TWI471505B - Semiconductor light source device - Google Patents
Semiconductor light source device Download PDFInfo
- Publication number
- TWI471505B TWI471505B TW100149645A TW100149645A TWI471505B TW I471505 B TWI471505 B TW I471505B TW 100149645 A TW100149645 A TW 100149645A TW 100149645 A TW100149645 A TW 100149645A TW I471505 B TWI471505 B TW I471505B
- Authority
- TW
- Taiwan
- Prior art keywords
- light source
- semiconductor light
- light
- semiconductor
- source device
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 180
- 238000006243 chemical reaction Methods 0.000 claims description 55
- 230000000712 assembly Effects 0.000 claims description 28
- 238000000429 assembly Methods 0.000 claims description 28
- 239000003086 colorant Substances 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000001131 transforming effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0006—Coupling light into the fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
- H01L33/46—Reflective coating, e.g. dielectric Bragg reflector
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4298—Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optical Couplings Of Light Guides (AREA)
- Planar Illumination Modules (AREA)
Description
本案是有關於一種光源裝置,且特別是有關於一種半導體光源裝置。The present invention relates to a light source device, and more particularly to a semiconductor light source device.
隨著光學技術的進步,發展出各種光學產品。光學產品的開發主要有幾個方向,包含光源系統的技術、光線導引系統的技術、影像擷取系統的技術等。With the advancement of optical technology, various optical products have been developed. The development of optical products mainly has several directions, including the technology of the light source system, the technology of the light guiding system, and the technology of the image capturing system.
其中部份的光學產品同時結合上述各種型態的技術,例如內視鏡或顯微鏡等光學系統需要整合光源系統、光線導引系統及影像擷取系統的開發,其複雜程度相當的高。Some of these optical products combine the above various types of technologies, such as optical systems such as endoscopes or microscopes, which require the development of integrated light source systems, light guiding systems, and image capturing systems, which are quite complex.
此類型的光學產品由於複雜度較高,許多的技術瓶頸阻礙著產業的發展。研究人員正致力投入這方面的技術研究來推動產業發展。Due to the high complexity of this type of optical product, many technical bottlenecks hinder the development of the industry. Researchers are committed to investing in technical research in this area to promote industrial development.
根據本案之一實施例,提出一種半導體光源裝置。半導體光源裝置包括一光導元件、至少一半導體光源組件及至少一光形轉換耦合器。光形轉換耦合器設置於半導體光源組件及光導元件之間,以導引半導體光源組件之光線至光導元件。光形轉換耦合器具有一斜面及一曲面,斜面為具有多種斜率的多階斜面。According to an embodiment of the present invention, a semiconductor light source device is proposed. The semiconductor light source device includes a light guiding element, at least one semiconductor light source component, and at least one light shape conversion coupler. The light conversion coupler is disposed between the semiconductor light source assembly and the light guide member to guide the light of the semiconductor light source assembly to the light guide member. The light conversion coupler has a slope and a curved surface, and the slope is a multi-step slope having a plurality of slopes.
為了對本案之上述及其他方面更瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the following specific embodiments, together with the drawings, are described in detail below:
請參照第1~2圖,其繪示第一實施例之半導體光源裝置1000之示意圖。半導體光源裝置1000例如是內視鏡或顯微鏡。半導體光源裝置1000包括一光導元件(light guide)110、至少一半導體光源組件120、至少一光形轉換耦合器130及一控制單元140。光導元件110用以傳輸光線,例如是一光纖。半導體光源組件120係由半導體材質所製成之光源,例如是由一個發光二極體(LED)所組成、或由一個雷射二極體(LD)所組成、或由數個發光二極體所組成、或由數個雷射二極體所組成、或至少一個發光二極體與至少一個雷射二極體之組合所組成。光形轉換耦合器130用以導引光線之投射方向,例如是由透明材料或反光材料所組成。控制單元140用以控制半導體光源組件120,例如是一控制晶片、韌體電路或儲存多組程式碼之儲存媒體。Please refer to FIGS. 1 to 2 for a schematic view of the semiconductor light source device 1000 of the first embodiment. The semiconductor light source device 1000 is, for example, an endoscope or a microscope. The semiconductor light source device 1000 includes a light guide 110, at least one semiconductor light source assembly 120, at least one light shape conversion coupler 130, and a control unit 140. The light guiding element 110 is used to transmit light, such as an optical fiber. The semiconductor light source component 120 is a light source made of a semiconductor material, for example, composed of a light emitting diode (LED), or a laser diode (LD), or a plurality of light emitting diodes. It consists of, or consists of, a plurality of laser diodes or a combination of at least one light-emitting diode and at least one laser diode. The light shape conversion coupler 130 is used to guide the projection direction of the light, for example, composed of a transparent material or a reflective material. The control unit 140 is configured to control the semiconductor light source component 120, such as a control chip, a firmware circuit, or a storage medium storing a plurality of sets of code.
就光導元件110而言,光導元件110可以是單一實心光纖、光纖束或其組合。光導元件110之材質可以是玻璃、石英或塑膠。光導元件110可以是軟性或硬性。In the case of light guiding element 110, light guiding element 110 can be a single solid fiber, a bundle of fibers, or a combination thereof. The material of the light guiding element 110 may be glass, quartz or plastic. Light guiding element 110 can be soft or rigid.
就半導體光源組件120而言,半導體光源組件120設置於基板150上,基板150可以提供半導體光源組件120需要的電源與散熱功能。In the case of the semiconductor light source assembly 120, the semiconductor light source assembly 120 is disposed on the substrate 150, which can provide the power and heat dissipation functions required by the semiconductor light source assembly 120.
請參照第3A~3E圖之實施例,其繪示第一實施例之光形轉換耦合器130之各種角度示意圖。就光形轉換耦合器130而言,光形轉換耦合器130設置於半導體光源組件120及光導元件110之間,以折射或反射的方式導引半導體光源組件120之光線至光導元件110。光形轉換耦合器130具有斜面131及曲面132。斜面131及曲面132用以反射半導體光源組件120之光線。曲面132可以是球面、橢圓球面或拋物面。以第3A~3E圖為例,光形轉換耦合器130之斜面131有4個,曲面132有1個,且曲面132係為橢圓球面。光形轉換耦合器130並不侷限於第3A~3E圖之設計,只要是可以折射或反射之方式導引半導體光源組件120(繪示於第2圖)之光線之投射方向,均不脫離本案之技術範圍。於其它實施例中,光形轉換耦合器130可僅具有斜面或曲面的設計,並不限於第3A~3E圖的實施例之設計。Referring to the embodiments of FIGS. 3A-3E, various angle diagrams of the light transforming coupler 130 of the first embodiment are shown. In the case of the light conversion coupler 130, the light conversion coupler 130 is disposed between the semiconductor light source assembly 120 and the light guide member 110 to refract or reflect the light of the semiconductor light source assembly 120 to the light guide member 110. The light shape conversion coupler 130 has a slope 131 and a curved surface 132. The slope 131 and the curved surface 132 are used to reflect the light of the semiconductor light source assembly 120. The curved surface 132 can be a spherical surface, an elliptical spherical surface, or a paraboloid. Taking the 3A to 3E drawings as an example, the light-shaped conversion coupler 130 has four inclined faces 131, one curved surface 132, and the curved surface 132 is an elliptical spherical surface. The light-shaped conversion coupler 130 is not limited to the design of the 3A to 3E drawings, and the projection direction of the light guided by the semiconductor light source unit 120 (shown in FIG. 2) can be refracted or reflected, without departing from the present case. The technical scope. In other embodiments, the light profile conversion coupler 130 may have only a bevel or curved surface design, and is not limited to the design of the embodiment of FIGS. 3A-3E.
光形轉換耦合器130具有一第一端面133及一第二端面134。於第2圖所繪示之實施例中,第一端面133係為光輸入端面,第二端面134係為光輸出端面。第一端面133與半導體光源組件120(繪示於第2圖)之形狀實質上相同,例如是方形。第二端面134與光導元件110(繪示於第2圖)之截面的形狀實質上相同,例如是圓形。The light shape conversion coupler 130 has a first end surface 133 and a second end surface 134. In the embodiment illustrated in FIG. 2, the first end surface 133 is a light input end surface, and the second end surface 134 is a light output end surface. The first end surface 133 is substantially identical in shape to the semiconductor light source assembly 120 (shown in FIG. 2), such as a square shape. The shape of the second end surface 134 and the cross section of the light guiding element 110 (shown in FIG. 2) are substantially the same, for example, circular.
請參照第2圖之實施例,光形轉換耦合器130之第一端面133可以與半導體光源組件120保持一間隙、或緊貼於半導體光源組件120。在本實施例中,光形轉換耦合器130之第一端面133與半導體光源組件120之間隙小於或等於0.5公釐(mm)。光形轉換耦合器130之第二端面134則可以與光導元件110保持一間隙、或緊貼於光導元件110。Referring to the embodiment of FIG. 2, the first end surface 133 of the light conversion coupler 130 can maintain a gap with the semiconductor light source assembly 120 or be in close contact with the semiconductor light source assembly 120. In the present embodiment, the gap between the first end surface 133 of the light transforming coupler 130 and the semiconductor light source assembly 120 is less than or equal to 0.5 mm. The second end face 134 of the light profile conversion coupler 130 can then maintain a gap with the light guide element 110 or abut against the light guide element 110.
請參照第4圖之實施例,其繪示第一實施例之光形轉換耦合器130之光學路徑示意圖。半導體光源組件120所發射出的光線經由光形轉換耦合器130之斜面131或曲面132(繪示於第3A~3E圖)反射後,可導入光導元件110。舉例來說,本實施例之半導體光源組件120為正方形,且光導元件110之截面為圓形。光導元件110可以接收的角度有一定範圍。光導元件110之最大接收角度θf 與其數值孔徑(Numerical Apeature,NA)有關。半導體光源組件120發射的光線之最大發射角度為θs 。半導體光源組件120之角度較大的光線,無法滿足光導元件110的接收範圍。利用光形轉換耦合器130上具有一定斜率之斜面131或曲面132(繪示於第3A~3E圖),可以使光線經由上述之斜面131或曲面132的反射後,改變行進的角度,而進入光導元件110之輸入端面,使其入射角度可以滿足光導元件110之接收角度。Referring to the embodiment of FIG. 4, an optical path diagram of the light transforming coupler 130 of the first embodiment is shown. The light emitted by the semiconductor light source unit 120 is reflected by the inclined surface 131 or the curved surface 132 (shown in FIGS. 3A to 3E) of the light conversion coupler 130, and then guided to the light guiding element 110. For example, the semiconductor light source assembly 120 of the present embodiment is square, and the light guiding member 110 has a circular cross section. The angle at which the light guiding element 110 can receive is within a certain range. The maximum acceptance angle θ f of the light guiding element 110 is related to its numerical aperture (NA). The maximum emission angle of the light emitted by the semiconductor light source assembly 120 is θ s . The light of the semiconductor light source assembly 120 having a large angle cannot satisfy the receiving range of the light guiding element 110. By using the inclined surface 131 or the curved surface 132 (shown in FIGS. 3A-3E) having a certain slope on the light-shaped conversion coupler 130, the light can be changed through the above-mentioned inclined surface 131 or curved surface 132, and the angle of travel is changed to enter. The input end face of the light guiding member 110 is such that the incident angle thereof satisfies the receiving angle of the light guiding member 110.
若半導體光源組件120之最大發射角度θs 小於光導元件110之最大接收角度θf ,斜面131之斜率可以依據第(1)式來作設計:If the maximum emission angle θ s of the semiconductor light source component 120 is less than the maximum acceptance angle θ f of the light guiding element 110, the slope of the slope 131 can be designed according to the formula (1):
D *tanθ c =L f -L s …………………………………(1) D *tan θ c = L f - L s .......................................(1)
其中θ c 為斜面131的與中心軸L1之夾角,D為斜面131投影至中心軸L1之長度,L f 為光導元件110之半徑,L s 為半導體光源組件120之邊長的一半。Where θ c is the angle between the inclined surface 131 and the central axis L1, D is the length of the inclined surface 131 projected to the central axis L1, L f is the radius of the light guiding element 110, and L s is half of the side length of the semiconductor light source component 120.
若半導體光源組件120之最大發射角度θs 大於光導元件110之最大接收角度θf ,斜面131之斜率可以依據第(2)式來作設計:If the maximum emission angle θ s of the semiconductor light source component 120 is greater than the maximum acceptance angle θ f of the light guiding element 110, the slope of the slope 131 can be designed according to the formula (2):
|θs -2×θc |≦θf ,D*tan θc ≦Lf -Ls ……………(2)|θ s -2×θ c |≦θ f , D*tan θ c ≦L f -L s ...............(2)
請參照第5圖之實施例,其繪示另一實施例之光形轉換耦合器130a之光學路徑示意圖。在一實施例中,光形轉換耦合器130a之斜面131a可以是具有多種斜率之多階斜面,曲面(未繪示)也可以是具有多種斜率之多階曲面。舉例來說,光形轉換耦合器130a之斜面131a可以依據第(3)式來作設計:Referring to the embodiment of FIG. 5, an optical path diagram of the light transforming coupler 130a of another embodiment is shown. In an embodiment, the slope 131a of the light transforming coupler 130a may be a multi-step bevel having a plurality of slopes, and the curved surface (not shown) may also be a multi-step curved surface having a plurality of slopes. For example, the slope 131a of the light transforming coupler 130a can be designed according to the formula (3):
D 1 *tanθ c ,1 +D 2 *tanθ c ,2 L f -L s ,θ c ,2 θ c ,1 ………(3) D 1 *tan θ c ,1 + D 2 *tan θ c ,2 L f - L s , θ c , 2 θ c , 1 .........(3)
其中D 1 為第一階斜面131a1投影至中心軸L1a之長度,D 2 為第二階斜面131a2投影至中心軸L1a之長度,θ c ,1 為第一階斜面131a1與中心軸L1a之夾角,θ c , 2 為第二階斜面131a2與中心軸L1a之夾角。Wherein D 1 is the length of the first-order inclined surface 131a1 projected to the central axis L1a, D 2 is the length of the second-order inclined surface 131a2 projected to the central axis L1a, and θ c , 1 is the angle between the first-order inclined surface 131a1 and the central axis L1a, θ c , 2 is the angle between the second stepped slope 131a2 and the central axis L1a.
上述僅以單階的斜面131與二階的斜面131a為例作說明,然而,類似的設計方式可以衍伸至多階斜面或者多階曲面的實施方式。The above description is made by taking only the single-step bevel 131 and the second-order bevel 131a as an example. However, a similar design can be extended to a multi-step or multi-order surface.
請參照第6A~6C圖之實施例,第6A~6B圖繪示兩種半導體光源裝置1000b、1000c之示意圖,第6C圖繪示本實施例之半導體光源裝置1000之示意圖。如第6A圖所示,半導體光源組件120b可以直接耦合於光導元件110b。如第6B圖所示,半導體光源組件120c之光線可以透過反射鏡161c及聚光透鏡162c導引至光導元件110c。請參照表一,本實施例之光導元件110之出光效率表現的最好。Referring to the embodiments of FIGS. 6A-6C, FIGS. 6A-6B are schematic views showing two semiconductor light source devices 1000b and 1000c, and FIG. 6C is a schematic view showing the semiconductor light source device 1000 of the present embodiment. As shown in FIG. 6A, the semiconductor light source assembly 120b can be directly coupled to the light guiding element 110b. As shown in FIG. 6B, the light of the semiconductor light source unit 120c can be guided to the light guiding element 110c through the mirror 161c and the collecting lens 162c. Referring to Table 1, the light guiding efficiency of the light guiding element 110 of the present embodiment is the best.
此外,請參照第7A~7B圖之實施例,其繪示半導體光源組件120e、120f之形狀的實施方式。在第7A圖之實施方式中,半導體光源組件120e可以是方形;在第7B圖之實施方式中,半導體光源組件120f可以是圓形。In addition, referring to the embodiments of FIGS. 7A-7B, embodiments of the shapes of the semiconductor light source assemblies 120e, 120f are illustrated. In the embodiment of FIG. 7A, the semiconductor light source assembly 120e may be square; in the embodiment of FIG. 7B, the semiconductor light source assembly 120f may be circular.
請參照第8A~8B圖之實施例,其繪示半導體光源組件120g、120h之數量的實施方式。在第8A圖之實施方式中,半導體光源組件120g之數量可以是一個;在第8B圖之實施方式中,半導體光源組件120h之數量可以是複數個,並以陣列方式排列。Referring to the embodiments of FIGS. 8A-8B, an embodiment of the number of semiconductor light source assemblies 120g, 120h is illustrated. In the embodiment of FIG. 8A, the number of semiconductor light source assemblies 120g may be one; in the embodiment of FIG. 8B, the number of semiconductor light source assemblies 120h may be plural and arranged in an array.
請參照第9A~9D圖之實施例,其繪示半導體光源組件120i、120j、120k、120m、120n、120p之顏色的實施方式。在第9A圖之實施方式中,半導體光源組件120i可以由一個發光二極體與螢光粉所組成,例如是藍光發光二極體與YAG螢光粉之組合、或紫外光發光二極體與RGB螢光粉之組合、或紫外光發光二極體與BY螢光粉之組合。在第9B圖之實施方式中,半導體光源組件120j可以由兩個發光二極體120j1、120j2所組成。發光二極體120j1、120j2之顏色可以是二元互補色,例如是藍光與黃光。在第9C圖之實施方式中,半導體光源組件120k可以由三個發光二極體120k1、120k2、120k3所組成。發光二極體120k1、120k2、120k3之顏色可以是三元互補色,例如是藍光、綠光與紅光。在第9D圖之實施方式中,半導體光源組件120m可以由四個發光二極體120m1、120m2、120m3、120m4所組成,發光二極體120m1、120m2、120m3、120m4之顏色可以是三元互補色與一廣域顏色,例如是藍色、綠色、紅色與藍綠色。Referring to the embodiments of Figures 9A-9D, an embodiment of the colors of the semiconductor light source assemblies 120i, 120j, 120k, 120m, 120n, 120p is illustrated. In the embodiment of FIG. 9A, the semiconductor light source component 120i may be composed of a light emitting diode and a phosphor powder, for example, a combination of a blue light emitting diode and a YAG phosphor, or an ultraviolet light emitting diode. Combination of RGB phosphor powder, or combination of UV light emitting diode and BY phosphor powder. In the embodiment of FIG. 9B, the semiconductor light source assembly 120j may be composed of two light emitting diodes 120j1, 120j2. The colors of the light-emitting diodes 120j1, 120j2 may be binary complementary colors such as blue light and yellow light. In the embodiment of FIG. 9C, the semiconductor light source assembly 120k may be composed of three light emitting diodes 120k1, 120k2, and 120k3. The colors of the light-emitting diodes 120k1, 120k2, and 120k3 may be ternary complementary colors such as blue light, green light, and red light. In the embodiment of FIG. 9D, the semiconductor light source component 120m may be composed of four light emitting diodes 120m1, 120m2, 120m3, and 120m4, and the colors of the light emitting diodes 120m1, 120m2, 120m3, and 120m4 may be ternary complementary colors. With a wide range of colors, such as blue, green, red and blue-green.
請參照第10A~10B圖之實施例,其繪示半導體光源組件120n、120p之色溫的實施方式。其中,半導體光源組件120n可以由兩個發光二極體120n1、120n2所組成,發光二極體120n1為低色溫白光,發光二極體120n2為藍光,兩者搭配可以提高輸出之色溫。而半導體光源組件120p可以由兩個發光二極體120p1、120p2所組成。發光二極體120p1為高色溫白光,發光二極體120p2為紅光,兩者搭配可以降低輸出之色溫。藉由上述之組合,調整藍光與低色溫白光的比例,或者調整紅光與高色溫白光的比例,可做輸出顏色或色溫的變化。在另一實施例中,半導體光源組件120n、120p可以由具有相同色溫的白光發光二極體分別搭配一藍光發光二極體或一紅光發光二極體,而使半導體光源組件120n具有較高之色溫,半導體光源組件120p具有較低之色溫Referring to the embodiments of FIGS. 10A-10B, an embodiment of the color temperature of the semiconductor light source assemblies 120n, 120p is illustrated. The semiconductor light source component 120n can be composed of two light emitting diodes 120n1 and 120n2. The light emitting diode 120n1 is a low color temperature white light, and the light emitting diode 120n2 is a blue light. The combination of the two can improve the color temperature of the output. The semiconductor light source assembly 120p may be composed of two light emitting diodes 120p1, 120p2. The light-emitting diode 120p1 is a high color temperature white light, and the light emitting diode 120p2 is a red light, and the combination of the two can reduce the color temperature of the output. By the combination of the above, the ratio of blue light to low color temperature white light is adjusted, or the ratio of red light to high color temperature white light is adjusted, and the output color or color temperature can be changed. In another embodiment, the semiconductor light source components 120n, 120p may be respectively combined with a blue light emitting diode or a red light emitting diode by white light emitting diodes having the same color temperature, so that the semiconductor light source component 120n has a higher Color temperature, semiconductor light source assembly 120p has a lower color temperature
如上所述,半導體光源裝置1000可以採用第9B~10B圖的任一種設計。控制單元140可以個別控制半導體光源組件120j、120k、120m、120n、120p發光的比例,以改變呈現出來的顏色與色溫。As described above, the semiconductor light source device 1000 can adopt any of the designs of FIGS. 9B to 10B. The control unit 140 can individually control the ratio of the illumination of the semiconductor light source components 120j, 120k, 120m, 120n, 120p to change the color and color temperature presented.
請參照第11圖,其繪示第二實施例之半導體光源裝置2000之示意圖,本實施例之半導體光源裝置2000與第一實施例之半導體光源裝置1000不同之處在於更透過分光鏡組270來搭配多個半導體光源組件220(例如是半導體光源組件220a、220b、220c)之光線,其餘相同之處不再重複敘述。Please refer to FIG. 11 , which is a schematic diagram of a semiconductor light source device 2000 according to a second embodiment. The semiconductor light source device 2000 of the present embodiment is different from the semiconductor light source device 1000 of the first embodiment in that it is transmitted through the beam splitter group 270. The light of a plurality of semiconductor light source assemblies 220 (e.g., semiconductor light source assemblies 220a, 220b, 220c) is used, and the rest are not repeated.
如第11圖所示之實施例,半導體光源組件220a、220b、220c之數量為複數個,光形轉換耦合器230之數量為複數個。分光鏡組270設置於此些光形轉換耦合器230與光導元件210之間,分光鏡組270用以混合此些半導體光源組件220a、220b、220c之光線。As in the embodiment shown in Fig. 11, the number of semiconductor light source assemblies 220a, 220b, 220c is plural, and the number of the light conversion couplers 230 is plural. The beam splitter group 270 is disposed between the light shape conversion coupler 230 and the light guide element 210, and the beam splitter group 270 is used to mix the light of the semiconductor light source assemblies 220a, 220b, and 220c.
以第11圖之實施例為例,分光鏡組270包括二分光鏡271、272。此些分光鏡271、272可以十字交叉排列,或者錯位排列。分光鏡271、272係為透明基板,其材料可是塑膠、玻璃或光學晶體,上面鍍有光學膜,對不同波長範圍的光,可以透射通過或反射的方式,讓光線通過或將光線行進方向轉折。Taking the embodiment of Fig. 11 as an example, the beam splitter group 270 includes dichroic mirrors 271, 272. The beamsplitters 271, 272 may be arranged in a crisscross pattern or in a misaligned arrangement. The beam splitters 271 and 272 are transparent substrates, and the material thereof may be plastic, glass or optical crystals, and the optical film is coated thereon, and the light of different wavelength ranges may be transmitted or reflected to allow light to pass or turn the light traveling direction. .
位於左側之半導體光源組件220b之光線可以穿越兩個分光鏡271、272,位於上側之半導體光源組件220a之光線則被分光鏡271所反射,位於下側之半導體光源組件220c之光線則被分光鏡272所反射,使得三個半導體光源組件220a、220b、220c之光線可以透過分光鏡組270進行混合。The light of the semiconductor light source unit 220b located on the left side can pass through the two beam splitters 271 and 272. The light of the semiconductor light source unit 220a located on the upper side is reflected by the beam splitter 271, and the light of the semiconductor light source unit 220c located at the lower side is split by the beam splitter. The reflection of 272 causes the light of the three semiconductor light source assemblies 220a, 220b, 220c to be mixed by the beam splitter group 270.
控制單元240分別電性連接於此些半導體光源組件220a、220b、220c,以分別控制此些半導體光源組件220a、220b、220c之亮度。此些半導體光源組件220a、220b、220c採用不同顏色時,不同的亮度比例可以混合出不同的混合色。此些半導體光源組件220a、220b、220c採用不同的色溫時,不同的亮度比例可以混合出不同的混合色溫。The control unit 240 is electrically connected to the semiconductor light source assemblies 220a, 220b, and 220c, respectively, to control the brightness of the semiconductor light source assemblies 220a, 220b, and 220c, respectively. When the semiconductor light source components 220a, 220b, and 220c are in different colors, different brightness ratios may be mixed for different mixed colors. When the semiconductor light source components 220a, 220b, and 220c adopt different color temperatures, different brightness ratios may be mixed to different mixed color temperatures.
請參照第12圖,其繪示第三實施例之半導體光源裝置3000之示意圖。本實施例之半導體光源裝置3000與第一實施例之半導體光源裝置1000不同之處在於光形轉換耦合器330之設計,其餘相同之處不再重複敘述。Referring to FIG. 12, a schematic diagram of a semiconductor light source device 3000 of a third embodiment is shown. The semiconductor light source device 3000 of the present embodiment is different from the semiconductor light source device 1000 of the first embodiment in the design of the light-shaped conversion coupler 330, and the rest of the same points will not be repeatedly described.
如第12圖所示之實施例,半導體光源組件320之數量為複數個,例如是半導體光源組件320a、320b。光形轉換耦合器330具有多個第一端面333及一第二端面334。於第12圖所繪示之實施例中,第一端面333係為光輸入端面,第二端面334係為光輸出端面。各個第一端面333對應於此些半導體光源組件320a、320b之其中之一。此些第一端面333之形狀與此些半導體光源組件320a、320b之形狀實質上相同,例如是方形或圓形。第二端面334之形狀則與光導元件310之截面實質上相同,例如是方形或圓形。As in the embodiment illustrated in Fig. 12, the number of semiconductor light source assemblies 320 is plural, such as semiconductor light source assemblies 320a, 320b. The light conversion coupler 330 has a plurality of first end faces 333 and a second end face 334. In the embodiment illustrated in FIG. 12, the first end surface 333 is a light input end surface, and the second end surface 334 is a light output end surface. Each of the first end faces 333 corresponds to one of the semiconductor light source assemblies 320a, 320b. The shapes of the first end faces 333 are substantially the same as the shapes of the semiconductor light source assemblies 320a, 320b, such as square or circular. The shape of the second end face 334 is substantially the same as the cross section of the light guiding member 310, such as a square or a circle.
控制單元340分別電性連接於此些半導體光源組件320a、320b,以分別控制此些半導體光源組件320a、320b之亮度。此些半導體光源組件320a、320b採用不同顏色時,不同的亮度比例可以混合出不同的混合色。此些半導體光源組件320a、320b採用不同的色溫時,不同的亮度比例可以混合出不同的混合色溫。The control unit 340 is electrically connected to the semiconductor light source assemblies 320a, 320b, respectively, to control the brightness of the semiconductor light source assemblies 320a, 320b, respectively. When the semiconductor light source components 320a, 320b are of different colors, different brightness ratios may be mixed for different mixed colors. When the semiconductor light source components 320a, 320b adopt different color temperatures, different brightness ratios can be mixed with different mixed color temperatures.
請參照第13圖,其繪示第四實施例之半導體光源裝置4000之示意圖。本實施例之半導體光源裝置4000與第一實施例之半導體光源裝置1000不同之處在於更採用移動平台480,其餘相同之處不再重複敘述。Referring to FIG. 13, a schematic diagram of a semiconductor light source device 4000 of a fourth embodiment is shown. The semiconductor light source device 4000 of the present embodiment is different from the semiconductor light source device 1000 of the first embodiment in that the mobile platform 480 is further used, and the rest of the same portions will not be repeatedly described.
如第13圖所示之實施例,本實施例之半導體光源組件420之數量係為複數個,例如是半導體光源組件420a、420b。光形轉換耦合器430之數量係為複數個。各個光形轉換耦合器430用以導引各個半導體光源組件420a、420b之光線。光導元件410接收各半導體光源組件420a、420b之至少部份光線。移動平台480用以移動此些半導體光源組件420a、420b及此些光形轉換耦合器430,以調整光導元件410接收此些半導體光源組件420a、420b之比例。As in the embodiment shown in Fig. 13, the number of semiconductor light source assemblies 420 of the present embodiment is plural, such as semiconductor light source assemblies 420a, 420b. The number of light shape conversion couplers 430 is plural. Each of the light shape conversion couplers 430 is used to guide the light of each of the semiconductor light source assemblies 420a, 420b. Light guiding element 410 receives at least a portion of the light from each of semiconductor light source assemblies 420a, 420b. The mobile platform 480 is configured to move the semiconductor light source components 420a, 420b and the light shape conversion couplers 430 to adjust the ratio of the light guide elements 410 to receive the semiconductor light source components 420a, 420b.
移動平台480可移動或旋轉,以使光導元件410與半導體光源組件420a、420b的相對位置發生變化。如此一來,半導體光源組件420a、420b進入光導元件410的相對比例發生變化。The mobile platform 480 can be moved or rotated to vary the relative position of the light guiding element 410 to the semiconductor light source assemblies 420a, 420b. As such, the relative proportions of the semiconductor light source components 420a, 420b into the light guiding element 410 change.
控制單元440電性連接於移動平台480,以控制移動平台480的移動或旋轉。此些半導體光源組件420a、420b採用不同顏色時,半導體光源組件420a、420b進入光導元件410的相對比例發生變化可以使混合顏色發生變化。此些半導體光源組件420a、420b採用不同的色溫時,半導體光源組件420a、420b進入光導元件410的相對比例發生變化可以使混合色溫發生變化。The control unit 440 is electrically connected to the mobile platform 480 to control the movement or rotation of the mobile platform 480. When the semiconductor light source components 420a, 420b are of different colors, the relative proportions of the semiconductor light source components 420a, 420b entering the light guiding component 410 may change to change the mixed color. When the semiconductor light source components 420a, 420b are at different color temperatures, the relative proportions of the semiconductor light source components 420a, 420b entering the light guiding component 410 may change to change the mixed color temperature.
此外,在一實施例中,可以不設置光形轉換耦合器430,而直接讓半導體光源組件420a、420b的光線射入光導元件410。同樣也可透過移動平台480的移動或旋轉來改變半導體光源組件420a、420b進入光導元件410的相對比例。Moreover, in one embodiment, the light shape conversion coupler 430 may be omitted and the light from the semiconductor light source assemblies 420a, 420b may be directly incident on the light guide element 410. The relative proportions of the semiconductor light source components 420a, 420b into the light guiding element 410 can also be varied by movement or rotation of the mobile platform 480.
請參照第14A~14B圖,第14A圖繪示第五實施例之半導體光源裝置5000之立體圖,第14B圖繪示第五實施例之半導體光源裝置5000之側視圖。本實施例之半導體光源裝置5000與第一實施例之半導體光源裝置1000不同之處在於固定器590的設置,其餘相同之處不再重複敘述。Referring to FIGS. 14A-14B, FIG. 14A is a perspective view of the semiconductor light source device 5000 of the fifth embodiment, and FIG. 14B is a side view of the semiconductor light source device 5000 of the fifth embodiment. The semiconductor light source device 5000 of the present embodiment is different from the semiconductor light source device 1000 of the first embodiment in the arrangement of the fixture 590, and the rest of the same is not repeated.
如第14B圖所示之實施例,固定器590用以固定光導元件510及光形轉換耦合器530,以使光導元件510緊貼於光形轉換耦合器530。固定器590包括一夾持件591及一承載板592,半導體光源組件520設置於承載板592上。夾持件591包括一固定板5911及數個彈片5912。光導元件510插入此固定板5911,彈片5912卡合於承載板592上之卡勾5921,使得光導元件510被夾持於承載板592之上方。由於彈片5912具有一程度的形變量,使得光導元件910緊貼於光形轉換耦合器530,提高耦光效率。As shown in the embodiment of FIG. 14B, the holder 590 is used to fix the light guiding member 510 and the light conversion coupling coupler 530 such that the light guiding member 510 is in close contact with the light conversion coupling coupler 530. The holder 590 includes a clamping member 591 and a carrier plate 592. The semiconductor light source assembly 520 is disposed on the carrier plate 592. The clamping member 591 includes a fixing plate 5911 and a plurality of elastic pieces 5912. The light guiding member 510 is inserted into the fixing plate 5911, and the elastic piece 5912 is engaged with the hook 5921 of the carrying plate 592 such that the light guiding member 510 is clamped above the carrying plate 592. Since the elastic piece 5912 has a degree of deformation, the light guiding element 910 is in close contact with the light conversion coupling coupler 530, improving the coupling efficiency.
此外,在一實施例中,可以不設置光形轉換耦合器530,而直接讓半導體光源組件520的光線射入光導元件510。同樣也可透過固定件590來固定光導元件510,以使光導元件510緊貼於半導體光源組件520,提高耦光效率。Moreover, in an embodiment, the light shape conversion coupler 530 may not be provided, and the light of the semiconductor light source assembly 520 may be directly incident on the light guide element 510. The light guiding member 510 can also be fixed through the fixing member 590 so that the light guiding member 510 is in close contact with the semiconductor light source assembly 520 to improve the coupling efficiency.
請參照第15A~15B圖,第15A圖繪示第六實施例之半導體光源裝置6000之側視圖,第15B圖繪示第六實施例之半導體光源裝置6000之俯視圖。本實施例之半導體光源裝置6000與第四實施例之半導體光源裝置4000不同之處在於半導體光源組件620與光導元件610之關係,其餘相同之處不再重複敘述。Referring to FIGS. 15A-15B, FIG. 15A is a side view of the semiconductor light source device 6000 of the sixth embodiment, and FIG. 15B is a plan view of the semiconductor light source device 6000 of the sixth embodiment. The semiconductor light source device 6000 of the present embodiment is different from the semiconductor light source device 4000 of the fourth embodiment in the relationship between the semiconductor light source assembly 620 and the light guiding member 610, and the rest of the same points will not be repeatedly described.
本實施例半導體光源組件620之數量係為四個,例如是半導體光源組件620a、620b、620c、620d,光形轉換耦合器之數量係為四個。移動平台680用以移動此些半導體光源組件620a、620b、620c、620d及此些光形轉換耦合器630,以調整光導元件610對應於光形轉換耦合器630之其中之一,使得光導元件610僅接收其中之一光形轉換耦合器630射出的光線。The number of semiconductor light source assemblies 620 in this embodiment is four, for example, semiconductor light source assemblies 620a, 620b, 620c, 620d, and the number of light conversion couplers is four. The mobile platform 680 is configured to move the semiconductor light source components 620a, 620b, 620c, 620d and the light shape conversion couplers 630 to adjust one of the light guide elements 610 corresponding to the light shape conversion coupler 630 such that the light guide elements 610 Only the light emitted by one of the light conversion couplers 630 is received.
以第15A~15B圖之實施例為例,上側之半導體光源組件620a對應於一個光形轉換耦合器630,下側之半導體光源組件620c對應於另一個光形轉換耦合器630。上側之半導體光源組件620a之光線係為白色光,下側之半導體光源組件620c之光線係為窄波光,例如是415奈米(nm)與530奈米(nm)波長之光線。控制單元640電性連接於移動平台680,以控制移動平台680的移動。移動平台680可以移動半導體光源組件620a、620b、620c、620d及光形轉換耦合器630,以使光導元件610所接收收之光線在白色光或窄波光之間切換。一般而言,白色光可以做一般手術的照明,而窄波光可以做癌症或其他病變的輔助診斷。Taking the embodiment of FIGS. 15A-15B as an example, the upper semiconductor light source assembly 620a corresponds to one light-shaped conversion coupler 630, and the lower semiconductor light source assembly 620c corresponds to the other light-shaped conversion coupler 630. The light of the upper semiconductor light source unit 620a is white light, and the light of the lower semiconductor light source unit 620c is narrow wave light, for example, light of 415 nm and 530 nm. The control unit 640 is electrically connected to the mobile platform 680 to control the movement of the mobile platform 680. The mobile platform 680 can move the semiconductor light source components 620a, 620b, 620c, 620d and the light shape conversion coupler 630 to switch the received light received by the light guiding element 610 between white light or narrow wave light. In general, white light can be used for general surgical illumination, while narrow-wave light can be used as an auxiliary diagnosis for cancer or other pathologies.
此外,在一實施例中,移動平台680亦可移動光導元件610,來使光導元件610相對半導體光源組件620a、620b、620c、620d及光形轉換耦合器630做相對運動,以切換白色光或窄波光。In addition, in an embodiment, the mobile platform 680 can also move the light guiding component 610 to move the light guiding component 610 relative to the semiconductor light source components 620a, 620b, 620c, 620d and the light conversion coupler 630 to switch white light or Narrow wave light.
綜上所述,雖然本案已以實施例揭露如上,然其並非用以限定本案。本案所屬技術領域中具有通常知識者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾。因此,本案之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed above by way of example, it is not intended to limit the present invention. Those who have ordinary knowledge in the technical field of the present invention can make various changes and refinements without departing from the spirit and scope of the present case. Therefore, the scope of protection of this case is subject to the definition of the scope of the patent application attached.
1000、1000b、1000c、2000、3000、4000、5000、6000...半導體光源裝置1000, 1000b, 1000c, 2000, 3000, 4000, 5000, 6000. . . Semiconductor light source device
110、110b、110c、210、310、410、510、610...光導元件110, 110b, 110c, 210, 310, 410, 510, 610. . . Light guide element
120、120b、120c、120e、120f、120g、120h、120i、120j、120k、120m、120n、120p、220、220a、220b、220c、220d、320、320a、320b、420、420a、420b、520、620、620a、620b、620c、620d...半導體光源組件120, 120b, 120c, 120e, 120f, 120g, 120h, 120i, 120j, 120k, 120m, 120n, 120p, 220, 220a, 220b, 220c, 220d, 320, 320a, 320b, 420, 420a, 420b, 520, 620, 620a, 620b, 620c, 620d. . . Semiconductor light source assembly
120j1、120j2、120k1、120k2、120k3、120m1、120m2、120m3、120m4、120n1、120n2、120p1、120p2...發光二極體120j1, 120j2, 120k1, 120k2, 120k3, 120m1, 120m2, 120m3, 120m4, 120n1, 120n2, 120p1, 120p2. . . Light-emitting diode
130、130a、230、330、430、530、630...光形轉換耦合器130, 130a, 230, 330, 430, 530, 630. . . Light conversion coupler
131、131a...斜面131, 131a. . . Bevel
131a1...第一階斜面131a1. . . First step bevel
131a2...第二階斜面131a2. . . Second step
132...曲面132. . . Surface
133、333...第一端面133, 333. . . First end face
134、334...第二端面134, 334. . . Second end face
140、240、340、440、640...控制單元140, 240, 340, 440, 640. . . control unit
150...基板150. . . Substrate
161c...反射鏡161c. . . Reflector
162c...聚光透鏡162c. . . Condenser lens
270...分光鏡組270. . . Beam splitter
271、272...分光鏡271, 272. . . Beam splitter
480、680...移動平台480, 680. . . mobile platform
590...固定器590. . . Holder
591...夾持件591. . . Clamping piece
5911...固定板5911. . . Fixed plate
5912...彈片5912. . . shrapnel
5921...卡勾5921. . . The hook
D...斜面投影至中心軸之長度D. . . The length of the bevel projection to the center axis
D 1 ...第一階斜面投影至中心軸之長度 D 1 . . . The length of the first-order bevel projection to the central axis
D 2 ...第二階斜面投影至中心軸之長度 D 2 . . . Projection of the second-order bevel to the length of the central axis
L1、L1a...中心軸L1, L1a. . . The central axis
L f ...光導元件之半徑 L f . . . Radius of the light guide element
L s ...半導體光源組件之邊長的一半 L s . . . Half of the length of the semiconductor light source assembly
θ c ...斜面的與中心軸之夾角 θ c . . . The angle between the slope and the central axis
θ c ,1 ...第一階斜面131a1與中心軸L1a之夾角 θ c ,1 . . . The angle between the first stepped slope 131a1 and the central axis L1a
θ c ,2 ...第二階斜面131a2與中心軸L1a之夾角 θ c , 2 . . . The angle between the second stepped slope 131a2 and the central axis L1a
θf ...光導元件110之最大接收角度θ f . . . Maximum receiving angle of the light guiding element 110
θs ...半導體光源組件之最大發射角度θ s . . . Maximum emission angle of the semiconductor light source assembly
第1~2圖繪示第一實施例之半導體光源裝置之示意圖。1 to 2 are schematic views showing the semiconductor light source device of the first embodiment.
第3A~3E圖繪示第一實施例之光形轉換耦合器之各種角度示意圖。3A to 3E are diagrams showing various angles of the light shape conversion coupler of the first embodiment.
第4圖繪示第一實施例之光形轉換耦合器之光學路徑示意圖。FIG. 4 is a schematic view showing the optical path of the light conversion coupler of the first embodiment.
第5圖繪示另一實施例之光形轉換耦合器之光學路徑示意圖。FIG. 5 is a schematic diagram showing an optical path of a light shape conversion coupler according to another embodiment.
第6A~6B圖繪示兩種半導體光源裝置之示意圖。6A-6B are schematic views showing two semiconductor light source devices.
第6C圖繪示本實施例之半導體光源裝置之示意圖。FIG. 6C is a schematic view showing the semiconductor light source device of the embodiment.
第7A~7B圖繪示半導體光源組件之形狀的實施方式。7A-7B illustrate an embodiment of the shape of the semiconductor light source assembly.
第8A~8B圖繪示半導體光源組件之數量的實施方式。8A-8B illustrate an embodiment of the number of semiconductor light source components.
第9A~9D圖繪示半導體光源組件之顏色的實施方式。9A-9D illustrate an embodiment of the color of the semiconductor light source assembly.
第10A~10B圖繪示半導體光源組件之色溫的實施方式。10A-10B illustrate an embodiment of the color temperature of the semiconductor light source assembly.
第11圖繪示第二實施例之半導體光源裝置之示意圖。11 is a schematic view showing the semiconductor light source device of the second embodiment.
第12圖繪示第三實施例之半導體光源裝置之示意圖。Fig. 12 is a schematic view showing the semiconductor light source device of the third embodiment.
第13圖繪示第四實施例之半導體光源裝置之示意圖。Figure 13 is a schematic view showing the semiconductor light source device of the fourth embodiment.
第14A圖繪示第五實施例之半導體光源裝置之立體圖。Fig. 14A is a perspective view showing the semiconductor light source device of the fifth embodiment.
第14B圖繪示第五實施例之半導體光源裝置之側視圖。Fig. 14B is a side view showing the semiconductor light source device of the fifth embodiment.
第15A圖繪示第六實施例之半導體光源裝置之側視圖。Fig. 15A is a side view showing the semiconductor light source device of the sixth embodiment.
第15B圖繪示第六實施例之半導體光源裝置之俯視圖。Fig. 15B is a plan view showing the semiconductor light source device of the sixth embodiment.
110...光導元件110. . . Light guide element
120...半導體光源組件120. . . Semiconductor light source assembly
130a...光形轉換耦合器130a. . . Light conversion coupler
131a...斜面131a. . . Bevel
131a1...第一階斜面131a1. . . First step bevel
131a2...第二階斜面131a2. . . Second step
D 1 ...第一階斜面投影至中心軸之長度 D 1 . . . The length of the first-order bevel projection to the central axis
D 2 ...第二階斜面投影至中心軸之長度 D 2 . . . Projection of the second-order bevel to the length of the central axis
L1a...中心軸L1a. . . The central axis
L f ...光導元件之半徑 L f . . . Radius of the light guide element
L s ...半導體光源組件之邊長的一半 L s . . . Half of the length of the semiconductor light source assembly
θ c ,1 ...第一階斜面與中心軸之夾角 θ c ,1 . . . The angle between the first stepped slope and the central axis
θ c ,2 ...第二階斜面與中心軸之夾角 θ c , 2 . . . The angle between the second stepped slope and the central axis
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149645A TWI471505B (en) | 2011-12-29 | 2011-12-29 | Semiconductor light source device |
US13/710,880 US8979313B2 (en) | 2011-12-29 | 2012-12-11 | Semiconductor light source device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149645A TWI471505B (en) | 2011-12-29 | 2011-12-29 | Semiconductor light source device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201326683A TW201326683A (en) | 2013-07-01 |
TWI471505B true TWI471505B (en) | 2015-02-01 |
Family
ID=48694138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100149645A TWI471505B (en) | 2011-12-29 | 2011-12-29 | Semiconductor light source device |
Country Status (2)
Country | Link |
---|---|
US (1) | US8979313B2 (en) |
TW (1) | TWI471505B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9140839B2 (en) | 2013-07-15 | 2015-09-22 | Industrial Technology Research Institute | Lighting module and optical fiber lighting device using the same |
TWI564646B (en) | 2015-10-08 | 2017-01-01 | 台達電子工業股份有限公司 | Light providing device and projection system |
TWI740131B (en) * | 2018-04-20 | 2021-09-21 | 新視電科技有限公司 | Endoscope system and its light source machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6560038B1 (en) * | 2001-12-10 | 2003-05-06 | Teledyne Lighting And Display Products, Inc. | Light extraction from LEDs with light pipes |
US6817746B2 (en) * | 2001-06-11 | 2004-11-16 | Honeywell International Inc. | Optical distribution components |
TW200527025A (en) * | 2003-12-02 | 2005-08-16 | 3M Innovative Properties Co | Reflective light coupler |
CN1742217A (en) * | 2002-12-02 | 2006-03-01 | 3M创新有限公司 | Illumination system using a plurality of light sources |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5838935A (en) | 1995-06-15 | 1998-11-17 | Intel Corporation | Method and apparatus providing programmable decode modes for secondary PCI bus interfaces |
JP2000066115A (en) | 1998-08-21 | 2000-03-03 | Fuji Photo Optical Co Ltd | Light source device for endoscope |
JP3717675B2 (en) | 1998-08-21 | 2005-11-16 | フジノン株式会社 | Endoscope light source device |
JP2001008892A (en) | 1999-06-28 | 2001-01-16 | Asahi Optical Co Ltd | Light source device and endoscope system |
JP4199463B2 (en) | 2002-02-20 | 2008-12-17 | Hoya株式会社 | Endoscope light source device and light source unit assembly method |
US7229201B2 (en) | 2003-03-26 | 2007-06-12 | Optim Inc. | Compact, high-efficiency, high-power solid state light source using a single solid state light-emitting device |
US7305159B1 (en) | 2004-08-18 | 2007-12-04 | Edmund Optics, Inc. | Dual-reflector light coupler |
WO2006034171A1 (en) | 2004-09-17 | 2006-03-30 | Optim, Inc. | Methods of mounting an led endoscope illuminator within an endoscope |
US7621677B2 (en) | 2007-08-21 | 2009-11-24 | Ylx Corp. | Optical coupler for a light emitting device with enhanced output brightness |
-
2011
- 2011-12-29 TW TW100149645A patent/TWI471505B/en active
-
2012
- 2012-12-11 US US13/710,880 patent/US8979313B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6817746B2 (en) * | 2001-06-11 | 2004-11-16 | Honeywell International Inc. | Optical distribution components |
US6560038B1 (en) * | 2001-12-10 | 2003-05-06 | Teledyne Lighting And Display Products, Inc. | Light extraction from LEDs with light pipes |
CN1742217A (en) * | 2002-12-02 | 2006-03-01 | 3M创新有限公司 | Illumination system using a plurality of light sources |
TW200527025A (en) * | 2003-12-02 | 2005-08-16 | 3M Innovative Properties Co | Reflective light coupler |
Also Published As
Publication number | Publication date |
---|---|
US8979313B2 (en) | 2015-03-17 |
US20130168710A1 (en) | 2013-07-04 |
TW201326683A (en) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3539157B1 (en) | Multi-color micro-led array light source | |
US6325524B1 (en) | Solid state based illumination source for a projection display | |
KR101920411B1 (en) | Light Source, Light Combining Device, and Projection Device with the Light Source | |
CN106526874B (en) | Optical coupling device, light source system and endoscope system | |
TWI432780B (en) | Illumination system | |
US20070258049A1 (en) | Systems and methods for providing compact illumination in head mounted displays | |
CN104049445A (en) | Light emitting device and a projection system | |
US20100246176A1 (en) | Fresnel led lens and led assembly thereof | |
TWI551820B (en) | Led illumination system with recycled light | |
JP7123231B2 (en) | Light source device | |
US20120217519A1 (en) | Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure | |
TWI418920B (en) | Projection apparatus | |
JP2010129202A (en) | Led illuminating device | |
TWI471505B (en) | Semiconductor light source device | |
US11662525B1 (en) | Optical system | |
US8459830B2 (en) | Light output device with partly transparent mirror | |
US9110361B2 (en) | Illumination optical system and projection display apparatus | |
US8439520B2 (en) | Color-configurable lighting assembly | |
JP2008070769A (en) | Light source unit, illumination device and projector device | |
CN209086650U (en) | Lighting system and projection arrangement | |
JP7117492B2 (en) | lighting equipment | |
TW201641885A (en) | Light-emitting module and light-emitting device | |
TWI235261B (en) | Light transceiving module | |
US20240012319A1 (en) | Illumination system for projector | |
TWI734621B (en) | Light source module |