TWI473529B - Three dimensional light emitting diode display device - Google Patents

Three dimensional light emitting diode display device Download PDF

Info

Publication number
TWI473529B
TWI473529B TW101112478A TW101112478A TWI473529B TW I473529 B TWI473529 B TW I473529B TW 101112478 A TW101112478 A TW 101112478A TW 101112478 A TW101112478 A TW 101112478A TW I473529 B TWI473529 B TW I473529B
Authority
TW
Taiwan
Prior art keywords
parallel
display device
light emitting
light
emitting diode
Prior art date
Application number
TW101112478A
Other languages
Chinese (zh)
Other versions
TW201342996A (en
Inventor
Lunghai Wu
Chenkuan Kuo
Chienfu Teng
Original Assignee
Benq Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benq Materials Corp filed Critical Benq Materials Corp
Priority to TW101112478A priority Critical patent/TWI473529B/en
Publication of TW201342996A publication Critical patent/TW201342996A/en
Application granted granted Critical
Publication of TWI473529B publication Critical patent/TWI473529B/en

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

3D發光二極體顯示裝置3D light emitting diode display device

本發明係關於一種發光二極體顯示裝置,且特別是3D發光二極體顯示裝置。The present invention relates to a light emitting diode display device, and more particularly to a 3D light emitting diode display device.

由於光電產業的蓬勃發展,人們追求高品質的視覺享受,從早期傳統笨重的陰極射線管顯示器(Cathode Ray Tube,CRT)逐漸發展到高畫質的平面面板顯示器(Flat Panel Display,FPD),例如液晶平面顯示器(Liquid Crystal Display,LCD)、電漿面板平面顯示器(Plasma Display Panel,PDP)、場發射平面顯示器(Field Emission Display,FED)及電激發光顯示器(Electroluminescence Display,ELD)。相較於其他平面顯示器,電激發光顯示器因具有自發光、高亮度、廣視角、高應答速度、面板輕薄等優點,所以格外受到消費者的喜愛。Due to the vigorous development of the optoelectronic industry, people pursue high-quality visual enjoyment, from the early traditional bulk cathode ray tube display (CRT) to the high-quality flat panel display (FPD), for example Liquid crystal display (LCD), plasma display panel (PDP), Field Emission Display (FED), and Electroluminescence Display (ELD). Compared with other flat panel displays, electroluminescent displays are particularly popular among consumers because of their self-illumination, high brightness, wide viewing angle, high response speed, and thin and light panels.

隨著3D科技日益普及,因此具3D功能的電激發光顯示器的市場需求也逐漸提高。電激發光顯示器根據所使用的化學材料又分為有機發光二極體顯示裝置及無機發光二極體顯示裝置。With the increasing popularity of 3D technology, the market demand for 3D-enabled electroluminescent displays has gradually increased. The electroluminescent display is further classified into an organic light emitting diode display device and an inorganic light emitting diode display device according to the chemical materials used.

第1圖所繪示係為一般發光二極體顯示裝置,該顯示裝置100具有一陰極110、一發光結構層120、一陽極130、一透明基板140、一偏光片150及一具有兩種相位延遲值160A及160B的相位延遲膜160。藉由偏光片150與相位延遲膜160將影像轉變為具兩種偏振態的特性,接著透過偏光眼鏡即可將影像分離即可達到3D效果。FIG. 1 is a general LED display device having a cathode 110, a light emitting structure layer 120, an anode 130, a transparent substrate 140, a polarizer 150, and a phase having two phases. The phase retardation film 160 of the retardation values 160A and 160B. The polarizer 150 and the phase retardation film 160 convert the image into two polarization states, and then the polarized glasses can be separated to achieve a 3D effect.

本發明所提供的3D發光二極體顯示裝置,則是利用陰極表面複數個平行微溝槽結構,使發光結構層中的化合物按照特定方向排列以發射出特定方向性的光源,達到偏振光的功效。因此,可省略一般3D發光二極體顯示裝置所需的偏光片元件,也可簡化製程。The 3D light-emitting diode display device provided by the invention utilizes a plurality of parallel micro-trench structures on the surface of the cathode, so that the compounds in the light-emitting structure layer are arranged in a specific direction to emit a specific directional light source to achieve polarized light. efficacy. Therefore, the polarizer element required for a general 3D light-emitting diode display device can be omitted, and the process can be simplified.

為達到上述目的,本發明提出一種3D發光二極體顯示裝置。根據本發明之一態樣,該3D發光二極體顯示裝置包含一相位延遲膜、一透明基板、一陽極、一發光結構層以及一陰極。上述陰極接觸該發光結構層之一表面具有複數個第一區域及複數個第二區域。該些第一區域與該些第二區域之寬度分別對應子像素單元之寬度。該些第一區域具有複數個第一平行微溝槽,該些第二區域具有複數個第二平行微溝槽,且該第一區域與該第二區域相互平行交錯排列,並且,該些第一平行微溝槽的長度方向與該些第二平行微溝槽的長度方向係為垂直。上述相位延遲膜係具有1/4相位延遲值。In order to achieve the above object, the present invention provides a 3D light emitting diode display device. According to an aspect of the present invention, the 3D LED display device includes a phase retardation film, a transparent substrate, an anode, a light emitting structure layer, and a cathode. The surface of the cathode contacting the light-emitting structure layer has a plurality of first regions and a plurality of second regions. The widths of the first region and the second regions respectively correspond to the width of the sub-pixel unit. The first regions have a plurality of first parallel micro-grooves, the second regions have a plurality of second parallel micro-grooves, and the first region and the second region are staggered in parallel with each other, and The length direction of a parallel micro-groove is perpendicular to the length direction of the second parallel micro-grooves. The phase retardation film described above has a 1/4 phase retardation value.

根據本發明之另一態樣,3D發光二極體顯示裝置包含一相位延遲膜、一透明基板、一陽極、一發光結構層以及一陰極。上述陰極接觸該發光結構層之一表面具有複數個第一區域及複數個第二區域。該些第一區域與該些第二區域之寬度分別對應子像素單元之寬度。該些第一區域具有複數個第一平行微溝槽,該些第二區域具有複數個第二平行微溝槽,且該第一區域與該第二區域相互平行交錯排列,並且,該些第一平行微溝槽的長度方向與該些第二平行微溝槽的長度方向係為平行。上述之相位延遲膜係具有兩種相位延遲值,且兩者相位延遲值的差值為180°。According to another aspect of the present invention, a 3D light emitting diode display device includes a phase retardation film, a transparent substrate, an anode, a light emitting structure layer, and a cathode. The surface of the cathode contacting the light-emitting structure layer has a plurality of first regions and a plurality of second regions. The widths of the first region and the second regions respectively correspond to the width of the sub-pixel unit. The first regions have a plurality of first parallel micro-grooves, the second regions have a plurality of second parallel micro-grooves, and the first region and the second region are staggered in parallel with each other, and The length direction of a parallel microchannel is parallel to the length direction of the second parallel microchannels. The phase retardation film described above has two phase delay values, and the difference between the phase retardation values of the two is 180°.

為讓本發明之上述內容能更明顯易懂,下文特舉各種實施例,並配合所附圖式,作詳細說明如下:In order to make the above-mentioned contents of the present invention more comprehensible, various embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

為利 貴審查員瞭解本創作之創作特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。For the benefit of the examiner to understand the creative features, contents and advantages of the present invention and the effects thereof, the present invention will be described in detail with reference to the accompanying drawings, and the drawings used therein, The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.

請參照第2圖所示。第2圖係繪示本發明之一較佳實施例之3D發光二極體顯示裝置200的結構示意圖。該顯示器結構包含:一透明基板240、一陽極230、一發光結構層220、一陰極210及一相位延遲膜250。Please refer to Figure 2. 2 is a schematic structural view of a 3D light emitting diode display device 200 according to a preferred embodiment of the present invention. The display structure comprises a transparent substrate 240, an anode 230, a light emitting structure layer 220, a cathode 210 and a phase retardation film 250.

上述之透明基板240係由透明玻璃基板或透明可撓性基板所組成,例如可為透明塑膠或是透明的金屬薄片。The transparent substrate 240 is composed of a transparent glass substrate or a transparent flexible substrate, and may be, for example, a transparent plastic or a transparent metal foil.

上述之陽極230係由透光材料所組成,例如可為銦錫氧化物(Indium tin oxide,ITO),其設置於該透明基板240之一側。The anode 230 is composed of a light-transmitting material, and may be, for example, Indium tin oxide (ITO), which is disposed on one side of the transparent substrate 240.

上述之發光結構層220係為具自發光特性的化學材料,其設置於該陽極230之上。該些化學材料可為高分子聚合物、小分子有機化合物或無機金屬錯合物所組成。為了放射出特定波長的光源,該化學材料一般都具有線性多苯環結構的設計。但隨著市場需求改變,後續也衍生出盤狀多苯環結構的設計。當3D發光二極體顯示裝置200通電後,陽極230所釋出的電洞與陰極210所釋出的電子將於該發光結構層220結合,產生光子並放出光能。為提高3D發光二極體顯示裝置的發光效率,可以在該發光結構層220與陰極210之間設置一電子傳導層,例如8-羥基喹咻鋁(tris(8-hydroxyquinoline aluminum),AlQ3 ),藉由陰極與電子傳導層的能階搭配,使陰極所釋放出的電子能更順利傳遞至發光結構層220。此外,也可以於發光結構層220與陽極230之間設置一電洞傳導層,例如具有多胺類的芳香族化合物,可使陽極所釋出的電洞順利傳遞至發光結構層220,以提高與電子結合的效率。The light-emitting structure layer 220 is a chemical material having self-luminous properties, and is disposed on the anode 230. The chemical materials may be composed of a high molecular polymer, a small molecular organic compound or an inorganic metal complex. In order to emit a light source of a particular wavelength, the chemical material generally has a design of a linear polyphenyl ring structure. However, as the market demand changes, the design of the disc-shaped polyphenyl ring structure is also derived. When the 3D LED display device 200 is energized, the holes released by the anode 230 and the electrons emitted from the cathode 210 will combine with the light-emitting structure layer 220 to generate photons and emit light energy. In order to improve the luminous efficiency of the 3D LED display device, an electron conducting layer such as 8-hydroxyquinoline aluminum (AlQ 3 ) may be disposed between the light emitting structure layer 220 and the cathode 210. By the energy level combination of the cathode and the electron conducting layer, the electrons released by the cathode can be more smoothly transmitted to the light emitting structure layer 220. In addition, a hole conducting layer, such as an aromatic compound having a polyamine, may be disposed between the light emitting structure layer 220 and the anode 230, so that the hole released by the anode can be smoothly transmitted to the light emitting structure layer 220 to improve The efficiency of combining with electronics.

前述之陰極210,係為低功率的金屬,例如可選自由銀、鋁、鎂、鈣及鋰所構成之群組,其設置於該發光結構層220之上。該陰極210接觸該發光結構層之一表面具有複數個平行微溝槽(圖中未繪示),利用該些平行微溝槽結構可使發光結構層220中的化合物按照特定方向排列,以發射出特定方向的光源。The cathode 210 is a low-power metal, for example, a group consisting of silver, aluminum, magnesium, calcium and lithium, which is disposed on the light-emitting structure layer 220. The surface of the cathode 210 contacting the light-emitting structure layer has a plurality of parallel micro-grooves (not shown). The parallel micro-channel structures can be used to arrange the compounds in the light-emitting structure layer 220 in a specific direction to emit A light source in a specific direction.

上述相位延遲膜250係具有1/4相位延遲值,其位於該透明基板240之另一側。The phase retardation film 250 has a 1/4 phase retardation value which is located on the other side of the transparent substrate 240.

第3圖係繪示第2圖之陰極210表面結構俯視圖。該陰極210表面具有複數個第一區域211及複數個第二區域212。該些第一區域211與該些第二區域212相互平行交錯排列,且該些第一區域211與該些第二區域212之寬度分別對應子像素單元之寬度。該些第一區域211具有複數個第一平行微溝槽211A,該些第二區域212具有複數個第二平行微溝槽212B,其中該第一平行微溝槽211A的長度方向與該第二平行微溝槽212B的長度方向係為垂直,例如該第一平行微溝槽211A的長度方向與水平面的夾角實質上為45度,該第二平行微溝槽212B的長度方向與水平面的夾角實質上為135度。Fig. 3 is a plan view showing the surface structure of the cathode 210 of Fig. 2. The surface of the cathode 210 has a plurality of first regions 211 and a plurality of second regions 212. The first region 211 and the second regions 212 are staggered in parallel with each other, and the widths of the first region 211 and the second regions 212 respectively correspond to the width of the sub-pixel unit. The first region 211 has a plurality of first parallel micro trenches 211A, and the second regions 212 have a plurality of second parallel micro trenches 212B, wherein the first parallel micro trenches 211A have a length direction and the second The longitudinal direction of the parallel micro-grooves 212B is perpendicular. For example, the longitudinal direction of the first parallel micro-grooves 211A is substantially 45 degrees from the horizontal plane, and the longitudinal direction of the second parallel micro-grooves 212B is substantially opposite to the horizontal plane. The upper is 135 degrees.

第4圖係繪示第3圖之第一區域211的剖面示意圖。其中位於該第一區域中的各個第一平行微溝槽211A,其寬度W211A與各個第二平行微溝槽212B之寬度W212B(圖中未繪示)於實質上相同,為了使發光結構層中的化學材料,例如線型多苯環化合物或盤狀多苯環化合物可按特定方向排列,以放射出特定方向的光源,該些第一區域中的各個第一平行微溝槽211A的寬度W211A較佳為1微米(μm)至100微米(μm)之間。且各個第一平行微溝槽211A之高度H211A與各個第二平行微溝槽212B之高度H212B(圖中未繪示)實質上相同,例如100奈米(nm)至1微米(μm)之間。再者,相鄰之兩個該些第一平行微溝槽211A之間距G211A與相鄰之兩個該些第二平行微溝槽212B之間距G212B(圖中未繪示)實質上相同,例如是1微米(μm)至100微米(μm)之間。4 is a cross-sectional view showing the first region 211 of FIG. The width W211A of each of the first parallel micro-grooves 211A in the first region is substantially the same as the width W212B (not shown) of each of the second parallel micro-channels 212B, in order to make the light-emitting structure layer The chemical material, such as a linear polyphenylene ring compound or a discotic polyphenylene ring compound, may be arranged in a specific direction to emit a light source in a specific direction, and the width W211A of each of the first parallel microchannels 211A in the first regions is higher. Preferably, it is between 1 micrometer (μm) and 100 micrometers (μm). The height H211A of each of the first parallel microchannels 211A is substantially the same as the height H212B (not shown) of each of the second parallel microchannels 212B, for example, between 100 nanometers (nm) and 1 micrometer (μm). . Furthermore, the distance between the two adjacent first parallel micro-grooves 211A G211A and the two adjacent second parallel micro-grooves 212B is substantially the same as G212B (not shown), for example, It is between 1 micrometer (μm) and 100 micrometers (μm).

上述陰極210表面之第一區域211及第二區域212上的平行微溝槽可透過蝕刻製程形成,也可以透過雷射製程形成。本發明是採用乾式蝕刻法形成該些平行微溝槽211A及212B。該些方法並非用以限定本發明之技術範圍,採用任何方式所形成之平行微溝槽均屬於本發明所屬之範圍。The parallel microchannels on the first region 211 and the second region 212 of the surface of the cathode 210 may be formed by an etching process or may be formed by a laser process. In the present invention, the parallel micro-grooves 211A and 212B are formed by dry etching. The methods are not intended to limit the technical scope of the present invention, and the parallel micro-grooves formed by any means are within the scope of the present invention.

當陰極210表面的平行微溝槽形成後,可利用真空蒸鍍法(Evaporating)或旋轉塗佈法(Spin coating)使發光結構層220中的化合物以特定的方向排列於陰極210表面的平行微溝槽內。因此,當3D發光二極體顯示裝置一通電後,電子與電洞將於發光結構層220中結合,並放射一具特定方向性的光源,達到偏振光的功效。故位於陰極210表面第一區域211上的發光結構層220會放射出與水平面夾角為45度的線性偏振光,而位於陰極210表面第二區域212的發光結構層會放射出與水平面夾角為135度的線性偏振光。After the parallel micro-grooves on the surface of the cathode 210 are formed, the compounds in the light-emitting structure layer 220 may be arranged in a specific direction on the surface of the cathode 210 by vacuum evaporation or spin coating. Inside the groove. Therefore, when the 3D LED display device is energized, the electrons and holes are combined in the light-emitting structure layer 220, and a specific directional light source is radiated to achieve the effect of polarized light. Therefore, the light-emitting structure layer 220 on the first region 211 of the surface of the cathode 210 emits linearly polarized light at an angle of 45 degrees with respect to the horizontal plane, and the light-emitting structure layer located at the second region 212 of the surface of the cathode 210 emits an angle of 135 with the horizontal plane. Degree of linearly polarized light.

接著,該兩種不同方向性的線性偏振光穿透一具有1/4相位延遲值的相位延遲膜250。請參考第5圖所示,該3D發光二極體顯示裝置將放射出具兩種偏振態的影像。例如,位於陰極210表面第一區域211上的發光結構層220所發射出的45度線性偏振光將透過具1/4相位延遲值的相位延遲膜250而轉變為左旋偏振光。而位於該陰極210表面第二區域212上的發光結構層220所發射出的135度線性偏振光將透過具1/4相位延遲值的相位延遲膜250而轉變為右旋偏振光。最後,再搭配偏光眼鏡將影像分離,觀賞者即可在腦中產生3D視覺效果。Then, the two different directional linearly polarized lights penetrate a phase retardation film 250 having a 1/4 phase retardation value. Referring to FIG. 5, the 3D LED display device emits images of two polarization states. For example, the 45-degree linearly polarized light emitted by the light-emitting structure layer 220 on the first region 211 of the surface of the cathode 210 will be converted into left-handed polarized light by the phase retardation film 250 having a 1/4 phase retardation value. The 135-degree linearly polarized light emitted by the light-emitting structure layer 220 on the second region 212 of the surface of the cathode 210 is converted into right-handed polarized light by the phase retardation film 250 having a 1/4 phase retardation value. Finally, with the polarized glasses to separate the images, the viewer can produce 3D visual effects in the brain.

第6圖係為依照本發明之另一較佳實施例之陰極表面結構俯視圖。該陰極310表面具有複數個第一區域221及複數個第二區域222。該些第一區域221與該些第二區域222相互平行交錯排列,且該些第一區域221與該些第二區域222之寬度分別對應子像素單元之寬度。該些第一區域221具有複數個第一平行微溝槽221A,該些第二區域222具有複數個第二平行微溝槽222B,其中該第一平行微溝槽221A的長度方向與該第二平行微溝槽222B的長度方向係為平行,例如該第一平行微溝槽221A的長度方向與該第二平行微溝槽222B的長度方向皆與水平面的夾角實質上為90度。Figure 6 is a plan view of a cathode surface structure in accordance with another preferred embodiment of the present invention. The surface of the cathode 310 has a plurality of first regions 221 and a plurality of second regions 222. The first region 221 and the second regions 222 are arranged in parallel with each other, and the widths of the first region 221 and the second regions 222 respectively correspond to the width of the sub-pixel unit. The first regions 221 have a plurality of first parallel micro-channels 221A, and the second regions 222 have a plurality of second parallel micro-channels 222B, wherein the first parallel micro-channels 221A have a length direction and the second The longitudinal direction of the parallel microchannels 222B is parallel. For example, the longitudinal direction of the first parallel microchannels 221A and the longitudinal direction of the second parallel microchannels 222B are substantially 90 degrees from the horizontal plane.

上述陰極表面上各個第一平行微溝槽221A之寬度W221A(圖中未繪示)與各個第二平行微溝槽222B(圖中未繪示)之寬度W222B實質上相同,為了使發光結構層中的化學材料,例如線型多苯環化合物或盤狀多苯環化合物可按特定方向排列,以發射出特定方向的光源,各個第一平行微溝槽221A的寬度為1微米(μm)至100微米(μm)之間。再者,各個第一平行微溝槽221A之高度H221A(圖中未繪示)與各個第二平行微溝槽222B之高度H222B(圖中未繪示)實質上相同,例如為100奈米(nm)至1微米(μm)之間。其中相鄰之兩個該些第一平行微溝槽221A之間距G221A(圖中未繪示)與相鄰之兩個該些第二平行微溝槽之間距G212B(圖中未繪示)實質上相同,例如為1微米(μm)至100微米(μm)之間。The width W221A (not shown) of each of the first parallel micro-grooves 221A on the surface of the cathode is substantially the same as the width W222B of each of the second parallel micro-channels 222B (not shown), in order to make the light-emitting structure layer The chemical material in the middle, such as a linear polyphenylene ring compound or a discotic polyphenylene ring compound, may be arranged in a specific direction to emit a light source in a specific direction, and each of the first parallel microchannels 221A has a width of 1 micrometer (μm) to 100. Between microns (μm). Moreover, the height H221A (not shown) of each of the first parallel micro-grooves 221A is substantially the same as the height H222B (not shown) of each of the second parallel micro-grooves 222B, for example, 100 nm ( Between nm) and 1 micrometer (μm). The distance between G221A (not shown) and the adjacent two of the second parallel micro-grooves between two adjacent first parallel micro-grooves 221A is substantially the distance G212B (not shown) The same is true, for example, between 1 micrometer (μm) and 100 micrometers (μm).

藉由陰極上的平行微溝槽設計使得發光結構層所放射出的光源轉變為一具有90度的線性偏振光,透過一具有兩種相位延遲值的相位差延遲膜,將該線性偏振光轉變為兩種偏振態的光源。再經由偏光眼鏡將兩種影像分離,即可獲得3D立體影像。The parallel micro-channel design on the cathode converts the light source emitted by the light-emitting structure layer into a linearly polarized light having 90 degrees, and transforms the linearly polarized light through a phase difference retardation film having two phase retardation values. It is a light source of two polarization states. The two images are separated by polarized glasses to obtain a 3D stereoscopic image.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100、200...3D發光二極體顯示裝置100, 200. . . 3D light emitting diode display device

110、210、310...陰極110, 210, 310. . . cathode

120、220...發光結構層120, 220. . . Light structure layer

130、230...陽極130, 230. . . anode

140、240...透明基板140, 240. . . Transparent substrate

150...偏光片150. . . Polarizer

160、250...相位延遲膜160, 250. . . Phase retardation film

160A...第一相位延遲值160A. . . First phase delay value

160B...第二相位延遲值160B. . . Second phase delay value

211、221...第一區域211, 221. . . First area

211A、221A...第一平行微溝槽211A, 221A. . . First parallel microchannel

212、222...第二區域212, 222. . . Second area

212B、222B...第二平行微溝槽212B, 222B. . . Second parallel microchannel

H211A...高度H211A. . . height

G211A...間距G211A. . . spacing

W211A...寬度W211A. . . width

第1圖係繪示一般3D發光二極體顯示器結構示意圖。FIG. 1 is a schematic view showing the structure of a general 3D light emitting diode display.

第2圖係繪示本發明之一較佳實施例之3D發光二極體顯示器結構示意圖。2 is a schematic structural view of a 3D light emitting diode display according to a preferred embodiment of the present invention.

第3圖係繪示本發明之一較佳實施例之陰極表面結構示意圖。Figure 3 is a schematic view showing the surface structure of a cathode according to a preferred embodiment of the present invention.

第4圖係繪示本發明之一較佳實施例之第一區域剖面示意圖。Figure 4 is a cross-sectional view showing a first region of a preferred embodiment of the present invention.

第5圖係繪示本發明之一較佳實施例之光源偏振態示意圖。Figure 5 is a schematic view showing the polarization state of a light source according to a preferred embodiment of the present invention.

第6圖係繪示本發明之另一實施例之陰極表面結構示意圖。Figure 6 is a schematic view showing the surface structure of a cathode of another embodiment of the present invention.

210...陰極210. . . cathode

211...第一區域211. . . First area

211A...第一平行微溝槽211A. . . First parallel microchannel

212...第二區域212. . . Second area

212B...第二平行微溝槽212B. . . Second parallel microchannel

Claims (9)

一種3D發光二極體顯示裝置,其包含:一透明基板;一陽極,其設置於該基板之一側;一發光結構層,其設置於該陽極之上;一陰極,其設置於該發光結構層之上,該陰極接觸該發光結構層之一表面具有複數個第一區域及複數個第二區域,該些第一區域與該些第二區域之寬度分別對應子像素單元之寬度,且該第一區域具有複數個第一平行微溝槽,該第二區域具有複數個第二平行微溝槽,該第一區域與該第二區域相互平行交錯排列;以及一相位延遲膜,其設置於該透明基板之另一側,且含有至少一相位延遲值。A 3D light emitting diode display device comprising: a transparent substrate; an anode disposed on one side of the substrate; a light emitting structure layer disposed on the anode; and a cathode disposed on the light emitting structure On the layer, the surface of the cathode contacting the light-emitting structure layer has a plurality of first regions and a plurality of second regions, wherein the widths of the first regions and the second regions respectively correspond to the widths of the sub-pixel units, and The first region has a plurality of first parallel micro-grooves, the second region has a plurality of second parallel micro-grooves, the first region and the second region are staggered in parallel with each other; and a phase retardation film is disposed on The other side of the transparent substrate and containing at least one phase delay value. 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中該第一平行微溝槽的長度方向與該第二平行微溝槽的長度方向係為平行。The 3D light emitting diode display device of claim 1, wherein a length direction of the first parallel microchannel is parallel to a length direction of the second parallel microchannel. 如申請專利範圍第2項所述之3D發光二極體顯示裝置,其中該第一平行微溝槽的長度方向與水平面的夾角實質上為90度。The 3D LED display device of claim 2, wherein an angle between a longitudinal direction of the first parallel microgroove and a horizontal plane is substantially 90 degrees. 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中該第一平行微溝槽的長度方向與該第二平行微溝槽的長度方向係為垂直。The 3D light emitting diode display device of claim 1, wherein a length direction of the first parallel microchannel is perpendicular to a length direction of the second parallel microchannel. 如申請專利範圍第4項所述之3D發光二極體顯示裝置,其中該第一平行微溝槽的長度方向與水平面的夾角實質上為45度,該第二平行微溝槽的長度方向與水平面的夾角實質上為135度。The 3D LED display device of claim 4, wherein an angle between a longitudinal direction of the first parallel micro-groove and a horizontal plane is substantially 45 degrees, and a length direction of the second parallel micro-groove is The angle between the horizontal planes is substantially 135 degrees. 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中各該第一平行微溝槽之寬度與各該第二平行微溝槽之寬度,介於1微米至100微米之間。The 3D LED display device of claim 1, wherein a width of each of the first parallel microchannels and a width of each of the second parallel microchannels are between 1 micrometer and 100 micrometers. . 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中各該第一平行微溝槽之高度與各該第二平行微溝槽之高度,介於100奈米至1微米之間。The 3D LED display device of claim 1, wherein the height of each of the first parallel microchannels and the height of each of the second parallel microchannels are between 100 nm and 1 micrometer. between. 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中相鄰之兩個該些第一平行微溝槽之間距與相鄰之兩個該些第二平行微溝槽之間距,介於1微米至100微米之間。The 3D LED display device of claim 1, wherein a distance between two adjacent first parallel microchannels and a distance between two adjacent second parallel microchannels , between 1 micron and 100 microns. 如申請專利範圍第1項所述之3D發光二極體顯示裝置,其中該相位延遲膜係具有1/4相位延遲值。The 3D light emitting diode display device according to claim 1, wherein the phase retardation film has a 1/4 phase retardation value.
TW101112478A 2012-04-09 2012-04-09 Three dimensional light emitting diode display device TWI473529B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101112478A TWI473529B (en) 2012-04-09 2012-04-09 Three dimensional light emitting diode display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101112478A TWI473529B (en) 2012-04-09 2012-04-09 Three dimensional light emitting diode display device

Publications (2)

Publication Number Publication Date
TW201342996A TW201342996A (en) 2013-10-16
TWI473529B true TWI473529B (en) 2015-02-11

Family

ID=49771631

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112478A TWI473529B (en) 2012-04-09 2012-04-09 Three dimensional light emitting diode display device

Country Status (1)

Country Link
TW (1) TWI473529B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW585984B (en) * 2002-08-30 2004-05-01 Ind Tech Res Inst The light-guide module for producing polarized light
TW201129826A (en) * 2009-12-22 2011-09-01 Lg Chemical Ltd 3D glasses for stereoscopic display device and stereoscopic display device including the same
TW201213863A (en) * 2010-07-20 2012-04-01 Dongwoo Fine Chem Co Ltd Stereoscopic image system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW585984B (en) * 2002-08-30 2004-05-01 Ind Tech Res Inst The light-guide module for producing polarized light
TW201129826A (en) * 2009-12-22 2011-09-01 Lg Chemical Ltd 3D glasses for stereoscopic display device and stereoscopic display device including the same
TW201213863A (en) * 2010-07-20 2012-04-01 Dongwoo Fine Chem Co Ltd Stereoscopic image system

Also Published As

Publication number Publication date
TW201342996A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
US9502691B2 (en) Organic light-emitting diode display panel and manufacturing method thereof
TWI667782B (en) Organic light emitting diode display panel and organic light emitting diode display device containing the same
US10330842B2 (en) Polarizer and display device comprising the same
CN103682145A (en) Organic light emitting display panel
US9224973B2 (en) Flexible organic light emitting display device
US10038159B2 (en) Organic electroluminescent device structure and manufacturing for the same
JP2011124103A (en) Organic light emitting diode and light source device using the same
KR101966336B1 (en) Touch panel and organic light emitting diode display comprising the same
JP2010027428A (en) Surface emitter and display device using the same, and lighting device
US20160291216A1 (en) Optical film and display device comprising the same
US9799851B2 (en) Organic light emitting diode array substrate having angled micro-cavity
US10141538B2 (en) Sealant, display panel and display device
KR102131964B1 (en) Organic light-emitting display apparatus
JP2012178279A (en) Organic electroluminescent element
TWI473529B (en) Three dimensional light emitting diode display device
EP2871687A2 (en) Organic light emitting device
US9887389B2 (en) Organic light emitting device
JP5136844B2 (en) Backlight and liquid crystal display device
KR20160001876A (en) Organic light emitting diode display device
CN106684072A (en) Organic light emitting diode (OLED) device
JP2014086345A (en) Electroluminescence element and luminaire using electroluminescence element
US20150155524A1 (en) White organic light emitting device
CN102769108B (en) Three-dimensional (3D) light-emitting diode display device
US8586972B2 (en) Organic light emitting device
US10656313B2 (en) Method for manufacturing light scattering film