TWI474395B - A plasma processing device - Google Patents

A plasma processing device Download PDF

Info

Publication number
TWI474395B
TWI474395B TW100149978A TW100149978A TWI474395B TW I474395 B TWI474395 B TW I474395B TW 100149978 A TW100149978 A TW 100149978A TW 100149978 A TW100149978 A TW 100149978A TW I474395 B TWI474395 B TW I474395B
Authority
TW
Taiwan
Prior art keywords
electrode
dielectric material
material layer
wafer
processing apparatus
Prior art date
Application number
TW100149978A
Other languages
Chinese (zh)
Other versions
TW201310523A (en
Inventor
Hirofumi Matsuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201310523A publication Critical patent/TW201310523A/en
Application granted granted Critical
Publication of TWI474395B publication Critical patent/TWI474395B/en

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

等離子體處理裝置Plasma processing device

本發明涉及半導體技術領域,特別涉及等離子體處理裝置。The present invention relates to the field of semiconductor technology, and more particularly to a plasma processing apparatus.

目前在對半導體器件等的製造過程中,通常使用電容耦合式的等離子體處理裝置產生氣體的等離子體與晶圓表面進行反應,實現對晶圓進行相應工藝。所述工藝可以為等離子體刻蝕工藝或等離子體增強型化學氣相沉積工藝。At present, in the manufacturing process of a semiconductor device or the like, a plasma-generating plasma processing device is generally used to generate a gas plasma to react with a wafer surface to perform a corresponding process on the wafer. The process may be a plasma etching process or a plasma enhanced chemical vapor deposition process.

請配合圖1所示的習知的等離子體處理裝置的結構示意圖。所述等離子體處理裝置為電容耦合式,具體地,等離子體處理裝置包括:真空處理腔室10,用於通入反應氣體,所述真空處理腔室10內平行地設置第一電極11和第二電極12,第一電極11和第二電極12之間用於放置待處理晶圓,所述第一電極11具有相對設置的第一表面和第二表面,所述第一表面靠近所述待處理晶圓,所述第一電極11和第二電極12之間產生等離子體,所述第二表面與射頻電源電連接,所述第二電極12接地。Please refer to the schematic diagram of the structure of the conventional plasma processing apparatus shown in FIG. The plasma processing apparatus is of a capacitive coupling type. Specifically, the plasma processing apparatus includes: a vacuum processing chamber 10 for introducing a reaction gas, and the first electrode 11 and the first electrode are disposed in parallel in the vacuum processing chamber 10. a second electrode 12, between the first electrode 11 and the second electrode 12 for placing a wafer to be processed, the first electrode 11 having a first surface and a second surface disposed opposite to each other, the first surface being close to the The wafer is processed, a plasma is generated between the first electrode 11 and the second electrode 12, the second surface is electrically connected to a radio frequency power source, and the second electrode 12 is grounded.

以所述等離子體處理裝置應用於刻蝕工藝為例,所述射頻信號在第一電極11和第二電極12之間形成射頻電場,第一電極11和第二電極12之間被所述射頻電場加速的電子、從第一電極11和/或第二電極12釋放的二次電子等與反應氣體的分子發生電離碰撞,產生反應氣體的等離子體,利用所述等離子體的自由基、離子對所述待處理晶圓表面進行刻蝕。Taking the plasma processing apparatus applied to the etching process as an example, the radio frequency signal forms a radio frequency electric field between the first electrode 11 and the second electrode 12, and the radio frequency is between the first electrode 11 and the second electrode 12 The electrons accelerated by the electric field, the secondary electrons released from the first electrode 11 and/or the second electrode 12, and the molecules of the reaction gas are ionized and collided to generate a plasma of the reaction gas, and the radicals and ion pairs of the plasma are utilized. The surface of the wafer to be processed is etched.

在申請號為US20100224323的美國專利申請中可以發現更多關於習知等離子體處理裝置的資訊。Further information on conventional plasma processing apparatus can be found in U.S. Patent Application Serial No. US20100224323.

在實際中發現,採用習知的等離子體處理裝置處理後晶圓的均勻度不能滿足工藝要求。In practice, it has been found that the uniformity of the wafer after processing by a conventional plasma processing apparatus cannot meet the process requirements.

本發明實施例解決的問題是提供了一種等離子體處理裝置,解決了習知的等離子體處理裝置處理後晶圓不均勻的問題。The problem to be solved by the embodiments of the present invention is to provide a plasma processing apparatus that solves the problem of wafer non-uniformity after processing by a conventional plasma processing apparatus.

為了解決上述問題,本發明實施例提供了一種等離子體處理裝置,包括:真空處理腔室;第一電極,位於所述真空處理腔室內,第一電極上方安裝有放置待處理晶圓的平臺,所述第一電極與兩個射頻電源電連接,其中第一射頻電源大於第二射頻電源頻率的1.5倍;非電介質材料層,位於第一電極與放置待處理晶圓的平臺之間,所述非電介質材料層的電阻率大於所述第一電極的電阻率。In order to solve the above problems, an embodiment of the present invention provides a plasma processing apparatus including: a vacuum processing chamber; a first electrode located in the vacuum processing chamber, and a platform on which a wafer to be processed is placed is mounted above the first electrode, The first electrode is electrically connected to two RF power sources, wherein the first RF power source is greater than 1.5 times the frequency of the second RF power source; the non-dielectric material layer is located between the first electrode and the platform on which the wafer to be processed is placed, The resistivity of the layer of non-dielectric material is greater than the resistivity of the first electrode.

可選地,所述非電介質材料層的材質為半導體材質或金屬,所述半導體材質材料層為矽、鍺、鍺矽、碳化矽中的一種或其中的組合,所述第一電極的材質為金屬。Optionally, the material of the non-dielectric material layer is a semiconductor material or a metal, and the semiconductor material material layer is one or a combination of ruthenium, osmium, iridium, and tantalum carbide, and the material of the first electrode is metal.

可選地,所述非電介質材料層位於所述第一電極的表面上,或,所述第一電極內形成有凹槽,所述非電介質材料層至少有部分鑲嵌於所述凹槽內。Optionally, the non-dielectric material layer is located on a surface of the first electrode, or a groove is formed in the first electrode, and the non-dielectric material layer is at least partially embedded in the groove.

可選地,所述非電介質材料層的電阻率範圍為50歐姆/釐米到106歐姆/釐米。Optionally, the non-dielectric material layer has a resistivity ranging from 50 ohms/cm to 106 ohms/cm.

可選地,所述放置待處理晶圓的平臺包括:靜電吸盤,與所述第一電極的形成有所述非電介質材料層的一側的表面相對設置,所述靜電吸盤用於放置,所述靜電吸盤的遠離所述待處理晶圓一側的形狀和大小與所述非電介質材料層的形狀和大小對應。Optionally, the platform for placing the wafer to be processed comprises: an electrostatic chuck disposed opposite to a surface of the first electrode on a side of the non-dielectric material layer, the electrostatic chuck being used for placing The shape and size of the side of the electrostatic chuck that is away from the wafer to be processed corresponds to the shape and size of the layer of non-dielectric material.

可選地,所述真空處理腔室的材質為金屬,所述真空處理腔室接地。Optionally, the vacuum processing chamber is made of metal, and the vacuum processing chamber is grounded.

可選地,所述第一電極為圓柱形,所述非電介質材料層具有與所述第一電極對應的圓形下表面,所述非電介質材料層的電阻沿所述圓形下表面的半徑向外的方向減小。Optionally, the first electrode is cylindrical, the non-dielectric material layer has a circular lower surface corresponding to the first electrode, and a resistance of the non-dielectric material layer along a radius of the circular lower surface The outward direction decreases.

可選地,所述第一射頻電源的頻率大於40MHz,第二射頻電源頻率小於27MHz。Optionally, the frequency of the first RF power source is greater than 40 MHz, and the frequency of the second RF power source is less than 27 MHz.

可選地,所述非電介質材料層為圓柱形、圓臺形、圓錐形、臺階形。Optionally, the non-dielectric material layer is cylindrical, truncated cone, conical, stepped.

可選地,還包括:第二電極,位於真空處理腔內的與第一電極相對設置的位置。Optionally, the method further includes: a second electrode located at a position opposite to the first electrode in the vacuum processing chamber.

可選地,所述等離子體處理裝置為等離子體刻蝕設備或等離子增強型化學氣相沉積設備。Optionally, the plasma processing device is a plasma etching device or a plasma enhanced chemical vapor deposition device.

與習知技術相比,本發明實施例具有以下優點:本發明實施例在真空處理腔室的第一電極與放置待處理晶圓的平臺之間設置非電介質材料層,所述非電介質材料層的電阻率大於所述第一電極的電阻率;所述非電介質材料層能夠在第一電極與第一射頻電源(該第一射頻電源的頻率大於第二射頻電源頻率的1.5倍)電連接時,所述非電介質材料層能夠消除由於該第一射頻電源的高頻信號引起的駐波效應,將所述真空處理腔室的與非電介質材料層對應的位置的部分高頻信號的能量衰減,從而使得真空處理腔室內的能量分佈更加均勻,因此,保證了第一電極與第一射頻電源電連接時真空處理腔室內的等離子體的密度更加均勻,也就保證了第一電極與第一射頻電源電連接時對所述待處理晶圓的刻蝕速率更加均勻;與第一電極和放置待處理晶圓的平臺之間設置絕緣層會使得低頻信號過分衰減相比,本發明實施例在第一電極與放置待處理晶圓的平臺之間設置的非電介質材料層不會使得真空處理腔室的對應於非電介質材料層的位置的低頻信號的能量有較大衰減,從而所述真空處理腔室內的等離子體的密度分佈更加均勻,因此,也保證了第一電極與第二射頻電源電連接時的刻蝕速率更加均勻。Compared with the prior art, the embodiment of the invention has the following advantages: the embodiment of the invention provides a layer of non-dielectric material between the first electrode of the vacuum processing chamber and the platform on which the wafer to be processed is placed, the non-dielectric material layer The resistivity is greater than the resistivity of the first electrode; the non-dielectric material layer is capable of electrically connecting the first electrode to the first RF power source (the frequency of the first RF power source is greater than 1.5 times the frequency of the second RF power source) The non-dielectric material layer is capable of eliminating the standing wave effect caused by the high frequency signal of the first radio frequency power source, and attenuating the energy of a portion of the high frequency signal of the vacuum processing chamber at a position corresponding to the non-dielectric material layer, Thereby, the energy distribution in the vacuum processing chamber is more uniform, thereby ensuring that the density of the plasma in the vacuum processing chamber is more uniform when the first electrode is electrically connected to the first RF power source, thereby ensuring the first electrode and the first RF The etching rate of the wafer to be processed is more uniform when the power source is electrically connected; and insulation is provided between the first electrode and the platform on which the wafer to be processed is placed The non-dielectric material layer disposed between the first electrode and the platform on which the wafer to be processed is disposed does not cause the position of the vacuum processing chamber corresponding to the position of the non-dielectric material layer, as compared to the excessive attenuation of the low frequency signal. The energy of the low frequency signal is greatly attenuated, so that the density distribution of the plasma in the vacuum processing chamber is more uniform, and therefore, the etching rate when the first electrode is electrically connected to the second RF power source is more uniform.

習知的等離子體處理裝置處理後晶圓的均勻度不能滿足工藝要求。經過發明人研究發現,由於工藝過程中晶圓表面的等離子體的分佈不均勻造成處理後的晶圓的均勻度不好,而造成晶圓表面的等離子體分佈不均勻的原因是:施加射頻信號的第一電極或第二電極的靠近待處理晶圓的表面的能量(真空處理腔室內的能量)分佈不均勻。The uniformity of the wafer after processing by a conventional plasma processing apparatus cannot meet the process requirements. According to the inventor's research, the uniformity of the processed wafer is not good due to the uneven distribution of the plasma on the wafer surface during the process, and the plasma distribution on the wafer surface is uneven due to the application of RF signals. The energy of the first electrode or the second electrode near the surface of the wafer to be processed (the energy in the vacuum processing chamber) is unevenly distributed.

請配合圖1,以等離子體處理裝置應用於等離子體刻蝕工藝為例,以第一電極11的第二表面上施加射頻信號,所述射頻信號自第二表面沿第一電極11的外部向第一表面傳輸,當該射頻信號為高頻信號時,會產生在真空處理腔室10內產生駐波效應;當該射頻信號為低頻信號時,基本上不會在真空處理腔室10內產生駐波效應。Referring to FIG. 1 , a plasma processing device is applied to the plasma etching process as an example, and a radio frequency signal is applied on the second surface of the first electrode 11 , and the radio frequency signal is applied from the second surface to the outside of the first electrode 11 . The first surface transmission, when the radio frequency signal is a high frequency signal, generates a standing wave effect in the vacuum processing chamber 10; when the radio frequency signal is a low frequency signal, it is substantially not generated in the vacuum processing chamber 10. Standing wave effect.

具體地,高頻信號自第二表面沿第一電極11的外部向第一表面傳輸,當所述高頻信號傳輸至第一表面時,該高頻信號自所述第一表面的外部向第一表面的中部傳輸,因此,在所述第一表面的中部,有多個來自外部的高頻信號疊加,這使得第一表面的中部的射頻信號強於外部的射頻信號。射頻信號的越強,其能量也越高,對應位置的反應氣體的離子化程度也越高。由於第一表面中部的射頻信號強於外部的射頻信號,因此第一表面的中部提供的離子化能量高於外部提供的離子化能量,這使得第一表面的中部的反應氣體的離子化程度高於外部的反應氣體的離子化程度,從而第一表面中部的離子密度大於第一表面外部的離子密度,這會造成對待處理晶圓中部的刻蝕速率大於對待處理晶圓外部的刻蝕速率。Specifically, the high frequency signal is transmitted from the second surface to the first surface along the outside of the first electrode 11, and when the high frequency signal is transmitted to the first surface, the high frequency signal is from the outside of the first surface to the first surface The middle portion of a surface is transmitted, and therefore, in the middle of the first surface, a plurality of high frequency signals from the outside are superimposed, which makes the radio frequency signal in the middle of the first surface stronger than the external radio frequency signal. The stronger the RF signal, the higher its energy, and the higher the degree of ionization of the reactive gas at the corresponding position. Since the radio frequency signal in the middle of the first surface is stronger than the external radio frequency signal, the middle portion of the first surface provides higher ionization energy than the externally supplied ionization energy, which makes the reaction gas in the middle of the first surface highly ionized. The degree of ionization of the external reactive gas such that the density of ions in the middle of the first surface is greater than the density of ions outside the first surface, which results in an etch rate in the middle of the wafer to be processed that is greater than the etch rate outside the wafer to be processed.

針對上述高頻下的問題,發明人考慮,如果在第一電極11的第一表面的對應位置設置絕緣層,該絕緣層由於電阻較大,從而可以高頻信號在絕緣層上產生較大的電壓降,從而該絕緣層可以消耗部分中部的射頻信號的能量,可以彌補駐波效應引起的第一表面的中部的射頻信號的能量大於外部的射頻信號的能量的問題,使得第一表面的中部和外部的射頻信號的能量趨於一致,從而改善高頻信號下對待處理晶圓的刻蝕均勻度。In view of the above problem at a high frequency, the inventors considered that if an insulating layer is provided at a corresponding position on the first surface of the first electrode 11, the insulating layer may have a large electric resistance on the insulating layer due to a large electric resistance. The voltage drop, so that the insulating layer can consume part of the energy of the radio frequency signal in the middle portion, and can compensate for the problem that the energy of the radio frequency signal in the middle of the first surface caused by the standing wave effect is greater than the energy of the external radio frequency signal, so that the middle of the first surface The energy of the external RF signal tends to be the same, thereby improving the etching uniformity of the wafer to be processed under the high frequency signal.

但是低頻信號下第一表面的中部基本沒有駐波問題,即第一表面的中部與外部的射頻信號基本一致,若在第一表面的中部設置絕緣層,則該絕緣層會將第一表面中部的能量過分消耗,從而使得第一表面的中部能量明顯低於外部能量,從而引起低頻信號下的對待刻蝕晶圓的刻蝕不均勻的問題。However, there is substantially no standing wave problem in the middle of the first surface under the low frequency signal, that is, the central portion of the first surface is substantially identical to the external RF signal. If an insulating layer is disposed in the middle of the first surface, the insulating layer will be in the middle of the first surface. The energy is excessively consumed, so that the central energy of the first surface is significantly lower than the external energy, thereby causing a problem of uneven etching of the wafer to be etched under the low frequency signal.

為了解決上述問題,發明人提出一種等離子體處理裝置,請配合圖2所示的本發明第一實施例的等離子體處理裝置的結構示意圖。所述等離子體處理裝置包括:真空處理腔室100,所述真空處理腔室100用於提供真空反應環境,且所述真空處理腔室100用於通入反應氣體,所述反應氣體根據等離子體要進行的工藝的不同進行具體設置,即當要進行等離子體刻蝕工藝時,所述反應氣體可以為刻蝕性氣體,例如是氧氣、含氮氣體、含氫氣體或含碳氣體中的一種或其混合;第一電極101,位於所述真空處理腔室100內,所述第一電極101與第一射頻電源(圖中未示出)電連接,第一電極101上方安裝有放置待處理晶圓的平臺105,所述第一電極101與兩個射頻電源電連接,所述兩個射頻電源包括第一射頻電源和第二射頻電源,所述第一射頻電源大於第二射頻電源頻率的1.5倍;非電介質材料層103,位於第一電極101和放置待處理晶圓的平臺105之間,所述非電介質材料層103的電阻率大於所述第一電極101的電阻率,所述非電介質材料層103用於消除所述第一射頻電源的信號為高頻信號時在所述真空處理腔室100內形成的駐波效應,且所述非電介質材料層103在所述第一電極101電連接第二射頻電源的信號為低頻信號時,所述非電介質材料層不會引起低頻信號的衰減。In order to solve the above problems, the inventors have proposed a plasma processing apparatus, which is a schematic structural view of the plasma processing apparatus of the first embodiment of the present invention shown in FIG. The plasma processing apparatus includes: a vacuum processing chamber 100 for providing a vacuum reaction environment, and the vacuum processing chamber 100 is for introducing a reaction gas according to a plasma The process to be performed is specifically set, that is, when the plasma etching process is to be performed, the reaction gas may be an etch gas such as one of oxygen, a nitrogen-containing gas, a hydrogen-containing gas or a carbon-containing gas. Or a mixture thereof; the first electrode 101 is located in the vacuum processing chamber 100, and the first electrode 101 is electrically connected to a first RF power source (not shown), and the first electrode 101 is mounted on the top of the first electrode 101 to be processed. a platform 105 of the wafer, the first electrode 101 is electrically connected to two RF power sources, the two RF power sources include a first RF power source and a second RF power source, where the first RF power source is greater than the second RF power source frequency 1.5 times; a non-dielectric material layer 103 is located between the first electrode 101 and the platform 105 on which the wafer to be processed is placed, and the resistivity of the non-dielectric material layer 103 is greater than the resistance of the first electrode 101 The non-dielectric material layer 103 is configured to eliminate a standing wave effect formed in the vacuum processing chamber 100 when the signal of the first radio frequency power source is a high frequency signal, and the non-dielectric material layer 103 is in the When the signal of the first electrode 101 electrically connecting the second RF power source is a low frequency signal, the non-dielectric material layer does not cause attenuation of the low frequency signal.

作為一個實施例,等離子體處理裝置還包括:第二電極102,所述第二電極102與第一電極101相對設置,所述第二電極102接地或接第三射頻電源;所述第二電極102與第一電極101構成平行電容。所述第一電極101和第二電極102的材質為金屬。通常,所述第一電極101和第二電極102之間會形成等離子體。As an embodiment, the plasma processing apparatus further includes: a second electrode 102, the second electrode 102 is disposed opposite to the first electrode 101, the second electrode 102 is grounded or connected to a third RF power source; and the second electrode 102 and the first electrode 101 constitute a parallel capacitance. The material of the first electrode 101 and the second electrode 102 is metal. Generally, a plasma is formed between the first electrode 101 and the second electrode 102.

作為其他的實施例,在真空處理腔室100的材質為金屬的情況下,也可以將真空處理腔室100接地,利用真空處理腔室100作為第二電極,與第一電極101構成平行電容。As another embodiment, when the material of the vacuum processing chamber 100 is made of metal, the vacuum processing chamber 100 may be grounded, and the vacuum processing chamber 100 may serve as a second electrode to form a parallel capacitance with the first electrode 101.

作為一個實施例,所述放置待處理晶圓的平臺105包括:靜電吸盤,與第一電極101的形成有非電介質材料層103一側的表面相對設置,所述靜電吸盤用於放置待處理晶圓,所述靜電吸盤的遠離所述等離子體一側的大小和形狀與所述非電介質材料層103的大小和形狀對應。As an embodiment, the platform 105 on which the wafer to be processed is placed includes: an electrostatic chuck disposed opposite to a surface of the first electrode 101 on the side of the non-dielectric material layer 103, where the electrostatic chuck is used to place the crystal to be processed Round, the size and shape of the electrostatic chuck away from the plasma side corresponds to the size and shape of the non-dielectric material layer 103.

所述非電介質材料層103與所述第一電極101的位置對應是指,所述非電介質材料層103應位於所述第一電極101的產生駐波效應的位置,以利用所述非電介質材料層103更有效地消除高頻信號下的駐波效應,並且不會對低頻信號的能量有過多衰減作用。由於本實施例中,所述第一電極101為結構對稱的圓柱形,駐波效應會發生在第一電極101朝向待處理晶圓104一側的中部,因此,所述非電介質材料層103應位於所述第一電極101的靠近待處理晶圓104一側的表面的中部。The position of the non-dielectric material layer 103 corresponding to the position of the first electrode 101 means that the non-dielectric material layer 103 should be located at a position where the first electrode 101 generates a standing wave effect to utilize the non-dielectric material. Layer 103 more effectively eliminates the standing wave effect at high frequency signals and does not have excessive attenuation of the energy of the low frequency signal. In this embodiment, the first electrode 101 is a structurally symmetric cylindrical shape, and the standing wave effect occurs in the middle of the first electrode 101 toward the side of the wafer 104 to be processed. Therefore, the non-dielectric material layer 103 should be Located in the middle of the surface of the first electrode 101 near the side of the wafer 104 to be processed.

具體地,作為本發明的一個實施例,所述第一電極101的靠近所述待處理晶圓104的一側的表面的中部形成有凹槽,所述非電介質材料層103完全鑲嵌於所述凹槽內,且所述非電介質材料層103的靠近所述待處理晶圓104一側的表面與所述第一電極101的靠近所述待處理晶圓104一側的表面齊平。在其他的實施例中,所述非電介質材料層103靠近所述待處理晶圓104一側的表面還可以部分地超過所述第一電極101的靠近所述待處理晶圓104一側的表面,從而在第一電極101上形成突出的部分;或者所述非電介質材料層103可以完全鑲嵌於所述凹槽內,且所述非電介質材料層103的靠近所述待處理晶圓104一側的表面低於所述第一電極101的靠近所述待處理晶圓104一側的表面。Specifically, as an embodiment of the present invention, a middle portion of a surface of the first electrode 101 adjacent to a side of the wafer 104 to be processed is formed with a groove, and the non-dielectric material layer 103 is completely embedded in the The surface of the non-dielectric material layer 103 adjacent to the side of the wafer 104 to be processed is flush with the surface of the first electrode 101 adjacent to the side of the wafer 104 to be processed. In other embodiments, the surface of the non-dielectric material layer 103 adjacent to the side of the wafer 104 to be processed may also partially exceed the surface of the first electrode 101 adjacent to the side of the wafer 104 to be processed. Thereby forming a protruding portion on the first electrode 101; or the non-dielectric material layer 103 may be completely embedded in the groove, and the non-dielectric material layer 103 is close to the side of the wafer 104 to be processed The surface is lower than the surface of the first electrode 101 near the side of the wafer 104 to be processed.

本發明所述的靜電吸盤的形狀和位置應與所述非電介質材料層103的形狀和位置對應。由於所述靜電吸盤用於放置待處理晶圓104,因此所述靜電吸盤的靠近所述待處理晶圓104的表面應為平整的表面,以維持在對所述待處理晶圓104進行相應處理的工藝過程中,所述待處理晶圓104與所述靜電吸盤之間保持相對穩定的位置關係。當所述非電介質材料層103的靠近所述待處理晶圓104的表面高於所述第一電極101的靠近所述待處理晶圓104的表面時,所述靜電吸盤的靠近所述非電介質材料層103一側(圖中為所述靜電吸盤的下方)應設置與所述非電介質材料層的形狀對應的凹槽,以容納部分超過所述第一電極101的靠近所述待處理晶圓104一側的表面的部分非電介質材料層103;當所述非電介質材料層103的靠近所述待處理晶圓104一側的表面與所述第一電極101的靠近所述待處理晶圓104和等離子體的表面齊平時,所述靜電吸盤的靠近所述非電介質材料層103的一側的表面應與所述第一電極101和非電介質材料層103齊平;當所述非電介質材料層103的靠近所述待處理晶圓104一側的表面低於所述第一電極101的靠近所述待處理晶圓104一側的表面時,所述靜電吸盤的靠近所述非電介質材料層103的一側可以設置對應的凸塊,以便將非電介質材料層103和所述第一電極101之間的間隙填滿,從而有利於保持靜電吸盤的穩定性。The shape and position of the electrostatic chuck of the present invention should correspond to the shape and position of the layer of non-dielectric material 103. Since the electrostatic chuck is used for placing the wafer 104 to be processed, the surface of the electrostatic chuck adjacent to the wafer 104 to be processed should be a flat surface to maintain the corresponding processing of the wafer 104 to be processed. During the process, the wafer 104 to be processed maintains a relatively stable positional relationship with the electrostatic chuck. When the surface of the non-dielectric material layer 103 close to the wafer 104 to be processed is higher than the surface of the first electrode 101 close to the wafer 104 to be processed, the electrostatic chuck is close to the non-dielectric A side of the material layer 103 (below the electrostatic chuck in the figure) should be provided with a groove corresponding to the shape of the non-dielectric material layer to accommodate a portion closer to the wafer to be processed than the first electrode 101. a portion of the non-dielectric material layer 103 on the surface of the 104 side; a surface of the non-dielectric material layer 103 adjacent to the side of the wafer 104 to be processed and the first electrode 101 adjacent to the wafer 104 to be processed When flushing with the surface of the plasma, the surface of the electrostatic chuck adjacent to the side of the non-dielectric material layer 103 should be flush with the first electrode 101 and the non-dielectric material layer 103; when the non-dielectric material layer When the surface of the side of the wafer 104 to be processed 104 is lower than the surface of the first electrode 101 near the side of the wafer 104 to be processed, the electrostatic chuck is adjacent to the non-dielectric material layer 103. One side can be set to Bumps, so as to fill the gap between the non-dielectric material layer 103 and the first electrode 101, thus contributing to maintaining the stability of the electrostatic chuck.

所述靜電吸盤的材質可以為陶瓷,也可以為其他公知的材料。所述靜電吸盤應與直流電源電連接,目的是在待處理晶圓104上產生靜電力,防止待處理晶圓104無法固定;所述靜電吸盤內應設置有冷卻孔,所述冷卻孔內可以通入冷卻氣體(例如是氮氣或惰性氣體等),所述冷卻氣體用於在工藝過程中冷卻所述待處理晶圓104。The material of the electrostatic chuck may be ceramic or other known materials. The electrostatic chuck should be electrically connected to the DC power source for the purpose of generating an electrostatic force on the wafer 104 to be processed to prevent the wafer 104 to be processed from being fixed; the electrostatic chuck should be provided with a cooling hole, and the cooling hole can pass through A cooling gas (for example, nitrogen or an inert gas or the like) is used for cooling the wafer 104 to be processed during the process.

所述第一電極101、第二電極102、靜電吸盤的靠近所述待處理晶圓104一側的表面的形狀和大小與待處理晶圓104的形狀和大小一致。本實施例中,所述待處理晶圓104的形狀為圓形,因此所述第一電極101、第二電極102、靜電吸盤的靠近所述待處理晶圓104一側的表面的形狀也為圓形,所述第一電極101、第二電極102和靜電吸盤的靠近所述待處理晶圓104一側的表面的大小可以根據待處理晶圓104的大小進行具體設置,其中待處理晶圓104的外側可以略大於靜電吸盤的形狀(兩者直徑可以相差0.5~3毫米),以保證待處理晶圓104完全覆蓋所述靜電吸盤,防止所述靜電吸盤被等離子體損傷。The shape and size of the surface of the first electrode 101, the second electrode 102, and the surface of the electrostatic chuck adjacent to the wafer 104 to be processed are consistent with the shape and size of the wafer 104 to be processed. In this embodiment, the shape of the wafer 104 to be processed is circular, so that the shape of the surface of the first electrode 101, the second electrode 102, and the surface of the electrostatic chuck adjacent to the wafer 104 to be processed is also The size of the first electrode 101, the second electrode 102, and the surface of the electrostatic chuck adjacent to the side of the wafer 104 to be processed may be specifically set according to the size of the wafer 104 to be processed, wherein the wafer to be processed is The outer side of the 104 may be slightly larger than the shape of the electrostatic chuck (the diameters of the two may be 0.5 to 3 mm apart) to ensure that the wafer 104 to be processed completely covers the electrostatic chuck, preventing the electrostatic chuck from being damaged by the plasma.

所述第一電極101與第一射頻電源或第二射頻電源電連接,所述第一射頻電源和第二射頻電源可以為高頻信號,也可以為低頻信號。其中,本發明所述的高頻信號是指該信號頻率大於40MHz,本發明所述的低頻信號是該信號頻率小於27MHz。The first electrode 101 is electrically connected to the first RF power source or the second RF power source, and the first RF power source and the second RF power source may be high frequency signals or low frequency signals. Wherein, the high frequency signal of the present invention means that the signal frequency is greater than 40 MHz, and the low frequency signal of the present invention is that the signal frequency is less than 27 MHz.

作為可選擇的實施例,所述第一射頻電源的頻率高於第二射頻電源的頻率,比如,所述第一射頻電源的頻率大於第二射頻電源的頻率的1.5倍。本實施例中,所述第一射頻電源的頻率大於40MHz比如60MHz或者100MHZ,第二射頻電源頻率小於等於27MHz比如13.5Mhz或者2Mhz。在實際中,第一電極101接高頻或低頻信號以及第一電極101所接信號的頻率的具體數值,取決於刻蝕工藝的要求,本領域技術人員可以根據需要進行靈活的選擇。In an optional embodiment, the frequency of the first radio frequency power source is higher than the frequency of the second radio frequency power source, for example, the frequency of the first radio frequency power source is greater than 1.5 times the frequency of the second radio frequency power source. In this embodiment, the frequency of the first RF power source is greater than 40 MHz, such as 60 MHz or 100 MHz, and the second RF power frequency is less than or equal to 27 MHz, such as 13.5 Mhz or 2 Mhz. In practice, the specific value of the frequency at which the first electrode 101 is connected to the high frequency or low frequency signal and the signal connected to the first electrode 101 depends on the requirements of the etching process, and those skilled in the art can flexibly select according to the needs.

所述第二電極102可以接地,也可以與第三射頻電源電連接,所述第三射頻電源可以為高頻信號,也可以為低頻信號。The second electrode 102 can be grounded or electrically connected to a third RF power source, and the third RF power source can be a high frequency signal or a low frequency signal.

當所述第一電極101上施加高頻信號時,所述非電介質材料層103能夠消除高頻信號引起的駐波效應,將與非電介質材料層103對應的位置的部分高頻信號的能量消除,使得所述真空處理腔室100內的能量分佈更加均勻,從而真空處理腔室100內的等離子的密度更加均勻,也就保住了在高頻信號下對待處理晶圓104處理後的均勻度;與採用在第一電極上設置絕緣層會使得低頻信號衰減,從而引起絕緣層對應位置的低頻能量偏低相比,本發明實施例在第一電極101上設置的非電介質材料層103不會使得對應於非電介質材料層103的位置的低頻能量衰減,使得所述真空處理腔室100內的能量分佈更加均勻,從而真空處理腔室100內的等離子的密度更加均勻,也就保住了在高頻信號下對待處理晶圓104處理後的均勻度。When a high frequency signal is applied to the first electrode 101, the non-dielectric material layer 103 can eliminate the standing wave effect caused by the high frequency signal, and eliminate the energy of a part of the high frequency signal at a position corresponding to the non-dielectric material layer 103. The energy distribution in the vacuum processing chamber 100 is more uniform, so that the density of the plasma in the vacuum processing chamber 100 is more uniform, thereby maintaining the uniformity of the wafer 104 to be processed under high frequency signals; The non-dielectric material layer 103 disposed on the first electrode 101 of the embodiment of the present invention does not cause the use of the insulating layer on the first electrode to attenuate the low-frequency signal, thereby causing the low-frequency energy of the corresponding position of the insulating layer to be low. The low frequency energy attenuation corresponding to the position of the non-dielectric material layer 103 is such that the energy distribution within the vacuum processing chamber 100 is more uniform, so that the density of plasma within the vacuum processing chamber 100 is more uniform, thereby maintaining the high frequency. The uniformity of the wafer 104 after processing is processed under the signal.

為了實現對高頻信號的衰減,而對低頻信號不會過分衰減,所述非電介質材料層103的材質應為絕緣層以外的其他材質,並且所述非電介質材料層103的電阻率應大於所述第一電極101的電阻率。作為一個實施例,所述非電介質材料層103的電阻率範圍為50歐姆/釐米到106歐姆/釐米。在保證所述非電介質材料層103的電阻率大於第一電極101的電阻率的前提下,所述非電介質材料層103的材質可以為半導體材料,例如所述非電介質材料層103可以為摻雜或未摻雜單晶矽、摻雜或未摻雜多晶矽、摻雜或未摻雜單晶鍺、摻雜或未摻雜的多晶鍺、碳化矽中的一種或其中的組合。本實施例中,所述非電介質材料層103的材質為摻雜多晶矽,其中的摻雜離子可以為N型摻雜離子或P型摻雜離子,通過對控制所述非電介質材料層103中的摻雜離子的摻雜濃度,可以自由調節和設置非電介質材料層103的電阻率,從而根據第一電極101連接的射頻信號的頻率範圍對非電介質材料層103的材質進行優化設置。當然,所述非電介質材料層103也可以採用金屬材質,只要所述非電介質材料層103的電阻率能夠大於非電介質材料層103的電阻率。In order to achieve attenuation of the high frequency signal without excessive attenuation of the low frequency signal, the material of the non-dielectric material layer 103 should be other materials than the insulating layer, and the resistivity of the non-dielectric material layer 103 should be greater than The resistivity of the first electrode 101 is described. As an embodiment, the non-dielectric material layer 103 has a resistivity ranging from 50 ohms/cm to 106 ohms/cm. Under the premise that the resistivity of the non-dielectric material layer 103 is greater than the resistivity of the first electrode 101, the material of the non-dielectric material layer 103 may be a semiconductor material, for example, the non-dielectric material layer 103 may be doped. Or undoped single crystal germanium, doped or undoped polycrystalline germanium, doped or undoped single crystal germanium, one or a combination of doped or undoped polycrystalline germanium, tantalum carbide. In this embodiment, the material of the non-dielectric material layer 103 is doped polysilicon, wherein the doping ions may be N-type doping ions or P-type doping ions, and the pair of non-dielectric material layers 103 are controlled by The doping concentration of the doping ions can freely adjust and set the resistivity of the non-dielectric material layer 103, thereby optimally setting the material of the non-dielectric material layer 103 according to the frequency range of the radio frequency signal to which the first electrode 101 is connected. Of course, the non-dielectric material layer 103 may also be made of a metal material as long as the resistivity of the non-dielectric material layer 103 can be greater than the resistivity of the non-dielectric material layer 103.

作為一個實施例,所述非電介質材料層103的形狀為圓柱形。通過對非電介質材料層103的形狀、尺寸、體積、摻雜濃度等多項參數進行優化設置,使得所述非電介質材料層103具有合適的電阻,該電阻使得能夠在高頻信號時將所述第一電極101的靠近所述待處理晶圓104一側的表面中部的部分能量消耗,在低頻時不會將所述第一電極101的靠近所述待處理晶圓104一側的表面中部的能量消耗。通常,所述射頻電源的頻率越高,所述非電介質材料層103需要的電阻越大。本領域技術人員可以進行具體地選擇和設置,在此不做詳細的說明。As an embodiment, the non-dielectric material layer 103 is cylindrical in shape. By optimizing the plurality of parameters such as the shape, size, volume, doping concentration, and the like of the non-dielectric material layer 103, the non-dielectric material layer 103 has a suitable resistance, which enables the first a portion of the energy of an electrode 101 near the middle of the surface of the wafer to be processed 104, and the energy of the first electrode 101 near the middle of the surface of the wafer 104 to be processed is not at a low frequency. Consumption. Generally, the higher the frequency of the RF power source, the greater the resistance required by the layer of non-dielectric material 103. Those skilled in the art can make specific selections and settings, and will not be described in detail herein.

下面請參考圖3所示的本發明第二實施例的等離子體處理裝置的結構示意圖。與第一實施例的不同之處為,第一實施例的非電介質材料層103的形狀為圓柱形,而本實施例的非電介質材料層103的形狀為圓臺形。圖中示出的圓臺靠近所述待處理晶圓104一側的表面的面積大於遠離所述待處理晶圓104一側的表面的面積,在本發明的其他實施例中,所述圓臺的靠近所述待處理晶圓104一側的表面面積也可以小於遠離所述待處理晶圓104一側的表面的面積。採用所述的圓臺結構,可以使得所述非電介質材料層103的自所述第一電極101的靠近待處理晶圓104的表面的中心向外沿半徑方向的電阻依次減小,這樣,沿中心向外的半徑方向對高頻信號的能量衰減量依次降低,從而與射頻電源的駐波效應更好地補償,這樣使得真空處理腔室100內的能量分佈更加均勻,有利於進一步提高真空處理腔室100內的等離子體的分佈的均勻性。Next, please refer to the structural schematic diagram of the plasma processing apparatus of the second embodiment of the present invention shown in FIG. The difference from the first embodiment is that the non-dielectric material layer 103 of the first embodiment has a cylindrical shape, and the non-dielectric material layer 103 of the present embodiment has a truncated cone shape. The area of the surface of the truncated cone near the side of the wafer 104 to be processed is larger than the area of the surface away from the side of the wafer 104 to be processed. In other embodiments of the present invention, the truncated cone The surface area near the side of the wafer 104 to be processed may also be smaller than the area of the surface away from the side of the wafer 104 to be processed. With the truncated cone structure, the resistance of the non-dielectric material layer 103 from the center of the surface of the first electrode 101 close to the surface of the wafer to be processed 104 in the radial direction can be sequentially decreased, so that The amount of energy attenuation of the high-frequency signal in the radial direction of the center is sequentially reduced, thereby compensating better with the standing wave effect of the RF power source, so that the energy distribution in the vacuum processing chamber 100 is more uniform, which is advantageous for further improving the vacuum processing. The uniformity of the distribution of the plasma within the chamber 100.

請結合圖4所示的本發明第三實施例的等離子體處理裝置的結構示意圖。本實施例與前一實施例的區別在於,前一實施例的非電介質材料層的形狀為圓柱形,而本實施例的非電介質材料層103為圓錐形。Please refer to the structural schematic diagram of the plasma processing apparatus of the third embodiment of the present invention shown in FIG. The difference between this embodiment and the previous embodiment is that the non-dielectric material layer of the previous embodiment has a cylindrical shape, and the non-dielectric material layer 103 of the present embodiment has a conical shape.

請結合圖5所示的本發明第三實施例的等離子體處理裝置的結構示意圖。本實施例與前一實施例的區別在於,前一實施例的非電介質材料層的形狀為圓錐形,而本實施例的非電介質材料層103為臺階形。Please refer to the schematic diagram of the structure of the plasma processing apparatus of the third embodiment of the present invention shown in FIG. The difference between this embodiment and the previous embodiment is that the non-dielectric material layer of the previous embodiment has a conical shape, and the non-dielectric material layer 103 of the present embodiment has a stepped shape.

請結合圖6所示的本發明第四實施例的等離子體處理裝置的結構示意圖。本實施例與第一實施例的非電介質材料層103均為圓柱形,但是本實施例中自非電介質材料層103的中心向外,沿半徑方向的非電介質材料層103的電阻大小不同。Please refer to the structural schematic diagram of the plasma processing apparatus of the fourth embodiment of the present invention shown in FIG. 6. The non-dielectric material layer 103 of this embodiment and the first embodiment are both cylindrical, but in the present embodiment, the resistance of the non-dielectric material layer 103 in the radial direction is different from the center of the non-dielectric material layer 103.

需要說明的是,以上各個實施例均是以真空處理腔室100中有兩個電極,即第一電極101和第二電極102,待處理晶圓104通過所述靜電吸盤放置在第一電極101上。在本發明的其他實施例中,當第二電極和第一電極相對放置的前提下,也可以在第二電極靠近第一電極的一側的表面上設置靜電吸盤,將待處理晶圓放置在該靜電吸盤上,通過在第一電極施加射頻信號,該射頻信號在第一電極和待處理晶圓之間產生等離子體,此時靜電吸盤、第一電極的結構與第一實施例相同,在此不做詳細的說明;在本發明的再一實施例中,當真空處理腔室100中僅具有一個電極,即所述第一電極101時,所述真空處理腔室100的材質應為金屬,且所述真空處理腔室100可以接地,所述真空處理腔室100作為第二電極,與所述第一電極101構成電容,此時,第一電極101上可以設置靜電吸盤和待處理晶圓,待處理晶圓、非電介質材料層和靜電吸盤的位置關係請參考第一實施例,在此不做詳細的說明。It should be noted that each of the above embodiments has two electrodes in the vacuum processing chamber 100, namely, a first electrode 101 and a second electrode 102, and the wafer 104 to be processed is placed on the first electrode 101 through the electrostatic chuck. on. In other embodiments of the present invention, when the second electrode and the first electrode are opposed to each other, an electrostatic chuck may be disposed on a surface of the second electrode adjacent to the first electrode, and the wafer to be processed is placed on the surface. The electrostatic chuck applies a radio frequency signal to the first electrode to generate a plasma between the first electrode and the wafer to be processed. At this time, the structure of the electrostatic chuck and the first electrode is the same as that of the first embodiment. This is not described in detail; in still another embodiment of the present invention, when the vacuum processing chamber 100 has only one electrode, that is, the first electrode 101, the material of the vacuum processing chamber 100 should be metal. The vacuum processing chamber 100 can be grounded, and the vacuum processing chamber 100 serves as a second electrode to form a capacitance with the first electrode 101. At this time, the first electrode 101 can be provided with an electrostatic chuck and a crystal to be processed. For the positional relationship of the wafer, the non-dielectric material layer and the electrostatic chuck, refer to the first embodiment, and no detailed description is given here.

本發明所述的所述等離子體處理裝置可以為等離子體刻蝕設備或等離子增強型化學氣相沉積設備。The plasma processing apparatus of the present invention may be a plasma etching apparatus or a plasma enhanced chemical vapor deposition apparatus.

綜上,本發明實施例在真空處理腔室的第一電極與放置待處理晶圓的平臺之間設置非電介質材料層,所述非電介質材料層的電阻率大於所述第一電極的電阻率;所述非電介質材料層能夠在第一電極與第一射頻電源(該第一射頻電源的頻率大於第二射頻電源頻率的1.5倍)電連接時,所述非電介質材料層能夠消除由於該第一射頻電源的高頻信號引起的駐波效應,將所述真空處理腔室的與非電介質材料層對應的位置的部分高頻信號的能量衰減,從而使得真空處理腔室內的能量分佈更加均勻,因此,保證了第一電極與第一射頻電源電連接時真空處理腔室內的等離子體的密度更加均勻,也就保證了第一電極與第一射頻電源電連接時對所述待處理晶圓的刻蝕速率更加均勻;與第一電極和放置待處理晶圓的平臺之間設置絕緣層會使得低頻信號過分衰減相比,本發明實施例在第一電極與放置待處理晶圓的平臺之間設置的非電介質材料層不會使得真空處理腔室的對應於非電介質材料層的位置的低頻信號的能量有較大衰減,從而所述真空處理腔室內的等離子體的密度分佈更加均勻,因此,也保證了第一電極與第二射頻電源電連接時的刻蝕速率更加均勻。In summary, in the embodiment of the present invention, a non-dielectric material layer is disposed between a first electrode of the vacuum processing chamber and a platform on which the wafer to be processed is placed, and the resistivity of the non-dielectric material layer is greater than the resistivity of the first electrode. The non-dielectric material layer can be eliminated when the first electrode is electrically connected to the first RF power source (the frequency of the first RF power source is greater than 1.5 times the frequency of the second RF power source) a standing wave effect caused by a high frequency signal of a radio frequency power source, attenuating the energy of a part of the high frequency signal of the vacuum processing chamber corresponding to the non-dielectric material layer, thereby making the energy distribution in the vacuum processing chamber more uniform, Therefore, the density of the plasma in the vacuum processing chamber is more uniform when the first electrode is electrically connected to the first RF power source, and the wafer to be processed is ensured when the first electrode is electrically connected to the first RF power source. The etching rate is more uniform; providing an insulating layer between the first electrode and the platform on which the wafer to be processed is placed causes the low frequency signal to be excessively attenuated compared to the present invention. The non-dielectric material layer disposed between the first electrode and the platform on which the wafer to be processed is disposed does not cause a large attenuation of the energy of the low-frequency signal of the vacuum processing chamber corresponding to the position of the non-dielectric material layer, thereby The density distribution of the plasma in the vacuum processing chamber is more uniform, and therefore, the etching rate when the first electrode is electrically connected to the second RF power source is also more uniform.

雖然本發明己以較佳實施例披露如上,但本發明並非限定於此。任何本領域技術人員,在不脫離本發明的精神和範圍內,均可作各種更動與修改,因此本發明的保護範圍應當以申請專利範圍所限定的範圍為准。Although the invention has been disclosed above in the preferred embodiments, the invention is not limited thereto. Any changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention should be determined by the scope of the claims.

100...真空處理腔室100. . . Vacuum processing chamber

101...第一電極101. . . First electrode

102...第二電極102. . . Second electrode

103...非電介質材料層103. . . Non-dielectric material layer

104...待處理晶圓104. . . Wafer to be processed

105...平臺105. . . platform

10...真空處理腔室10. . . Vacuum processing chamber

11...第一電極11. . . First electrode

12...第二電極12. . . Second electrode

圖1是習知技術的等離子體處理裝置的結構示意圖;1 is a schematic structural view of a conventional plasma processing apparatus;

圖2是本發明第一實施例的等離子體處理裝置的結構示意圖;2 is a schematic structural view of a plasma processing apparatus according to a first embodiment of the present invention;

圖3是本發明第二實施例的等離子體處理裝置的結構示意圖;3 is a schematic structural view of a plasma processing apparatus according to a second embodiment of the present invention;

圖4是本發明第三實施例的等離子體處理裝置的結構示意圖;4 is a schematic structural view of a plasma processing apparatus according to a third embodiment of the present invention;

圖5是本發明第四實施例的等離子體處理裝置的結構示意圖;Figure 5 is a schematic structural view of a plasma processing apparatus according to a fourth embodiment of the present invention;

圖6是本發明第五實施例的等離子體處理裝置的結構示意圖。Fig. 6 is a view showing the configuration of a plasma processing apparatus according to a fifth embodiment of the present invention.

100...真空處理腔室100. . . Vacuum processing chamber

101...第一電極101. . . First electrode

102...第二電極102. . . Second electrode

103...非電介質材料層103. . . Non-dielectric material layer

104...待處理晶圓104. . . Wafer to be processed

105...平臺105. . . platform

Claims (11)

一種等離子體處理裝置,包括:真空處理腔室;第一電極,位於該真空處理腔室內,該第一電極上方安裝有放置待處理晶圓的平臺,該第一電極與兩個射頻電源電連接,其中該第一射頻電源大於該第二射頻電源頻率的1.5倍;非電介質材料層,位於該第一電極與該放置待處理晶圓的平臺之間,該非電介質材料層的電阻率大於該第一電極的電阻率。A plasma processing apparatus includes: a vacuum processing chamber; a first electrode located in the vacuum processing chamber, a platform on which a wafer to be processed is placed, the first electrode is electrically connected to two RF power sources The first RF power source is greater than 1.5 times the frequency of the second RF power source; the non-dielectric material layer is located between the first electrode and the platform on which the wafer to be processed is placed, and the resistivity of the non-dielectric material layer is greater than the first The resistivity of an electrode. 如申請專利範圍第1項所述之等離子體處理裝置,其中該非電介質材料層的材質為半導體材質或金屬,該半導體材質材料層為矽、鍺、鍺矽、碳化矽中的一種或其中的組合,該第一電極的材質為金屬。The plasma processing apparatus according to claim 1, wherein the non-dielectric material layer is made of a semiconductor material or a metal, and the semiconductor material layer is one or a combination of ruthenium, osmium, iridium, and tantalum carbide. The material of the first electrode is metal. 如申請專利範圍第1項所述之等離子體處理裝置,其中該非電介質材料層位於該第一電極的表面上,或,該第一電極內形成有凹槽,該非電介質材料層至少有部分鑲嵌於該凹槽內。The plasma processing apparatus of claim 1, wherein the non-dielectric material layer is located on a surface of the first electrode, or a groove is formed in the first electrode, and the non-dielectric material layer is at least partially embedded in Inside the groove. 如申請專利範圍第1項所述之等離子體處理裝置,其中該非電介質材料層的電阻率範圍為50歐姆/釐米到106歐姆/釐米。The plasma processing apparatus of claim 1, wherein the non-dielectric material layer has a resistivity ranging from 50 ohms/cm to 106 ohms/cm. 如申請專利範圍第3項所述之等離子體處理裝置,其中該放置待處理晶圓的平臺包括:靜電吸盤,與該第一電極的形成有該非電介質材料層的一側的表面相對設置,該靜電吸盤用於放置,該靜電吸盤的遠離該待處理晶圓一側的形狀和大小與該非電介質材料層的形狀和大小對應。The plasma processing apparatus of claim 3, wherein the platform on which the wafer to be processed is placed includes: an electrostatic chuck, opposite to a surface of a side of the first electrode on which the non-dielectric material layer is formed, An electrostatic chuck is used for placement, and the shape and size of the electrostatic chuck away from the side of the wafer to be processed corresponds to the shape and size of the layer of non-dielectric material. 如申請專利範圍第1項所述之等離子體處理裝置,其中該真空處理腔室的材質為金屬,該真空處理腔室接地。The plasma processing apparatus of claim 1, wherein the vacuum processing chamber is made of metal, and the vacuum processing chamber is grounded. 如申請專利範圍第1項所述之等離子體處理裝置,其中該第一電極為圓柱形,該非電介質材料層具有與該第一電極對應的圓形下表面,該非電介質材料層的電阻沿該圓形下表面的半徑向外的方向減小。The plasma processing apparatus of claim 1, wherein the first electrode is cylindrical, the non-dielectric material layer has a circular lower surface corresponding to the first electrode, and the resistance of the non-dielectric material layer is along the circle The radius of the lower surface of the shape decreases outward. 如申請專利範圍第1項所述之等離子體處理裝置,其中該第一射頻電源的頻率大於40MHz,該第二射頻電源頻率小於27MHz。The plasma processing apparatus of claim 1, wherein the first RF power source has a frequency greater than 40 MHz and the second RF power source frequency is less than 27 MHz. 如申請專利範圍第1項所述之等離子體處理裝置,其中該非電介質材料層為圓柱形、圓臺形、圓錐形、或臺階形。The plasma processing apparatus of claim 1, wherein the non-dielectric material layer is cylindrical, truncated, conical, or stepped. 如申請專利範圍第1項所述之等離子體處理裝置,更包括:第二電極,位於該真空處理腔內的與該第一電極相對設置的位置。The plasma processing apparatus of claim 1, further comprising: a second electrode located at a position opposite to the first electrode in the vacuum processing chamber. 如申請專利範圍第1項所述之等離子體處理裝置,其中該等離子體處理裝置為等離子體刻蝕設備或等離子增強型化學氣相沉積設備。The plasma processing apparatus of claim 1, wherein the plasma processing apparatus is a plasma etching apparatus or a plasma enhanced chemical vapor deposition apparatus.
TW100149978A 2011-08-19 2011-12-30 A plasma processing device TWI474395B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110240360 CN102280342B (en) 2011-08-19 2011-08-19 Plasma treatment device

Publications (2)

Publication Number Publication Date
TW201310523A TW201310523A (en) 2013-03-01
TWI474395B true TWI474395B (en) 2015-02-21

Family

ID=45105716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149978A TWI474395B (en) 2011-08-19 2011-12-30 A plasma processing device

Country Status (2)

Country Link
CN (1) CN102280342B (en)
TW (1) TWI474395B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610476B (en) * 2012-03-12 2015-05-27 中微半导体设备(上海)有限公司 Electrostatic chuck
CN103839742A (en) * 2012-11-28 2014-06-04 中微半导体设备(上海)有限公司 Magnetic field distribution regulation device and method for plasma processor
CN103794461A (en) * 2013-12-02 2014-05-14 青岛蓝图文化传播有限公司市南分公司 Plasma processing apparatus
CN105789107A (en) * 2014-12-26 2016-07-20 北京北方微电子基地设备工艺研究中心有限责任公司 Base and plasma processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200710935A (en) * 2005-07-19 2007-03-16 Lam Res Corp Method of protecting a bond layer in a substrate support adapted for use in a plasma processing system
JP2008042141A (en) * 2006-08-10 2008-02-21 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
TW200943410A (en) * 2007-11-29 2009-10-16 Applied Materials Inc Plasma control using dual cathode frequency mixing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363882B1 (en) * 1999-12-30 2002-04-02 Lam Research Corporation Lower electrode design for higher uniformity
TW478026B (en) * 2000-08-25 2002-03-01 Hitachi Ltd Apparatus and method for plasma processing high-speed semiconductor circuits with increased yield
US6554954B2 (en) * 2001-04-03 2003-04-29 Applied Materials Inc. Conductive collar surrounding semiconductor workpiece in plasma chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200710935A (en) * 2005-07-19 2007-03-16 Lam Res Corp Method of protecting a bond layer in a substrate support adapted for use in a plasma processing system
JP2008042141A (en) * 2006-08-10 2008-02-21 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
TW200943410A (en) * 2007-11-29 2009-10-16 Applied Materials Inc Plasma control using dual cathode frequency mixing

Also Published As

Publication number Publication date
TW201310523A (en) 2013-03-01
CN102280342B (en) 2013-08-21
CN102280342A (en) 2011-12-14

Similar Documents

Publication Publication Date Title
TWI701705B (en) Plasma processing apparatus and plasma processing method
KR100652983B1 (en) Plasma processing apparatus and method
KR100642157B1 (en) Plasma processing system and method and electrode plate of plasma processing system
KR200487340Y1 (en) Process kit components for use with an extended and independent rf powered cathode substrate for extreme edge tunability
KR100652982B1 (en) Plasma processing method and apparatus
KR100736218B1 (en) The plasma source with structure of multi-electrode from one side to the other
JP4699127B2 (en) Plasma processing apparatus and plasma processing method
US9277637B2 (en) Apparatus for plasma treatment and method for plasma treatment
US10264662B2 (en) Plasma processing apparatus
US20100101727A1 (en) Capacitively coupled remote plasma source with large operating pressure range
US20070221331A1 (en) Hybrid plasma reactor
TWI408744B (en) Plasma processing device and plasma processing method
US20060087211A1 (en) Plasma processing apparatus
KR20150082196A (en) Plasma processing method
KR102201541B1 (en) Plasma processing systems having multi-layer segmented electrodes and methods therefor
TW201508806A (en) Plasma processing device
JP2009123929A (en) Plasma treatment apparatus
TWI474395B (en) A plasma processing device
JP4935149B2 (en) Electrode plate for plasma processing and plasma processing apparatus
TW201338012A (en) Adjustable apparatus for use in plasma processing device
JP4467667B2 (en) Plasma processing equipment
JP3748230B2 (en) Plasma etching apparatus and shower plate
JPH1116843A (en) Electronic device manufacturing system
CN109994352B (en) Electrode for plasma processing chamber
TWI771770B (en) Plasma processor and method for preventing arc damage to confinement rings