TWI473433B - Clock integrated circuit - Google Patents
Clock integrated circuit Download PDFInfo
- Publication number
- TWI473433B TWI473433B TW100138305A TW100138305A TWI473433B TW I473433 B TWI473433 B TW I473433B TW 100138305 A TW100138305 A TW 100138305A TW 100138305 A TW100138305 A TW 100138305A TW I473433 B TWI473433 B TW I473433B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- circuit
- output
- integrated circuit
- temperature
- Prior art date
Links
Landscapes
- Pulse Circuits (AREA)
- Logic Circuits (AREA)
- Dram (AREA)
Description
本發明係關於具有時鐘電路之積體電路,其可容忍諸如溫度及電源等變異。The present invention relates to an integrated circuit having a clock circuit that can tolerate variations such as temperature and power supply.
積體電路之時鐘電路之運作會隨溫度及電源等因子而有變異。由於這些變異會影響輸出時鐘訊號的最終時序,已有多項研究進行期能針對此一問題,在上述變異存在的情況下,產生較均勻的輸出時鐘訊號。The operation of the clock circuit of the integrated circuit varies with factors such as temperature and power supply. Since these variations affect the final timing of the output clock signal, a number of studies have been conducted to address this problem, resulting in a more uniform output clock signal in the presence of the above variations.
舉例而言,積體電路之時鐘電路可依賴由產生高於供應電壓之電壓磊與一電壓調節器組合所產生之一參考信號。如此的電路會消耗大量的晶粒面積與電流。For example, the clock circuit of the integrated circuit can rely on a reference signal generated by a combination of a voltage boost generated above a supply voltage and a voltage regulator. Such a circuit consumes a large amount of grain area and current.
因此產生需求,希望能夠解決這些變異問題,但採用較不複雜的結構與較少的成本Therefore, there is a demand, and it is hoped that these variability problems can be solved, but with less complicated structure and less cost.
本發明係提供一種產生一信號之具有延遲電路的積體電路。此積體電路具有延遲電路且包括時序電路、電流產生區塊、複數個電流鏡像區塊及準位切換電路。The present invention provides an integrated circuit having a delay circuit that generates a signal. The integrated circuit has a delay circuit and includes a timing circuit, a current generating block, a plurality of current mirror blocks, and a level switching circuit.
此時序電路具有在參考信號之間切換的一輸出。This sequential circuit has an output that switches between reference signals.
此電流產生區塊具有一輸出控制電流至少控制(i)在該些參考信號之間的放電速率,(ii)在該些參考信號之間切換的充電速率之一者補償電路由一供應電壓提供電源。The current generating block has an output control current that at least controls (i) a discharge rate between the reference signals, and (ii) one of the charging rates that are switched between the reference signals, the compensation circuit is provided by a supply voltage power supply.
此複數個電流鏡像區塊其產生複數個該電流產生區塊的該輸出控制電流之複數個版本,該複數個電流版本控制該時序電路不同部分的該放電速率與該充電速率之至少一者。The plurality of current mirroring blocks generate a plurality of versions of the output control current of the plurality of current generating blocks, the plurality of current versions controlling at least one of the discharge rate and the charging rate of different portions of the sequential circuit.
此準位切換電路與該時序電路的該輸出耦接,該準位切換電路具有決定該具有延遲電路的積體電路的該時鐘信號之一輸出,其中該準位切換電路的該輸出切換輸出準位以響應該時序電路的該輸出到達該準位切換電路的一觸發點。The level switching circuit is coupled to the output of the timing circuit, and the level switching circuit has an output of the clock signal that determines the integrated circuit having the delay circuit, wherein the output switching output of the level switching circuit is The bit arrives at a trigger point of the level switching circuit in response to the output of the timing circuit.
在一實施例中,該時序電路與該準位切換電路決定與該時鐘信號的該輸出。In an embodiment, the timing circuit and the level switching circuit determine the output of the clock signal.
在不同的實施例中,該電流產生區塊的該輸出電流包括一電源補償成分與一溫度補償成分之至少一者。In various embodiments, the output current of the current generating block includes at least one of a power compensation component and a temperature compensation component.
在如此具有溫度補償成分的實施例中,該溫度補償成分其具有一可調整的溫度係數。在某些具有可調整溫度係數的實施例中,該可調整溫度係數包括與溫度成正比、反比或無關之至少一者。In such an embodiment having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient. In some embodiments having an adjustable temperature coefficient, the adjustable temperature coefficient includes at least one of proportional to temperature, inversely proportional, or unrelated.
在某些具有溫度補償成分的實施例中,該溫度補償成分具有一可調整的溫度係數,且該可調整的溫度係數包括與溫度相關之一電壓成分,其可以超過一倍的關聯性調整。In some embodiments having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient, and the adjustable temperature coefficient includes a voltage component associated with temperature that can be adjusted by more than one time.
在某些具有溫度補償成分的實施例中,該溫度補償成分具有一可調整的溫度係數,且該可調整的溫度係數包括與溫度相關之一電壓成分,其可以小於一倍的關聯性調整。In some embodiments having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient, and the adjustable temperature coefficient includes a voltage component associated with temperature that can be less than a one-fold correlation adjustment.
在某些具有電源補償成分的實施例中,該電源補償成分其具有一可調整的電源係數。在某些具有可調整電源係數的實施例中,在一特定電流值的該電源補償成分具有一個可調整電源係數的範圍。在某些具有可調整電源係數的實施例中,該可調整電源係數包括與溫度成正比、反比或無關之至少一者。In some embodiments having a power compensation component, the power compensation component has an adjustable power factor. In some embodiments having an adjustable power factor, the power compensation component at a particular current value has a range of adjustable power factor. In some embodiments having an adjustable power factor, the adjustable power factor includes at least one of proportional to, inversely proportional to, or unrelated to temperature.
在某些具有電源補償成分的實施例中,該電源補償成分具有一可調整的電源係數,且該可調整的電源係數包括與電源相關之一電壓成分,其可以超過一倍的關聯性調整。In some embodiments having a power compensation component, the power compensation component has an adjustable power factor, and the adjustable power factor includes a voltage component associated with the power source that can be adjusted by more than one-fold correlation.
在某些具有電源補償成分的實施例中,該電源補償成分具有一可調整的電源係數,且該可調整的電源係數包括與電源相關之一電壓成分,其可以小於一倍的關聯性調整。In some embodiments having a power compensation component, the power compensation component has an adjustable power factor, and the adjustable power factor includes a voltage component associated with the power source that can be less than one-fold correlation adjustment.
在一實施例中,該複數個輸出電流的版本分別是該輸出電流的一個比例。In one embodiment, the versions of the plurality of output currents are each a ratio of the output current.
在一實施例中,更包括一栓鎖電路。該栓鎖電路接收該準位切換電路的該輸出及產生該具有延遲電路的積體電路的該時鐘信號,該栓鎖電路包含交互耦接的邏輯閘,使得該栓鎖電路中該交互耦接的邏輯閘之輸出與該栓鎖電路中的另一交互耦接的邏輯閘之輸入耦接,該栓鎖電路具有複數個輸入與該時序電路的不同部分耦接。In an embodiment, a latch circuit is further included. The latch circuit receives the output of the level switching circuit and generates the clock signal of the integrated circuit having the delay circuit, the latch circuit includes an interactively coupled logic gate, such that the latching circuit is coupled to the latch The output of the logic gate is coupled to an input of another alternately coupled logic gate of the latch circuit, the latch circuit having a plurality of inputs coupled to different portions of the timing circuit.
本發明之另一目的係提供一種自一具有延遲電路的積體電路產生一時鐘信號的方法。該方法包含下列步驟:將一時序電路的輸出於複數個參考信號之間切換;產生一電流,其至少控制(i)在該些參考信號之間的放電速率,(ii)在該些參考信號之間切換的充電速率之一者;產生該電流的複數個電流版本,以至少控制該時序電路不同部分的該放電速率與該充電速率之至少一者,該複數個電流版本控制該時序電路不同部分的該放電速率與該充電速率之至少一者;以及切換一準位切換電路的輸出準位而響應該時序電路的該輸出到達該準位切換電路的一觸發點,該準位切換電路的一輸出決定該具有延遲電路的積體電路的該時鐘信號。Another object of the present invention is to provide a method of generating a clock signal from an integrated circuit having a delay circuit. The method includes the steps of: switching an output of a sequential circuit between a plurality of reference signals; generating a current that controls at least (i) a rate of discharge between the reference signals, (ii) at the reference signals One of a charging rate between the switching; generating a plurality of current versions of the current to control at least one of the discharging rate and the charging rate of the different portions of the sequential circuit, the plurality of current versions controlling the sequential circuit differently And at least one of the discharge rate and the charging rate; and switching an output level of the level switching circuit to a trigger point of the level switching circuit in response to the output of the timing circuit, the level switching circuit An output determines the clock signal of the integrated circuit having the delay circuit.
在一實施例中,該時序電路與該準位切換電路決定與該時鐘信號的該輸出。In an embodiment, the timing circuit and the level switching circuit determine the output of the clock signal.
在不同的實施例中,該電流產生區塊的該輸出包括一參考電壓成分與一溫度補償成分之至少一者。在某些具有溫度補償成分的實施例中,該溫度補償成分具有一可調整的溫度係數。在某些具有可調整溫度係數的實施例中,該溫度補償成分在一特定電流值時具有一可調整的溫度係數範圍。在某些具有可調整溫度係數的實施例中,該可調整溫度係數包括與溫度成正比的溫度相關之一電壓成分及與溫度成反比的溫度相關之一電壓成分之至少一者。In various embodiments, the output of the current generating block includes at least one of a reference voltage component and a temperature compensation component. In some embodiments having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient. In some embodiments having an adjustable temperature coefficient, the temperature compensating component has an adjustable temperature coefficient range at a particular current value. In some embodiments having an adjustable temperature coefficient, the adjustable temperature coefficient includes at least one of a voltage component that is temperature dependent and a temperature component that is inversely proportional to temperature.
在某些具有溫度補償成分的實施例中,該溫度補償成分具有一可調整的溫度係數,且該可調整的溫度係數包括與溫度相關之一電壓成分,其可以超過一倍的關聯性調整。In some embodiments having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient, and the adjustable temperature coefficient includes a voltage component associated with temperature that can be adjusted by more than one time.
在某些具有溫度補償成分的實施例中,該溫度補償成分具有一可調整的溫度係數,且該可調整的溫度係數包括與溫度相關之一電壓成分,其可以小於一倍的關聯性調整。In some embodiments having a temperature compensating component, the temperature compensating component has an adjustable temperature coefficient, and the adjustable temperature coefficient includes a voltage component associated with temperature that can be less than a one-fold correlation adjustment.
在一實施例中,該複數個輸出電流的版本分別是該輸出電流的一個比例。In one embodiment, the versions of the plurality of output currents are each a ratio of the output current.
在一實施例中,更包括產生具有一栓鎖接收該準位切換電路的該具有延遲電路的積體電路之該時鐘信號,該栓鎖包含交互耦接的邏輯閘,使得該栓鎖中該交互耦接的邏輯閘之輸出與該栓鎖中的另一交互耦接的邏輯閘之輸入耦接,該栓鎖具有複數個輸入與該時序電路的不同部分耦接。In an embodiment, the method further includes generating the clock signal of the integrated circuit having the delay circuit receiving the level switching circuit, the latch comprising an interactively coupled logic gate, such that the latch An output of the alternately coupled logic gate is coupled to an input of another alternately coupled logic gate of the latch, the latch having a plurality of inputs coupled to different portions of the timing circuit.
本發明之再一目的係提供一種自一積體電路產生複數個延遲信號的裝置。該積體電路包含一電流產生區塊及複數個延遲電路。It is still another object of the present invention to provide an apparatus for generating a plurality of delayed signals from an integrated circuit. The integrated circuit includes a current generating block and a plurality of delay circuits.
該電流產生區塊具有一輸出電流至少控制(i)在該些參考信號之間的放電速率,(ii)在該些參考信號之間切換的充電速率之一者。The current generating block has an output current that at least controls (i) a rate of discharge between the reference signals, and (ii) one of charging rates that are switched between the reference signals.
該複數個延遲電路產生該複數個延遲信號。該複數個延遲電路中的每一個延遲電路,包含延遲電路、一電流鏡像區塊及一準位切換電路。該電流鏡像區塊產生該電流產生區塊的該輸出電流之一個版本,該個版本的電流控制該時序電路不同部分的該放電速率與該充電速率之至少一者。該準位切換電路與該時序電路的該輸出耦接。該準位切換電路具有決定該積體電路的該延遲信號之一輸出,其中該準位切換電路的該輸出切換輸出準位而響應該時序電路的該輸出到達該準位切換電路的一觸發點。The plurality of delay circuits generate the plurality of delayed signals. Each of the plurality of delay circuits includes a delay circuit, a current mirror block, and a level switching circuit. The current mirroring block produces a version of the output current of the current generating block, the version of current controlling at least one of the discharging rate and the charging rate of different portions of the sequential circuit. The level switching circuit is coupled to the output of the timing circuit. The level switching circuit has an output for determining the delay signal of the integrated circuit, wherein the output of the level switching circuit switches the output level and the output of the sequential circuit reaches a trigger point of the level switching circuit .
一實施例包括一單一延遲電路。An embodiment includes a single delay circuit.
在一實施例中,該電流鏡像區塊產生該電流產生區塊的該輸出電流之比例的版本,其中該輸出電流之該比例的版本的特定電流大小導致該複數個延遲信號中的對應延遲時間。In one embodiment, the current mirroring block produces a version of the ratio of the output current of the current generating block, wherein a specific current magnitude of the version of the ratio of the output current results in a corresponding delay time in the plurality of delayed signals .
在一實施例中,該積體電路更包括一組記憶體暫存器,以控制該電流產生區塊的該輸出電流之一大小。In one embodiment, the integrated circuit further includes a set of memory registers to control the magnitude of the output current of the current generating block.
在一實施例中,該組記憶體暫存器控制由該複數個延遲電路產生之該複數個延遲信號的延遲時間。In one embodiment, the set of memory registers controls a delay time of the plurality of delayed signals generated by the plurality of delay circuits.
在一實施例中,該積體電路具有一測試模式,其輸出根據該組記憶體暫存器變動之一時脈信號計數的一總合數目。In one embodiment, the integrated circuit has a test mode that outputs a total number of clock signals counted according to one of the set of memory register changes.
在一實施例中,該積體電路具有一測試模式,其變動該組記憶體暫存器以補償於製程中的不同製程條件。In one embodiment, the integrated circuit has a test mode that varies the set of memory registers to compensate for different process conditions in the process.
本發明係揭露許多不同的實施例。The present invention discloses many different embodiments.
本發明係與美國專利申請號12/631661、12/631693、12/631705及12/834369相關。在此皆引為參考資料。The present invention is related to U.S. Patent Application Nos. 12/631,661, 12/631,693, 12/631,705, and 12/834,369. It is cited here as a reference.
第1圖顯示一具有產生控制時序電路在兩個該些參考信號之間的放電及/或速率之電流的多重版本的積體電路時鐘電路之方塊示意圖。Figure 1 shows a block diagram of a multi-version integrated circuit clock circuit having a current that produces a discharge and/or rate between two of said reference signals.
此具有延遲電路之積體電路通常是一迴路結構,具有時序電路102、準位切換電路104及栓鎖電路106。此栓鎖電路106產生一自栓鎖電路106至時序電路102的回授信號,及一時鐘輸出信號110。此時序電路102根據一時間常數在兩個參考信號之間切換,例如一供應電壓參考信號與一接地參考信號。此時序電路的輸出會自低準位參考值升高至高準位參考值,及/或自高準位參考值下降至低準位參考值。此時序電路輸出的上升及/或下降速率是由區塊116所產生的電流決定。由區塊116所產生的電流藉由電流鏡像區塊118被複製或是等比例地送到時序電路102中的複數個位置。The integrated circuit having the delay circuit is usually a one-loop structure having a sequential circuit 102, a level switching circuit 104, and a latch circuit 106. The latch circuit 106 generates a feedback signal from the latch circuit 106 to the timing circuit 102 and a clock output signal 110. The timing circuit 102 switches between two reference signals according to a time constant, such as a supply voltage reference signal and a ground reference signal. The output of this sequential circuit will rise from the low level reference to the high level reference and/or from the high level reference to the low level reference. The rate of rise and/or fall of the output of the sequential circuit is determined by the current generated by block 116. The current generated by block 116 is replicated by current mirror block 118 or sent to a plurality of locations in sequential circuit 102 in equal proportions.
準位切換電路104會監控時序電路102的輸出,且根據此時序電路102是否足夠高或低來改變其輸出。栓鎖電路106的範例為SR栓鎖器、SR NAND栓鎖器、JK栓鎖器、閘式SR栓鎖器、閘式D栓鎖器、閘式觸發栓鎖器等。此栓鎖電路電路106具有兩個穩定狀態且在這兩個穩定狀態之間切換以產生一時鐘輸出信號110。The level switching circuit 104 monitors the output of the timing circuit 102 and changes its output depending on whether the timing circuit 102 is sufficiently high or low. Examples of the latch circuit 106 are an SR latch, an SR NAND latch, a JK latch, a gate SR latch, a gate D latch, a gate trigger latch, and the like. The latch circuit circuit 106 has two stable states and switches between the two stable states to generate a clock output signal 110.
第2圖顯示一積體電路時鐘電路之電路示意圖,其可以產生一電流的多重版本以控制介於時序電路102在兩個參考信號之間切換的充電及/或放電速率。2 is a circuit diagram of an integrated circuit clock circuit that can generate multiple versions of a current to control the rate of charge and/or discharge between the two reference signals being tracked by the sequential circuit 102.
圖式中顯示平行放置的時序電路202A和202B,平行放置的反相電路204A和204B,以及一栓鎖電路206。此時序電路202A和202B通常是自電容CX或CY進行充電或放電,以改變OX或OY的輸出電壓。此時序電路輸出的上升及/或下降速率是由電流產生區塊所產生的電流決定。此電流產生器區塊所產生的電流藉由多重電流鏡像區塊被複製或是等比例地於時序電路202A和202B中。The sequence shows parallel placed timing circuits 202A and 202B, parallel placed inverting circuits 204A and 204B, and a latch circuit 206. This timing circuits 202A and 202B are typically charged or discharged from a capacitor CX or CY to change the output voltage of OX or OY. The rise and/or fall rate of the output of this sequential circuit is determined by the current generated by the current generating block. The current generated by this current generator block is replicated by multiple current mirroring blocks or proportionally in sequential circuits 202A and 202B.
在例示的實施例中,其中電容CX或CY係與一共同接地耦接。雖然圖式中並未明示所有可能的變化,本發明的技術包含所有實施例中具有電容CX或CY的時序電路,其中時序電路可以修改為將電容CX或CY係與一共同接地耦接。In the illustrated embodiment, the capacitor CX or CY is coupled to a common ground. Although not all possible variations are explicitly illustrated in the drawings, the techniques of the present invention include sequential circuits having capacitors CX or CY in all embodiments, wherein the timing circuits can be modified to couple capacitors CX or CY to a common ground.
在一實施例中,電容CX或CY實際上是一PMOS電晶體具有相反的端點與反相器的共同接地端解除耦接。In one embodiment, the capacitor CX or CY is actually a PMOS transistor having opposite ends that are decoupled from the common ground of the inverter.
在另一實施例中,其中電容CX或CY係與一共同電源耦接。雖然圖式中並未明示所有可能的變化,本發明的技術包含所有實施例中具有電容CX或CY的時序電路,其中時序電路可以修改為將電容CX或CY係與一共同電源耦接。In another embodiment, the capacitor CX or CY is coupled to a common power source. Although not all possible variations are shown in the drawings, the techniques of the present invention include a sequential circuit having capacitors CX or CY in all embodiments, wherein the timing circuit can be modified to couple the capacitor CX or CY to a common power source.
此反相電路204A和204B由一CTAT電源或是一與溫度成反比之電源,其會隨著溫度的增加而降低,來驅動。在另一實施例中,此反相電路204A和204B由一PTAT電源或是一與溫度成正比之電源,其會隨著溫度的增加而增加,來驅動。在另一實施例中,此反相電路204A和204B由一與溫度無關之定電源來驅動。The inverter circuits 204A and 204B are driven by a CTAT power supply or a power supply that is inversely proportional to temperature, which decreases as the temperature increases. In another embodiment, the inverter circuits 204A and 204B are driven by a PTAT power supply or a power supply proportional to temperature which increases with increasing temperature. In another embodiment, the inverter circuits 204A and 204B are driven by a temperature independent power supply.
此反相電路204A和204B由一CTAP電源(即電源與電路電源成反比)來驅動。在另一實施例中,此反相電路204A和204B由一PTAP電源(即電源與電路電源成正比)來驅動。在另一實施例中,此反相電路204A和204B由一與電路電源無關之定電源來驅動。The inverter circuits 204A and 204B are driven by a CTAP power supply (i.e., the power supply is inversely proportional to the circuit power supply). In another embodiment, the inverter circuits 204A and 204B are driven by a PTAP power supply (i.e., the power supply is proportional to the circuit power supply). In another embodiment, the inverter circuits 204A and 204B are driven by a constant power source independent of the circuit power supply.
此反相器電源係被控制,以改變反相器的行程且因此偵測此時序電路的輸出(如RC電路的上升/下降)進行比較。The inverter power supply is controlled to change the stroke of the inverter and thus detect the output of the sequential circuit (such as the rise/fall of the RC circuit) for comparison.
此反相器相較於運算放大器版本具有以下的優點:(1)較低的工作電壓VDD;(2)較小的電路尺寸(反相器僅有兩個金氧半電晶體而運算放大器具有五個或以上的金氧半電晶體);(3)較簡單的設計;(4)較低的主動電流(反相器具有一個電流路徑,而不需要運算放大器中所需的一個額外電流鏡);及(5)較高的工作速度(反相器具有一個階段的延遲)。This inverter has the following advantages over the op amp version: (1) lower operating voltage VDD; (2) smaller circuit size (inverter has only two MOS transistors and op amp has Five or more MOS transistors); (3) simpler design; (4) lower active current (inverter has a current path without the need for an additional current mirror in the op amp And; (5) a higher operating speed (the inverter has a phase delay).
此栓鎖電路206是交互耦接的,如此一邏輯閘的輸出與另一邏輯閘的輸入耦接。一邏輯閘的一輸入是直接與另一邏輯閘的輸出耦接,此一邏輯閘的另一輸入是直接與另一邏輯閘的輸出經過時序電路與準位偵測電路而耦接。The latch circuit 206 is alternately coupled such that the output of one logic gate is coupled to the input of another logic gate. One input of a logic gate is directly coupled to the output of another logic gate. The other input of the logic gate is directly coupled to the output of another logic gate via a timing circuit and a level detection circuit.
第3圖是一電流產生器的示意圖,其產生控制時序電路參考信號之間切換的放電及/或充電速率。Figure 3 is a schematic diagram of a current generator that produces a discharge and/or charge rate that controls switching between reference circuit reference signals.
此電流產生電路,或稱i產生器,具有兩個電流產生成分:一個根據供應電壓變動(如正比)的電壓參考成分及一個根據供應溫度變動(如正比或反比)的溫度補償成分。The current generating circuit, or i-generator, has two current generating components: a voltage reference component that varies according to a supply voltage (eg, proportional) and a temperature compensation component that varies according to a supply temperature (eg, proportional or inverse ratio).
因此,第3圖顯示(i)i-Vdd電流源(根據供應電壓變動)及(ii)i-temp電流源(根據溫度變動)。此電流產生電路的輸出會將此兩個電流成分相加且輸出總合電流至電流鏡像,或i-copy,區塊。如圖中所示,輸出具有多個串聯的電晶體介於此電流鏡與接地參考電壓之間。此多個串聯的電晶體具有各自的輸出nclamp及sdbias。此sdbias信號是電流鏡的輸出信號,而nclamp信號則是一疊接電路設計之疊接信號。可以不使用例如是nclamp的電晶體,其代價則是會得到較差的結果。Therefore, Figure 3 shows (i) the i-Vdd current source (according to the supply voltage variation) and (ii) the i-temp current source (according to temperature fluctuations). The output of this current generating circuit adds the two current components and outputs the combined current to the current mirror, or i-copy, block. As shown in the figure, the output has a plurality of transistors connected in series between the current mirror and the ground reference voltage. The plurality of series connected transistors have respective outputs nclamp and sdbias. The sdbias signal is the output signal of the current mirror, and the nclamp signal is a spliced signal of a stacked circuit design. A transistor such as an nclamp may not be used, at the expense of poor results.
此反相電路204A和204B由一CTAP電源(即電源與電路電源成反比)來驅動。在另一實施例中,此反相電路204A和204B由一PTAP電源(即電源與電路電源成正比)來驅動。在另一實施例中,此反相電路204A和204B由一與電路電源無關之定電源來驅動。The inverter circuits 204A and 204B are driven by a CTAP power supply (i.e., the power supply is inversely proportional to the circuit power supply). In another embodiment, the inverter circuits 204A and 204B are driven by a PTAP power supply (i.e., the power supply is proportional to the circuit power supply). In another embodiment, the inverter circuits 204A and 204B are driven by a constant power source independent of the circuit power supply.
第4圖是一電流鏡像區塊的示意圖,其產生一控制時序電路參考信號之間切換的放電及/或充電速率的電流版本。Figure 4 is a schematic illustration of a current mirroring block that produces a current version that controls the switching and/or charging rate of switching between reference circuit reference signals.
電晶體的偏壓係由電流產生區塊,或稱i產生區塊,根據輸出電流而產生。因此,類似於一電流鏡,相同的電晶體偏壓會在電流鏡像,或i-copy,區塊的輸出重新複製電流產生區塊,或稱I產生區塊,的輸出電流。替代地,可以藉由調整電晶體的寬度,使得電流鏡像,或i-copy,區塊的輸出與電流產生區塊的輸出電流成一個比例。The bias voltage of the transistor is generated by a current generating block, or i, a block, which is generated according to the output current. Thus, similar to a current mirror, the same transistor bias will be reflected in the current mirror, or i-copy, the output of the block re-copy current generation block, or I-generated block, the output current. Alternatively, the output of the block can be made proportional to the output current of the current generating block by adjusting the width of the transistor such that the current is mirrored, or i-copy.
如圖所示,此多個串聯的電晶體係將一接地參考電壓與如第1圖中的電流輸出終端連接,其進一步與OX或OY節點連接。此多個串聯的電晶體具有各自的輸入nclamp、sdbias及輸入(ENX或ENY)。此sdbias信號是電流鏡的輸出信號,而nclamp信號則是一疊接電路設計之疊接信號。可以不使用例如是nclamp的電晶體,其代價則是會得到較差的結果。As shown, the plurality of series-connected electro-crystalline systems connect a ground reference voltage to the current output terminal as in Figure 1, which is further coupled to the OX or OY node. The plurality of series connected transistors have respective inputs nclamp, sdbias and inputs (ENX or ENY). The sdbias signal is the output signal of the current mirror, and the nclamp signal is a spliced signal of a stacked circuit design. A transistor such as an nclamp may not be used, at the expense of poor results.
第5圖為顯示時間與根據控制放電及/或充電速率的電流而進行放電及/或充電速率的OX或OY節點的關係圖。Figure 5 is a graph showing the relationship between time and OX or OY nodes for discharging and/or charging rates based on currents that control discharge and/or charging rate.
如圖中所示,放電速率係與由電流產生區塊,或稱I產生區塊,及由電流鏡像,或i-copy,區塊所複製或是等比例地(以及選擇性的等比例)的輸出電流呈線性比例。As shown in the figure, the discharge rate is either copied by current generation block, or I generated block, and mirrored by current, or i-copy, block or proportionally (and optionally proportionally) The output current is linearly proportional.
雖然所示的實施例中顯示線性地放電,一個替代實施例也可以是線性地充電。While the illustrated embodiment shows linear discharge, an alternate embodiment may also be linearly charged.
第6圖為顯示時間與具有延遲電路之積體電路所輸出的時鐘電壓的關係圖。Fig. 6 is a graph showing the relationship between the time and the clock voltage outputted by the integrated circuit having the delay circuit.
第7及第8圖顯示此處所描述之時鐘電路表現的資料圖示。Figures 7 and 8 show a graphical representation of the performance of the clock circuit described herein.
第7圖顯示在不同溫度下時脈週期與供應電壓的關係圖。Figure 7 shows the relationship between the clock cycle and the supply voltage at different temperatures.
第8圖顯示在不同供應電壓下時脈週期與溫度的關係圖。Figure 8 shows the relationship between clock cycle and temperature at different supply voltages.
如第7及第8圖所示的模擬結果,在溫度範圍[-10℃~80℃]及供應電壓範圍[2.7V~4V]的區間中時脈頻率僅自70奈秒變動了1.5奈秒。如此僅相當於±1.1%的變動。As shown in the simulation results in Figures 7 and 8, the clock frequency has changed by only 1.5 nanoseconds from 70 nanoseconds in the temperature range [-10 °C ~ 80 °C] and the supply voltage range [2.7V~4V]. . This is only equivalent to a change of ±1.1%.
第9圖顯示一溫度補償電流產生器的電路圖,其在此溫度補償電流產生器中一特定溫度下並沒有一個可調的溫度係數。Figure 9 shows a circuit diagram of a temperature compensated current generator that does not have an adjustable temperature coefficient at a particular temperature in the temperature compensated current generator.
以下,除了參考電壓Vref外,不同的V1和V2稱為Vptat和Vctat。Hereinafter, in addition to the reference voltage Vref, different V1 and V2 are referred to as Vptat and Vctat.
I1=(V1-Vref)/RI1=(V1-Vref)/R
I2=(V2-Vref)/RI2=(V2-Vref)/R
ΔI=I2-I1=(V2-V1)/R=ΔV/RΔI=I2-I1=(V2-V1)/R=ΔV/R
TC=ΔI/ΔV=1/R,Iout=(Vptat-Vref)/RTC=ΔI/ΔV=1/R, Iout=(Vptat-Vref)/R
因此,當調整溫度係數(TC)時,無論目前的輸出電流使否已經是理想值,都必須要調整電阻值R及輸出電流。Therefore, when the temperature coefficient (TC) is adjusted, the resistance value R and the output current must be adjusted regardless of whether the current output current is already an ideal value.
第10圖是根據本發明第一實施例之溫度補償電流產生器的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Fig. 10 is a circuit diagram of a temperature compensation current generator according to a first embodiment of the present invention, which has a temperature coefficient which can be adjusted according to a specific current value of the temperature compensation current generator.
以下,除了參考電壓Vref外,不同的V1和V2稱為Vptat和Vctat。Hereinafter, in addition to the reference voltage Vref, different V1 and V2 are referred to as Vptat and Vctat.
I1=(K1*V1-Vref)/RI1=(K1*V1-Vref)/R
I2=(K1*V2-Vref)/RI2=(K1*V2-Vref)/R
ΔI=I2-I1=K1*(V2-V1)/R=K1*ΔV/RΔI=I2-I1=K1*(V2-V1)/R=K1*ΔV/R
TC=ΔI/ΔV=K1/R,Iout=(K1*Vptat-Vref)/RTC=ΔI/ΔV=K1/R, Iout=(K1*Vptat-Vref)/R
假設Iout=1,(K1*V-Vref)=R則TC=K1/(K1*V-Vref)Suppose Iout=1, (K1*V-Vref)=R then TC=K1/(K1*V-Vref)
所以不同的K1會具有不同的TCSo different K1 will have different TCs
當調整溫度係數TC時,可以藉由調整K1和R使得輸出電流保持在所欲的範圍內。When the temperature coefficient TC is adjusted, the output current can be kept within the desired range by adjusting K1 and R.
第11圖是根據本發明第二實施例之溫度補償電流產生器(為電流產生區塊的一部份)的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。11 is a circuit diagram of a temperature compensation current generator (which is a part of a current generating block) according to a second embodiment of the present invention, which has a temperature coefficient that can be adjusted according to a specific current value of the temperature compensation current generator .
以下,除了參考電壓Vref外,不同的V1和V2稱為Vptat和Vctat。Hereinafter, in addition to the reference voltage Vref, different V1 and V2 are referred to as Vptat and Vctat.
I1=(V1-(K2*Vref))/RI1=(V1-(K2*Vref))/R
I2=(V2-(K2*Vref))/RI2=(V2-(K2*Vref))/R
ΔI=I2-I1=(V2-V1)/R=ΔV/RΔI=I2-I1=(V2-V1)/R=ΔV/R
TC=ΔI/ΔV=1/R,Iout=(V-(K2*Vref))/RTC=ΔI/ΔV=1/R, Iout=(V-(K2*Vref))/R
所以不同的K1會具有不同的TCSo different K1 will have different TCs
當調整溫度係數TC時,可以藉由調整K2和R使得輸出電流保持在所欲的範圍內。When the temperature coefficient TC is adjusted, the output current can be kept within the desired range by adjusting K2 and R.
第12圖是根據本發明第三實施例之溫度補償電流產生器(為電流產生區塊的一部份)的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 12 is a circuit diagram of a temperature compensated current generator (which is part of a current generating block) according to a third embodiment of the present invention, which has a temperature coefficient that can be adjusted according to a specific current value of the temperature compensating current generator .
以下,除了參考電壓Vref外,不同的V1和V2稱為Vptat和Vctat。Hereinafter, in addition to the reference voltage Vref, different V1 and V2 are referred to as Vptat and Vctat.
I1=((K1*V1)-(K2*Vref))/RI1=((K1*V1)-(K2*Vref))/R
I2=((K1*V2)-(K2*Vref))/RI2=((K1*V2)-(K2*Vref))/R
ΔI=I2-I1=K1*(V2-V1)/R=K1*ΔVptat/RΔI=I2-I1=K1*(V2-V1)/R=K1*ΔVptat/R
TC=ΔI/ΔV=K1/R,Iout=((K1*V)-(K2*Vref))/RTC=ΔI/ΔV=K1/R, Iout=((K1*V)-(K2*Vref))/R
當調整溫度係數TC時,可以藉由調整K1、K2和R使得輸出電流保持在所欲的範圍內。When the temperature coefficient TC is adjusted, the output current can be kept within the desired range by adjusting K1, K2, and R.
第13圖是根據本發明更詳細之第一實施例的溫度補償電流產生器(為電流產生區塊的一部份)之電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 13 is a circuit diagram of a temperature compensated current generator (part of a current generating block) according to a first embodiment of the present invention in more detail, having a specific current value according to a temperature compensating current generator Adjust the temperature coefficient.
第14圖是根據本發明更詳細之第二實施例的溫度補償電流產生器(為電流產生區塊的一部份)之電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 14 is a circuit diagram of a temperature compensated current generator (part of a current generating block) according to a second embodiment of the present invention in more detail, having a specific current value according to the temperature compensating current generator Adjust the temperature coefficient.
第15圖顯示根據本發明不同電路設定之溫度補償電流與溫度的關係圖。Figure 15 is a graph showing the relationship between temperature compensation current and temperature set by different circuits in accordance with the present invention.
第16圖係可應用本發明具有改良積體電路時鐘電路之一記憶電路的方塊示意圖。Figure 16 is a block diagram showing a memory circuit of the present invention having an improved integrated circuit clock circuit.
第16圖是包含一記憶體陣列1612的積體電路1600之簡要方塊示意圖。一字元線(或列)/區塊選取解碼器及驅動器1614係耦接至,且與其有著電性溝通,複數條字元線1616及字串選擇線,其間係沿著記憶胞陣列1612的列方向排列。一位元線(行)解碼器及驅動器1618係耦接至複數條沿著記憶體陣列1612之行排列的位元線1620,且與其有著電性溝通,以自記憶胞陣列1612讀取資料,或是寫入資料至記憶胞陣列1612的記憶胞中。位址係透過匯流排1622提供至字元線和區塊選擇解碼器1614及位元線解碼器1618。方塊1624中的感應放大器與資料輸入結構,包含作為讀取、程式化和抹除模式的電流源,係透過匯流排1626耦接至位元線解碼器1618。資料係由積體電路1600上的輸入/輸出埠透過資料輸入線1628傳送至方塊1624之資料輸入結構。在此例示的實施例中,其他電路1630也包括在此積體電路1600內,例如通用目的處理器或特殊用途電路,或是由此記憶陣列所支援的組合模組以提供單晶片系統功能。資料係由方塊1624中的感應放大器,透過資料輸出線1632,傳送至積體電路1600上的輸入/輸出埠或其他積體電路1600內或外之資料目的地。狀態機構及改良時鐘電路(如此處所討論的)係於電路1634中,以控制偏壓調整供應電壓電流源1636。在不同的實施例中,此電路1634具有與溫度相關的電流產生器,其具有例如是在一特定電流值時具有一可調整的溫度係數範圍之可調整的溫度係數。在不同的實施例中,此電路1634具有控制介於在時序電路中兩個參考信號之間切換的充電及/或放電速率之電流的多重複製或是等比例的版本。Figure 16 is a schematic block diagram of an integrated circuit 1600 including a memory array 1612. A word line (or column) / block selection decoder and driver 1614 are coupled to, and have electrical communication therewith, a plurality of word line lines 1616 and a string selection line, along the memory cell array 1612 Arrange in the column direction. A one-line (row) decoder and driver 1618 is coupled to the plurality of bit lines 1620 arranged along the row of the memory array 1612 and electrically communicated with the memory cell array 1612 for reading data. Or write data to the memory cells of the memory cell array 1612. The address is provided through bus bar 1622 to word line and block select decoder 1614 and bit line decoder 1618. The sense amplifier and data input structures in block 1624, including current sources as read, program, and erase modes, are coupled to bit line decoder 1618 via bus 1626. The data is transferred from the input/output port on the integrated circuit 1600 through the data input line 1628 to the data input structure of block 1624. In the illustrated embodiment, other circuits 1630 are also included in the integrated circuit 1600, such as a general purpose processor or special purpose circuit, or a combination module supported by the memory array to provide a single wafer system function. The data is transmitted by the sense amplifier in block 1624, through data output line 1632, to the input/output port on integrated circuit 1600 or to other data destinations within or outside of integrated circuit 1600. The state mechanism and the modified clock circuit (as discussed herein) are coupled to circuit 1634 to control the bias voltage to adjust supply voltage current source 1636. In various embodiments, the circuit 1634 has a temperature dependent current generator having an adjustable temperature coefficient having an adjustable temperature coefficient range, for example, at a particular current value. In various embodiments, this circuit 1634 has multiple copies or a proportional version of the current that controls the charge and/or discharge rate that is switched between the two reference signals in the sequential circuit.
第17圖為具有由電流產生器的一參考電流所決定之延遲時間的延遲電路之方塊圖。Figure 17 is a block diagram of a delay circuit having a delay time determined by a reference current of the current generator.
此延遲電路係第二圖中具有一組相類似元件之時鐘電路的變形版本。此延遲電路通常將電容CX充電或放電以改變CX處的輸出電壓。此延遲電路輸出的上升及/或下降速率是由電流產生區塊所產生的一參考電流決定。由此電流產生區塊,或稱I產生區塊,的電流係由電流鏡像,或i-copy,區塊複製或是等比例地送入此延遲電路。This delay circuit is a modified version of the clock circuit having a set of similar components in the second figure. This delay circuit typically charges or discharges capacitor CX to change the output voltage at CX. The rise and/or fall rate of the output of the delay circuit is determined by a reference current generated by the current generating block. The current generating block, or I generating block, is current mirrored by current, or i-copy, block copied or proportionally fed into the delay circuit.
在一實施例中,電容CX實際上是一PMOS電晶體具有相反的端點與反相器的共同接地端解除耦接。In one embodiment, the capacitor CX is actually a PMOS transistor having opposite ends that are decoupled from the common ground of the inverter.
在另一實施例中,其中電容CX係與一共同電源耦接。In another embodiment, the capacitor CX is coupled to a common power source.
此反相電路可由一CTAT(即與溫度成反比之電源)的電源或是調節電源來驅動。在另一實施例中,此反相電路可由一PTAT(即與溫度成正比之電源)的電源或是調節電源來驅動。在另一實施例中,此反相電路係由一與溫度無關之定電源來驅動。The inverter circuit can be driven by a CTAT (ie, a power source that is inversely proportional to temperature) or an regulated power source. In another embodiment, the inverter circuit can be driven by a PTAT (ie, a power source proportional to temperature) or an regulated power source. In another embodiment, the inverter circuit is driven by a temperature independent power supply.
此反相電路可由一CTAP(即電源與電路電源成反比)電源或是調節電源來驅動。在另一實施例中,此反相電路可由一PTAP(即電源與電路電源成正比)電源或是調節電源來驅動。在另一實施例中,此反相電路係由一與電路電源無關之定電源來驅動。The inverter circuit can be driven by a CTAP (ie, the power supply is inversely proportional to the circuit power supply) or an regulated power supply. In another embodiment, the inverter circuit can be driven by a PTAP (ie, the power supply is proportional to the circuit power supply) or an regulated power supply. In another embodiment, the inverter circuit is driven by a constant power source independent of the circuit power supply.
此反相器電源係被控制,以改變反相器的行程且因此偵測此時序電路的輸出(如RC電路的上升/下降)進行比較。The inverter power supply is controlled to change the stroke of the inverter and thus detect the output of the sequential circuit (such as the rise/fall of the RC circuit) for comparison.
此反相器具有以下的優點:(1)較低的工作電壓VDD;(2)較小的電路尺寸(反相器僅有兩個金氧半電晶體而運算放大器具有五個或以上的金氧半電晶體);(3)較簡單的設計;(4)較低的主動電流(反相器具有一個電流路徑,而不需要運算放大器中所需的一個額外電流鏡);及(5)較高的工作速度(反相器具有一個階段的延遲)。This inverter has the following advantages: (1) lower operating voltage VDD; (2) smaller circuit size (inverter has only two MOS transistors and op amp has five or more gold) Oxygen semi-transistor); (3) simpler design; (4) lower active current (inverter has a current path without the need for an additional current mirror in the op amp); and (5) Higher operating speed (inverter has a phase delay).
第18圖為具有由一分享電流產生器來決定之延遲時間的多重延遲電路之方塊圖。Figure 18 is a block diagram of a multiple delay circuit having a delay time determined by a shared current generator.
第18圖中的延遲系統與第17圖中的延遲系統類似。然而,第17圖中的延遲系統僅將電流產生器與一個延遲電路耦接,而第18圖中的延遲系統將電流產生器與多個延遲電路耦接。第18圖中的延遲系統可以藉由改變電流產生器的電流來調整積體電路中不同位置上的多個延遲電路之延遲時間。舉例而言,電流產生器的參考電流可以藉由控制修剪暫存器來改變,此修剪暫存器可利用例如改變修剪暫存器以調整依賴電流產生器的參考電流之所有多個延遲電路之延遲時間而改變參考電流的大小。否則,調整積體電路中不同位置上的多個延遲電路之延遲時間必須對每一個延遲電路之延遲時間個別進行調整。The delay system in Fig. 18 is similar to the delay system in Fig. 17. However, the delay system of Fig. 17 only couples the current generator to one delay circuit, and the delay system of Fig. 18 couples the current generator with a plurality of delay circuits. The delay system of Fig. 18 can adjust the delay time of a plurality of delay circuits at different positions in the integrated circuit by changing the current of the current generator. For example, the reference current of the current generator can be changed by controlling the trim register, and the trim register can utilize, for example, changing the trim register to adjust all of the plurality of delay circuits that rely on the current reference of the current generator. The delay time changes the magnitude of the reference current. Otherwise, adjusting the delay time of multiple delay circuits at different locations in the integrated circuit must be individually adjusted for the delay time of each delay circuit.
雖然多個延遲電路係分享相同的參考電流,此多個延遲電路可以產生相同的延遲時間或不同的延遲時間。在某些實施例中,此多個延遲電路可以藉由改變此多個延遲電路間的電流鏡像比例而改變。舉例而言,此多個延遲電路可以改變第4圖之電流複製區塊中電晶體寬度與第3圖之電流複製區塊中電晶體寬度的比例。在其他的範例中,多個個別電流鏡像電晶體是平行地連接。此外,例如第17圖中的電容CX之電容值也是可以改變的。Although multiple delay circuits share the same reference current, the multiple delay circuits can produce the same delay time or different delay times. In some embodiments, the plurality of delay circuits can be varied by varying the current mirror ratio between the plurality of delay circuits. For example, the plurality of delay circuits can change the ratio of the transistor width in the current replica block of FIG. 4 to the transistor width in the current replica block of FIG. In other examples, a plurality of individual current mirror transistors are connected in parallel. Further, for example, the capacitance value of the capacitor CX in Fig. 17 can also be changed.
第19圖為另一種具有由一分享電流產生器來決定之延遲時間的多重延遲電路之方塊圖。與第18圖類似的是,單一電流產生器控制決定多重延遲電路之延遲時間的參考電流。每一個延遲區塊可以具有相同或不同的延遲電路。請參閱第20~27圖其顯示不同延遲電路的多種範例。Figure 19 is a block diagram of another multiple delay circuit having a delay time determined by a shared current generator. Similar to Fig. 18, a single current generator controls the reference current that determines the delay time of the multiple delay circuits. Each of the delay blocks may have the same or different delay circuits. See Figures 20~27 for a variety of examples of different delay circuits.
第20~23圖顯示搭配由一電流產生器的一參考電流來決定延遲時間的延遲電路之方塊圖。Figures 20 through 23 show block diagrams of a delay circuit with a reference current from a current generator to determine the delay time.
第24~27圖顯示與第20~23圖不同延遲電路對應之輸入與輸出電壓軌跡的時序圖。Figures 24 to 27 show timing diagrams of the input and output voltage traces corresponding to the different delay circuits of Figures 20-23.
第28圖顯示溫度補償與由不同延遲區塊產生之電路電源補償延遲時間的關係圖。Figure 28 shows the relationship between temperature compensation and circuit power supply compensation delay time generated by different delay blocks.
產生不同延遲的延遲電路係由不同溫度與電源的條件下模擬而得。這些不同的延遲電路分別是5奈秒延遲電路、10奈秒延遲電路、15奈秒延遲電路及20奈秒延遲電路。這些不同的組合之模擬為:-10℃及3.3V電源、25℃及2.9V電源、25℃及3.3V電源、25℃及3.8V電源、35℃及3.3V電源、80℃及3.3V電源。其模擬結果顯示在不同溫度與電源的組合下每一延遲電路具有相同的表現。Delay circuits that produce different delays are simulated from different temperatures and power supplies. These different delay circuits are a 5 nanosecond delay circuit, a 10 nanosecond delay circuit, a 15 nanosecond delay circuit, and a 20 nanosecond delay circuit. The simulations of these different combinations are: -10 ° C and 3.3 V power supply, 25 ° C and 2.9 V power supply, 25 ° C and 3.3 V power supply, 25 ° C and 3.8 V power supply, 35 ° C and 3.3 V power supply, 80 ° C and 3.3 V power supply . The simulation results show that each delay circuit has the same performance under the combination of different temperatures and power supplies.
此延遲時間可以使用不同方式控制。當電流鏡比例改變,例如改變單獨電流鏡電晶體或是平行連接的多重電流鏡電晶體個別的寬度。此外,也可以改變例如是第17圖中的電容CX之電容值。This delay time can be controlled in different ways. When the current mirror ratio is changed, for example, the individual widths of the individual current mirror transistors or the multiple current mirror transistors connected in parallel are changed. Further, it is also possible to change the capacitance value of the capacitor CX, for example, in FIG.
第29圖顯示一測試機的測試流程圖,其會自動調整一積體電路中具有單一組修剪暫存器中多重延遲區塊的延遲時間。Figure 29 shows a test flow diagram of a test machine that automatically adjusts the delay time for multiple delay blocks in a single set of trim registers in an integrated circuit.
在步驟2910,此測試機送出(i)測試模式命令及(ii)修剪位元=000至待測試積體電路。此修剪位元控制延遲電路中參考電流的大小。在步驟2920,自測試機送高準位參考脈衝至待測試積體電路。在步驟2930,響應自測試機送出的高準位參考脈衝,此待測試積體電路開始延遲電路控制時脈(具有由修剪位元控制的週期)及待測試積體電路內部時脈的計數。在步驟2940,自測試機送低準位參考脈衝至待測試積體電路。在步驟2950,響應自測試機送出的低準位參考脈衝,此待測試積體電路結束延遲電路控制時脈,及自待測試積體電路傳送內部時脈的計數數目至測試機。在步驟2960,此測試機決定此時的計數數目是否大於時脈計數數目的目標值。如果沒有,則此時脈太慢,則在步驟2970此測試機決定待測試積體電路中的修剪位元或是由此參考電流控制的其他延遲電路需要被調整以加快時脈。在步驟2970,將修剪位元增加後的值儲存於測試機中且此流程回到步驟2920。另一方面,若是在步驟2960中此測試機決定此時的計數數目已經大於時脈計數數目的目標值,則在步驟2980,將修剪位元增加後的值儲存於測試機中。At step 2910, the tester sends (i) the test mode command and (ii) trim bit = 000 to the integrated circuit to be tested. This trim bit controls the magnitude of the reference current in the delay circuit. At step 2920, the high level reference pulse is sent from the test machine to the integrated circuit to be tested. In step 2930, in response to the high level reference pulse sent from the tester, the integrated circuit to be tested begins to delay the circuit control clock (having a period controlled by the trim bit) and the count of the internal clock of the integrated circuit to be tested. At step 2940, the low level reference pulse is sent from the test machine to the integrated circuit to be tested. In step 2950, in response to the low level reference pulse sent from the test machine, the integrated circuit to be tested ends the delay circuit control clock, and the number of counts of the internal clock transmitted from the integrated circuit to be tested is sent to the test machine. At step 2960, the tester determines if the number of counts at this time is greater than the target value of the number of clock counts. If not, then the pulse is too slow, then in step 2970 the tester determines that the trim bit in the integrated circuit to be tested or other delay circuit controlled by the reference current needs to be adjusted to speed up the clock. At step 2970, the increased value of the trim bit is stored in the test machine and the flow returns to step 2920. On the other hand, if in step 2960 the tester determines that the number of counts at this time is already greater than the target value of the number of clock counts, then in step 2980, the value of the trimmed bit increase is stored in the test machine.
第30圖顯示一個會自動調整一積體電路中具有單一組修剪暫存器中多重延遲區塊的延遲時間之測試系統的方塊圖。Figure 30 shows a block diagram of a test system that automatically adjusts the delay time of a multi-delay block in a single set of pruning registers in an integrated circuit.
此測試機與測試積體電路耦接。此測試機送出測試模式命令以初始化此延遲電路的自動修剪。此測試機也會送出高準位及低準位參考脈衝至待測試積體電路以開始或結束延遲電路中具有由參考電流控制之延遲時間的時脈數。此待測試積體電路中的電流產生器具有修剪暫存器來控制參考電流的大小。此待測試積體電路也包含一計數器響應來自測試機的參考脈衝以對時脈計數。The test machine is coupled to the test integrated circuit. This test machine sends a test mode command to initialize the automatic trimming of this delay circuit. The tester also sends a high-level and low-level reference pulse to the integrated circuit to be tested to start or end the number of clocks in the delay circuit having a delay time controlled by the reference current. The current generator in the integrated circuit to be tested has a trim register to control the magnitude of the reference current. The integrated circuit to be tested also includes a counter responsive to a reference pulse from the test machine to count the clock.
第31圖顯示在不同製程條件下由不同延遲區塊產生的延遲時間關係圖。Figure 31 shows the delay time relationship generated by different delay blocks under different process conditions.
延遲電路所產生的延遲時間是由第29圖及第30圖中揭露的自動測試模式修剪後在不同製程條件下加以模擬。其模擬結果顯示在例如是NMOS臨界電壓變動、PMOS臨界電壓變動及電阻值變動等不同製程下每一延遲電路具有相同的表現。The delay time generated by the delay circuit is simulated by the automatic test mode disclosed in Figs. 29 and 30 and simulated under different process conditions. The simulation results show that each delay circuit has the same performance under different processes such as NMOS threshold voltage variation, PMOS threshold voltage variation, and resistance value variation.
此延遲時間可以使用不同方式控制。當電流鏡比例改變,例如改變單獨電流鏡電晶體或是平行連接的多重電流鏡電晶體個別的寬度。此外,也可以改變例如是第17圖中的電容CX之電容值。This delay time can be controlled in different ways. When the current mirror ratio is changed, for example, the individual widths of the individual current mirror transistors or the multiple current mirror transistors connected in parallel are changed. Further, it is also possible to change the capacitance value of the capacitor CX, for example, in FIG.
第32圖顯示此電流產生電路的電路圖,其產生控制介於具有修剪電路之時序電路中的參考信號之間充電及/或放電速率的電流。Figure 32 shows a circuit diagram of this current generating circuit that produces a current that controls the rate of charge and/or discharge between reference signals in a sequential circuit having a trim circuit.
第32圖中的電流產生電路與第3圖中的電流產生電路類似。然而,第32圖中的電流產生電路為具有修剪電路的範例。在此範例中,自修剪位元暫存器的修剪信號T0~T3藉由開啟或關閉控制此電流鏡輸出中被增加的多重元件電流的電晶體來改變電流鏡的輸出電流。一種範例應用為第20圖中的電流產生器。The current generating circuit in Fig. 32 is similar to the current generating circuit in Fig. 3. However, the current generating circuit in Fig. 32 is an example having a trimming circuit. In this example, the trim signal T0~T3 of the self-trimming bit register changes the output current of the current mirror by turning on or off the transistor that controls the increased multi-element current in the current mirror output. An example application is the current generator in Figure 20.
雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.
102‧‧‧時序電路102‧‧‧Sequence circuit
104‧‧‧準位切換電路104‧‧‧ level switching circuit
106‧‧‧栓鎖電路106‧‧‧Latch circuit
108‧‧‧回授信號108‧‧‧Return signal
110‧‧‧時鐘信號110‧‧‧clock signal
114‧‧‧具有複數個複製控制時序電路中在參考信號之間切換之充電及/或放電的電流114‧‧‧ Current with charging and/or discharging switching between reference signals in a plurality of replica control sequential circuits
116‧‧‧產生控制時序電路中在參考信號之間切換之充電及/或放電的電流之電路116‧‧‧ A circuit for generating a current for charging and/or discharging switching between reference signals in a sequential circuit
118‧‧‧電流複製區塊118‧‧‧current replication block
202A、202B‧‧‧時序電路202A, 202B‧‧‧ sequential circuits
204A、204B‧‧‧反相電路204A, 204B‧‧‧ inverter circuit
206‧‧‧栓鎖電路206‧‧‧Latch circuit
1700‧‧‧積體電路1700‧‧‧ integrated circuit
1712‧‧‧記憶胞陣列1712‧‧‧ memory cell array
1714‧‧‧字元線/區塊選取解碼器及驅動器1714‧‧‧Character line/block selection decoder and driver
1716‧‧‧字元線1716‧‧‧ character line
1718‧‧‧位元線解碼器1718‧‧‧ bit line decoder
1720‧‧‧位元線1720‧‧‧ bit line
1722、1726‧‧‧匯流排1722, 1726‧‧ ‧ busbar
1724‧‧‧感應放大器與資料輸入結構1724‧‧‧Sense amplifier and data input structure
1728‧‧‧資料輸入線1728‧‧‧Data input line
1732‧‧‧資料輸出線1732‧‧‧ data output line
1736‧‧‧偏壓調整供應電壓電流源1736‧‧‧ bias adjustment supply voltage current source
1734‧‧‧狀態機構及時鐘電路1734‧‧‧ State Mechanism and Clock Circuit
本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,其中:The invention is defined by the scope of the patent application. These and other objects, features, and embodiments are described in the following sections of the accompanying drawings, in which:
第1圖顯示一具有產生控制時序電路在兩個參考信號之間的放電及/或速率之電流的多重版本的積體電路時鐘電路之方塊示意圖。Figure 1 shows a block diagram of a multi-version integrated circuit clock circuit having a current that produces a discharge and/or rate between two reference signals that control the timing circuit.
第2圖顯示一積體電路時鐘電路之電路示意圖,其可以產生一電流的多重版本以控制介於時序電路在兩個參考信號之間切換的充電及/或放電速率。Figure 2 shows a circuit schematic of an integrated circuit clock circuit that can generate multiple versions of a current to control the rate of charge and/or discharge between the two reference signals in the sequential circuit.
第3圖是一電流產生器的示意圖,其產生控制時序電路參考信號之間切換的放電及/或充電速率。Figure 3 is a schematic diagram of a current generator that produces a discharge and/or charge rate that controls switching between reference circuit reference signals.
第4圖是一電流鏡像區塊的示意圖,其產生複製之控制時序電路參考信號之間切換的放電及/或充電速率的電流。Figure 4 is a schematic illustration of a current mirroring block that produces a current of a discharge and/or charging rate that is switched between reference signals that are replicated to control the timing circuit.
第5圖為顯示時間與根據控制放電及/或充電速率的電流而進行放電及/或充電速率的OX或OY節點的關係圖。Figure 5 is a graph showing the relationship between time and OX or OY nodes for discharging and/or charging rates based on currents that control discharge and/or charging rate.
第6圖為顯示時間與具有延遲電路的積體電路所輸出的時鐘電壓的關係圖。Fig. 6 is a graph showing the relationship between the time and the clock voltage outputted by the integrated circuit having the delay circuit.
第7圖顯示在不同溫度下時脈週期與供應電壓的關係圖。Figure 7 shows the relationship between the clock cycle and the supply voltage at different temperatures.
第8圖顯示在不同供應電壓下時脈週期與溫度的關係圖。Figure 8 shows the relationship between clock cycle and temperature at different supply voltages.
第9圖顯示一溫度補償電流產生器的電路圖,其在此溫度補償電流產生器中一特定溫度下並沒有一個可調的溫度係數。Figure 9 shows a circuit diagram of a temperature compensated current generator that does not have an adjustable temperature coefficient at a particular temperature in the temperature compensated current generator.
第10圖是根據本發明第一實施例之溫度補償電流產生器(為電流產生區塊的一部份)的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 10 is a circuit diagram of a temperature compensated current generator (which is part of a current generating block) according to a first embodiment of the present invention, which has a temperature coefficient that can be adjusted according to a specific current value of the temperature compensating current generator .
第11圖是根據本發明第二實施例之溫度補償電流產生器(為電流產生區塊的一部份)的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。11 is a circuit diagram of a temperature compensation current generator (which is a part of a current generating block) according to a second embodiment of the present invention, which has a temperature coefficient that can be adjusted according to a specific current value of the temperature compensation current generator .
第12圖是根據本發明第三實施例之溫度補償電流產生器(為電流產生區塊的一部份)的電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 12 is a circuit diagram of a temperature compensated current generator (which is part of a current generating block) according to a third embodiment of the present invention, which has a temperature coefficient that can be adjusted according to a specific current value of the temperature compensating current generator .
第13圖是根據本發明更詳細之第一實施例的溫度補償電流產生器(為電流產生區塊的一部份)之電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 13 is a circuit diagram of a temperature compensated current generator (part of a current generating block) according to a first embodiment of the present invention in more detail, having a specific current value according to a temperature compensating current generator Adjust the temperature coefficient.
第14圖是根據本發明更詳細之第二實施例的溫度補償電流產生器(為電流產生區塊的一部份)之電路示意圖,其具有根據溫度補償電流產生器的一特定電流值而可以調整溫度係數。Figure 14 is a circuit diagram of a temperature compensated current generator (part of a current generating block) according to a second embodiment of the present invention in more detail, having a specific current value according to the temperature compensating current generator Adjust the temperature coefficient.
第15圖顯示根據本發明不同電路設定之溫度補償電流與溫度的關係圖。Figure 15 is a graph showing the relationship between temperature compensation current and temperature set by different circuits in accordance with the present invention.
第16圖係可應用本發明具有改良積體電路時鐘電路之一記憶電路的方塊示意圖。Figure 16 is a block diagram showing a memory circuit of the present invention having an improved integrated circuit clock circuit.
第17圖為具有由電流產生器的一參考電流所決定之延遲時間的延遲電路之方塊圖。Figure 17 is a block diagram of a delay circuit having a delay time determined by a reference current of the current generator.
第18圖為具有由一分享電流產生器來決定之延遲時間的多重延遲電路之方塊圖。Figure 18 is a block diagram of a multiple delay circuit having a delay time determined by a shared current generator.
第19圖為另一種具有由一分享電流產生器來決定之延遲時間的多重延遲電路之方塊圖。Figure 19 is a block diagram of another multiple delay circuit having a delay time determined by a shared current generator.
第20~23圖顯示搭配由一電流產生器的一參考電流來決定延遲時間的延遲電路之方塊圖。Figures 20 through 23 show block diagrams of a delay circuit with a reference current from a current generator to determine the delay time.
第24~27圖顯示與第20~23圖不同延遲電路對應之輸入與輸出電壓軌跡的時序圖。Figures 24 to 27 show timing diagrams of the input and output voltage traces corresponding to the different delay circuits of Figures 20-23.
第28圖顯示溫度補償與由不同延遲區塊產生之電路電源補償延遲時間的關係圖。Figure 28 shows the relationship between temperature compensation and circuit power supply compensation delay time generated by different delay blocks.
第29圖顯示一測試機的測試流程圖,其會自動調整一積體電路中具有單一組修剪暫存器中多重延遲區塊的延遲時間。Figure 29 shows a test flow diagram of a test machine that automatically adjusts the delay time for multiple delay blocks in a single set of trim registers in an integrated circuit.
第30圖顯示一個會自動調整一積體電路中具有單一組修剪暫存器中多重延遲區塊的延遲時間之測試系統的方塊圖。Figure 30 shows a block diagram of a test system that automatically adjusts the delay time of a multi-delay block in a single set of pruning registers in an integrated circuit.
第31圖顯示在不同製程條件下由不同延遲區塊產生的延遲時間關係圖。Figure 31 shows the delay time relationship generated by different delay blocks under different process conditions.
第32圖顯示此電流產生電路的電路圖,其產生控制介於具有修剪電路之時序電路中的參考信號之間充電及/或放電速率的電流。Figure 32 shows a circuit diagram of this current generating circuit that produces a current that controls the rate of charge and/or discharge between reference signals in a sequential circuit having a trim circuit.
102...時序電路102. . . Sequential circuit
104...準位切換電路104. . . Level switching circuit
106...栓鎖電路106. . . Latch circuit
108...回授信號108. . . Feedback signal
110...時鐘信號110. . . Clock signal
114...具有複數個複製控制時序電路中在參考信號之間切換之充電及/或放電的電流114. . . Current having charging and/or discharging switching between reference signals in a plurality of replica control sequential circuits
116...產生控制時序電路中在參考信號之間切換之充電及/或放電的電流之電路116. . . Generating a circuit for controlling the charging and/or discharging current between reference signals in a sequential circuit
118...電流複製區塊118. . . Current replica block
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100138305A TWI473433B (en) | 2011-10-21 | 2011-10-21 | Clock integrated circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100138305A TWI473433B (en) | 2011-10-21 | 2011-10-21 | Clock integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201318343A TW201318343A (en) | 2013-05-01 |
TWI473433B true TWI473433B (en) | 2015-02-11 |
Family
ID=48872129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100138305A TWI473433B (en) | 2011-10-21 | 2011-10-21 | Clock integrated circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI473433B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI761215B (en) * | 2020-06-14 | 2022-04-11 | 力旺電子股份有限公司 | Write voltage generator applied to non-volatile memory |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9898029B2 (en) * | 2015-12-15 | 2018-02-20 | Qualcomm Incorporated | Temperature-compensated reference voltage generator that impresses controlled voltages across resistors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046579A (en) * | 1999-01-11 | 2000-04-04 | National Semiconductor Corporation | Current processing circuit having reduced charge and discharge time constant errors caused by variations in operating temperature and voltage while conveying charge and discharge currents to and from a capacitor |
US6052035A (en) * | 1998-03-19 | 2000-04-18 | Microchip Technology Incorporated | Oscillator with clock output inhibition control |
TW200418261A (en) * | 2003-03-07 | 2004-09-16 | Ememory Technology Inc | Ring oscillator having a stable output signal without influence of MOS devices |
US6982916B2 (en) * | 2004-02-12 | 2006-01-03 | Applied Spintronics Technology, Inc. | Method and system for providing temperature dependent programming for magnetic memories |
TW201119235A (en) * | 2009-11-16 | 2011-06-01 | Macronix Int Co Ltd | Clock integrated circuit |
-
2011
- 2011-10-21 TW TW100138305A patent/TWI473433B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6052035A (en) * | 1998-03-19 | 2000-04-18 | Microchip Technology Incorporated | Oscillator with clock output inhibition control |
US6046579A (en) * | 1999-01-11 | 2000-04-04 | National Semiconductor Corporation | Current processing circuit having reduced charge and discharge time constant errors caused by variations in operating temperature and voltage while conveying charge and discharge currents to and from a capacitor |
TW200418261A (en) * | 2003-03-07 | 2004-09-16 | Ememory Technology Inc | Ring oscillator having a stable output signal without influence of MOS devices |
US6982916B2 (en) * | 2004-02-12 | 2006-01-03 | Applied Spintronics Technology, Inc. | Method and system for providing temperature dependent programming for magnetic memories |
TW201119235A (en) * | 2009-11-16 | 2011-06-01 | Macronix Int Co Ltd | Clock integrated circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI761215B (en) * | 2020-06-14 | 2022-04-11 | 力旺電子股份有限公司 | Write voltage generator applied to non-volatile memory |
Also Published As
Publication number | Publication date |
---|---|
TW201318343A (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10192594B2 (en) | Semiconductor device | |
US7272059B2 (en) | Sensing circuit for a semiconductor memory | |
KR100714897B1 (en) | Semiconductor memory device and array internal power voltage generating method thereof | |
TWI400884B (en) | Clock integrated circuit | |
US20090256611A1 (en) | Semiconductor device and timing adjusting method for semiconductor device | |
JP2010519672A (en) | Memory having dummy bit lines for timing control | |
US20180123592A1 (en) | Clock integrated circuit | |
US8270242B2 (en) | Sense amplifier apparatus and methods | |
TWI473433B (en) | Clock integrated circuit | |
US6813194B2 (en) | Bias distribution network for digital multilevel nonvolatile flash memory | |
EP2947660B1 (en) | Sense structure based on multiple sense amplifiers with local regulation of a biasing voltage | |
CN103078607B (en) | Clock integrated circuit | |
CN104020807B (en) | Sense amplifier voltage regulator | |
US8400203B1 (en) | Integrated circuit with delay circuitry | |
CN112114609B (en) | Regulator with offset voltage cancellation | |
US8169845B2 (en) | Apparatus and methods for sense amplifiers | |
KR100837803B1 (en) | Voltage Detector and Apparatus for Generating Internal Voltage Having the Same | |
US8804434B2 (en) | Pulse-based memory read-out | |
KR100607168B1 (en) | Half supply voltage generator and semiconductor memory device using this circuit | |
US12032398B2 (en) | Regulator circuit and methods thereof | |
TWI388126B (en) | Clock integrated circuit | |
WO2014059560A1 (en) | Apparatuses and methods for providing oscillation signals | |
US10839875B2 (en) | Timer for use dual voltage supplies | |
US8179738B2 (en) | Internal power supply control circuit of semiconductor memory | |
US7903478B1 (en) | High impedance reference voltage distribution |