較低;但是,行車方位角VA(θ12 )在高行車速度VV(V2 )對於安全訊息之下限產生頻率FL 的影響程度(δ34 )較高。其中,δ2 ≧δ1 ;δ4 ≧δ3 ;δ31 ;以及δ42It can be clearly seen from Fig. 5(c) that the influence of the driving azimuth angle VA(θ 1 , θ 2 ) on the frequency F L of the lower traveling speed VV(V 1 ) for the lower limit of the safety message (δ 1 , δ 2 ) It is lower; however, the driving azimuth angle VA(θ 1 , θ 2 ) is higher in the degree of influence (δ 3 , δ 4 ) of the high driving speed VV(V 2 ) on the lower limit generating frequency F L of the safety message. Where δ 2 ≧δ 1 ; δ 4 ≧δ 3 ; δ 31 ; and δ 42 .

顯然地,安全訊息的下限產生頻率FL 會與行車速度VV的快慢以及行車方位角VA的大小呈現一正比關係。換言之,當行車速度VV越快且行車方位角VA越大,則安全訊息的下限產生頻率FL 越高;反之,當行車速度VV越慢且行車方位角VA越小,則安全訊息的下限產生頻率FL 越低。Obviously, the lower limit generating frequency F L of the safety message will have a proportional relationship with the speed of the driving speed VV and the magnitude of the driving azimuth VA. In other words, the faster the driving speed VV and the larger the driving azimuth VA, the higher the lower limit generating frequency F L of the safety message; conversely, the slower the driving speed VV and the smaller the driving azimuth VA, the lower limit of the safety message is generated. The lower the frequency F L is .

另一方面,(本體與鄰車)行車資訊(IVI,SVI)可以包括前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 。其中,前後車間的行車安全距離ds 按各國道路規則而有所不同。在此條件下,訊息產生頻率控制單元109可經配置以:根據前後車間的行車安全距離ds 與前後車間 的行車實際距離dc1 來動態調整安全訊息的下限產生頻率FLOn the other hand, the driving information (IVI, SVI) of the main body and the adjacent car can include the driving safety distance d s of the front and rear workshops and the actual driving distance d c1 of the front and rear workshops. Among them, the driving safety distance d s of the front and back workshops varies according to the national road rules. Under this condition, the message generation frequency control unit 109 can be configured to dynamically adjust the lower limit generation frequency F L of the safety message according to the driving safety distance d s of the front and rear workshops and the actual driving distance d c1 of the front and rear workshops.

以圖6(a)為例,在時間t1之前,由於前後車間的行車實際距離dc1 大於前後車間的行車安全距離ds ,故而安全訊息的下限產生頻率FL 可以為較低的下限產生頻率FL (ds0 )。在時間t1,由於前後車間的行車實際距離dc1 小於前後車間的行車安全距離ds ,故而安全訊息的下限產生頻率FL 可以為較高的下限產生頻率FL (ds1 )。在時間t1之後,若安全訊息的下限產生頻率FL 欲從較高的下限產生頻率FL (ds1 )回復至較低的下限產生頻率FL (ds0 )的話(即,時間t2),則必須要滿足dc1 >ds +△d(△d=ds+ -ds ),加上△d目的乃是為了要避免乒乓效應(Ping-Pong Effect)的產生。Taking Fig. 6(a) as an example, before time t1, since the actual driving distance d c1 of the front and rear workshops is greater than the driving safety distance d s of the front and rear workshops, the lower limit generating frequency F L of the safety message may be a lower lower limit generating frequency. F L (d s0 ). At time t1, since the actual driving distance d c1 of the front and rear workshops is smaller than the driving safety distance d s of the front and rear workshops, the lower limit generating frequency F L of the safety message may be a higher lower limit generating frequency F L (d s1 ). After time t1, if the lower limit of the safety message generation frequency F L is to be recovered from the higher lower limit generation frequency F L (d s1 ) to the lower lower limit generation frequency F L (d s0 ) (ie, time t2), It is necessary to satisfy d c1 >d s +Δd(Δd=d s+ -d s ), and the purpose of adding Δd is to avoid the occurrence of Ping-Pong Effect.

以圖6(b)為例,在時間t1之前,由於前後車間的行車實際距離dc1 大於前後車間的行車安全距離ds ,故而安全訊息的下限產生頻率FL 可以為最低的下限產生頻率FL (ds0 )。在時間t1~t1+1,由於前後車間的行車實際距離dc1 逐漸縮短,故而安全訊息的下限產生頻率FL 可以由最低的下限產生頻率FL (ds0 )改變至次高的下限產生頻率FL (ds1 )。在時間t1+1~t+2,由於前後車間的行車實際距離dc1 最短,故而安全訊息的下限產生頻率FL 可以由次高的下限產生頻率FL (ds1 )改變至最高的下限產生頻率FL (ds2 )。在時間t1+2之後,由於前後車間的行車實際距離dc1 逐漸拉開,故而安全訊息的下限產生頻率FL 可以從最 高的下限產生頻率FL (ds2 )回復到次高的下限產生頻率FL (ds1 )。另外,在時間t1+2之後,若安全訊息的下限產生頻率FL 欲從次高的下限產生頻率FL (ds1 )回復至最低的下限產生頻率FL (ds0 )的話(即,時間t2),則必須要滿足dc1 >ds +△d(△d=ds+ -ds ),加上△d目的乃是為了要避免乒乓效應(Ping-Pong Effect)的產生。Taking Fig. 6(b) as an example, before time t1, since the actual driving distance d c1 of the front and rear workshops is greater than the driving safety distance d s of the front and rear workshops, the lower limit generating frequency F L of the safety message can be the lowest lower limit generating frequency F L (d s0 ). At time t1~t1+1, since the actual distance d c1 of the front and rear workshops is gradually shortened, the lower limit generating frequency F L of the safety message can be changed from the lowest lower limit generating frequency F L (d s0 ) to the second lower limit generating frequency. F L (d s1 ). At time t1+1~t+2, since the actual distance d c1 of the front and rear workshops is the shortest, the lower limit generating frequency F L of the safety message can be changed from the lower limit generating frequency F L (d s1 ) to the highest lower limit. Frequency F L (d s2 ). After time t1+2, since the actual distance d c1 of the front and rear workshops is gradually opened, the lower limit generating frequency F L of the safety message can be recovered from the highest lower limit generating frequency F L (d s2 ) to the next lower limit generating frequency. F L (d s1 ). In addition, after the time t1+2, if the lower limit of the safety message generation frequency F L is to be generated from the lower limit of the lower limit, the frequency F L (d s1 ) returns to the lowest lower limit generation frequency F L (d s0 ) (ie, time) T2), it is necessary to satisfy d c1 >d s +Δd(Δd=d s+ -d s ), and the purpose of adding Δd is to avoid the occurrence of Ping-Pong Effect.

顯然地,安全訊息的下限產生頻率FL 會與前後車間之行車實際距離dc1 的長短呈現一反比關係。換言之,當前後車間之行車實際距離dc1 越長,則安全訊息的下限產生頻率FL 越低;反之,當前後車間之行車實際距離dc1 越短,則安全訊息的下限產生頻率FL 越高。Obviously, the lower limit generating frequency F L of the safety message will have an inverse relationship with the actual distance d c1 of the front and rear workshops. In other words, the longer the actual distance d c1 of the current post-shop, the lower the lower limit generating frequency F L of the safety message; conversely, the shorter the actual driving distance d c1 of the current post-shop, the lower the lower limit generating frequency F L of the safety message high.

基於上述可知,訊息產生頻率控制單元109會根據關聯於指定通道的通道狀態資訊CSI(即,通道使用率(0%~100%)/通道負載狀態(S1 ,S2 ,S3 ))來動態調整安全訊息的上限產生頻率FU 。另外,訊息產生頻率控制單元109會根據行車資訊(IVI與/或SVI,例如:行車速度VV與/或行車方位角VA,以及前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 )來動態調整安全訊息的下限產生頻率FLBased on the above, the message generation frequency control unit 109 will according to the channel state information CSI (ie, channel usage rate (0%~100%)/channel load state (S 1 , S 2 , S 3 )) associated with the specified channel. The upper limit of the dynamic adjustment security message generates the frequency F U . In addition, the message generation frequency control unit 109 according to the driving information (IVI and / or SVI, for example: driving speed VV and / or driving azimuth VA, and the driving safety distance d s of the front and rear workshops and the actual driving distance d c1 of the front and rear workshops ) to dynamically adjust the lower limit of the safety message to generate the frequency F L .

於此值得一提的是,訊息產生頻率控制單元109亦可根據行車資訊(IVI與/或SVI,例如:行車速度VV、行車方位角VA以及前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 至少其中之一或其之間的組合以動態調整安全訊息的下限產生頻率FL 。舉例來說,訊息產生頻率 控制單元109可根據單一行車速度VV以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據單一行車方位角VA以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據行車速度VV與行車方位角VA以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 以及行車速度VV以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 以及行車方位角VA以動態調整安全訊息的下限產生頻率FL ;或者,訊息產生頻率控制單元109可根據前後車間的行車安全距離ds 與前後車間的行車實際距離dc1 、行車方位角VA以及行車速度VV以動態調整安全訊息的下限產生頻率FL ;依此類推,一切端視實際設計/應用需求而論。It is worth mentioning that the message generation frequency control unit 109 can also be based on driving information (IVI and/or SVI, for example: driving speed VV, driving azimuth VA, and driving safety distance d s of the front and rear workshops and driving of the front and rear workshops) The combination of at least one of the actual distances d c1 or a lower limit thereof dynamically generates a frequency F L for the lower limit of the safety message. For example, the message generation frequency control unit 109 can dynamically adjust the lower limit of the safety message according to the single driving speed VV. The frequency F L ; alternatively, the message generation frequency control unit 109 can dynamically adjust the lower limit of the safety message according to the single driving azimuth VA to generate the frequency F L ; or the message generation frequency control unit 109 can be based on the driving speed VV and the driving azimuth VA dynamically adjusting security post limit generation frequency F L; or posts occurrence frequency control unit 109 may be d actual distance traffic s front and rear workshop d C1 to dynamically adjust the safety post limit generating a frequency F L according to the driving safety distance in front of the workshop; Alternatively, the control message generating unit 109 may frequency d s the front and rear driving safety distance in front of the workshop Driving the actual distance d C1 and the driving speed between the VV generation frequency F L to dynamically limit adjustment safety messages; or posts occurrence frequency control unit 109 may be d traffic s front and rear Drag actual distance d C1 according to traffic safety distance in front of the workshop And the driving azimuth angle VA is used to dynamically adjust the lower limit of the safety message to generate the frequency F L ; or the message generating frequency control unit 109 can be based on the driving safety distance d s of the front and rear workshops, the actual driving distance d c1 of the front and rear workshops, the driving azimuth angle VA, and driving speed VV generation frequency F L to dynamically adjust the limit of safety messages; and so on, all depends on practical / applications concerned.

於本示範性實施例中,經由訊息產生頻率控制單元109動態調整過後的上限產生頻率FU 與下限產生頻率FL 會被提供至例如應用層105,且應用層105會進而判斷上限產生頻率FU 是否大於下限產生頻率FL 。於本揭露中,上限產生頻率FU 一般大於下限產生頻率FL ,但是若下限產生頻率FL 大於上限產生頻率FU 的話,則表示上限產生 頻率FU 與下限產生頻率FL 有發生相交的行為,如圖7(a)所示。In the present exemplary embodiment, the upper limit generating frequency F U and the lower limit generating frequency F L dynamically adjusted by the message generating frequency control unit 109 are supplied to, for example, the application layer 105, and the application layer 105 further determines the upper limit generating frequency F. Whether U is greater than the lower limit produces frequency F L . In the present disclosure, the upper limit generating frequency F U is generally greater than the lower limit generating frequency F L , but if the lower limit generating frequency F L is greater than the upper limit generating frequency F U , it means that the upper limit generating frequency F U intersects with the lower limit generating frequency F L The behavior is shown in Figure 7(a).

有鑑於此,當應用層105判斷出上限產生頻率FU 大於下限產生頻率FL 時,則表示上限產生頻率FU 與下限產生頻率FL 沒有發生相交的行為。因此,應用層105可以選擇上限產生頻率FU 與下限產生頻率FL 之間(即,有效區域內)的任一頻率以作為安全訊息的產生頻率。In view of this, when the application layer 105 determines that the upper limit is greater than the generation frequency F U F L generation frequency, the generation frequency F U represents the upper limit and the lower limit frequency F L intersects generates the behavior does not occur. Therefore, the application layer 105 can select any frequency between the upper limit generation frequency F U and the lower limit generation frequency F L (ie, within the effective area) as the generation frequency of the security message.

另外,當應用層105判斷出上限產生頻率FU 小於下限產生頻率FL 時,則表示上限產生頻率FU 與下限產生頻率FL 有發生相交的行為。因此,應用層105可以選擇上限產生頻率FU 以作為安全訊息的產生頻率(如圖7(b)所示)或者選擇下限產生頻率FL 以作為安全訊息的產生頻率(如圖7(c)所示)。當然,在本揭露的其他示範性實施例中,訊息產生頻率控制單元109亦可反應於來自應用層105的應用需求APP_R來動態調整上限產生頻率FU 與/或下限產生頻率FL ,從而再提供給其他層(101,105,107)使用。Further, when the application layer 105 determines that the upper limit generation frequency F U is smaller than the lower limit generation frequency F L , it indicates that the upper limit generation frequency F U and the lower limit generation frequency F L intersect. Therefore, the application layer 105 can select the upper limit generation frequency F U as the generation frequency of the security message (as shown in FIG. 7(b)) or select the lower limit generation frequency F L as the generation frequency of the security message (as shown in FIG. 7(c). Shown). Of course, in other exemplary embodiments of the present disclosure, the message generation frequency control unit 109 may also dynamically adjust the upper limit generation frequency F U and/or the lower limit generation frequency F L in response to the application demand APP_R from the application layer 105, thereby Provided to other layers (101, 105, 107) for use.

除此之外,當應用層105判斷出上限產生頻率FU 小於下限產生頻率FL 時(即,上限產生頻率FU 與下限產生頻率FL 有發生相交的行為),則應用層105還可以選擇關聯於經調整的上限產生頻率FU 與下限產生頻率FL 的複合頻率(例如:α×FU +β×FL 或α×FU +(1-α)×FL 或者其它關係式)以作為安全訊息的產生頻率(如圖7(d)所示)。In addition, when the application layer 105 determines that the upper limit generation frequency F U is smaller than the lower limit generation frequency F L (that is, the behavior in which the upper limit generation frequency F U and the lower limit generation frequency F L intersect), the application layer 105 may also Selecting a composite frequency associated with the adjusted upper limit generating frequency F U and the lower limit generating frequency F L (for example: α × F U + β × F L or α × F U + (1 - α) × F L or other relational expression ) as the frequency of generation of security messages (as shown in Figure 7 (d)).

基於上述示範性實施例所揭示/教示的內容,圖8繪示 為本揭露一示範性實施例之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法流程圖。請參照圖8,圖8所示之方法包括:從車載網路環境中的指定通道上接收關聯於指定通道的通道狀態資訊,並且根據所接收的通道狀態資訊以動態調整安全訊息的上限產生頻率(步驟S801);根據行車資訊以動態調整安全訊息的下限產生頻率(步驟S803);以及根據經調整的上限產生頻率與/或下限產生頻率以決定安全訊息的產生頻率(步驟S805)。Based on the disclosure/teaching of the above exemplary embodiments, FIG. 8 illustrates A flowchart of a method for dynamically adjusting and determining a frequency of generating a security message in an in-vehicle network environment according to an exemplary embodiment of the present disclosure. Referring to FIG. 8, the method shown in FIG. 8 includes: receiving channel state information associated with a specified channel from a designated channel in an in-vehicle network environment, and dynamically adjusting an upper limit generating frequency of the security message according to the received channel state information. (Step S801); dynamically generating a frequency based on the driving information to dynamically adjust the lower limit of the security message (step S803); and generating a frequency based on the adjusted upper limit generating frequency and/or lower limit to determine the frequency of generation of the security message (step S805).

於本示範性實施例中,步驟S805還可以包括:判斷經調整的上限產生頻率是否大於下限產生頻率(步驟S805-1);當上限產生頻率大於下限產生頻率時(即,“是”),則選擇經調整的上限產生頻率與下限產生頻率之間的任一頻率以作為安全訊息的產生頻率(步驟S805-3);以及當上限產生頻率小於下限產生頻率時(即,“否”),則選擇經調整的上限產生頻率或下限產生頻率以作為安全訊息的產生頻率;或者,選擇關聯於經調整之上限產生頻率與下限產生頻率的複合頻率以作為安全訊息的產生頻率(步驟S805-5)。In the present exemplary embodiment, step S805 may further include: determining whether the adjusted upper limit generation frequency is greater than a lower limit generation frequency (step S805-1); and when the upper limit generation frequency is greater than a lower limit generation frequency (ie, "yes"), Selecting any frequency between the adjusted upper limit generating frequency and the lower limit generating frequency as the generating frequency of the safety message (step S805-3); and when the upper limit generating frequency is lower than the lower limit generating frequency (ie, "No"), Then, the adjusted upper limit generating frequency or the lower limit generating frequency is selected as the generating frequency of the safety message; or, the combined frequency associated with the adjusted upper limit generating frequency and the lower limit generating frequency is selected as the generating frequency of the safety message (step S805-5) ).

與上述示範性實施例類似,若通道狀態資訊包括通道使用率或通道負載狀態的話,則於步驟S801中,安全訊息的上限產生頻率可以根據通道使用率或通道負載狀態而 被動態調整。在此條件下,安全訊息的上限產生頻率與通道使用率的大小或通道負載狀態的高低呈現一反比關係。Similar to the above exemplary embodiment, if the channel status information includes the channel usage rate or the channel load status, then in step S801, the upper limit generation frequency of the safety message may be based on the channel usage rate or the channel load status. Be dynamically adjusted. Under this condition, the upper limit generation frequency of the security message is inversely related to the channel usage rate or the channel load state.

與上述示範性實施例類似,若行車資訊包括行車速度的話,則於步驟S803中,安全訊息的下限產生頻率可以根據行車速度而被動態調整。在此條件下,安全訊息的下限產生頻率與行車速度的快慢呈現一正比關係。Similar to the above-described exemplary embodiment, if the driving information includes the driving speed, then in step S803, the lower limit generating frequency of the safety message can be dynamically adjusted according to the driving speed. Under this condition, the lower limit of the safety message generation frequency is proportional to the speed of the driving speed.

與上述示範性實施例類似,若行車資訊包括行車方位角的話,則於步驟S803中,安全訊息的下限產生頻率可以根據行車方位角而被動態調整。在此條件下,安全訊息的下限產生頻率與行車方位角的大小呈現一正比關係。Similar to the above exemplary embodiment, if the driving information includes the driving azimuth, in step S803, the lower limit generating frequency of the safety message can be dynamically adjusted according to the driving azimuth. Under this condition, the lower limit generation frequency of the safety message has a proportional relationship with the magnitude of the driving azimuth.

與上述示範性實施例類似,若行車資訊同時包括行車速度與行車方位角的話,則於步驟S803中,安全訊息的下限產生頻率可以根據行車速度與行車方位角而被動態調整。在此條件下,安全訊息的下限產生頻率與行車速度的快慢以及行車方位角的大小呈現一正比關係。Similar to the above-described exemplary embodiment, if the driving information includes both the driving speed and the driving azimuth, in step S803, the lower limit generating frequency of the safety message can be dynamically adjusted according to the driving speed and the driving azimuth. Under this condition, the lower limit of the safety message generation frequency has a proportional relationship with the speed of the driving speed and the magnitude of the driving azimuth.

與上述示範性實施例類似,若行車資訊包括前後車間的行車安全距離與前後車間的行車實際距離的話,則於步驟S803中,安全訊息的下限產生頻率可以根據前後車間的行車安全距離與前後車間的行車實際距離而被動態調整。在此條件下,安全訊息的下限產生頻率與前後車間之行車實際距離的長短呈現一反比關係。Similar to the above exemplary embodiment, if the driving information includes the driving safety distance of the front and rear workshops and the actual driving distance of the front and rear workshops, then in step S803, the lower limit generating frequency of the safety information can be based on the driving safety distance of the front and rear workshops and the front and rear workshops. The actual distance of the driving is dynamically adjusted. Under this condition, the lower limit of the safety message generation frequency is inversely proportional to the actual distance between the front and rear workshops.

與上述示範性實施例類似,若行車資訊同時包括行車速度、行車方位角以及前後車間的行車安全距離與前後車間的行車實際距離至少其中之一或其之間的組合的話,則 於步驟S803中,安全訊息的下限產生頻率可以根據行車速度、行車方位角以及前後車間的行車安全距離與前後車間的行車實際距離至少其中之一或其之間的組合而被動態調整。舉例來說,行車速度、行車方位角以及前後車間的行車安全距離與前後車間的行車實際距離至少其中之一或其之間的組合的情況可以是:1、單一行車速度;2、單一行車方位角;3、行車速度與行車方位角;4、前後車間的行車安全距離與前後車間的行車實際距離;5、前後車間的行車安全距離與前後車間的行車實際距離以及行車速度;6、前後車間的行車安全距離與前後車間的行車實際距離以及行車方位角;7、前後車間的行車安全距離與前後車間的行車實際距離、行車方位角以及行車速度。Similar to the above exemplary embodiment, if the driving information includes at least one of or a combination of the driving speed, the driving azimuth, and the driving safety distance between the front and rear workshops and the actual driving distance between the front and rear workshops, In step S803, the lower limit generation frequency of the safety message may be dynamically adjusted according to at least one of or a combination of the driving speed, the driving azimuth, and the driving safety distance of the front and rear workshops and the actual driving distance of the front and rear workshops. For example, the driving speed, the driving azimuth, and the combination of the driving safety distance between the front and rear workshops and the actual distance between the front and rear workshops may be: 1. a single driving speed; 2. a single driving position. Angle; 3, driving speed and driving azimuth; 4, the safe distance between the front and rear workshops and the actual distance of the front and rear workshops; 5, the driving safety distance of the front and rear workshops and the actual distance between the front and rear workshops and the driving speed; 6, before and after the workshop The safe distance between the driving distance and the actual distance between the front and rear workshops and the driving azimuth; 7, the safe distance between the front and rear workshops, the actual distance of the front and rear workshops, the driving azimuth and the driving speed.

綜上所述,在車載網路環境中動態調整與決定安全訊息之產生頻率的架構10下,由於訊息產生頻率控制單元109會根據所規範之指定通道的壅塞與否以及本體與/或鄰車的行車資訊來動態調整安全訊息的上限與下限產生頻率(FU ,FL ),藉以提供給其他層(101,105,107)使用。而且,應用層105還可以依據經由訊息產生頻率控制單元109動態調整過後的上限產生頻率FU 與/或下限產生頻率FL 來決定安全訊息的產生頻率,從而產生符合美國標準(SAE J2735)或歐洲標準(ETSI TS 102 637-2)所定義之安全訊息的封包(packet)。顯然地,行駛中的車輛可以在所規範的指定通道上發出/廣播具有『非固定產生頻率』的安全訊息給其他鄰近的行駛車輛,從而趨緩通道壅塞(channel congestion)的情況。In summary, in the architecture 10 for dynamically adjusting and determining the frequency of generating security messages in the in-vehicle network environment, since the message generation frequency control unit 109 will block or not according to the specified designated channel, and the body and/or the adjacent car. Driving information to dynamically adjust the upper and lower limits of the safety message to generate frequencies (F U , F L ) for use by other layers (101, 105, 107). Moreover, the application layer 105 can also determine the frequency of generation of the security message according to the upper limit generation frequency F U and/or the lower limit generation frequency F L dynamically adjusted by the message generation frequency control unit 109, thereby generating a compliance with the US standard (SAE J2735) or A packet of security messages defined by the European Standard (ETSI TS 102 637-2). Obviously, a moving vehicle can send/broadcast a safety message with a "non-fixed frequency" to other nearby vehicles on a designated designated channel, thereby slowing down channel congestion.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the patent application.

10‧‧‧在車載網路環境中動態調整與決定安全訊息之產生頻率的架構10‧‧‧An architecture that dynamically adjusts and determines the frequency of generation of security messages in an in-vehicle network environment

101‧‧‧底層101‧‧‧ bottom layer

103‧‧‧上層103‧‧‧Upper

105‧‧‧應用層105‧‧‧Application layer

107‧‧‧管理層107‧‧‧Management

109‧‧‧訊息產生頻率控制單元109‧‧‧Message generation frequency control unit

CSI‧‧‧通道狀態資訊CSI‧‧‧Channel Status Information

IVI‧‧‧本體行車資訊IVI‧‧‧ body driving information

SVI‧‧‧鄰車行車資訊SVI‧‧‧ neighbouring car driving information

VV(V1 ,V2 )‧‧‧行車速度VV (V 1 , V 2 ) ‧ ‧ driving speed

VA(θ123 )‧‧‧行車方位角 VA (θ 1, θ 2, θ 3) ‧‧‧ travel azimuth

FU 、FU (max)、FU (min)、FU (T1 )、FU (T2 )、FU (T3 )、FU (S1 )、FU (S2 )、FU (S3 )‧‧‧安全訊息的上限產生頻率F U , F U (max), F U (min), F U (T 1 ), F U (T 2 ), F U (T 3 ), F U (S 1 ), F U (S 2 ), F U (S 3 )‧‧‧The upper limit of the safety message generation frequency

FL 、FL (max)、FL (min)、FL (T1 )、FL (T2 )、FL (V)、FL1 )、FL2 )、FL (V+θ1 )、FL (V+θ2 )、FL (ds0 )、FL (ds1 )、FL (ds2 )‧‧‧安全訊息的下限產生頻率F L , F L (max), F L (min), F L (T 1 ), F L (T 2 ), F L (V), F L1 ), F L2 ), F L (V + θ 1 ), F L (V + θ 2 ), F L (d s0 ), F L (d s1 ), F L (d s2 ) ‧ ‧ the lower limit of the safety message generation frequency

APP_R‧‧‧應用需求APP_R‧‧‧Application Requirements

△FU (1)、△FU (2)、△FL (1)、△FL (2)、△FL (3)、△V(1)、△V(2)、△V(3)、△θ(1)、△θ(2)、△θ(3)‧‧‧差異△F U (1), △F U (2), △F L (1), △F L (2), ΔF L (3), ΔV(1), ΔV(2), ΔV( 3), Δθ(1), △θ(2), △θ(3)‧‧‧

δ14 ‧‧‧影響程度δ 14 ‧‧‧degree of influence

t1、t2、t+1、t+2‧‧‧時間T1, t2, t+1, t+2‧‧‧ time

ds ‧‧‧前後車間的行車安全距離d s ‧ ‧ front and rear workshop safety distance

dc1 ‧‧‧前後車間的行車實際距離d c1 ‧ ‧ actual distance of the workshop

△d‧‧‧預設距離△d‧‧‧Preset distance

ds+ ‧‧‧距離d s+ ‧‧‧distance

S801、S803、S805{S805-1~S805-5}‧‧‧在車載網路環境中動態調整與決定安全訊息之產生頻率的方法流程圖各步驟S801, S803, S805{S805-1~S805-5}‧‧‧Methods for dynamically adjusting and determining the frequency of generation of safety messages in the vehicle network environment

下面的所附圖式是本揭露的說明書的一部分,繪示了本揭露的示例實施例,所附圖式與說明書的描述一起說明本揭露的原理。The following drawings are a part of the specification of the disclosure, and illustrate the embodiments of the disclosure, together with the description of the description.

圖1繪示為本揭露一示範性實施例之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構(10)示意圖。1 is a schematic diagram of an architecture (10) for dynamically adjusting and determining a frequency of generating a security message in an in-vehicle network environment according to an exemplary embodiment of the present disclosure.

圖2(a)~圖2(d)繪示為本揭露一示範性實施例之決定安全訊息之上限產生頻率(FU )的示意圖。2(a) to 2(d) are diagrams showing the upper limit generation frequency (F U ) of determining a security message according to an exemplary embodiment of the present disclosure.

圖3(a)~圖3(c)、圖4(a)~圖4(c)、圖5(a)~圖5(c)、圖6(a)、圖6(b)繪示為本揭露一示範性實施例之決定安全訊息之下限產生頻率(FL )的示意圖。3(a) to 3(c), 4(a) to 4(c), 5(a) to 5(c), 6(a), and 6(b) are shown as A schematic diagram of determining a lower limit generation frequency (F L ) of a security message according to an exemplary embodiment.

圖7(a)~圖7(d)繪示為本揭露一示範性實施例之動態調整安全訊息之產生頻率的示意圖。7(a) to 7(d) are schematic diagrams showing the frequency of dynamically adjusting the security message according to an exemplary embodiment of the present disclosure.

圖8繪示為本揭露一示範性實施例之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法流程圖。FIG. 8 is a flow chart of a method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment according to an exemplary embodiment of the present disclosure.

S801、S803、S805{S805-1~S805-5}‧‧‧在車載網路環境中動態調整與決定安全訊息之產生頻率的方法流程圖各步驟S801, S803, S805{S805-1~S805-5}‧‧‧Methods for dynamically adjusting and determining the frequency of generation of safety messages in the vehicle network environment

Claims (22)

一種在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,包括:從該車載網路環境中的一指定通道上接收關聯於該指定通道的一通道狀態資訊,並且根據該通道狀態資訊以動態地調整該安全訊息的一上限產生頻率;以及根據一行車資訊以動態地調整該安全訊息的一下限產生頻率;以及根據該上限產生頻率與/或該下限產生頻率以決定該安全訊息的產生頻率。A method for dynamically adjusting and determining a frequency of generating a security message in an in-vehicle network environment, comprising: receiving a channel status information associated with the designated channel from a designated channel in the in-vehicle network environment, and according to the channel status Information to dynamically adjust an upper limit generation frequency of the security message; and dynamically adjust a lower limit generation frequency of the security message according to the line information; and generate a frequency according to the upper limit and/or the lower limit generation frequency to determine the safety message The frequency of generation. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中:該通道狀態資訊包括一通道使用率或一通道負載狀態,且該安全訊息的該上限產生頻率係根據該通道使用率或該通道負載狀態而被動態調整;以及該安全訊息的該上限產生頻率與該通道使用率的大小或該通道負載狀態的高低呈現一反比關係。The method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 1, wherein: the channel status information includes a channel usage rate or a channel load status, and the security message is The upper limit generating frequency is dynamically adjusted according to the channel usage rate or the channel load state; and the upper limit generating frequency of the security message is inversely proportional to the channel usage rate or the channel load state. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中:該行車資訊包括一行車速度,且該安全訊息的該下限產生頻率係根據該行車速度而被動態調整;以及該安全訊息的該下限產生頻率與該行車速度的快慢呈現一正比關係。The method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 1, wherein: the driving information includes a line speed, and the lower limit generating frequency of the safety message is based on the The driving speed is dynamically adjusted; and the lower limit generating frequency of the safety message is proportional to the speed of the driving speed. 如申請專利範圍第1項所述之在車載網路環境中動 態調整與決定安全訊息之產生頻率的方法,其中:該行車資訊包括一行車方位角,且該安全訊息的該下限產生頻率係根據該行車方位角而被動態調整;以及該安全訊息的該下限產生頻率與該行車方位角的大小呈現一正比關係。Moved in the in-vehicle network environment as described in item 1 of the patent application scope And a method for determining a frequency of generating a safety message, wherein: the driving information includes a row of vehicle azimuth, and the lower limit generating frequency of the safety message is dynamically adjusted according to the driving azimuth; and the lower limit of the safety message The generation frequency has a proportional relationship with the magnitude of the driving azimuth. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中:該行車資訊包括一行車速度與一行車方位角,且該安全訊息的該下限產生頻率係根據該行車速度與該行車方位角而被動態調整;以及該安全訊息的該下限產生頻率與該行車速度的快慢以及該行車方位角的大小呈現一正比關係。The method for dynamically adjusting and determining the frequency of generating a safety message in an in-vehicle network environment, as described in claim 1, wherein: the driving information includes a line speed and a line azimuth, and the lower limit of the safety message The generation frequency is dynamically adjusted according to the driving speed and the driving azimuth; and the lower limit generating frequency of the safety message is proportional to the speed of the driving speed and the driving azimuth. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中:該行車資訊包括一前後車間的行車安全距離與一前後車間的行車實際距離,且該安全訊息的該下限產生頻率係根據該前後車間的行車安全距離與該前後車間的行車實際距離而被動態調整;以及該安全訊息的該下限產生頻率與該前後車間之行車實際距離的長短呈現一反比關係。The method for dynamically adjusting and determining the frequency of generating a safety message in an in-vehicle network environment, as described in claim 1, wherein: the driving information includes a driving safety distance between the front and rear workshops and a practical distance between the front and the rear workshops. And the lower limit generating frequency of the safety message is dynamically adjusted according to the driving safety distance of the front and rear workshops and the actual driving distance of the front and rear workshops; and the lower limit generating frequency of the safety message and the actual distance between the front and rear workshops Present an inverse relationship. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中根據該上限產生頻率與/或該下限產生頻率以決定該安全訊息之產生頻率的步驟包括: 判斷該上限產生頻率是否大於該下限產生頻率;以及當該上限產生頻率大於該下限產生頻率時,則選擇該上限產生頻率與該下限產生頻率之間的任一頻率以作為該安全訊息的產生頻率。The method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 1, wherein the frequency is generated according to the upper limit and/or the lower limit generates a frequency to determine a frequency of generating the security message. The steps include: Determining whether the upper limit generating frequency is greater than the lower limit generating frequency; and when the upper limit generating frequency is greater than the lower limit generating frequency, selecting any frequency between the upper limit generating frequency and the lower limit generating frequency as the generating frequency of the safety message . 如申請專利範圍第7項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中根據該上限產生頻率與/或該下限產生頻率以決定該安全訊息之產生頻率的步驟更包括:當該上限產生頻率小於該下限產生頻率時,則選擇該上限產生頻率或該下限產生頻率以作為該安全訊息的產生頻率。The method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 7, wherein the frequency is generated according to the upper limit and/or the lower limit generates a frequency to determine a frequency of generating the security message. The step further includes: when the upper limit generating frequency is less than the lower limit generating frequency, selecting the upper limit generating frequency or the lower limit generating frequency as the generating frequency of the safety message. 如申請專利範圍第7項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中根據該上限產生頻率與/或該下限產生頻率以決定該安全訊息之產生頻率的步驟更包括:當該上限產生頻率小於該下限產生頻率時,則選擇關聯於該上限產生頻率與該下限產生頻率的一複合頻率以作為該安全訊息的產生頻率。The method for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 7, wherein the frequency is generated according to the upper limit and/or the lower limit generates a frequency to determine a frequency of generating the security message. The step further includes: when the upper limit generating frequency is less than the lower limit generating frequency, selecting a composite frequency associated with the upper limit generating frequency and the lower limit generating frequency as the generating frequency of the safety message. 如申請專利範圍第1項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的方法,其中:該行車資訊包括一行車速度、一行車方位角以及一前後車間的行車安全距離與一前後車間的行車實際距離至少其中之一或其之間的組合,且該安全訊息的該下限產生頻率係根據該行車速度、該行車方位角以及該前後車間的行 車安全距離與該前後車間的行車實際距離至少其中之一或其之間的組合而被動態調整。The method for dynamically adjusting and determining the frequency of generating a safety message in an in-vehicle network environment, as described in claim 1, wherein the driving information includes a line speed, a row of vehicle azimuth, and a driving safety distance of the front and rear workshops. a combination of at least one of or a practical distance from a front and rear workshop, and the lower limit of the safety message is generated according to the driving speed, the driving azimuth, and the front and rear workshop lines The vehicle safety distance is dynamically adjusted with at least one of or a combination of the actual distances of the front and rear workshops. 一種在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,包括:一底層;一上層,包括一訊息產生頻率控制單元,該訊息產生頻率控制單元經配置以:透過該底層而從該車載網路環境中的一指定通道上接收關聯於該指定通道的一通道狀態資訊,並且根據該通道狀態資訊以動態調整該安全訊息的一上限產生頻率;以及根據一行車資訊以動態調整該安全訊息的一下限產生頻率;以及一應用層,其經配置以接收該上限產生頻率與該下限產生頻率,並根據該上限產生頻率與/或該下限產生頻率以決定該安全訊息的產生頻率。An architecture for dynamically adjusting and determining the frequency of generation of a security message in an in-vehicle network environment, comprising: an underlay; an upper layer, comprising a message generation frequency control unit, the message generation frequency control unit configured to: pass through the bottom layer Receiving, by a specified channel in the in-vehicle network environment, a channel status information associated with the designated channel, and dynamically adjusting an upper limit generating frequency of the security message according to the channel status information; and dynamically adjusting the line information according to the line information A lower limit generating frequency of the safety message; and an application layer configured to receive the upper limit generating frequency and the lower limit generating frequency, and generating a frequency according to the upper limit and/or the lower limit generating frequency to determine a frequency of generating the safety message. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該通道狀態資訊包括一通道使用率或一通道負載狀態,且該訊息產生頻率控制單元經配置以:根據該通道使用率或該通道負載狀態以動態調整該安全訊息的該上限產生頻率,其中,該安全訊息的該上限產生頻率與該通道使用率的大小或該通道負載狀態的高低呈現一反比關係。The architecture for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 11, wherein the channel status information includes a channel usage rate or a channel load status, and the message generates frequency control. The unit is configured to: dynamically adjust the upper limit generation frequency of the security message according to the channel usage rate or the channel load status, wherein the upper limit of the security message generates a frequency and a usage rate of the channel or a load status of the channel The height shows an inverse relationship. 如申請專利範圍第11項所述之在車載網路環境中 動態調整與決定安全訊息之產生頻率的架構,其中該行車資訊包括一行車速度,且該訊息產生頻率控制單元經配置以:根據該行車速度以動態調整該安全訊息的該下限產生頻率,其中,該安全訊息的該下限產生頻率與該行車速度的快慢呈現一正比關係。In the vehicle network environment as described in claim 11 Dynamically adjusting and determining a frequency of generating a safety message, wherein the driving information includes a line speed, and the message generating frequency control unit is configured to dynamically adjust the lower limit generating frequency of the safety message according to the driving speed, wherein The lower limit generating frequency of the safety message is proportional to the speed of the driving speed. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該行車資訊包括一行車方位角,且該訊息產生頻率控制單元經配置以:根據該行車方位角以動態調整該安全訊息的該下限產生頻率,其中,該安全訊息的該下限產生頻率與該行車方位角的大小呈現一正比關係。The architecture for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 11, wherein the driving information includes a row of vehicle azimuth, and the message generating frequency control unit is configured to: The driving azimuth dynamically adjusts the lower limit generating frequency of the safety message, wherein the lower limit generating frequency of the safety message has a proportional relationship with the driving azimuth. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該行車資訊包括一行車速度與一行車方位角,且該訊息產生頻率控制單元經配置以:根據該行車速度與該行車方位角以動態調整該安全訊息的該下限產生頻率,其中,該安全訊息的該下限產生頻率與該行車速度的快慢以及該行車方位角的大小呈現一正比關係。The architecture for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 11, wherein the driving information includes a line speed and a line azimuth, and the message generation frequency control unit The configuration is: dynamically adjusting the lower limit generating frequency of the safety message according to the driving speed and the driving azimuth, wherein the lower limit generating frequency of the safety message is proportional to the speed of the driving speed and the driving azimuth relationship. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該行車資訊包括一前後車間的行車安全距離與一前後車間的行車實際距離,且該訊息產生頻率控制單元經配置以:根據該 前後車間的行車安全距離與該前後車間的行車實際距離以動態調整該安全訊息的該下限產生頻率,其中,該安全訊息的該下限產生頻率與該前後車間之行車實際距離的長短呈現一反比關係。The architecture for dynamically adjusting and determining the frequency of generating safety messages in an in-vehicle network environment, as described in claim 11, wherein the driving information includes a driving safety distance between the front and the back of the workshop and an actual distance between the front and rear workshops, and The message generation frequency control unit is configured to: according to the The driving safety distance between the front and rear workshops and the actual driving distance of the front and rear workshops dynamically adjust the lower limit generating frequency of the safety message, wherein the lower limit generating frequency of the safety information is inversely proportional to the actual distance between the front and the rear of the workshop. . 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該應用層更經配置以:判斷該上限產生頻率是否大於該下限產生頻率;以及當該上限產生頻率大於該下限產生頻率時,選擇該上限產生頻率與該下限產生頻率之間的任一頻率以作為該安全訊息的產生頻率。An architecture for dynamically adjusting and determining a frequency of generating a security message in an in-vehicle network environment, as described in claim 11, wherein the application layer is further configured to: determine whether the upper limit generation frequency is greater than the lower limit generation frequency; When the upper limit generating frequency is greater than the lower limit generating frequency, any frequency between the upper limit generating frequency and the lower limit generating frequency is selected as the generating frequency of the safety message. 如申請專利範圍第17項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該應用層更經配置以:當該上限產生頻率小於該下限產生頻率時,選擇該上限產生頻率或該下限產生頻率以作為該安全訊息的產生頻率。The architecture for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 17, wherein the application layer is further configured to: when the upper limit generation frequency is less than the lower limit generation frequency, select The upper limit generation frequency or the lower limit generation frequency is used as the generation frequency of the safety message. 如申請專利範圍第17項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該應用層更經配置以:當該上限產生頻率小於該下限產生頻率時,選擇關聯於該上限產生頻率與該下限產生頻率的一複合頻率以作為該安全訊息的產生頻率。The architecture for dynamically adjusting and determining the frequency of generating a security message in an in-vehicle network environment, as described in claim 17, wherein the application layer is further configured to: when the upper limit generation frequency is less than the lower limit generation frequency, select A composite frequency associated with the upper limit generating frequency and the lower limit generating frequency is used as the generating frequency of the safety message. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該行車資訊包括一行車速度、一行車方位角以及一前後車間的行 車安全距離與一前後車間的行車實際距離至少其中之一或其之間的組合,且該訊息產生頻率控制單元經配置以:根據該行車速度、該行車方位角以及該前後車間的行車安全距離與該前後車間的行車實際距離至少其中之一或其之間的組合以動態調整該安全訊息的該下限產生頻率。The architecture for dynamically adjusting and determining the frequency of generation of security messages in an in-vehicle network environment, as described in claim 11, wherein the driving information includes a row of vehicle speeds, a row of vehicle azimuths, and a row of front and rear workshops. a combination of at least one of or a practical distance between the vehicle safety distance and a preceding and succeeding workshop, and the message generation frequency control unit is configured to: according to the driving speed, the driving azimuth angle, and the driving safety distance of the front and rear workshops A combination of at least one of or a practical distance from the preceding and succeeding workshops to dynamically adjust the lower limit of the safety message to generate a frequency. 如申請專利範圍第11項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,更包括:一管理層,其經配置以與該上層、該下層以及該應用層溝通,藉以對該上層、該下層以及該應用層的運作進行管理。The architecture for dynamically adjusting and determining the frequency of generating security messages in an in-vehicle network environment, as described in claim 11, further comprising: a management layer configured to communicate with the upper layer, the lower layer, and the application layer To manage the operation of the upper layer, the lower layer, and the application layer. 如申請專利範圍第21項所述之在車載網路環境中動態調整與決定安全訊息之產生頻率的架構,其中該管理層更經配置以根據經由該訊息產生頻率控制單元動態調整過後的該上限產生頻率與/或該下限產生頻率而給出該安全訊息之產生頻率的建議。An architecture for dynamically adjusting and determining the frequency of generation of a security message in an in-vehicle network environment as described in claim 21, wherein the management layer is further configured to dynamically adjust the upper limit based on the frequency control unit generated by the message. A frequency is generated and/or the lower limit produces a frequency to give a suggestion of the frequency of generation of the safety message.
TW101143483A 2012-06-19 2012-11-21 Method of dynamically adjusting and determining generation frequency for safety message(s) in vehicular network and structure thereof TWI474941B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261661360P 2012-06-19 2012-06-19

Publications (2)

Publication Number Publication Date
TW201400337A TW201400337A (en) 2014-01-01
TWI474941B true TWI474941B (en) 2015-03-01

Family

ID=50344876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101143483A TWI474941B (en) 2012-06-19 2012-11-21 Method of dynamically adjusting and determining generation frequency for safety message(s) in vehicular network and structure thereof

Country Status (1)

Country Link
TW (1) TWI474941B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959753B2 (en) 2015-08-26 2018-05-01 Industrial Technology Research Institute Communication device, communication system and associated communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289174B (en) * 1994-01-07 1996-10-21 Minnesota Mining & Mfg
US7098805B2 (en) * 2000-06-06 2006-08-29 Bellsouth Intellectual Property Corporation Method and system for monitoring vehicular traffic using a wireless communications network
CN101998284A (en) * 2009-08-19 2011-03-30 三菱电机株式会社 Node in vehicle ad-hoc network
WO2012061625A2 (en) * 2010-11-03 2012-05-10 Broadcom Corporation Vehicle communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW289174B (en) * 1994-01-07 1996-10-21 Minnesota Mining & Mfg
US7098805B2 (en) * 2000-06-06 2006-08-29 Bellsouth Intellectual Property Corporation Method and system for monitoring vehicular traffic using a wireless communications network
CN101998284A (en) * 2009-08-19 2011-03-30 三菱电机株式会社 Node in vehicle ad-hoc network
WO2012061625A2 (en) * 2010-11-03 2012-05-10 Broadcom Corporation Vehicle communication network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959753B2 (en) 2015-08-26 2018-05-01 Industrial Technology Research Institute Communication device, communication system and associated communication method

Also Published As

Publication number Publication date
TW201400337A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US11113960B2 (en) Intelligent traffic management for vehicle platoons
US10788845B2 (en) Optimization of mission efficiency through platoon opportunity assessment
US10503176B2 (en) Self-ordering of fleet vehicles in a platoon
KR102506877B1 (en) Apparatus for controlling platoon cruising, system having the same and method thereof
US20200201356A1 (en) Systems and methods for managing platooning behavior
US20190297526A1 (en) Mitigating channel congestion in inter vehicle communication
WO2022121249A1 (en) Method and apparatus for vehicles on branch road to enter main road, and electronic device and storage medium
US10535257B2 (en) Transfer of image data taken by an on-vehicle camera
CN105303852B (en) Traffic accident message distributing method based on In-vehicle networking
US20190180615A1 (en) System and method for reducing delays in road traffic
JP2011186737A (en) Driving support apparatus
CN112750318B (en) Ramp confluence control method and system based on edge cloud
JP2009070254A (en) Vehicle risk estimation device
JP2007099040A (en) Ground device and automatic train speed controlling system
JP2006025028A (en) Inter vehicle communication device
Zardosht et al. A predictive accident-duration based decision-making module for rerouting in environments with V2V communication
CN113034887A (en) Vehicle formation driving control method and related equipment
TWI474941B (en) Method of dynamically adjusting and determining generation frequency for safety message(s) in vehicular network and structure thereof
TWI435635B (en) Methods and systems of dynamic wireless transmitting power control
US20200152056A1 (en) Method and apparatus for adaptivbe engagement of temporary traffic control measures and navigation response
WO2021018006A1 (en) Packet processing method and device
CN108847887A (en) A kind of LIFI communication means, readable storage medium storing program for executing and a kind of car-mounted terminal
Bharath et al. Collision Avoidance system in vehicular adhoc network utilizing dichotomized headway model
JP5918559B2 (en) Convoy travel control device
CN112863207A (en) Vehicle running control method and device