TWI468999B - Remote-control device and method for controlling operation of screen - Google Patents

Remote-control device and method for controlling operation of screen Download PDF

Info

Publication number
TWI468999B
TWI468999B TW101101840A TW101101840A TWI468999B TW I468999 B TWI468999 B TW I468999B TW 101101840 A TW101101840 A TW 101101840A TW 101101840 A TW101101840 A TW 101101840A TW I468999 B TWI468999 B TW I468999B
Authority
TW
Taiwan
Prior art keywords
estimated
variable
specific
signal
processing unit
Prior art date
Application number
TW101101840A
Other languages
Chinese (zh)
Other versions
TW201331790A (en
Inventor
Ruey Der Lou
Original Assignee
J Mex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Mex Inc filed Critical J Mex Inc
Priority to TW101101840A priority Critical patent/TWI468999B/en
Publication of TW201331790A publication Critical patent/TW201331790A/en
Application granted granted Critical
Publication of TWI468999B publication Critical patent/TWI468999B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Description

遙控裝置及用於控制螢幕的操作的方法Remote control device and method for controlling operation of the screen

本發明是關於一種遙控裝置,且特別是關於一種用於控制螢幕的操作的遙控裝置。The present invention relates to a remote control device, and more particularly to a remote control device for controlling the operation of a screen.

傳統的電腦滑鼠是放在平面(譬如桌面)上滑動以控制電腦螢幕上游標的移動。近年來,由於作簡報的需要、數位電視的興起、以及電腦遊戲的普及化,有種新型的滑鼠出現。這種新型的滑鼠不是在桌面上滑動使用,而是拿在空中用手揮舞著以控制螢幕上的游標。這種滑鼠有些人稱之為空中滑鼠。該空中滑鼠的操作方法如下:使用者把該空中滑鼠握在手上,以肩關節為軸,向左/向右揮動該空中滑鼠,螢幕上的游標就會向左/向右移動;使用者向上/向下揮動該空中滑鼠,螢幕上的該游標就會向上/向下移動。Traditional computer mice are slid on a flat surface (such as a desktop) to control the movement of the upstream screen of the computer screen. In recent years, due to the need for briefings, the rise of digital television, and the popularity of computer games, there has been a new type of mouse. Instead of sliding on the table, this new type of mouse is held in the air by hand to control the cursor on the screen. Some of these mice are called aerial mice. The aerial mouse is operated as follows: the user holds the aerial mouse on the hand, swings the aerial mouse to the left/right with the shoulder joint as the axis, and the cursor on the screen moves to the left/right. The user swipes the air mouse up/down and the cursor on the screen moves up/down.

請參閱第一圖,其為在先前技術中與一空中滑鼠101相關的一操作系統10的示意圖。如圖所示,操作系統10包含空中滑鼠101、耦合於空中滑鼠101的一電腦102、和耦合於電腦102的一螢幕103。空中滑鼠101包含一微處理器11、一通信模組12、一主動鍵(Active key)13和一陀螺儀14,其中通信模組12、主動鍵13和陀螺儀14均耦合於微處理器11。Please refer to the first figure, which is a schematic diagram of an operating system 10 associated with an aerial mouse 101 in the prior art. As shown, the operating system 10 includes an air mouse 101, a computer 102 coupled to the airborne mouse 101, and a screen 103 coupled to the computer 102. The airborne mouse 101 includes a microprocessor 11, a communication module 12, an active key 13 and a gyroscope 14, wherein the communication module 12, the active key 13 and the gyroscope 14 are coupled to the microprocessor. 11.

在第一圖中,使用者向左/向右或向上/向下揮動空中滑鼠101來使空中滑鼠101具有一角速度。陀螺儀14作為一感測元件,具有一個兩軸向自由度(Axial freedom)或者兩個單軸向自由度,且響應空中滑鼠101的該角速度而提供與該角速度相關的一信號S11到微處理器11。當使用者按下主動鍵13時,微處理器11將信號S11轉換成用於移動在螢幕103上一游標K11的速度資料DU1,且透過通信模組12將速度資料DU1傳送給電腦102。電腦102就會根據速度資料DU1使游標K11在螢幕103上移動。In the first figure, the user swings the aerial mouse 101 left/right or up/down to give the aerial mouse 101 an angular velocity. The gyroscope 14 as a sensing element has a two-axis freedom or two uniaxial degrees of freedom, and provides a signal S11 related to the angular velocity in response to the angular velocity of the airborne mouse 101. Processor 11. When the user presses the active button 13, the microprocessor 11 converts the signal S11 into speed data DU1 for moving a cursor K11 on the screen 103, and transmits the speed data DU1 to the computer 102 via the communication module 12. The computer 102 moves the cursor K11 on the screen 103 based on the speed data DU1.

請參閱第二圖,其為在先前技術中與一空中滑鼠201相關的一操作系統20的示意圖。如圖所示,操作系統20包含空中滑鼠201、耦合於空中滑鼠201的電腦102、和耦合於電腦102的螢幕103。空中滑鼠201包含一微處理器21、一通信模組22、一主動鍵23、一地磁儀25和一水平儀26,其中通信模組22、地磁儀25和水平儀26均耦合於微處理器21。空中滑鼠201具有一參考定向NF2,該參考定向NF2具有一參考軸NU2,且參考軸NU2具有一可變方向NA2。可變方向NA2參考一座標系統RX2來形成一偏轉角(Yaw angle) θA 和一俯仰角(Pitch angle) αA ,以致偏轉角(Yaw angle) θA 和俯仰角(Pitch angle) αA 用於表示可變方向NA2。Please refer to the second figure, which is a schematic diagram of an operating system 20 associated with an aerial mouse 201 in the prior art. As shown, the operating system 20 includes an air mouse 201, a computer 102 coupled to the airborne mouse 201, and a screen 103 coupled to the computer 102. The airborne mouse 201 includes a microprocessor 21, a communication module 22, an active button 23, a geophone 25 and a level 26, wherein the communication module 22, the geophone 25 and the level 26 are both coupled to the microprocessor 21. . The aerial mouse 201 has a reference orientation NF2 having a reference axis NU2 and a reference axis NU2 having a variable direction NA2. The variable direction NA2 refers to the calibration system RX2 to form a Yaw angle θ A and a Pitch angle α A such that the Yaw angle θ A and the Pitch angle α A are used. Indicates the variable direction NA2.

空中滑鼠20承受一作用力(Applied force) F2,作用力F2包含一地磁力F22,且使空中滑鼠20具有一特定運動MT2。一地球磁場在空中滑鼠201所在的位置形成具有一方向和一大小的地磁力F22,且地磁儀25響應作用力F2而提供與地磁力F22相關的一信號S21到微處理器21。微處理器11將信號S21轉換成用於估算偏轉角θA 的一估計偏轉角θB1 。水平儀26可以包含一加速度計261,水平儀26或加速度計261響應作用力F2而提供與特定運動MT2相關的一信號S22到微處理器21。微處理器11將信號S22轉換成用於估算俯仰角αA 的一估計俯仰角αB1The aerial mouse 20 is subjected to an applied force F2, which includes a ground magnetic force F22 and causes the aerial mouse 20 to have a specific motion MT2. An earth magnetic field forms a ground magnetic force F22 having a direction and a magnitude at a position where the aerial mouse 201 is located, and the geomagnetism meter 25 supplies a signal S21 related to the ground magnetic force F22 to the microprocessor 21 in response to the force F2. The microprocessor 11 converts the signal S21 into an estimated deflection angle θ B1 for estimating the deflection angle θ A . Level 26 may include an accelerometer 261 that provides a signal S22 associated with a particular motion MT2 to microprocessor 21 in response to force F2. The microprocessor 11 converts the signal S22 into an estimated pitch angle α B1 for estimating the pitch angle α A .

當使用者揮動空中滑鼠201時,空中滑鼠201的可變方向NA2就會變化。微處理器21響應信號S21和信號S22而估算偏轉角θA 的一第一變化和俯仰角αA 的一第二變化來產生分別用估算該第一變化和該第二變化的一估計偏轉角變化ΔθB1 和一估計俯仰角變化ΔαB1 ,且根據估計偏轉角變化ΔθB1 和估計俯仰角變化ΔαB1 而產生用於移動在螢幕103上一游標K11的速度資料DU2,且透過通信模組22將速度資料DU2傳送給電腦102。速度資料DU2包含一水平向資料分量DU21和一垂直向資料分量DU22,其中微處理器21將估計偏轉角變化ΔθB1 轉換為水平向資料分量DU21,且將估計俯仰角變化ΔαB1 轉換為垂直向資料分量DU22。When the user swings the aerial mouse 201, the variable direction NA2 of the aerial mouse 201 changes. The microprocessor 21 estimates a first change in the deflection angle θ A and a second change in the pitch angle α A in response to the signals S21 and S22 to generate an estimated deflection angle for estimating the first change and the second change, respectively. The change Δθ B1 and an estimated pitch angle change Δα B1 , and the velocity data DU2 for moving a cursor K11 on the screen 103 is generated according to the estimated yaw angle change Δθ B1 and the estimated pitch angle change Δα B1 , and transmitted through the communication module 22 The speed data DU2 is transmitted to the computer 102. The velocity data DU2 includes a horizontal data component DU21 and a vertical data component DU22, wherein the microprocessor 21 converts the estimated deflection angle change Δθ B1 into the horizontal data component DU21, and converts the estimated pitch angle change Δα B1 into a vertical direction. Data component DU22.

空中滑鼠201的構造具有一個麻煩的問題,所以很少在市面上出現。因為成本和體積的因素,空中滑鼠201的地磁儀25必須是採用微機電構造的一特定地磁儀。該特定地磁儀目前大量普遍地使用在手機上。在空中滑鼠201採用該特定地磁儀的條件下,該特定地磁儀產生一特定信號;該特定信號具有雜訊大、和解析度不夠的性質。也就是說,即使空中滑鼠201所指方向固定不動,經由該特定地磁儀所獲得的估計偏轉角θB1 也會激烈跳動。如果使用一濾波器強制把雜訊完全濾掉,則會把小信號也濾掉。因為所述濾掉,當使用者小力揮動空中滑鼠201時,所獲得的估計偏轉角θB1 不變,所以游標K11不動。因為所述濾掉,當使用者大力揮動空中滑鼠201時,則游標K11又動得太多,導致使用者很難對游標K11的位置做精細地微調。The construction of the airborne mouse 201 has a cumbersome problem and is therefore rarely found on the market. Because of cost and volume factors, the geomagnetic instrument 25 of the airborne mouse 201 must be a specific geomagnetic instrument employing a microelectromechanical construction. This particular geomagnetic instrument is currently widely used on mobile phones in large numbers. Under the condition that the aerial mouse 201 adopts the specific geomagnetic instrument, the specific geophone generates a specific signal; the specific signal has the characteristics of large noise and insufficient resolution. That is, even if the direction of the airborne mouse 201 is fixed, the estimated deflection angle θ B1 obtained by the specific geomagnetic instrument will be vigorously beaten. If a filter is used to force the noise to be completely filtered out, the small signal will also be filtered out. Because of the filtering, when the user swings the airborne mouse 201 with a small force, the obtained estimated deflection angle θ B1 does not change, so the cursor K11 does not move. Because of the filtering, when the user vigorously swings the airborne mouse 201, the cursor K11 moves too much, making it difficult for the user to finely fine tune the position of the cursor K11.

空中滑鼠101和201還有下列問題。以空中滑鼠101為例,考慮下列情況。使用者站在螢幕103前,且面對著螢幕103。游標K11設置於螢幕上接近左側(以使用者而言)邊緣。該使用者拿著空中滑鼠101指向螢幕103上的游標K11,且按下主動鍵13。如果該使用者輕輕地往右揮動空中滑鼠101,則游標K11就會往右移動。如果該使用者大力且大角度地向左揮動空中滑鼠101(譬如使空中滑鼠101旋轉90度)而把空中滑鼠101變成指向左方,而不再指向螢幕103。這時,游標K11會貼在螢幕103的左側邊緣上。The airborne mice 101 and 201 also have the following problems. Take the airborne mouse 101 as an example, consider the following. The user stands in front of the screen 103 and faces the screen 103. The cursor K11 is placed on the screen near the left (in the user's) edge. The user holds the air mouse 101 pointing to the cursor K11 on the screen 103 and pressing the active button 13. If the user gently swings the air mouse 101 to the right, the cursor K11 will move to the right. If the user swings the air mouse 101 to the left vigorously and at a large angle (for example, rotating the air mouse 101 by 90 degrees), the air mouse 101 is turned to the left and no longer points to the screen 103. At this time, the cursor K11 is attached to the left edge of the screen 103.

然後,當該使用者再往右邊輕揮一下空中滑鼠101時,游標K11就會離開螢幕103邊緣。在這種情況下,該使用者所拿空中滑鼠101所指的方向與游標K11的位置變成完全不一致。空中滑鼠101的這種特性稱之為“沒有指向性”。如果該使用者想要再度使空中滑鼠101所指的方向與游標K11的位置一致(或大略一致),則該使用者就要放開主動鍵13,把空中滑鼠101指向游標K11的位置,且然後按下主動鍵13。如此,該使用者會感到不方便。Then, when the user swipes the air mouse 101 to the right, the cursor K11 will leave the edge of the screen 103. In this case, the direction pointed by the air mouse 101 taken by the user becomes completely inconsistent with the position of the cursor K11. This characteristic of the airborne mouse 101 is called "no directivity." If the user wants to make the direction indicated by the air mouse 101 coincide with (or roughly coincides with) the position of the cursor K11, the user will release the active button 13 and point the air mouse 101 to the position of the cursor K11. And then press the active button 13. As such, the user may feel inconvenient.

本發明的一目的在於提出一種遙控裝置,該遙控裝置是有指向性的,可以被拿在空中來控制電腦游標的移動,同時讓該游標的位置和該遙控裝置的方向產生關聯;亦即,當該遙控裝置指向在螢幕上一操作區域中的任何位置時,游標就出現在那位置附近;當該遙控裝置指向該操作區域之外時,游標就貼在該操作區域上的邊緣區域中的一特定位置不動。An object of the present invention is to provide a remote control device that is directional and can be taken in the air to control the movement of a computer cursor while causing the position of the cursor to be associated with the direction of the remote control device; that is, When the remote control device is pointed at any position in an operation area on the screen, the cursor appears near the position; when the remote control device is pointed out of the operation area, the cursor is attached to the edge area on the operation area A specific location does not move.

本發明的第一實施例提供一種遙控裝置,該遙控裝置用於控制一螢幕的一操作,該螢幕具有一幾何參考,且該幾何參考和該遙控裝置之間具有一方向結構。該遙控裝置包含一第一感測單元、一第二感測單元和一處理單元。該處理單元通過該第一感測單元而響應一作用力來校正該方向結構以產生第一資料,且根據該第一資料,通過該第二感測單元而響應該作用力來產生用於控制該操作的第二資料。A first embodiment of the present invention provides a remote control device for controlling an operation of a screen having a geometric reference and having a directional structure between the geometric reference and the remote control device. The remote control device includes a first sensing unit, a second sensing unit and a processing unit. The processing unit corrects the directional structure by the first sensing unit to generate a first data, and according to the first data, generates a control for the control by the second sensing unit in response to the force The second information of the operation.

本發明的第二實施例提供一種用於控制一螢幕的一操作的方法。該方法包含下列步驟:提供一遙控裝置,該遙控裝置包含一第一感測單元和一第二感測單元;通過該第一感測單元而響應一作用力來產生相對於該螢幕的資料;以及根據該資料,通過該第二感測單元而響應該作用力來控制該操作。A second embodiment of the present invention provides a method for controlling an operation of a screen. The method includes the following steps: providing a remote control device, the remote control device comprising a first sensing unit and a second sensing unit; and generating, by the first sensing unit, a force relative to the screen in response to a force; And according to the data, the operation is controlled by the second sensing unit in response to the force.

本發明的第三實施例提供一種遙控裝置,該遙控裝置用於控制一螢幕的一操作。該遙控裝置包含一第一感測單元、一第二感測單元和一處理單元。該處理單元通過該第一感測單元而響應一作用力來產生相對於該螢幕的資料,且根據該資料,通過該第二感測單元而響應該作用力來控制該操作。A third embodiment of the present invention provides a remote control device for controlling an operation of a screen. The remote control device includes a first sensing unit, a second sensing unit and a processing unit. The processing unit generates a data relative to the screen by the first sensing unit in response to a force, and according to the data, the operation is controlled by the second sensing unit in response to the force.

本發明的第四實施例提供一種遙控裝置,該遙控裝置用於控制一螢幕的一操作。該遙控裝置包含一第一感測單元和一第二感測單元。該第一感測單元響應一作用力而產生相對於該螢幕的資料。該第二感測單元根據該資料,響應該作用力來控制該操作。A fourth embodiment of the present invention provides a remote control device for controlling an operation of a screen. The remote control device includes a first sensing unit and a second sensing unit. The first sensing unit generates data relative to the screen in response to a force. The second sensing unit controls the operation in response to the force according to the data.

請參閱第三圖,其為本發明一實施例所提供的與一遙控裝置301相關的一操作系統30的示意圖。如圖所示,操作系統30包含遙控裝置301、耦合於遙控裝置301的一電腦42、和耦合於電腦42的一螢幕43。遙控裝置301用於控制螢幕43的一操作Q1。遙控裝置301包含一感測單元37、一感測單元38和一處理單元39。處理單元39耦合於感測單元37和38。處理單元39通過感測單元37而響應一作用力(Applied force) F3來產生相對於螢幕43的資料DR1,且根據資料DR1,通過感測單元38而響應作用力F3來控制操作Q1。例如,遙控裝置301包含一空中滑鼠305,且空中滑鼠305包含感測單元37與38和處理單元39。Please refer to the third figure, which is a schematic diagram of an operating system 30 associated with a remote control device 301 according to an embodiment of the invention. As shown, the operating system 30 includes a remote control device 301, a computer 42 coupled to the remote control device 301, and a screen 43 coupled to the computer 42. The remote control device 301 is used to control an operation Q1 of the screen 43. The remote control device 301 includes a sensing unit 37, a sensing unit 38, and a processing unit 39. Processing unit 39 is coupled to sensing units 37 and 38. The processing unit 39 generates the data DR1 with respect to the screen 43 in response to an applied force F3 through the sensing unit 37, and controls the operation Q1 by the sensing unit 38 in response to the force F3 according to the data DR1. For example, remote control device 301 includes an aerial mouse 305, and aerial mouse 305 includes sensing units 37 and 38 and processing unit 39.

在一實施例中,螢幕43包含一操作區域431和界定操作區域431的一幾何參考432,幾何參考432和遙控裝置301之間具有一方向結構RG3,且操作Q1包含在操作區域431上的一定位操作。操作區域431參考遙控裝置301來形成與操作區域431對應的一參考方向範圍RP1,且包含一特定位置P21,其中方向結構RG3界定參考方向範圍RP1。例如,幾何參考432是一位置結構,且操作區域431是一影像區域。In an embodiment, the screen 43 includes an operation area 431 and a geometric reference 432 defining the operation area 431. The geometric reference 432 and the remote control unit 301 have a directional structure RG3, and the operation Q1 is included in the operation area 431. Positioning operation. The operation area 431 refers to the remote control device 301 to form a reference direction range RP1 corresponding to the operation area 431, and includes a specific position P21, wherein the direction structure RG3 defines the reference direction range RP1. For example, geometric reference 432 is a positional structure and operating area 431 is an image area.

在一實施例中,資料DR1包含用於估算方向結構RG3的一估計方向結構DRG3、和與估計方向結構DRG3對應的一預設位置結構DRH3。根據估計方向結構DRG3,資料DR1更包含一估計方向DA21、一估計方向DA41、一估計方向DA45、和用於估算參考方向範圍RP1的一估計方向範圍DRP1。根據預設位置結構DRH3,資料DR1更包含用於界定操作區域431的一預設區域D431。根據估計方向結構DRG3和預設位置結構DRH3,資料DR1更包含在估計方向結構DRG3和預設位置結構DRH3之間的一轉換關係RT1、和分別與估計方向DA21、DA41與DA45對應的一估計位置DP21、一估計位置DP41與一估計位置DP45。例如,估計位置DP21界定特定位置P21,預設位置結構DRH3界定幾何參考432,且預設區域D431與估計方向範圍DRG3對應。In an embodiment, the data DR1 includes an estimated direction structure DRG3 for estimating the direction structure RG3 and a preset position structure DRH3 corresponding to the estimated direction structure DRG3. According to the estimated direction structure DRG3, the data DR1 further includes an estimated direction DA21, an estimated direction DA41, an estimated direction DA45, and an estimated direction range DRP1 for estimating the reference direction range RP1. According to the preset position structure DRH3, the data DR1 further includes a preset area D431 for defining the operation area 431. According to the estimated direction structure DRG3 and the preset position structure DRH3, the data DR1 further includes a conversion relationship RT1 between the estimated direction structure DRG3 and the preset position structure DRH3, and an estimated position corresponding to the estimation directions DA21, DA41 and DA45, respectively. The DP 21, an estimated position DP41 and an estimated position DP45. For example, the estimated position DP21 defines a specific position P21, the preset position structure DRH3 defines a geometric reference 432, and the preset area D431 corresponds to the estimated direction range DRG3.

在一實施例中,估計方向結構DRG3界定估計方向範圍DRP1,且包含一估計方向DA11和一估計方向DA12。幾何參考432包含一特定位置P11和與特定位置P11成斜對角的一特定位置P12。方向結構RG3包含與特定位置P11對應的一特定方向NA31、和與特定位置P12對應的一特定方向NA32。遙控裝置301承受作用力F3,作用力F3包含一接觸力F31,且遙控裝置301響應作用力F3而具有一特定運動MT3,其中接觸力F31依序包含一成分力F311、一成分力F312和一成分力F313。例如,接觸力F31更包含用於握持遙控裝置301的一握持力。In an embodiment, the estimated direction structure DRG3 defines an estimated direction range DRP1 and includes an estimated direction DA11 and an estimated direction DA12. The geometric reference 432 includes a specific position P11 and a specific position P12 that is diagonally opposite the specific position P11. The directional structure RG3 includes a specific direction NA31 corresponding to the specific position P11 and a specific direction NA32 corresponding to the specific position P12. The remote control device 301 is subjected to a force F3. The force F3 includes a contact force F31, and the remote control device 301 has a specific motion MT3 in response to the force F3. The contact force F31 sequentially includes a component force F311, a component force F312, and a Component strength F313. For example, the contact force F31 further includes a holding force for holding the remote control device 301.

在一實施例中,該遙控裝置301具有一參考定向NF3,參考定向NF3具有一參考軸NU3、一可變速度VF和一可變角速度ωE ,且參考軸NU3具有一可變方向NAV。可變方向NAV參考一座標系統RX3來形成一方向參數CQ1,以表示可變方向NAV,其中方向參數CQ1包含一偏轉角θE 和一俯仰角αE 。可變方向NAV依序被配置成為特定方向NA31、特定方向NA32和一特定方向NA33。例如,座標系統RX3是固定的。In one embodiment, the remote control device 301 has a reference orientation NF3 having a reference axis NU3, a variable speed VF, and a variable angular velocity ω E , and the reference axis NU3 has a variable direction NAV. The variable direction NAV refers to the landmark system RX3 to form a direction parameter CQ1 to represent the variable direction NAV, wherein the direction parameter CQ1 includes a deflection angle θ E and a pitch angle α E . The variable direction NAV is sequentially configured to be a specific direction NA31, a specific direction NA32, and a specific direction NA33. For example, the coordinate system RX3 is fixed.

在一實施例中,感測單元37響應作用力F3而產生一信號S4,且包含一介面單元371和一感測模組372。信號S4包含信號S31和信號S32,亦即,信號S31和信號S32均是信號S4的子信號。介面單元371耦合於處理單元39,且響應作用力F3而產生與接觸力F31相關的一信號S31。例如,信號S31包含一感測信號S311和一感測信號S312。感測模組372耦合於處理單元39,且響應作用力F3而產生與特定運動MT3相關的一信號S32。例如,信號S32包含一感測信號S321和一感測信號S322。例如,處理單元39根據信號S4而校正方向結構RG3以產生估計方向結構DRG3,且根據估計方向結構DRG3而產生資料DR1。In an embodiment, the sensing unit 37 generates a signal S4 in response to the force F3, and includes an interface unit 371 and a sensing module 372. Signal S4 contains signal S31 and signal S32, that is, both signal S31 and signal S32 are sub-signals of signal S4. The interface unit 371 is coupled to the processing unit 39 and generates a signal S31 associated with the contact force F31 in response to the force F3. For example, the signal S31 includes a sensing signal S311 and a sensing signal S312. The sensing module 372 is coupled to the processing unit 39 and generates a signal S32 associated with the particular motion MT3 in response to the force F3. For example, the signal S32 includes a sensing signal S321 and a sensing signal S322. For example, the processing unit 39 corrects the directional structure RG3 according to the signal S4 to generate the estimated directional structure DRG3, and generates the data DR1 according to the estimated directional structure DRG3.

在一實施例中,介面單元371包含一按鍵單元3711和一按鍵單元33。按鍵單元3711耦合於處理單元39,響應成分力F311而使處理單元39確定與特定位置P11對應的特定方向NA31,以產生用於估算特定方向NA31的估計方向DA11,且響應成分力F312而使處理單元39確定與特定位置P12對應的特定方向NA32,以產生用於估算特定方向NA32的估計方向DA12。例如,按鍵單元3711響應作用力F3而產生感測信號S311,其中按鍵單元3711依序響應成分力F311和成分力F312來使感測信號S311具有分別成分力F311和成分力F312對應的一成分信號G11和一成分信號G12。In an embodiment, the interface unit 371 includes a button unit 3711 and a button unit 33. The button unit 3711 is coupled to the processing unit 39, and causes the processing unit 39 to determine the specific direction NA31 corresponding to the specific position P11 in response to the component force F311 to generate the estimated direction DA11 for estimating the specific direction NA31, and to process in response to the component force F312. The unit 39 determines a specific direction NA32 corresponding to the specific position P12 to generate an estimated direction DA12 for estimating the specific direction NA32. For example, the button unit 3711 generates a sensing signal S311 in response to the force F3, wherein the button unit 3711 sequentially responds to the component force F311 and the component force F312 to cause the sensing signal S311 to have a component signal corresponding to the component force F311 and the component force F312, respectively. G11 and a component signal G12.

在一實施例中,按鍵單元33耦合於處理單元39,且響應成分力F313而使處理單元39確定特定方向NA33,以產生用於估算特定方向NA33的估計方向DA21。例如,按鍵單元33響應作用力F3而產生感測信號S312,其中按鍵單元33響應成分力F313來使感測信號S312具有與成分力F313對應的一成分信號G13。成分信號G13具有一作用期間TA,且作用期間TA具有一特定時間點TA1和跟隨特定時間點TA1的一特定期間T1。In an embodiment, the button unit 33 is coupled to the processing unit 39 and causes the processing unit 39 to determine a particular direction NA33 in response to the component force F313 to generate an estimated direction DA21 for estimating the particular direction NA33. For example, the button unit 33 generates the sensing signal S312 in response to the force F3, wherein the button unit 33 responds to the component force F313 to cause the sensing signal S312 to have a component signal G13 corresponding to the component force F313. The component signal G13 has an active period TA, and the active period TA has a specific time point TA1 and a specific period T1 following the specific time point TA1.

在一實施例中,感測模組372包含一水平儀36和一地磁儀35。水平儀36耦合於處理單元39,且響應作用力F3而使處理單元39估算俯仰角αE 。例如,水平儀36響應作用力F3而產生感測信號S322。地磁儀35耦合於處理單元39,且響應作用力F3而使處理單元39估算偏轉角θE 。例如,地磁儀35響應作用力F3而產生感測信號S321。例如,作用力F3更包含一地磁力F32,且感測信號S321與地磁力F32相關。感測單元38包含一陀螺儀34,且響應作用力F3而產生與特定運動MT3相關的一信號S33,其中信號S33包含一感測信號S331。陀螺儀34耦合於處理單元39,且響應作用力F3而使處理單元39估算可變角速度ωE 。例如,陀螺儀34響應作用力F3而產生感測信號S331。In one embodiment, the sensing module 372 includes a level 36 and a geophone 35. The level 36 is coupled to the processing unit 39 and causes the processing unit 39 to estimate the pitch angle α E in response to the force F3. For example, the level 36 generates a sensing signal S322 in response to the force F3. The geomagnetic instrument 35 is coupled to the processing unit 39 and causes the processing unit 39 to estimate the deflection angle θ E in response to the force F3. For example, the geomagnetic meter 35 generates the sensing signal S321 in response to the force F3. For example, the force F3 further includes a ground magnetic force F32, and the sensing signal S321 is related to the ground magnetic force F32. The sensing unit 38 includes a gyroscope 34 and generates a signal S33 related to the specific motion MT3 in response to the force F3, wherein the signal S33 includes a sensing signal S331. The gyroscope 34 is coupled to the processing unit 39 and causes the processing unit 39 to estimate the variable angular velocity ω E in response to the force F3. For example, the gyroscope 34 generates the sensing signal S331 in response to the force F3.

在一實施例中,處理單元39響應信號S4(包含信號S31和信號S32)而產生資料DR1,且響應資料DR1和信號S33而產生用於控制操作Q1的資料DS1、和與資料DS1相關的誤差資料DF,且根據信號S33和誤差資料DF將資料DS1調整為經調整資料DS3。例如,資料DS1包含在估計方向結構DRG3下的一估計方向DAA1、一估計方向DAA2、和一估計方向DAA5、以及在預設位置結構DRH3下分別與估計方向DAA1、DAA2和DAA5對應的一估計位置DPA1、一估計位置DPA2和一估計位置DPA5。In one embodiment, processing unit 39 generates data DR1 in response to signal S4 (including signal S31 and signal S32), and generates data DS1 for controlling operation Q1 and error associated with data DS1 in response to data DR1 and signal S33. The data DF is adjusted to the adjusted data DS3 based on the signal S33 and the error data DF. For example, the data DS1 includes an estimated direction DAA1, an estimated direction DAA2, and an estimated direction DAA5 under the estimated direction structure DRG3, and an estimated position corresponding to the estimated directions DAA1, DAA2, and DAA5 under the preset position structure DRH3, respectively. DPA1, an estimated position DPA2 and an estimated position DPA5.

在一實施例中,處理單元39響應感測信號S311的成分信號G11而確定與特定位置P11對應的特定方向NA31,且根據信號S32而產生在特定方向NA31下用於估算特定方向NA31的估計方向DA11。處理單元39響應感測信號S311的成分信號G12而確定與特定位置P12對應的特定方向NA32,且根據信號S32而產生在特定方向NA32下用於估算特定方向NA32的估計方向DA12。處理單元39根據估計方向DA11和估計方向DA12而產生估計方向結構DRG3和估計方向範圍DRP1,且根據估計方向結構DRG3和預設位置結構DRH3而產生轉換關係RT1,其中預設位置結構DRH3界定預設區域D431。例如,估計方向DA11和估計方向DA12分別界定特定位置P11和特定位置P12。In an embodiment, the processing unit 39 determines a specific direction NA31 corresponding to the specific position P11 in response to the component signal G11 of the sensing signal S311, and generates an estimated direction for estimating the specific direction NA31 in the specific direction NA31 according to the signal S32. DA11. The processing unit 39 determines the specific direction NA32 corresponding to the specific position P12 in response to the component signal G12 of the sensing signal S311, and generates an estimated direction DA12 for estimating the specific direction NA32 in the specific direction NA32 according to the signal S32. The processing unit 39 generates the estimated direction structure DRG3 and the estimated direction range DRP1 according to the estimated direction DA11 and the estimated direction DA12, and generates a conversion relationship RT1 according to the estimated direction structure DRG3 and the preset position structure DRH3, wherein the preset position structure DRH3 defines the preset Area D431. For example, the estimated direction DA11 and the estimated direction DA12 define a specific position P11 and a specific position P12, respectively.

在一實施例中,處理單元39具有一可變計時長度DT1、一可變計時長度DT2、一可變位置誤差DE1、一可變估計角速度DW1、一可變估計速度DV1和一可變估計速度DV2,且預設一估計速度範圍DVA、一估計速度範圍DVB、一門檻計時長度DTH、一門檻計時長度DTQ和一門檻角速度DWH。例如,可變計時長度DT1和DT2分別具有一第一可變計數值和一第二可變計數值,且門檻計時長度DTH和門檻計時長度DTQ分別具有一第一門檻計數值和一第二門檻計數值。例如,處理單元39每隔一特定期間增加可變計時長度DT2。In one embodiment, processing unit 39 has a variable timing length DT1, a variable timing length DT2, a variable position error DE1, a variable estimated angular velocity DW1, a variable estimated velocity DV1, and a variable estimation speed. DV2, and presets an estimated speed range DVA, an estimated speed range DVB, a threshold length DTH, a threshold length DTQ, and a corner speed DWH. For example, the variable timing lengths DT1 and DT2 have a first variable count value and a second variable count value, respectively, and the threshold count length DTH and the threshold count length DTQ have a first threshold count value and a second threshold, respectively. Count value. For example, the processing unit 39 increments the variable timing length DT2 every certain period of time.

處理單元39在特定期間T1中具有多個操作狀態B11、B12、B13、B14、B15、B16、B17和B18。在作用期間TA中,處理單元39根據信號S33而設定用於估算可變角速度ωE 的可變估計角速度DW1,根據信號S32而設定用於估算可變速度VF的可變估計速度DV1,且根據信號S33而設定用於估算可變速度VF的可變估計速度DV2。例如,資料DR1更包含可變估計速度DV1。例如,處理單元39根據感測信號S322而設定可變估計速度DV1,且根據感測信號S331而設定可變估計速度DV2。例如,操作區域431更具有一周邊區域431A、一可變位置431P和兩個特定位置P22與PA1,且周邊區域431A包含兩個特定位置P1A1和P1A2。The processing unit 39 has a plurality of operational states B11, B12, B13, B14, B15, B16, B17, and B18 in the specific period T1. In the active period TA, the processing unit 39 sets the variable estimated angular velocity DW1 for estimating the variable angular velocity ω E according to the signal S33, and sets the variable estimated velocity DV1 for estimating the variable velocity VF according to the signal S32, and according to the signal S32, The variable estimated speed DV2 for estimating the variable speed VF is set in the signal S33. For example, the data DR1 further includes a variable estimated speed DV1. For example, the processing unit 39 sets the variable estimated speed DV1 according to the sensing signal S322, and sets the variable estimated speed DV2 according to the sensing signal S331. For example, the operation area 431 has a peripheral area 431A, a variable position 431P, and two specific positions P22 and PA1, and the peripheral area 431A includes two specific positions P1A1 and P1A2.

在一實施例中,處理單元39響應感測信號S312的成分信號G13而確定特定方向NA33,且根據信號S32而產生在特定方向NA33下的估計方向DA21。當估計方向DA21被產生時,處理單元39判定在估計方向範圍DRP1和估計方向DA21之間是否具有一交集E11以設定一判定H11。當判定H11是否定時,處理單元39使可變位置431P被定義到特定位置P1A1,且繼續響應信號S4。當判定H11是肯定時,處理單元39根據轉換關係RT1而將估計方向DA21轉換為估計位置DP21,在特定時間點TA1將用於操作Q1的估計位置DP21傳輸到電腦42,使可變位置誤差DE1歸零,重置可變計時長度DT1和DT2,且進入操作狀態B11。例如,特定位置P21位於操作區域431的中間部分中,在可變方向NAV指向特定位置P21附近的條件下,處理單元39產生估計位置DP21,且將估計位置DP21傳輸到電腦42,以使可變位置431P被定義到特定位置P21。In an embodiment, the processing unit 39 determines the specific direction NA33 in response to the component signal G13 of the sensing signal S312, and generates an estimated direction DA21 in the specific direction NA33 according to the signal S32. When the estimation direction DA21 is generated, the processing unit 39 determines whether there is an intersection E11 between the estimated direction range DRP1 and the estimation direction DA21 to set a decision H11. When it is determined whether or not H11 is timing, the processing unit 39 causes the variable position 431P to be defined to the specific position P1A1, and continues the response signal S4. When it is determined that H11 is affirmative, the processing unit 39 converts the estimated direction DA21 into the estimated position DP21 according to the conversion relationship RT1, and transmits the estimated position DP21 for the operation Q1 to the computer 42 at the specific time point TA1, so that the variable position error DE1 is made. Return to zero, reset the variable timing lengths DT1 and DT2, and enter the operational state B11. For example, the specific position P21 is located in the middle portion of the operation area 431, and under the condition that the variable direction NAV is directed to the vicinity of the specific position P21, the processing unit 39 generates the estimated position DP21, and transmits the estimated position DP21 to the computer 42 to make it variable The position 431P is defined to the specific position P21.

例如,當判定H11是否定時,處理單元39根據轉換關係RT1而將估計方向DA21轉換為估計位置DP71,根據估計位置DP71和預設區域D431而將估計位置DP71調整為在周邊區域D43K上的一經調整位置DPF1,且將用於操作Q1的經調整位置DPF1傳輸到電腦42,以使可變位置431P被定義到特定位置P1A1。例如,處理單元39根據一第一特定規則將估計位置DP71調整為經調整位置DPF1。例如,估計位置DP71在預設區域D431下具有座標(X7,y7),經調整位置DPF1在預設區域D431下具有座標(X8,y8),假設預設區域D431在X方向的範圍為0xX,且假設預設區域D431在y方向的範圍為0yY。該第一特定規則包含:若x7>X,則令x8=X;若x7<0,則令X8=0;若y7>X,則令y8=X;以及若y7<0,則令y8=0。For example, when it is determined whether or not H11 is timing, the processing unit 39 converts the estimated direction DA21 into the estimated position DP71 according to the conversion relationship RT1, and adjusts the estimated position DP71 to an adjusted position on the peripheral area D43K according to the estimated position DP71 and the preset area D431. The position DPF1 is transmitted and the adjusted position DPF1 for operation Q1 is transmitted to the computer 42 such that the variable position 431P is defined to the specific position P1A1. For example, the processing unit 39 adjusts the estimated position DP71 to the adjusted position DPF1 according to a first specific rule. For example, the estimated position DP71 has a coordinate (X7, y7) under the preset area D431, and the adjusted position DPF1 has a coordinate (X8, y8) under the preset area D431, assuming that the preset area D431 has a range of 0 in the X direction. x X, and assume that the range of the preset area D431 in the y direction is 0. y Y. The first specific rule includes: if x7>X, let x8=X; if x7<0, then let X8=0; if y7>X, then let y8=X; and if y7<0, then let y8= 0.

在一實施例中,可變方向NAV更依序被配置成為四個特定方向NA41、NA42、NA43和NA44,且預設區域D431具有一周邊區域D43K。在操作狀態B11中,處理單元39判定可變計時長度DT2是否滿足一超時條件AU1以設定一判定H12。例如,當可變計時長度DT2長於門檻計時長度DTQ時,則可變計時長度DT2滿足超時條件AU1。當判定H12是肯定時,處理單元39離開操作狀態B11,且進入操作狀態B12。當判定H12是否定時,處理單元39離開操作狀態B11,且進入操作狀態B13。In an embodiment, the variable direction NAV is more sequentially configured into four specific directions NA41, NA42, NA43, and NA44, and the preset area D431 has a peripheral area D43K. In the operation state B11, the processing unit 39 determines whether the variable timing length DT2 satisfies a timeout condition AU1 to set a decision H12. For example, when the variable timing length DT2 is longer than the threshold timing length DTQ, the variable timing length DT2 satisfies the timeout condition AU1. When it is determined that H12 is affirmative, the processing unit 39 leaves the operation state B11 and enters the operation state B12. When it is determined whether or not H12 is timing, the processing unit 39 leaves the operation state B11 and enters the operation state B13.

在操作狀態B13中,處理單元39判定可變計時長度DT1是否滿足一超時條件AU2以設定一判定H13。例如,當可變計時長度DT1長於門檻計時長度DTH時,則可變計時長度DT1滿足超時條件AU2。當判定H13是肯定時,處理單元39離開操作狀態B13,且進入操作狀態B14。當判定H13是否定時,處理單元39離開操作狀態B13,且進入操作狀態B15。In the operation state B13, the processing unit 39 determines whether the variable timing length DT1 satisfies a timeout condition AU2 to set a decision H13. For example, when the variable timing length DT1 is longer than the threshold timing length DTH, the variable timing length DT1 satisfies the timeout condition AU2. When it is determined that H13 is affirmative, the processing unit 39 leaves the operation state B13 and enters the operation state B14. When it is determined whether or not H13 is timing, the processing unit 39 leaves the operation state B13 and enters the operation state B15.

在操作狀態B15中,在特定方向NA41下,處理單元39根據信號S33和估計方向DA21而產生估計方向DAA1,根據感測信號S322而設定可變估計速度DV1,根據感測信號S331而設定可變估計角速度DW1和可變估計速度DV2,且判定參考定向NF3是否滿足一準靜止條件AV1以設定一判定H14。例如,當在估計速度範圍DVA和可變估計速度DV1之間具有一交集E12、且在估計速度範圍DVB和可變估計速度DV2之間具有一交集E13時,則參考定向NF3滿足準靜止條件AV1。In the operation state B15, in the specific direction NA41, the processing unit 39 generates the estimation direction DAA1 based on the signal S33 and the estimation direction DA21, sets the variable estimation speed DV1 according to the sensing signal S322, and sets the variable according to the sensing signal S331. The angular velocity DW1 and the variable estimated velocity DV2 are estimated, and it is determined whether the reference orientation NF3 satisfies a quasi-stationary condition AV1 to set a decision H14. For example, when there is an intersection E12 between the estimated speed range DVA and the variable estimated speed DV1, and there is an intersection E13 between the estimated speed range DVB and the variable estimated speed DV2, then the reference orientation NF3 satisfies the quasi-stationary condition AV1 .

例如,對於特定方向NA41,處理單元39接收感測信號S322的一目前訊息和特定數量的先前訊息,分析感測信號S322的該目前訊息和該特定數量的所述先前訊息而產生一第一平均值和一第一標準差,且根據該第一標準差而設定可變估計速度DV1。例如,對於特定方向NA41,處理單元39接收感測信號S331的一目前訊息和特定數量的先前訊息,分析感測信號S331的該目前訊息和該特定數量的所述先前訊息而產生一第二平均值和一第二標準差,且根據該第二標準差而設定可變估計速度DV2。For example, for a specific direction NA41, the processing unit 39 receives a current message of the sensing signal S322 and a specific number of previous messages, and analyzes the current message of the sensing signal S322 and the specific number of the previous messages to generate a first average. The value is a first standard deviation, and the variable estimated speed DV1 is set according to the first standard deviation. For example, for a specific direction NA41, the processing unit 39 receives a current message of the sensing signal S331 and a specific number of previous messages, analyzes the current message of the sensing signal S331 and the specific number of the previous messages to generate a second average. The value is a second standard deviation, and the variable estimated speed DV2 is set based on the second standard deviation.

當判定H14是肯定時,處理單元39以一預設計時長度增加可變計時長度DT1(比如,將該第一可變計數值增加1),離開操作狀態B15,且重新進入操作狀態B11。當判定H14是否定時,處理單元39重置可變計時長度DT1,離開操作狀態B15,且進入操作狀態B16。When it is determined that H14 is affirmative, the processing unit 39 increases the variable timing length DT1 by a predetermined timing length (for example, increases the first variable count value by one), leaves the operation state B15, and re-enters the operation state B11. When it is determined whether or not H14 is timing, the processing unit 39 resets the variable timing length DT1, leaves the operation state B15, and enters the operation state B16.

在操作狀態B16中,處理單元39根據轉換關係RT1而將估計方向DAA1轉換為估計位置DPA1,且根據估計位置DPA1、可變估計角速度DW1和可變位置誤差DE1而將估計位置DPA1調整為經調整位置DPB1,其中當可變位置誤差DE1為零時,經調整位置DPB1相同於估計位置DPA1。當經調整位置DPB1被產生時,處理單元39判定在預設區域D431和經調整位置DPB1之間是否具有一交集E14以設定一判定H15。In the operation state B16, the processing unit 39 converts the estimated direction DAA1 into the estimated position DPA1 according to the conversion relationship RT1, and adjusts the estimated position DPA1 to be adjusted according to the estimated position DPA1, the variable estimated angular velocity DW1, and the variable position error DE1. Position DPB1, wherein the adjusted position DPB1 is the same as the estimated position DPA1 when the variable position error DE1 is zero. When the adjusted position DPB1 is generated, the processing unit 39 determines whether there is an intersection E14 between the preset area D431 and the adjusted position DPB1 to set a decision H15.

當判定H15是肯定時,處理單元39將用於操作Q1的經調整位置DPB1傳輸到電腦42,以使可變位置431P被定義到特定位置PA1,且判定可變位置誤差DE1是否為零以設定一判定H16。當判定H16是肯定時,處理單元39離開操作狀態B16,且重新進入操作狀態B11。當判定H16是否定時,處理單元39根據可變估計角速度DW1和可變位置誤差DE1而減小可變位置誤差DE1,離開操作狀態B16,且重新進入操作狀態B11。When it is determined that H15 is affirmative, the processing unit 39 transmits the adjusted position DPB1 for the operation Q1 to the computer 42, so that the variable position 431P is defined to the specific position PA1, and it is determined whether the variable position error DE1 is zero or not One judges H16. When it is determined that H16 is affirmative, the processing unit 39 leaves the operation state B16 and re-enters the operation state B11. When it is determined whether or not H16 is timing, the processing unit 39 decreases the variable position error DE1 according to the variable estimated angular velocity DW1 and the variable position error DE1, leaves the operational state B16, and re-enters the operational state B11.

當判定H15是否定時,處理單元39根據經調整位置DPB1和預設區域D431而將經調整位置DPB1調整為在周邊區域D43K上的一經調整位置DPC1,將用於操作Q1的經調整位置DPC1傳輸到電腦42,以使可變位置431P被定義到特定位置P1A2,且判定在特定方向NA41下的可變估計角速度DW1是否大於門檻角速度DWH以設定一判定H17。當判定H17是否定時,處理單元39離開操作狀態B16,且重新進入操作狀態B11。當判定H17是肯定時,處理單元離開操作狀態B16,且進入操作狀態B17。When it is determined whether H15 is timing, the processing unit 39 adjusts the adjusted position DPB1 to an adjusted position DPC1 on the peripheral area D43K according to the adjusted position DPB1 and the preset area D431, and transmits the adjusted position DPC1 for the operation Q1 to The computer 42 is such that the variable position 431P is defined to the specific position P1A2, and it is determined whether the variable estimated angular velocity DW1 in the specific direction NA41 is greater than the threshold angular velocity DWH to set a determination H17. When it is determined whether or not H17 is timing, the processing unit 39 leaves the operation state B16 and re-enters the operation state B11. When it is determined that H17 is affirmative, the processing unit leaves the operation state B16 and enters the operation state B17.

例如,當判定H15是否定時,處理單元39根據一第二特定規則進一步將經調整位置DPB1調整為經調整位置DPC1,且將用於操作Q1的經調整位置DPC1傳輸到電腦42以使可變位置431P被定義到特定位置P1A2。例如,經調整位置DPB1在預設區域D431下具有座標(x1,y1),經調整位置DPC1在預設區域D431下具有座標(x2,y2),假設預設區域D431在x方向的範圍為0xX,且假設預設區域D431在y方向的範圍為0yY。該第二特定規則與該第一特定規則相似,且包括:若x1>X,則令x2=X;若x1<0,則令x2=0;若y1>X,則令y2=X;以及若y1<0,則令y2=0。For example, when it is determined whether H15 is timing, the processing unit 39 further adjusts the adjusted position DPB1 to the adjusted position DPC1 according to a second specific rule, and transmits the adjusted position DPC1 for the operation Q1 to the computer 42 to make the variable position 431P is defined to a specific location P1A2. For example, the adjusted position DPB1 has a coordinate (x1, y1) under the preset area D431, and the adjusted position DPC1 has a coordinate (x2, y2) under the preset area D431, assuming that the preset area D431 has a range of 0 in the x direction. x X, and assume that the range of the preset area D431 in the y direction is 0. y Y. The second specific rule is similar to the first specific rule, and includes: if x1>X, let x2=X; if x1<0, let x2=0; if y1>X, then let y2=X; If y1 < 0, let y2 = 0.

在操作狀態B14中,在特定方向NA42下,處理單元39根據信號S32而產生在估計方向結構DRG3下的估計方向DA41,根據信號S33和估計方向DA21而產生估計方向DAA2,根據轉換關係RT1而將估計方向DA41轉換為估計位置DP41,根據轉換關係RT1而將估計方向DAA2轉換為估計位置DPA2,離開操作狀態B14,且進入操作狀態B18。In the operation state B14, in the specific direction NA42, the processing unit 39 generates the estimation direction DA41 under the estimation direction structure DRG3 according to the signal S32, and generates the estimation direction DAA2 according to the signal S33 and the estimation direction DA21, according to the conversion relationship RT1. The estimated direction DA41 is converted into the estimated position DP41, the estimated direction DAA2 is converted into the estimated position DPA2 according to the conversion relationship RT1, the operating state B14 is left, and the operating state B18 is entered.

例如,對於特定方向NA42,處理單元39接收感測信號S321的一目前訊息和特定數量的先前訊息,分析感測信號S321的該目前訊息和該特定數量的所述先前訊息而產生一第一平均值,接收感測信號S322的一目前訊息和特定數量的先前訊息,分析感測信號S322的該目前訊息和該特定數量的所述先前訊息而產生一第二平均值,且根據該第一平均值和該第二平均值而產生估計方向DA41。For example, for a specific direction NA42, the processing unit 39 receives a current message of the sensing signal S321 and a specific number of previous messages, analyzes the current message of the sensing signal S321 and the specific number of the previous messages to generate a first average. a value, receiving a current message of the sensing signal S322 and a specific number of previous messages, analyzing the current message of the sensing signal S322 and the specific number of the previous messages to generate a second average, and according to the first average The value and the second average result in an estimated direction DA41.

在操作狀態B18中,處理單元39估算在估計位置DPA2和估計位置DP41之間的一位置誤差DE11,根據位置誤差DE11而設定可變位置誤差DE1,重置可變計時長度DT1和DT2,離開操作狀態B18,且重新進入操作狀態B11。例如,位置誤差DE11是一累計誤差。In the operational state B18, the processing unit 39 estimates a position error DE11 between the estimated position DPA2 and the estimated position DP41, sets the variable position error DE1 according to the position error DE11, resets the variable timing lengths DT1 and DT2, and leaves the operation. State B18, and re-enter operational state B11. For example, the position error DE11 is a cumulative error.

在操作狀態B12中,在特定方向NA43下,處理單元39根據信號S32而產生在估計方向結構DRG3下的估計方向DA45,且根據信號S33和估計方向DA21而產生估計方向DAA5,根據轉換關係RT1而將估計方向DA45轉換為估計位置DP45,根據轉換關係RT1而將估計方向DAA5轉換為估計位置DPA5,估算在估計位置DPA5和估計位置DP45之間的一位置誤差DE21,根據位置誤差DE21而設定可變位置誤差DE1,重置可變計時長度DT2,離開操作狀態B12,且重新進入操作狀態B11。例如,位置誤差DE21是一累計誤差。In the operation state B12, in the specific direction NA43, the processing unit 39 generates the estimation direction DA45 under the estimated direction structure DRG3 according to the signal S32, and generates the estimation direction DAA5 according to the signal S33 and the estimation direction DA21, according to the conversion relationship RT1. The estimated direction DA45 is converted into the estimated position DP45, the estimated direction DAA5 is converted into the estimated position DPA5 according to the conversion relationship RT1, a position error DE21 between the estimated position DPA5 and the estimated position DP45 is estimated, and the variable is set according to the position error DE21. The position error DE1 resets the variable timing length DT2, leaves the operational state B12, and re-enters the operational state B11. For example, the position error DE21 is a cumulative error.

例如,對於特定方向NA43,處理單元39接收感測信號S321的一第一目前訊息和感測信號S322的一第二目前訊息,且根據該第一目前訊息和該第二目前訊息而產生估計方向DA45。For example, for a specific direction NA43, the processing unit 39 receives a first current message of the sensing signal S321 and a second current message of the sensing signal S322, and generates an estimated direction according to the first current message and the second current message. DA45.

在操作狀態B17中,在特定方向NA44下,處理單元39根據信號S32而產生在估計方向結構DRG3下的一估計方向DA31,且判定在估計方向範圍DRP1和估計方向DA31之間是否具有一交集E15以設定一判定H18。當判定H18是否定時,處理單元39繼續響應信號S4。當判定H18是肯定時,處理單元39根據轉換關係RT1而將估計方向DA31轉換為一估計位置DP31,將用於操作Q1的估計位置DP31傳輸到電腦42,以使可變位置431P被定義到特定位置P22,使可變位置誤差DE1歸零,重置可變計時長度DT1和DT2,離開操作狀態B17,且重新進入操作狀態B11。In the operation state B17, in the specific direction NA44, the processing unit 39 generates an estimation direction DA31 under the estimated direction structure DRG3 according to the signal S32, and determines whether there is an intersection E15 between the estimated direction range DRP1 and the estimation direction DA31. Determine H18 by setting one. When it is determined if H18 is timing, processing unit 39 continues to respond to signal S4. When it is determined that H18 is affirmative, the processing unit 39 converts the estimated direction DA31 into an estimated position DP31 according to the conversion relationship RT1, and transmits the estimated position DP31 for the operation Q1 to the computer 42 so that the variable position 431P is defined to the specific The position P22 resets the variable position error DE1 to zero, resets the variable timing lengths DT1 and DT2, leaves the operation state B17, and re-enters the operation state B11.

例如,資料DS1包含估計位置DPA1、DPA2和DPA5,且經調整資料DS3包含估計位置DPA2與DPA5、和一特定估計位置,其中該特定估計位置為經調整位置DPB1和經調整位置DPC1的其中之一。在一實施例中,處理單元39根據在估計方向DA41和估計方向DAA2之間的差異而將估計方向DAA1調整為一經調整方向DAB1,且根據轉換關係RT1而將經調整方向DAB1轉換為經調整位置DPB1。For example, the data DS1 includes estimated locations DPA1, DPA2, and DPA5, and the adjusted data DS3 includes estimated locations DPA2 and DPA5, and a particular estimated location, wherein the particular estimated location is one of the adjusted location DPB1 and the adjusted location DPC1 . In an embodiment, the processing unit 39 adjusts the estimated direction DAA1 to an adjusted direction DAB1 according to the difference between the estimated direction DA41 and the estimated direction DAA2, and converts the adjusted direction DAB1 into the adjusted position according to the conversion relationship RT1. DPB1.

例如,在操作狀態B11及B17下的處理單元39每隔一特定期間響應信號S4一次,亦即讀取信號S4一次,並據此做相關反應。在一實施例中,處理單元39更具有一特定狀態,其中該特定狀態依序包含多個操作狀態B11;處理單元39在該特定狀態中每隔一特定期間響應信號S4和S33一次(亦即讀取信號S4和S33一次),以每次從各信號S4和S33獲得一第一所讀取訊息和一第二所讀取訊息;然後,在操作狀態B12、B14、B15和B17的至少其中之一中,當處理單元39具有需要來用到該第一所讀取訊息和該第二所讀取訊息的至少其中之一個所讀取訊息時,則處理單元39根據該至少其中之一所讀取訊息而做出與該需要相關的反應。例如,該特定期間是0.01秒。例如,門檻計時長度DTH的該第一門檻計數值具有10到20的範圍值,且門檻計時長度DTQ具有15到25秒的範圍值。例如,對於目前的步驟循環,該第一所讀取訊息包含感測信號S321的一目前訊息和感測信號S322的一目前訊息。For example, the processing unit 39 in the operating states B11 and B17 responds to the signal S4 once every other specific period, that is, reads the signal S4 once, and performs a correlation reaction accordingly. In an embodiment, the processing unit 39 further has a specific state, wherein the specific state sequentially includes a plurality of operating states B11; the processing unit 39 responds to the signals S4 and S33 once every other specific period in the specific state (ie, Reading signals S4 and S33 once) to obtain a first read message and a second read message from each of signals S4 and S33; and then, at least in operation states B12, B14, B15 and B17 In one of the processing units 39, when the processing unit 39 has a message to be read using at least one of the first read message and the second read message, the processing unit 39 is configured according to the at least one of the at least one of the first read message and the second read message. Read the message to make a response related to that need. For example, the specific period is 0.01 seconds. For example, the first threshold count value of the threshold count length DTH has a range value of 10 to 20, and the threshold count length DTQ has a range value of 15 to 25 seconds. For example, for the current step cycle, the first read message includes a current message of the sensing signal S321 and a current message of the sensing signal S322.

在一實施例中,處理單元39包含一控制單元31和耦合於控制單元31的一通信模組32,其中通信模組32耦合於電腦42。例如,控制單元31是一微處理器。控制單元31耦合於按鍵單元3711、按鍵單元33、水平儀36、地磁儀35、陀螺儀34和通信模組32。控制單元31通過感測單元37而響應作用力F3來產生相對於螢幕43的資料DR1,且根據資料DR1,通過感測單元38而響應作用力F3來控制操作Q1。例如,控制單元31通過通信模組32而依序將估計位置DP21、和經調整位置DPB1與DPC1的其中之一傳輸到電腦42,以控制操作Q1。In one embodiment, the processing unit 39 includes a control unit 31 and a communication module 32 coupled to the control unit 31, wherein the communication module 32 is coupled to the computer 42. For example, control unit 31 is a microprocessor. The control unit 31 is coupled to the button unit 3711, the button unit 33, the level 36, the geomagnetic instrument 35, the gyroscope 34, and the communication module 32. The control unit 31 generates the data DR1 with respect to the screen 43 in response to the force F3 through the sensing unit 37, and controls the operation Q1 in response to the force F3 by the sensing unit 38 according to the data DR1. For example, the control unit 31 sequentially transmits the estimated position DP21 and one of the adjusted positions DPB1 and DPC1 to the computer 42 via the communication module 32 to control the operation Q1.

在根據第三圖所提供的一實施例中,一種用於控制一螢幕43的一操作Q1的方法包含下列步驟:提供一遙控裝置301,遙控裝置301包含一感測單元37和一感測單元38;通過感測單元37而響應一作用力F3來產生相對於螢幕43的資料DR1;以及,根據資料DR1,通過感測單元38而響應作用力F3來控制操作Q1。In an embodiment provided according to the third figure, a method for controlling an operation Q1 of a screen 43 comprises the steps of: providing a remote control device 301 comprising a sensing unit 37 and a sensing unit The data DR1 relative to the screen 43 is generated by the sensing unit 37 in response to a force F3; and the operation Q1 is controlled by the sensing unit 38 in response to the force F3 according to the data DR1.

在根據第三圖所提供的一實施例中,遙控裝置301用於控制螢幕43的一操作Q1。螢幕43具有一幾何參考432,且幾何參考432和遙控裝置301之間具有一方向結構RG3。遙控裝置301包含一感測單元37、一感測單元38和一處理單元39。處理單元39通過感測單元37而響應一作用力F3來校正方向結構RG3以產生資料DR1,根據資料DR1,通過感測單元38而響應作用力F3來產生用於控制操作Q1的資料DS1。In an embodiment provided in accordance with the third figure, the remote control device 301 is used to control an operation Q1 of the screen 43. The screen 43 has a geometric reference 432 with a directional structure RG3 between the geometric reference 432 and the remote control 301. The remote control device 301 includes a sensing unit 37, a sensing unit 38, and a processing unit 39. The processing unit 39 corrects the directional structure RG3 in response to a force F3 by the sensing unit 37 to generate the data DR1, and generates the data DS1 for controlling the operation Q1 by the sensing unit 38 in response to the force F3 according to the data DR1.

在一實施例中,螢幕43包含一操作區域431和界定操作區域431的幾何參考432。操作區域431參考遙控裝置301來形成與操作區域431對應的一參考方向範圍RP1,其中方向結構RG3界定參考方向範圍RP1。遙控裝置30具有一參考軸NU3,且響應作用力F3而具有一特定運動MT3來使參考軸NU3依序具有七個特定方向NA31、NA32、NA33、NA41、NA42、NA43和NA44。幾何參考432包含一特定位置P11和與特定位置P11成斜對角的一特定位置P12。方向結構RG3包含與特定位置P11對應的特定方向NA31、和與特定位置P12對應的特定方向NA32。In an embodiment, the screen 43 includes an operating area 431 and a geometric reference 432 that defines the operating area 431. The operation area 431 refers to the remote control device 301 to form a reference direction range RP1 corresponding to the operation area 431, wherein the direction structure RG3 defines the reference direction range RP1. The remote control device 30 has a reference axis NU3 and has a specific motion MT3 in response to the force F3 such that the reference axis NU3 sequentially has seven specific directions NA31, NA32, NA33, NA41, NA42, NA43 and NA44. The geometric reference 432 includes a specific position P11 and a specific position P12 that is diagonally opposite the specific position P11. The direction structure RG3 includes a specific direction NA31 corresponding to the specific position P11 and a specific direction NA32 corresponding to the specific position P12.

例如,處理單元39通過感測單元37而測量特定方向NA31和特定方向NA32來校正方向結構RG3,以產生資料DR21。例如,資料DR21包含用於估算方向結構RG3的一估計方向結構DRG3、與估計方向結構DRG3對應的一預設位置結構DRH3、在估計方向結構DRG3和預設位置結構DRH3之間的一轉換關係RT1、用於估算參考方向範圍RP1的一估計方向範圍DRP1、和用於界定操作區域431的一預設區域D431,其中預設位置結構DRH3界定幾何參考432,且預設區域D431與估計方向範圍DRG3對應。For example, the processing unit 39 measures the specific direction NA31 and the specific direction NA32 by the sensing unit 37 to correct the directional structure RG3 to generate the material DR21. For example, the data DR21 includes an estimated direction structure DRG3 for estimating the direction structure RG3, a preset position structure DRH3 corresponding to the estimated direction structure DRG3, and a conversion relationship RT1 between the estimated direction structure DRG3 and the preset position structure DRH3. An estimated direction range DRP1 for estimating the reference direction range RP1 and a preset area D431 for defining the operation area 431, wherein the preset position structure DRH3 defines a geometric reference 432, and the preset area D431 and the estimated direction range DRG3 correspond.

在一實施例中,誤差資料DF包含誤差資料DF1、誤差資料DF2和可變位置誤差DE1。處理單元39依序產生在特定方向NA33下的資料DR22、在特定方向NA41下的資料DS21、在特定方向NA42下的資料DR23和資料DS23、在特定方向NA43下的資料DR25和資料DS25、和在特定方向NA44下的資料DR27,比較資料DR23和資料DS23來產生誤差資料DF1,且比較資料DR25和資料DS25來產生誤差資料DF2。當誤差資料DF1被產生時,處理單元39根據誤差資料DF1而設定可變位置誤差DE1。當誤差資料DF2被產生時,處理單元39根據誤差資料DF2而設定可變位置誤差DE1。處理單元39根據信號S33和誤差資料DF將資料DS1調整為經調整資料DS3。In an embodiment, the error data DF includes an error data DF1, an error data DF2, and a variable position error DE1. The processing unit 39 sequentially generates the data DR22 in the specific direction NA33, the data DS21 in the specific direction NA41, the data DR23 and the data DS23 in the specific direction NA42, the data DR25 and the data DS25 in the specific direction NA43, and The data DR27 in the specific direction NA44, the comparison data DR23 and the data DS23 are used to generate the error data DF1, and the comparison data DR25 and the data DS25 are used to generate the error data DF2. When the error data DF1 is generated, the processing unit 39 sets the variable position error DE1 based on the error data DF1. When the error data DF2 is generated, the processing unit 39 sets the variable position error DE1 based on the error data DF2. The processing unit 39 adjusts the data DS1 to the adjusted data DS3 based on the signal S33 and the error data DF.

例如,資料DR22包含估計方向DA21和估計位置DP21的至少其中之一,資料DS21包含估計方向DAA1和估計位置DPA1的至少其中之一,資料DR23包含估計方向DA41和估計位置DP41的至少其中之一,資料DR25包含估計方向DA45和估計位置DP45的至少其中之一,資料DR27包含估計方向DA31和估計位置DP31的至少其中之一,資料DS23包含估計方向DAA2和估計位置DPA2的至少其中之一,資料DS25包含估計方向DAA5和估計位置DPA5的至少其中之一。誤差資料DF1包含一第一方向誤差和位置誤差DE11的至少其中之一,誤差資料DF2包含一第二方向誤差和位置誤差DE21的至少其中之一,經調整資料DS31包含經調整方向DAB1和一特定估計位置的至少其中之一,其中該特定估計位置是經調整位置DPB1和經調整位置DPC1的其中之一。For example, the data DR 22 includes at least one of an estimation direction DA21 and an estimated position DP21, the data DS21 including at least one of an estimation direction DAA1 and an estimated position DPA1, the data DR23 including at least one of an estimation direction DA41 and an estimation position DP41, The data DR25 includes at least one of an estimation direction DA45 and an estimated position DP45, the data DR27 including at least one of an estimation direction DA31 and an estimated position DP31, the data DS23 including at least one of an estimation direction DAA2 and an estimated position DPA2, the data DS25 At least one of the estimated direction DAA5 and the estimated position DPA5 is included. The error data DF1 includes at least one of a first direction error and a position error DE11, the error data DF2 includes at least one of a second direction error and a position error DE21, and the adjusted data DS31 includes the adjusted direction DAB1 and a specific At least one of the estimated positions, wherein the particular estimated position is one of the adjusted position DPB1 and the adjusted position DPC1.

在一實施例中,資料DR1包含資料DR11和資料DR12。例如,資料DR11包含資料DR21、DR22和DR27。資料DR12包含資料DR23和DR25。資料DS1包含資料DS21、DS23和DS25。經調整資料DS3包含資料DS21、DS23、DS25、以及經調整資料DS31。In an embodiment, the data DR1 contains the data DR11 and the data DR12. For example, the data DR11 contains the data DR21, DR22, and DR27. The data DR12 contains the data DR23 and DR25. The data DS1 contains the data DS21, DS23 and DS25. The adjusted data DS3 contains data DS21, DS23, DS25, and adjusted data DS31.

在根據第三圖所提供的一實施例中,遙控裝置301用於控制螢幕43的一操作Q1。螢幕43具有一幾何參考432,且幾何參考432和遙控裝置301之間具有一方向結構RG3。遙控裝置301包含一感測單元37、一感測單元38和一處理單元39。處理單元39通過感測單元37而響應一作用力F3來校正方向結構RG3,以產生資料DR11和資料DR12,根據資料DR11,通過感測單元38而響應作用力F3來產生用於操作Q1的資料DS1,且根據資料DR12而調整資料DS1。In an embodiment provided in accordance with the third figure, the remote control device 301 is used to control an operation Q1 of the screen 43. The screen 43 has a geometric reference 432 with a directional structure RG3 between the geometric reference 432 and the remote control 301. The remote control device 301 includes a sensing unit 37, a sensing unit 38, and a processing unit 39. The processing unit 39 corrects the directional structure RG3 by the sensing unit 37 in response to a force F3 to generate the data DR11 and the data DR12, and generates the data for operating Q1 by the sensing unit 38 in response to the force F3 according to the data DR11. DS1, and the data DS1 is adjusted according to the data DR12.

例如,資料DR11包含估計方向結構DRG3、預設位置結構DRH3、轉換關係RT1、估計方向範圍DRP1、預設區域D431、估計方向DA21、估計位置DP21、和可變估計速度DV1。資料DR12包含估計方向DA41與DA45、和估計位置DP41與DP45。資料DS1包含估計方向DAA1、DAA2與DAA5、和估計位置DPA1、DPA2與DPA5。For example, the data DR11 includes an estimated direction structure DRG3, a preset position structure DRH3, a conversion relationship RT1, an estimated direction range DRP1, a preset area D431, an estimated direction DA21, an estimated position DP21, and a variable estimated speed DV1. The data DR12 includes estimated directions DA41 and DA45, and estimated positions DP41 and DP45. The data DS1 contains estimated directions DAA1, DAA2 and DAA5, and estimated positions DPA1, DPA2 and DPA5.

例如,處理單元39響應信號S4而依序產生資料DR11和資料DR12,響應資料DR11和信號S33而產生資料DS1,根據資料DR12和資料DS1而產生誤差資料DF,且響應資料DS1、誤差資料DF和信號S33而將資料DS1調整為經調整資料DS3。例如,在特定方向NA42下,處理單元39產生在估計位置DP41和估計位置DPA2之間的一位置誤差DE11。在特定方向NA43下,處理單元39產生在估計位置DP45和估計位置DPA5之間的一位置誤差DE21。當位置誤差DE11被產生時,處理單元39根據位置誤差DE11而設定可變位置誤差DE1。當位置誤差DE21被產生時,處理單元39根據位置誤差DE21而設定可變位置誤差DE1。處理單元39根據可變估計角速度DW1和可變位置誤差DE1將估計位置DPA1調整為一經調整位置DPB1。For example, the processing unit 39 sequentially generates the data DR11 and the data DR12 in response to the signal S4, generates the data DS1 in response to the data DR11 and the signal S33, generates the error data DF according to the data DR12 and the data DS1, and generates the response data DS1, the error data DF and Signal S33 adjusts data DS1 to adjusted data DS3. For example, in a particular direction NA42, processing unit 39 produces a position error DE11 between estimated position DP41 and estimated position DPA2. In a particular direction NA43, processing unit 39 produces a position error DE21 between estimated position DP45 and estimated position DPA5. When the position error DE11 is generated, the processing unit 39 sets the variable position error DE1 in accordance with the position error DE11. When the position error DE21 is generated, the processing unit 39 sets the variable position error DE1 in accordance with the position error DE21. The processing unit 39 adjusts the estimated position DPA1 to an adjusted position DPB1 based on the variable estimated angular velocity DW1 and the variable position error DE1.

請參閱第四圖,其為本發明一實施例所提供的操作系統30的一操作程序500的示意圖。如第三圖和第四圖所示,在步驟502中,螢幕43具有一幾何參考432,且幾何參考432和遙控裝置301之間具有一方向結構RG3。處理單元39通過感測單元37而響應一作用力F3來校正方向結構RG3,以產生資料DR21。例如,資料DR21包含用於估算方向結構RG3的一估計方向結構DRG3、與估計方向結構DRG3對應的一預設位置結構DRH3、和在估計方向結構DRG3和預設位置結構DRH3之間的一轉換關係RT1。處理單元39可以根據估計方向結構DRG3和預設位置結構DRH3而使資料DR21更包含用於估算參考方向範圍RP1的一估計方向範圍DRP1、和用於界定操作區域431的一預設區域D431。Please refer to the fourth figure, which is a schematic diagram of an operating procedure 500 of the operating system 30 according to an embodiment of the present invention. As shown in the third and fourth figures, in step 502, the screen 43 has a geometric reference 432 and the geometric reference 432 and the remote control 301 have a directional structure RG3. The processing unit 39 corrects the directional structure RG3 in response to a force F3 by the sensing unit 37 to generate the data DR21. For example, the data DR21 includes an estimated direction structure DRG3 for estimating the direction structure RG3, a preset position structure DRH3 corresponding to the estimated direction structure DRG3, and a conversion relationship between the estimated direction structure DRG3 and the preset position structure DRH3. RT1. The processing unit 39 may further include the estimated direction range DRP1 for estimating the reference direction range RP1 and a preset area D431 for defining the operation area 431 according to the estimated direction structure DRG3 and the preset position structure DRH3.

例如,遙控裝置30具有一參考定向NF3,參考定向NF3具有一參考軸NU3和一可變角速度ωE ,且參考軸NU3具有一可變方向NAV。幾何參考432參考遙控裝置301的參考定向NF3而形成方向結構RG3。螢幕43更具有一操作區域431,且幾何參考432界定操作區域431。操作區域431參考遙控裝置301而形成與操作區域431對應的一參考方向範圍RP1,方向結構RG3界定參考方向範圍RP1,且估計方向範圍DRP1被產生來估算參考方向範圍RP1。例如,處理單元39具有一可變計時長度DT1、一可變計時長度DT2、一門檻計時長度DTH、一門檻計時長度DTQ、一可變位置誤差DE1、一可變估計速度DV1、一可變估計速度DV2、和用於估算可變角速度ωE 的一可變估計角速度DW1。例如,可變計時長度DT1和DT2分別具有一第一可變計數值和一第二可變計數值。例如,處理單元39每隔一特定期間增加可變計時長度DT2。例如,預設區域D431具有一周邊區域D43K。For example, the remote control device 30 has a reference orientation NF3 having a reference axis NU3 and a variable angular velocity ω E and the reference axis NU3 having a variable direction NAV. The geometric reference 432 forms a directional structure RG3 with reference to the reference orientation NF3 of the remote control device 301. The screen 43 further has an operating area 431 and the geometric reference 432 defines an operating area 431. The operation area 431 forms a reference direction range RP1 corresponding to the operation area 431 with reference to the remote control device 301, the direction structure RG3 defines the reference direction range RP1, and the estimated direction range DRP1 is generated to estimate the reference direction range RP1. For example, the processing unit 39 has a variable timing length DT1, a variable timing length DT2, a threshold timing length DTH, a threshold timing length DTQ, a variable position error DE1, a variable estimation speed DV1, and a variable estimation. The speed DV2, and a variable estimated angular velocity DW1 for estimating the variable angular velocity ω E . For example, the variable timing lengths DT1 and DT2 have a first variable count value and a second variable count value, respectively. For example, the processing unit 39 increments the variable timing length DT2 every certain period of time. For example, the preset area D431 has a peripheral area D43K.

例如,操作區域431具有一周邊區域431A、一可變位置431P和三個特定位置P21、P22和PA1,且周邊區域431A包含兩個特定位置P1A1和P1A2。遙控裝置30響應作用力F3而具有一特定運動MT3來使可變方向NAV依序被配置成為七個特定方向NA31、NA32、NA33、NA41、NA42、NA43和NA44。例如,處理單元39通過感測單元37而依序測量特定方向NA31和特定方向NA32來校正方向結構RG3,以產生估計方向結構DRG3。For example, the operation area 431 has a peripheral area 431A, a variable position 431P, and three specific positions P21, P22, and PA1, and the peripheral area 431A includes two specific positions P1A1 and P1A2. The remote control device 30 has a specific motion MT3 in response to the force F3 to sequentially configure the variable direction NAV into seven specific directions NA31, NA32, NA33, NA41, NA42, NA43 and NA44. For example, the processing unit 39 sequentially measures the specific direction NA31 and the specific direction NA32 by the sensing unit 37 to correct the directional structure RG3 to generate the estimated directional structure DRG3.

在步驟504中,在特定方向NA33下,處理單元39根據資料DR21,通過感測單元37而響應作用力F3來確定特定方向NA33,以產生資料DR22,其中資料DR22包含在估計方向結構DRG3下的估計方向DA21、和在預設位置結構DRH3下的估計位置DP21的至少其中之一。接著,步驟流動進入步驟506。In step 504, in a specific direction NA33, the processing unit 39 determines the specific direction NA33 in response to the force F3 by the sensing unit 37 according to the data DR21 to generate the data DR22, wherein the data DR22 is included under the estimated direction structure DRG3. At least one of the direction DA21 and the estimated position DP21 under the preset position structure DRH3 is estimated. Next, the step flows to step 506.

在步驟506中,處理單元39根據資料DR21和資料DR22而估算在參考方向範圍RP1和特定方向NA33之間是否具有一第一交集,以設定一判定H11。例如,處理單元39判定在估計方向範圍DRP1和估計方向DA21之間是否具有一交集E11,以設定判定H11。當判定H11是否定(N)時,且步驟流動進入步驟508;當判定H11是肯定(Y)時,步驟流動進入步驟510。In step 506, the processing unit 39 estimates whether there is a first intersection between the reference direction range RP1 and the specific direction NA33 based on the data DR21 and the data DR22 to set a decision H11. For example, the processing unit 39 determines whether there is an intersection E11 between the estimated direction range DRP1 and the estimated direction DA21 to set the decision H11. When it is determined that H11 is negative (N), and the step flows to step 508; when it is determined that H11 is affirmative (Y), the step flows to step 510.

在步驟508中,處理單元39使可變位置431P被定義到特定位置P1A1。接著,步驟流動回到步驟504。In step 508, processing unit 39 causes variable position 431P to be defined to a particular location P1A1. Next, the step flows back to step 504.

在步驟510中,處理單元39將估計位置DP21傳輸到電腦42,以使可變位置431P被定義到與特定方向NA33對應的特定位置P21,使可變位置誤差DE1歸零,且重置可變計時長度DT1和DT2。接著,步驟流動進入步驟512(進入操作狀態B11)。In step 510, the processing unit 39 transmits the estimated position DP21 to the computer 42 such that the variable position 431P is defined to the specific position P21 corresponding to the specific direction NA33, the variable position error DE1 is reset to zero, and the reset is variable. Timing lengths DT1 and DT2. Next, the step flow proceeds to step 512 (enter operation state B11).

在步驟512中,處理單元39判定可變計時長度DT2是否滿足一超時條件AU1,以設定一判定H12。例如,當可變計時長度DT2長於門檻計時長度DTQ時,則可變計時長度DT2滿足超時條件AU1。當判定H12是肯定(Y)時,步驟流動進入步驟542(進入操作狀態B12);當判定H12是否定(N)時,步驟流動進入步驟514(進入操作狀態B13)。In step 512, processing unit 39 determines whether variable timing length DT2 satisfies a timeout condition AU1 to set a decision H12. For example, when the variable timing length DT2 is longer than the threshold timing length DTQ, the variable timing length DT2 satisfies the timeout condition AU1. When it is determined that H12 is affirmative (Y), the flow of the flow proceeds to step 542 (enter operation state B12); when it is determined that H12 is negative (N), the flow of the flow proceeds to step 514 (enter operation state B13).

在步驟514中,處理單元39判定可變計時長度DT1是否滿足一超時條件AU2,以設定一判定H13。例如,當可變計時長度DT1長於門檻計時長度DTH時,則可變計時長度DT2滿足超時條件AU2。當判定H13是肯定時,步驟流動進入步驟538(進入操作狀態B14);當判定H13是否定時,步驟流動進入步驟516(進入操作狀態B15)。In step 514, the processing unit 39 determines whether the variable timing length DT1 satisfies a timeout condition AU2 to set a decision H13. For example, when the variable timing length DT1 is longer than the threshold timing length DTH, the variable timing length DT2 satisfies the timeout condition AU2. When it is determined that H13 is affirmative, the flow of the flow proceeds to step 538 (enter operation state B14); when it is determined whether or not H13 is timed, the flow of the flow proceeds to step 516 (enter operation state B15).

在步驟516中,在特定方向NA41下,處理單元39通過感測單元37而響應作用力F3來設定可變估計速度DV1,且根據資料DR21和資料DR22,通過感測單元38而響應作用力F3來確定特定方向NA41以產生資料DS21並設定可變估計角速度DW1和可變估計速度DV2,其中資料DS21包含在估計方向結構DRG3下的估計方向DAA1、和在預設位置結構DRH3下的估計位置DPA1的至少其中之一。例如,處理單元39根據感測信號S331和估計方向DA21而產生估計方向DAA1,根據感測信號S322而設定可變估計速度DV1,且根據感測信號S331而設定可變估計角速度DW1和可變估計速度DV2。接著,步驟流動進入步驟518。In step 516, in a specific direction NA41, the processing unit 39 sets the variable estimated speed DV1 in response to the force F3 through the sensing unit 37, and responds to the force F3 through the sensing unit 38 according to the data DR21 and the data DR22. The specific direction NA41 is determined to generate the data DS21 and set the variable estimated angular velocity DW1 and the variable estimated velocity DV2, wherein the data DS21 includes the estimated direction DAA1 under the estimated direction structure DRG3 and the estimated position DPA1 under the preset position structure DRH3 At least one of them. For example, the processing unit 39 generates the estimated direction DAA1 according to the sensing signal S331 and the estimation direction DA21, sets the variable estimated speed DV1 according to the sensing signal S322, and sets the variable estimated angular velocity DW1 and the variable estimation according to the sensing signal S331. Speed DV2. Next, the step flows to step 518.

在步驟518中,處理單元39判定參考定向NF3是否滿足一準靜止條件AV1,以設定一判定H14。例如,當在估計速度範圍DVA和可變估計速度DV1之間具有一交集E12、且在估計速度範圍DVB和可變估計速度DV2之間具有一交集E13時,則參考定向NF3滿足準靜止條件AV1。當判定H14是肯定時,步驟流動進入步驟520。當判定H14是否定時,步驟流動進入步驟522。In step 518, processing unit 39 determines whether reference orientation NF3 satisfies a quasi-stationary condition AV1 to set a decision H14. For example, when there is an intersection E12 between the estimated speed range DVA and the variable estimated speed DV1, and there is an intersection E13 between the estimated speed range DVB and the variable estimated speed DV2, then the reference orientation NF3 satisfies the quasi-stationary condition AV1 . When it is determined that H14 is affirmative, the step flows to step 520. When it is determined whether or not H14 is timing, the step flows to step 522.

在步驟520中,處理單元39以一預設計時長度增加可變計時長度DT1(比如,將該第一可變計數值增加1);接著,步驟流動回到步驟512(重新進入操作狀態B11)。In step 520, processing unit 39 increments variable timing length DT1 by a predetermined timing length (eg, increments the first variable count value by one); then, the step flows back to step 512 (re-entry operation state B11) .

在步驟522中,處理單元39重置可變計時長度DT1;接著,步驟流動進入步驟524(進入操作狀態B16)。In step 522, processing unit 39 resets variable timing length DT1; then, step flow proceeds to step 524 (into operational state B16).

在步驟524中,處理單元39根據資料DS21、可變估計角速度DW1和可變位置誤差DE1,將資料DS21調整為經調整資料DS31,其中經調整資料DS31包含一經調整位置DPB1。例如,處理單元39據估計位置DPA1、可變估計角速度DW1和可變位置誤差DE1而將估計位置DPA1調整為經調整位置DPB1,其中當可變位置誤差DE1為零時,經調整位置DPB1相同於估計位置DPA1。接著,步驟流動進入步驟526。In step 524, processing unit 39 adjusts data DS21 to adjusted data DS31 based on data DS21, variable estimated angular velocity DW1, and variable position error DE1, wherein adjusted data DS31 includes an adjusted position DPB1. For example, the processing unit 39 adjusts the estimated position DPA1 to the adjusted position DPB1 based on the estimated position DPA1, the variable estimated angular velocity DW1, and the variable position error DE1, wherein the adjusted position DPB1 is the same when the variable position error DE1 is zero Estimate position DPA1. Next, the step flows to step 526.

在步驟526中,處理單元39根據資料DR21和經調整資料DS31而估算在參考方向範圍RP1和特定方向NA41之間是否具有一第二交集,以設定一判定H15。例如,處理單元39判定在預設區域D431和經調整位置DPB6之間是否具有一交集E14,以設定判定H15。當判定H15是肯定時,步驟流動進入步驟528。當判定H15是否定時,步驟流動進入步驟534。In step 526, the processing unit 39 estimates whether there is a second intersection between the reference direction range RP1 and the specific direction NA41 based on the data DR21 and the adjusted data DS31 to set a decision H15. For example, the processing unit 39 determines whether there is an intersection E14 between the preset area D431 and the adjusted position DPB6 to set the decision H15. When it is determined that H15 is affirmative, the step flows to step 528. When it is determined whether or not H15 is timing, the step flows to step 534.

在步驟528中,處理單元39將用於操作Q1的經調整位置DPB1傳輸到電腦42,以使可變位置431P被定義到與特定方向NA41對應的特定位置PA1。接著,步驟流動進入步驟530。In step 528, processing unit 39 transmits adjusted position DPB1 for operation Q1 to computer 42 such that variable position 431P is defined to a particular position PA1 corresponding to particular direction NA41. Next, the step flows to step 530.

在步驟530中,處理單元39判定可變位置誤差DE1是否為零,以設定一判定H16。當判定H16是肯定時,步驟流動回到步驟512(重新進入操作狀態B11)。當判定H16是否定時,步驟流動進入步驟532。In step 530, processing unit 39 determines if variable position error DE1 is zero to set a decision H16. When it is determined that H16 is affirmative, the step flows back to step 512 (re-entry into operation state B11). When it is determined whether H16 is timing, the step flows to step 532.

在步驟532中,處理單元39根據可變估計角速度DW1和可變位置誤差DE1而調整可變位置誤差DE1。例如,處理單元39根據可變估計角速度DW1和可變位置誤差DE1而減小可變位置誤差DE1。接著,步驟流動回到步驟512(重新進入操作狀態B11)。In step 532, processing unit 39 adjusts variable position error DE1 based on variable estimated angular velocity DW1 and variable position error DE1. For example, the processing unit 39 reduces the variable position error DE1 based on the variable estimated angular velocity DW1 and the variable position error DE1. Next, the step flows back to step 512 (re-entry into operation state B11).

在步驟534中,處理單元39根據經調整位置DPB1和預設區域D431而將經調整位置DPB1調整為在周邊區域D43K上的一經調整位置DPC1,且將用於操作Q1的經調整位置DPC1傳輸到電腦42,以使可變位置431P被定義到特定位置P1A2。接著,步驟流動進入步驟536。In step 534, the processing unit 39 adjusts the adjusted position DPB1 to an adjusted position DPC1 on the peripheral area D43K according to the adjusted position DPB1 and the preset area D431, and transmits the adjusted position DPC1 for the operation Q1 to The computer 42 is such that the variable position 431P is defined to the specific position P1A2. Next, the step flows to step 536.

在步驟536中,處理單元39判定在特定方向NA41下的可變估計角速度DW1是否大於門檻角速度DWH,以設定一判定H17。當判定H17是否定時,步驟流動回到步驟512(重新進入操作狀態B11)。當判定H17是肯定時,步驟流動進入步驟546(進入操作狀態B17)。In step 536, the processing unit 39 determines whether the variable estimated angular velocity DW1 in the specific direction NA41 is greater than the threshold angular velocity DWH to set a decision H17. When it is determined whether or not H17 is timing, the step flows back to step 512 (re-entry into operation state B11). When it is determined that H17 is affirmative, the step flows to step 546 (enter operation state B17).

在步驟538中,在特定方向NA42下,處理單元39根據資料DR21,通過感測單元37而響應作用力F3來確定特定方向NA42,以產生資料DR23,其中資料DR23包含在估計方向結構DRG3下的估計方向DA41、和在預設位置結構DRH3下的估計位置DP41的至少其中之一。在特定方向NA42下,處理單元39更根據資料DR21和資料DR22,通過感測單元38而響應作用力F3來確定特定方向NA42,以產生資料DS23,其中資料DS23包含在估計方向結構DRG3下的估計方向DAA2、和在預設位置結構DRH3下的估計位置DPA2的至少其中之一。接著,步驟流動進入步驟540(進入操作狀態B18)。In step 538, in a specific direction NA42, the processing unit 39 determines the specific direction NA42 in response to the force F3 by the sensing unit 37 according to the data DR21 to generate the data DR23, wherein the data DR23 is included under the estimated direction structure DRG3. At least one of the direction DA41 and the estimated position DP41 under the preset position structure DRH3 is estimated. In a specific direction NA42, the processing unit 39 further determines the specific direction NA42 by the sensing unit 38 according to the data DR21 and the data DR22 to generate the data DS23, wherein the data DS23 includes the estimation under the estimated direction structure DRG3. At least one of the direction DAA2 and the estimated position DPA2 under the preset position structure DRH3. Next, the step flows to step 540 (enter operation state B18).

在步驟540中,處理單元39藉由比較資料DR23和資料DS23而估算在特定方向NA42下感測單元37和感測單元38之間的一方向測量誤差,以產生一誤差資料DF1,根據誤差資料DF1而設定可變位置誤差DE1,且重置可變計時長度DT1和DT2,其中誤差資料DF1包含一位置誤差DE11。例如,處理單元39設定可變位置誤差DE1來具有位置誤差DE11。接著,步驟流動回到步驟512(重新進入操作狀態B11)。In step 540, the processing unit 39 estimates a direction measurement error between the sensing unit 37 and the sensing unit 38 in the specific direction NA42 by comparing the data DR23 and the data DS23 to generate an error data DF1 according to the error data. The variable position error DE1 is set for DF1, and the variable timing lengths DT1 and DT2 are reset, wherein the error data DF1 includes a position error DE11. For example, the processing unit 39 sets the variable position error DE1 to have the position error DE11. Next, the step flows back to step 512 (re-entry into operation state B11).

在步驟542中,在特定方向NA43下,處理單元39根據資料DR21,通過感測單元37而響應作用力F3來確定特定方向NA43,以產生資料DR25,其中資料DR25包含在估計方向結構DRG3下的估計方向DA45、和在預設位置結構DRH3下的估計位置DP45的至少其中之一。在特定方向NA43下,處理單元39更根據資料DR21和資料DR22,通過感測單元38而響應作用力F3來確定特定方向NA43,以產生資料DS25,其中資料DS25包含在估計方向結構DRG3下的估計方向DAA5、和在預設位置結構DRH3下的估計位置DPA5的至少其中之一。接著,步驟流動進入步驟544。In step 542, in a specific direction NA43, the processing unit 39 determines the specific direction NA43 in response to the force F3 by the sensing unit 37 according to the data DR21 to generate the data DR25, wherein the data DR25 is included under the estimated direction structure DRG3. At least one of the direction DA45 and the estimated position DP45 under the preset position structure DRH3 is estimated. In a specific direction NA43, the processing unit 39 further determines a specific direction NA43 by the sensing unit 38 according to the data DR21 and the data DR22 to generate a data DS25, wherein the data DS25 includes an estimate under the estimated direction structure DRG3. At least one of the direction DAA5, and the estimated position DPA5 under the preset position structure DRH3. Next, the step flow proceeds to step 544.

在步驟544中,處理單元39藉由比較資料DR25和資料DS25而估算在特定方向NA43下感測單元37和感測單元38之間的一方向測量誤差,以產生一誤差資料DF2,根據誤差資料DF2而設定可變位置誤差DE1,且重置可變計時長度DT2,其中誤差資料DF2包含一位置誤差DE21。例如,處理單元39設定可變位置誤差DE1來具有位置誤差DE21。接著,步驟流動回到步驟512(重新進入操作狀態B11)。In step 544, the processing unit 39 estimates a direction measurement error between the sensing unit 37 and the sensing unit 38 in the specific direction NA43 by comparing the data DR25 and the data DS25 to generate an error data DF2 according to the error data. The variable position error DE1 is set for DF2, and the variable timing length DT2 is reset, wherein the error data DF2 includes a position error DE21. For example, the processing unit 39 sets the variable position error DE1 to have the position error DE21. Next, the step flows back to step 512 (re-entry into operation state B11).

在步驟546中,在特定方向NA44下,處理單元39根據資料DR21,通過感測單元37而響應作用力F3來確定特定方向NA44,以產生資料DR27,其中資料DR27包含在估計方向結構DRG3下的估計方向DA31、和在預設位置結構DRH3下的估計位置DP31的至少其中之一。接著,步驟流動進入步驟548。In step 546, in a particular direction NA44, processing unit 39 determines a particular direction NA44 in response to force F3 via sensing unit 37 based on data DR21 to generate data DR27, wherein data DR27 is included under estimated direction structure DRG3. At least one of the direction DA31 and the estimated position DP31 under the preset position structure DRH3 is estimated. Next, the step flows to step 548.

在步驟548中,處理單元39根據資料DR21和資料DR27而估算在參考方向範圍RP1和特定方向NA44之間是否具有一第三交集,以設定一判定H18。例如,處理單元39判定在估計方向範圍DRP1和估計方向DA31之間是否具有一交集E15,以設定判定H18。當判定H18是否定時,步驟流動回到步驟546(重新進入操作狀態B17)。當判定H18是肯定時,步驟流動進入步驟550。In step 548, the processing unit 39 estimates whether there is a third intersection between the reference direction range RP1 and the specific direction NA44 based on the data DR21 and the data DR27 to set a decision H18. For example, the processing unit 39 determines whether there is an intersection E15 between the estimated direction range DRP1 and the estimated direction DA31 to set the decision H18. When it is determined whether or not H18 is timing, the step flows back to step 546 (re-entry operation state B17). When it is determined that H18 is affirmative, the step flows to step 550.

在步驟550中,處理單元39將用於操作Q1的估計位置DP31傳輸到電腦42,以使可變位置431P被定義到與特定方向NA44對應的特定位置P22,使可變位置誤差DE1歸零,且重置可變計時長度DT1和DT2。接著,步驟流動回到步驟512(重新進入操作狀態B11)。In step 550, processing unit 39 transmits estimated position DP31 for operation Q1 to computer 42 such that variable position 431P is defined to a particular position P22 corresponding to particular direction NA44, zeroing variable position error DE1, And reset the variable timing lengths DT1 and DT2. Next, the step flows back to step 512 (re-entry into operation state B11).

在一實施例中,在步驟512中,在判定可變計時長度DT2是否滿足超時條件AU1之前,處理單元39響應信號S4和S33一次(亦即讀取信號S4和S33一次),以每次從各信號S4和S33獲得一第一所讀取訊息和一第二所讀取訊息。然後,在步驟516、538、542和546的至少其中之一中,當處理單元39具有需要來用到該第一所讀取訊息和該第二所讀取訊息的至少其中之一個所讀取訊息時,則處理單元39根據該至少其中之一所讀取訊息而做出與該需要相關的反應。例如,在步驟516中,處理單元39至少根據該第一所讀取訊息和該第二所讀取訊息,產生資料DS21並設定可變估計角速度DW1和可變估計速度DV2。例如,在步驟538中,處理單元39至少根據該第一所讀取訊息和該第二所讀取訊息,產生資料DR23和DS23。例如,在步驟542中,處理單元39至少根據該第一所讀取訊息和該第二所讀取訊息,產生資料DR25和DS25。例如,在步驟546中,處理單元39至少根據該第一所讀取訊息,產生資料DR27。In an embodiment, in step 512, before determining whether the variable timing length DT2 satisfies the timeout condition AU1, the processing unit 39 responds to the signals S4 and S33 once (i.e., reads the signals S4 and S33 once) for each time. A first read message and a second read message are obtained from each of the signals S4 and S33. Then, in at least one of steps 516, 538, 542, and 546, when processing unit 39 has the need to read at least one of the first read message and the second read message In the case of a message, the processing unit 39 makes a response related to the need based on the message read by at least one of the messages. For example, in step 516, processing unit 39 generates data DS21 and sets variable estimated angular velocity DW1 and variable estimated velocity DV2 based at least on the first read message and the second read message. For example, in step 538, processing unit 39 generates data DR23 and DS23 based at least on the first read message and the second read message. For example, in step 542, processing unit 39 generates data DR25 and DS25 based at least on the first read message and the second read message. For example, in step 546, processing unit 39 generates data DR27 based at least on the first read message.

請參閱第五圖,其為本發明一實施例所提供的與一遙控裝置601相關的一操作系統60的示意圖。如圖所示,操作系統60包含遙控裝置601、耦合於遙控裝置601的一電腦42、和耦合於電腦42的一螢幕43。遙控裝置601用於控制螢幕43的一操作Q1。遙控裝置601包含一感測單元37、一感測單元38和一處理單元39。處理單元39耦合於感測單元37和38。例如,遙控裝置601包含一空中滑鼠605,且空中滑鼠605包含感測單元37與38和處理單元39。例如,遙控裝置601是一空中滑鼠605。遙控裝置601與在第三圖中的遙控裝置301相似,在第三圖和第五圖中,相同的符號具有相同的功能。Please refer to the fifth figure, which is a schematic diagram of an operating system 60 associated with a remote control device 601 according to an embodiment of the invention. As shown, the operating system 60 includes a remote control device 601, a computer 42 coupled to the remote control device 601, and a screen 43 coupled to the computer 42. The remote control device 601 is used to control an operation Q1 of the screen 43. The remote control device 601 includes a sensing unit 37, a sensing unit 38, and a processing unit 39. Processing unit 39 is coupled to sensing units 37 and 38. For example, remote control device 601 includes an aerial mouse 605, and aerial mouse 605 includes sensing units 37 and 38 and processing unit 39. For example, remote control device 601 is an aerial mouse 605. The remote control device 601 is similar to the remote control device 301 in the third diagram, and in the third and fifth figures, the same symbols have the same function.

在第五圖的一實施例中,感測單元37包含一按鍵單元3711、一按鍵單元33、地磁儀35和水平儀36。感測單元38包含一陀螺儀34。例如,按鍵單元3711作為一校正鍵,按鍵單元33作為一主動鍵(Active key),且水平儀36包含一加速度計(未顯示)。例如,水平儀36是該加速度計。在一實施例中,處理單元39包含一控制單元31和耦合於控制單元31的一通信模組32,其中通信模組32耦合於電腦42。例如,控制單元31是一微處理器。控制單元31耦合於按鍵單元3711、按鍵單元33、水平儀36、地磁儀35、陀螺儀34和通信模組32。按鍵單元3711、按鍵單元33、水平儀36、地磁儀35和陀螺儀34分別提供感測信號S311、S312、S321、S322和S331到控制單元31。In an embodiment of the fifth figure, the sensing unit 37 includes a button unit 3711, a button unit 33, a geophone 35, and a level 36. The sensing unit 38 includes a gyroscope 34. For example, the button unit 3711 acts as a correction button, the button unit 33 acts as an active key, and the level 36 includes an accelerometer (not shown). For example, level 36 is the accelerometer. In one embodiment, the processing unit 39 includes a control unit 31 and a communication module 32 coupled to the control unit 31, wherein the communication module 32 is coupled to the computer 42. For example, control unit 31 is a microprocessor. The control unit 31 is coupled to the button unit 3711, the button unit 33, the level 36, the geomagnetic instrument 35, the gyroscope 34, and the communication module 32. The button unit 3711, the button unit 33, the level 36, the geomagnet 35, and the gyroscope 34 provide sensing signals S311, S312, S321, S322, and S331 to the control unit 31, respectively.

在一實施例中,遙控裝置601具有一參考定向NF3,參考定向NF3具有一參考軸NU3,且參考軸NU3具有一可變方向NAV。可變方向NAV參考一座標系統RX3來形成一偏轉角(Yaw angle) θE 和一俯仰角(Pitch angle) αE ;亦即,互相獨立的偏轉角θE 和俯仰角αE 用於表示可變方向NAV。遙控裝置601響應一作用力F3而具有一特定運動MT3來使可變方向NAV依序被配置成為七個特定方向NA31、NA32、NA33、NA41、NA42、NA43和NA44。例如,可變方向NAV是遙控裝置601所指向的方向。In an embodiment, the remote control device 601 has a reference orientation NF3, the reference orientation NF3 has a reference axis NU3, and the reference axis NU3 has a variable direction NAV. The variable direction NAV refers to the calibration system RX3 to form a Yaw angle θ E and a pitch angle α E ; that is, mutually independent deflection angles θ E and elevation angle α E are used to indicate Change direction NAV. The remote control device 601 has a specific motion MT3 in response to a force F3 to sequentially configure the variable direction NAV into seven specific directions NA31, NA32, NA33, NA41, NA42, NA43, and NA44. For example, the variable direction NAV is the direction in which the remote control device 601 is pointing.

在一實施例中,遙控裝置601響應作用力F3而具有特定運動MT3來使參考定向NF3具有一可變速度VF和一可變角速度ωE 。例如,控制單元31通過陀螺儀34而響應作用力F3來估算可變角速度ωE 以產生可變估計角速度DW1。例如,可變估計角速度DW1具有兩個互相獨立的分量,該兩個互相獨立的分量分別是一偏轉分量ωX (t)和一俯仰分量ωY (t)以分別表示一可變估計偏轉角速度(Variable estimated yaw angular velocity)和一可變估計俯仰角速度(Variable estimated pitch angular velocity),其中t表示時間。In an embodiment, the remote control device 601 has a specific motion MT3 in response to the force F3 such that the reference orientation NF3 has a variable speed VF and a variable angular velocity ω E . For example, the control unit 31 estimates the variable angular velocity ω E in response to the force F3 by the gyroscope 34 to generate the variable estimated angular velocity DW1. For example, the variable estimated angular velocity DW1 has two mutually independent components, the two mutually independent components being a deflection component ω X (t) and a pitch component ω Y (t), respectively, to represent a variable estimated yaw rate. (Variable estimated yaw angular velocity) and a variable estimated pitch angular velocity, where t represents time.

作用力F3包含一地球磁力,該地球磁力具有方向和大小。地磁儀35響應該地球磁力而產生與特定運動MT3相關的感測信號S321,且控制單元31響應感測信號S321而估算可變方向NAV的偏轉角θE 。水平儀36響應作用力F3而產生與特定運動MT3相關的感測信號S322,且控制單元31響應感測信號S322而估算可變方向NAV的俯仰角αE 。陀螺儀34響應作用力F3而產生與特定運動MT3相關的感測信號S331,且控制單元31響應感測信號S331而估算可變角速度ωE 。例如,遙控裝置601被揮動來具有可變角速度ωEThe force F3 contains a magnetic force of the earth having a direction and a magnitude. The geomagnetic meter 35 generates a sensing signal S321 related to the specific motion MT3 in response to the earth magnetic force, and the control unit 31 estimates the deflection angle θ E of the variable direction NAV in response to the sensing signal S321. The level 36 generates a sensing signal S322 associated with the specific motion MT3 in response to the force F3, and the control unit 31 estimates the pitch angle α E of the variable direction NAV in response to the sensing signal S322. The gyro 34 generates a sensing signal S331 associated with the specific motion MT3 in response to the force F3, and the control unit 31 estimates the variable angular velocity ω E in response to the sensing signal S331. For example, the remote control device 601 is swung to have a variable angular velocity ω E .

當一使用者使遙控裝置601指著一個方向時,這所謂的“方向”可用可變方向NAV的偏轉角θE 和俯仰角αE 來表示。所以,地磁儀35和水平儀36能夠用來測量遙控裝置601所指向的方向。遙控裝置601是一有指向性的裝置,使用者控制遙控裝置601的可變方向NAV來定義在螢幕43上與可變方向NAV對應的可變位置431P。螢幕43包含一操作區域431和用於界定操作區域431的一幾何參考432。例如,操作區域431是一矩形區域。幾何參考432參考遙控裝置601而形成一方向結構RG3,操作區域431參考遙控裝置601而形成與操作區域431對應的一參考方向範圍RP1,且方向結構RG3界定參考方向範圍RP1。遙控裝置601在使用前要校正方向結構RG3或參考方向範圍RP1,使得遙控裝置601的控制單元31曉得操作區域431的四個邊緣(或四個角)在使用者的哪個方向。When a user causes the remote control device 601 to point in one direction, the so-called "direction" can be expressed by the deflection angle θ E and the pitch angle α E of the variable direction NAV. Therefore, the geomagnetic instrument 35 and the level 36 can be used to measure the direction in which the remote control device 601 is pointing. The remote control device 601 is a directional device, and the user controls the variable direction NAV of the remote control device 601 to define a variable position 431P corresponding to the variable direction NAV on the screen 43. The screen 43 includes an operating area 431 and a geometric reference 432 for defining the operating area 431. For example, the operation area 431 is a rectangular area. The geometric reference 432 forms a directional structure RG3 with reference to the remote control device 601. The operation region 431 forms a reference direction range RP1 corresponding to the operation region 431 with reference to the remote control device 601, and the directional structure RG3 defines the reference direction range RP1. The remote control device 601 is to correct the direction structure RG3 or the reference direction range RP1 before use, so that the control unit 31 of the remote control device 601 knows which direction the four edges (or four corners) of the operation region 431 are in the user.

一般而言,螢幕43或操作區域431的上、下邊緣均會被儘量地水平放置。操作區域431包含一左上角、一左下角、一右上角、一右下角、第一對斜對角和第二對斜對角,該第一對斜對角包含該左上角和該右下角,且該第二對斜對角包含該右上角和該左下角。該第一對斜對角和該第二對斜對角參考遙控裝置601而分別形成與該第一對斜對角和該第二對斜對角對應的一第一對方向和一第二對方向。例如,遙控裝置601只要測量該第一對方向和該第二對方向的其中之一,則另一對方向就可以被推算出來。例如,幾何參考432包含該第一對斜對角和該第二對斜對角的其中之一。例如,該左上角具有一特定位置P11,且該右下角具有與特定位置P11成斜對角的一特定位置P12。In general, the upper and lower edges of the screen 43 or the operating area 431 are placed as horizontally as possible. The operation area 431 includes an upper left corner, a lower left corner, an upper right corner, a lower right corner, a first diagonal diagonal and a second diagonal diagonal, and the first diagonal diagonal includes the upper left corner and the lower right corner. And the second pair of oblique diagonals includes the upper right corner and the lower left corner. The first pair of oblique diagonals and the second pair of oblique diagonal reference remote control devices 601 respectively form a first pair of directions and a second pair corresponding to the first pair of diagonally opposite angles and the second pair of diagonally opposite diagonals direction. For example, if the remote control device 601 measures one of the first pair of directions and the second pair of directions, the other pair of directions can be derived. For example, geometric reference 432 includes one of the first pair of diagonally opposite corners and the second pair of diagonally opposite diagonals. For example, the upper left corner has a specific position P11, and the lower right corner has a specific position P12 diagonally opposite to the specific position P11.

校正方向結構RG3或參考方向範圍RP1的步驟包括:使用者使遙控裝置601指向特定位置P11來將可變方向NAV配置成為特定方向NA31,且在特定方向NA31下,使用者按一下按鍵單元3711;接著,使用者使指向特定位置P12來將可變方向NAV配置成為特定方向NA32,且在特定方向NA32下,使用者再按一下按鍵單元3711。例如,參考定向NF3具有一參考原點L3,特定方向NA31是從遙控裝置601的參考原點L3到特定位置P11的方向,且特定方向NA32是從遙控裝置601的參考原點L3到特定位置P12的方向。例如,遙控裝置601具有一特定位置,且參考原點L3被預設於遙控裝置601的該特定位置。例如,該特定位置是遙控裝置601的形心。The step of correcting the direction structure RG3 or the reference direction range RP1 includes: the user points the remote control device 601 to the specific position P11 to configure the variable direction NAV to the specific direction NA31, and in the specific direction NA31, the user presses the button unit 3711; Next, the user causes the variable direction NAV to be directed to the specific direction NA32 by pointing to the specific position P12, and the user presses the button unit 3711 again in the specific direction NA32. For example, the reference orientation NF3 has a reference origin L3, the specific direction NA31 is a direction from the reference origin L3 of the remote control device 601 to the specific position P11, and the specific direction NA32 is from the reference origin L3 of the remote control device 601 to the specific position P12. The direction. For example, the remote control device 601 has a specific position, and the reference origin L3 is preset to the specific position of the remote control device 601. For example, the specific location is the centroid of the remote control device 601.

例如,在特定方向NA31下,使用者按一下按鍵單元3711來使作用力F3出現成分力F311,以在感測信號S311的成分信號G11中出現一第一觸發信號。控制單元31響應該第一觸發信號和信號S32而估算特定方向NA31。例如,在特定方向NA32下,使用者按一下按鍵單元3711來使作用力F3出現成分力F312,以在感測信號S311的成分信號G11中出現一第二觸發信號。控制單元31響應該第二觸發信號和信號S32而估算特定方向NA32。For example, in a specific direction NA31, the user presses the button unit 3711 to cause the force F3 to appear as the component force F311 to generate a first trigger signal in the component signal G11 of the sensing signal S311. The control unit 31 estimates a specific direction NA31 in response to the first trigger signal and the signal S32. For example, in a specific direction NA32, the user presses the button unit 3711 to cause the force F3 to appear as the component force F312 to generate a second trigger signal in the component signal G11 of the sensing signal S311. The control unit 31 estimates a specific direction NA32 in response to the second trigger signal and the signal S32.

在特定方向NA31下,使用者按一下按鍵單元3711來使控制單元31通過地磁儀35和水平儀36而測量偏轉角θE 和俯仰角αE ,以產生用於估算特定方向NA31的一估計方向DA11。在特定方向NA32下,使用者按一下按鍵單元3711來使控制單元31通過地磁儀35和水平儀36而測量偏轉角θE 和俯仰角αE ,以產生用於估算特定方向NA32的一估計方向DA12。控制單元31記錄估計方向DA11和估計方向DA12。當然,當使用者手部的位置(也就是遙控裝置601的位置)具有不同的位置值時,特定方向NA31或特定方向NA32也會具有不同的方向值;亦即,遙控裝置601所獲得的估計方向DA11或估計方向DA12也會具有不同的方向值。In a particular direction NA31, the user presses the button unit 3711 to cause the control unit 31 to measure the deflection angle θ E and the pitch angle α E through the geomagnetic instrument 35 and the level 36 to generate an estimated direction DA11 for estimating the specific direction NA31. . In a particular direction NA32, the user presses the button unit 3711 to cause the control unit 31 to measure the deflection angle θ E and the pitch angle α E through the geomagnetic instrument 35 and the level 36 to generate an estimated direction DA12 for estimating the specific direction NA32. . The control unit 31 records the estimated direction DA11 and the estimated direction DA12. Of course, when the position of the user's hand (that is, the position of the remote control device 601) has different position values, the specific direction NA31 or the specific direction NA32 also has different direction values; that is, the estimation obtained by the remote control device 601. Direction DA11 or estimated direction DA12 will also have different direction values.

不過,只要螢幕43離遙控裝置601夠遠(如看數位電視時),且使用者沒有使遙控裝置601離開原先的位置太遠,這種誤差是可以忽略的。另外,一般而言,地磁儀35具有雜訊相對較大、和解析度不夠的性質。所以,當使用者按壓按鍵單元3711時,控制單元31需要花一些時間(十分之一秒、…、或五分之一秒等)連續地從地磁儀35讀取資料很多次,以獲得多個訊息,且將該多個訊息做平均來去掉雜訊,以獲得較精確的估計偏轉角。還好的是,在使用者按壓按鍵單元3711時,通常使用者都會使遙控裝置601暫時不動。However, this error is negligible as long as the screen 43 is far enough away from the remote control 601 (such as when viewing a digital television) and the user does not leave the remote control 601 too far away from the original location. Further, in general, the geomagnetic instrument 35 has a property that the noise is relatively large and the resolution is insufficient. Therefore, when the user presses the button unit 3711, the control unit 31 takes some time (one tenth of a second, ..., or one fifth of a second, etc.) to continuously read the data from the geomagnetic instrument 35 many times to obtain more. Messages, and averaging the multiple messages to remove noise to obtain a more accurate estimated deflection angle. Preferably, when the user presses the button unit 3711, the user usually causes the remote control device 601 to be temporarily immobilized.

控制單元31根據估計方向DA11和估計方向DA12而產生資料DR21。例如,資料DR21包含用於估算方向結構RG3的一估計方向結構DRG3、與估計方向結構DRG3對應的一預設位置結構DRH3、在估計方向結構DRG3和預設位置結構DRH3之間的一轉換關係RT1、用於估算參考方向範圍RP1的一估計方向範圍DRP1、和用於界定操作區域431的一預設區域D431。例如,估計方向結構DRG3包含估計方向DA11和估計方向DA12。The control unit 31 generates the material DR21 based on the estimated direction DA11 and the estimated direction DA12. For example, the data DR21 includes an estimated direction structure DRG3 for estimating the direction structure RG3, a preset position structure DRH3 corresponding to the estimated direction structure DRG3, and a conversion relationship RT1 between the estimated direction structure DRG3 and the preset position structure DRH3. An estimated direction range DRP1 for estimating the reference direction range RP1 and a preset area D431 for defining the operation area 431. For example, the estimated direction structure DRG3 includes an estimated direction DA11 and an estimated direction DA12.

例如,操作區域431的該右上角參考遙控裝置601來形成一特定方向NA35,且操作區域431的該左下角參考遙控裝置601來形成一特定方向NA36。例如,估計方向結構DRG3可以更包括用於估算特定方向NA35的一估計方向DA15、和用於估算特定方向NA36的一估計方向DA16。在資料DR21已被產生的條件下,使用者拿著遙控裝置601指向在操作區域431上的一特定位置來將可變方向NAV配置成為特定方向NA33。例如,該特定位置位於操作區域431的中間部分中。For example, the upper right corner of the operation area 431 refers to the remote control device 601 to form a specific direction NA35, and the lower left corner of the operation area 431 refers to the remote control device 601 to form a specific direction NA36. For example, the estimated direction structure DRG3 may further include an estimated direction DA15 for estimating the specific direction NA35, and an estimated direction DA16 for estimating the specific direction NA36. Under the condition that the data DR21 has been generated, the user sets the variable direction NAV to the specific direction NA33 by pointing the remote control device 601 to a specific position on the operation area 431. For example, the specific location is located in the middle portion of the operation area 431.

在一實施例中,幾何參考432包含特定位置P11、P12和P15。在一實施例中,幾何參考432包含特定位置P11、P12和P16。特定位置P15位於操作區域431的該右上角,且特定位置P16位於操作區域431的該左下角。當幾何參考432包含特定位置P11、P12和P15時,方向結構RG3包含特定方向NA31、NA32和NA35,且估計方向結構DRG3包含估計方向DA11、DA12和DA15。當幾何參考432包含特定位置P11、P12和P16時,方向結構RG3包含特定方向NA31、NA32和NA36,且估計方向結構DRG3包含估計方向DA11、DA12和DA16。在此情況下,校正方向結構RG3的方法類似於上述的方法。In an embodiment, geometric reference 432 includes specific locations P11, P12, and P15. In an embodiment, geometric reference 432 includes specific locations P11, P12, and P16. The specific position P15 is located at the upper right corner of the operation area 431, and the specific position P16 is located at the lower left corner of the operation area 431. When the geometric reference 432 includes the specific positions P11, P12, and P15, the directional structure RG3 includes the specific directions NA31, NA32, and NA35, and the estimated directional structure DRG3 includes the estimated directions DA11, DA12, and DA15. When the geometric reference 432 includes the specific positions P11, P12, and P16, the directional structure RG3 includes the specific directions NA31, NA32, and NA36, and the estimated directional structure DRG3 includes the estimated directions DA11, DA12, and DA16. In this case, the method of correcting the directional structure RG3 is similar to the method described above.

在特定方向NA33下,使用者按壓按鍵單元33來確定特定方向NA33。例如,按鍵單元33作為一主動鍵,且在一作用期間TA被按下來使作用力F3出現成分力F313,以致在感測信號S312中出現成分信號G13。例如,在特定方向NA33下,使用者按壓按鍵單元33來使感測信號S312的成分信號G13中出現一第三觸發信號。控制單元31響應該第三觸發信號和信號S32而估算特定方向NA33,以產生資料DR22。例如,資料DR22包含在估計方向結構DRG3下的估計方向DA21、和在預設位置結構DRH3下的估計位置DP21的至少其中之一。控制單元31將估計方向DA21與四個估計方向DA11、DA12、DA15和DA16比較,就可以知道現在可變方向NAV(特定方向NA33)是指向螢幕上的哪個位置。In a specific direction NA33, the user presses the button unit 33 to determine the specific direction NA33. For example, the button unit 33 acts as a master button, and during a period of time TA is pressed to cause the force F3 to appear as the component force F313, so that the component signal G13 appears in the sensing signal S312. For example, in a specific direction NA33, the user presses the button unit 33 to cause a third trigger signal to appear in the component signal G13 of the sensing signal S312. The control unit 31 estimates the specific direction NA33 in response to the third trigger signal and the signal S32 to generate the data DR22. For example, the material DR22 includes at least one of the estimated direction DA21 under the estimated direction structure DRG3 and the estimated position DP21 under the preset position structure DRH3. The control unit 31 compares the estimated direction DA21 with the four estimated directions DA11, DA12, DA15 and DA16, and knows which position on the screen the current variable direction NAV (specific direction NA33) is pointing to.

同樣地,使用者剛剛按下按鍵單元33時,使用者的手會將遙控裝置601固定在特定方向NA33而暫時不動,控制單元31就在幾分之一秒的時間內連續地讀取地磁儀35很多次,以獲得多個訊息,且對該多個訊息做平均以求得較精確的估計偏轉角。Similarly, when the user just presses the button unit 33, the user's hand will fix the remote control device 601 in the specific direction NA33 for a while, and the control unit 31 continuously reads the geophone in a fraction of a second. 35 many times, to obtain multiple messages, and average the multiple messages to obtain a more accurate estimated deflection angle.

無論是傳統上在桌面上操作的滑鼠或是其他的空中滑鼠,控制單元或微處理器透過通信模組傳輸給電腦的是游標單位時間內的位移量(也就是速度)。在本發明的一實施例中,操作區域431具有一可變位置431P和一游標K31,可變位置431P具有一可變座標,且電腦42將游標K31配置在可變位置431P。遙控裝置601傳輸給電腦42的是游標K31所欲被放置的該可變座標的值(就是真正的位置值而不是速度)。當然,也要對於電腦42做一些修改,電腦42才能接收並利用這些所傳輸的資料。Whether it is a mouse or other aerial mouse that is traditionally operated on a desktop, the control unit or microprocessor transmits to the computer through the communication module the amount of displacement (ie, speed) of the cursor per unit time. In an embodiment of the invention, the operating area 431 has a variable position 431P and a cursor K31, the variable position 431P has a variable coordinate, and the computer 42 configures the cursor K31 at the variable position 431P. The remote control device 601 transmits to the computer 42 the value of the variable coordinate that the cursor K31 is intended to be placed (that is, the true position value rather than the speed). Of course, some modifications must be made to the computer 42 so that the computer 42 can receive and utilize the transmitted data.

所以,在方向結構RG3或參考方向範圍RP1被校正完成的條件下,使用者拿著遙控裝置601指向在操作區域431上的某個位置,按下按鍵單元33。此時,控制單元31估算在操作區域431上使用者所指向的位置來產生一估計位置(譬如估計位置DP21),其中所指向的位置也就是使用者期望游標K31出現的位置。控制單元31把該估計位置透過通信模組32傳輸給電腦42,電腦42就把游標K31移到在操作區域431上與該估計位置(譬如估計位置DP21)對應的一特定位置,且該特定位置接近該指向的位置。例如,經由按鍵單元33的按壓,控制單元31響應感測信號S312、S321和S322而產生在估計方向結構DRG3下的一估計方向DA21、和在預設位置結構DRH3下與估計方向DA21對應的一估計位置DP21。Therefore, under the condition that the direction structure RG3 or the reference direction range RP1 is corrected, the user holds the remote control device 601 to point to a certain position on the operation area 431, and presses the button unit 33. At this time, the control unit 31 estimates the position pointed by the user on the operation area 431 to generate an estimated position (for example, the estimated position DP21), which is the position where the user desires the cursor K31 to appear. The control unit 31 transmits the estimated position to the computer 42 via the communication module 32, and the computer 42 moves the cursor K31 to a specific position on the operation area 431 corresponding to the estimated position (for example, the estimated position DP21), and the specific position Close to the location of the pointing. For example, via the pressing of the button unit 33, the control unit 31 generates an estimated direction DA21 under the estimated direction structure DRG3 and one corresponding to the estimated direction DA21 under the preset position structure DRH3 in response to the sensing signals S312, S321, and S322. Estimated position DP21.

如果使用者覺得游標K31現在所在的位置不夠理想,使用者會想要輕輕地搖動遙控裝置601來對游標K31的位置做些微調。因為遙控裝置601的俯仰角αE 是靠水平儀36測量,且目前的水平儀又都可以做得很精確且很靈敏,所以對於游標K31在垂直方向的調整不會造成問題。對於游標K31在水平方向的調整,如果純粹地靠地磁儀35測量偏轉角θE 來決定游標K31的水平座標,則會有難以精細控制的問題。由於地磁儀35具有雜訊相對較大的性質,且使用者現在又在不斷地變動遙控裝置601的指向,因此控制單元31不能像在按壓按鍵單元33時一樣連續地讀取地磁儀35很多次來做大量平均。結果,游標K31會有左右微微跳動的現象,使得使用者很難對游標K31的位置做微調。在本發明的一實施例中,遙控裝置601藉由陀螺儀34來解決所述問題。If the user feels that the position of the cursor K31 is not ideal, the user would like to gently shake the remote control device 601 to fine-tune the position of the cursor K31. Since the pitch angle α E of the remote control device 601 is measured by the level 36, and the current level can be made very precise and sensitive, the adjustment of the cursor K31 in the vertical direction does not cause a problem. For the adjustment of the cursor K31 in the horizontal direction, if the horizontal coordinate of the cursor K31 is determined purely by measuring the deflection angle θ E by the geomagnetometer 35, there is a problem that it is difficult to finely control. Since the geomagnetic instrument 35 has a relatively large nature of noise, and the user is now constantly changing the orientation of the remote control device 601, the control unit 31 cannot continuously read the geomagnetic instrument 35 many times as when pressing the button unit 33. Come and do a lot of averaging. As a result, the cursor K31 has a slight left and right beating phenomenon, making it difficult for the user to fine-tune the position of the cursor K31. In an embodiment of the invention, the remote control device 601 solves the problem by the gyroscope 34.

藉由按鍵單元33的按壓所產生的估計方向DA21包含一估計偏轉角θF1 和一估計俯仰角αF1 。當使用者輕輕地搖動遙控裝置601時,遙控裝置601其實是藉由陀螺儀34來偵測藉由搖動遙控裝置601所產生的可變角速度ωE ,以產生一可變估計角速度DW1。控制單元31把可變估計角速度DW1積分成角度變化,將該角度變化和早先已知的估計方向DA21相加來產生新的估計方向。遙控裝置601根據轉換關係RT1而將該新的估計方向轉換成新的估計位置,以使游標K31移到在操作區域431上的新的特定位置。例如,在特定方向NA41下,控制單元31根據感測信號S331和估計位置DP21而產生估計位置DPA1。The estimated direction DA21 generated by the pressing of the button unit 33 includes an estimated deflection angle θ F1 and an estimated pitch angle α F1 . When the user gently shakes the remote control device 601, the remote control device 601 actually detects the variable angular velocity ω E generated by the rocking remote control device 601 by the gyroscope 34 to generate a variable estimated angular velocity DW1. The control unit 31 integrates the variable estimated angular velocity DW1 into an angular change, and adds the angular change to the previously known estimated direction DA21 to generate a new estimated direction. The remote control device 601 converts the new estimated direction into a new estimated position according to the conversion relationship RT1 to move the cursor K31 to a new specific position on the operation area 431. For example, in a specific direction NA41, the control unit 31 generates an estimated position DPA1 based on the sensing signal S331 and the estimated position DP21.

例如,該角度變化包含一偏轉角變化和一俯仰角變化,且該偏轉角變化和該俯仰角變化分別與估計偏轉角θF1 和估計俯仰角αF1 相加來產生在估計方向結構DRG3下的該新的估計方向(譬如估計方向DAA1、DAA2和DAA5的其中之一)。控制單元31根據轉換關係RT1而將該新的估計方向轉換成一新的估計位置(譬如估計位置DPA1、DPA2和DPA5的其中之一)。例如,在預設位置結構DRH3下的該新的估計位置具有一位置座標,且該位置座標被稱為一陀螺儀估計座標。For example, the angle change includes a deflection angle change and a pitch angle change, and the deflection angle change and the pitch angle change are respectively added to the estimated deflection angle θ F1 and the estimated pitch angle α F1 to generate the estimated direction structure DRG3. The new estimated direction (such as one of the estimated directions DAA1, DAA2, and DAA5). The control unit 31 converts the new estimated direction into a new estimated position (such as one of the estimated positions DPA1, DPA2, and DPA5) according to the conversion relationship RT1. For example, the new estimated position under the preset position structure DRH3 has a position coordinate, and the position coordinate is referred to as a gyroscope estimated coordinate.

然而,利用該陀螺儀估計座標來控制游標K31也具有一些額外的問題。控制單元31藉由陀螺儀34偵測可變角速度ωE 。當控制單元31將估計角速度DW1積分成一估計角度位移時,在該估計角度位移與實際的角度位移之間會有一累計誤差(Cumulative error)。時間一久,採用上述積分方法所產生的估計方向就會跟實際方向不一致,所以遙控裝置601受配置來時常修正或補償該累計誤差。However, using the gyroscope to estimate the coordinates to control the cursor K31 also has some additional problems. The control unit 31 detects the variable angular velocity ω E by the gyroscope 34. When the control unit 31 integrates the estimated angular velocity DW1 into an estimated angular displacement, there is a Cumulative error between the estimated angular displacement and the actual angular displacement. Over time, the estimated direction produced by the above integration method will be inconsistent with the actual direction, so the remote control device 601 is configured to often correct or compensate for the accumulated error.

使用者在使用遙控裝置601的過程中,使用者的手部常常會有短暫的靜止。例如,在按壓按鍵前後,該手部往往會在片刻時間內稍微靜止來形成一準靜止狀態。雖然該片刻時間一般都很短,也許只有幾分之一秒,但已足夠使控制單元31讀取地磁儀35和水平儀36很多次並且做平均來產生一個較準確的估計方向,以校正遙控裝置601所指的方向。至於何時是在準靜止狀態,這能夠藉由感測單元37和38予以偵測。During the use of the remote control device 601 by the user, the user's hand often has a short pause. For example, before and after the button is pressed, the hand tends to be slightly stationary for a short period of time to form a quasi-stationary state. Although the moment is generally short, perhaps only a fraction of a second, it is sufficient for the control unit 31 to read the geomagnetic instrument 35 and the level 36 many times and average to produce a more accurate estimation direction to correct the remote control. The direction indicated by 601. As to when it is in a quasi-stationary state, this can be detected by the sensing units 37 and 38.

在一實施例中,控制單元31預設一估計速度範圍DVA和一估計速度範圍DVB。遙控裝置601的參考定向NF3具有一可變速度VF。控制單元31根據感測單元37的信號S32而產生用於估算可變速度VF的一可變估計速度DV1,且根據感測單元38的信號S33而產生用於估算可變速度VF的一可變估計速度DV2。例如,處理單元39根據水平儀36的感測信號S322而產生可變估計速度DV1。例如,在操作狀態B15中,當在估計速度範圍DVA和可變估計速度DV1之間具有一交集E12、且在估計速度範圍DVB和可變估計速度DV2之間具有一交集E13時,遙控裝置601的參考定向NF3滿足準靜止狀態AV1。In an embodiment, the control unit 31 presets an estimated speed range DVA and an estimated speed range DVB. The reference orientation NF3 of the remote control device 601 has a variable speed VF. The control unit 31 generates a variable estimated speed DV1 for estimating the variable speed VF based on the signal S32 of the sensing unit 37, and generates a variable for estimating the variable speed VF according to the signal S33 of the sensing unit 38. Estimated speed DV2. For example, the processing unit 39 generates a variable estimated speed DV1 based on the sensing signal S322 of the level 36. For example, in the operation state B15, when there is an intersection E12 between the estimated speed range DVA and the variable estimated speed DV1, and there is an intersection E13 between the estimated speed range DVB and the variable estimated speed DV2, the remote control device 601 The reference orientation NF3 satisfies the quasi-stationary state AV1.

在一實施例中,控制單元31藉由水平儀36和陀螺儀34偵測一準靜止狀態。在一特定時間範圍內,控制單元31分析水平儀36的輸出值來產生一第一標準差以設定可變估計速度DV1的值,且分析陀螺儀34的輸出值來產生一第二標準差以設定可變估計速度DV2的值。如果該第一標準差小於一第一特定值且該第二標準差小於一第二特定值,則遙控裝置601受配置在該特定時間範圍內滿足該準靜止狀態。例如,該特定時間範圍具有一特定時間長度,且該特定時間長度、該第一標準差和該第二標準差均是相對較小的。In one embodiment, control unit 31 detects a quasi-stationary state by level 36 and gyroscope 34. In a specific time range, the control unit 31 analyzes the output value of the level 36 to generate a first standard deviation to set the value of the variable estimated speed DV1, and analyzes the output value of the gyroscope 34 to generate a second standard deviation to set The value of the variable speed DV2 can be estimated. If the first standard deviation is less than a first specific value and the second standard deviation is less than a second specific value, the remote control device 601 is configured to satisfy the quasi-stationary state within the specific time range. For example, the particular time range has a particular length of time, and the particular length of time, the first standard deviation, and the second standard deviation are both relatively small.

在遙控裝置601滿足準靜止狀態AV1的條件下,遙控裝置601具有一短暫的準靜止狀態和特定方向NA42。在特定方向NA42下,控制單元31根據感測信號S331和估計位置DP21而產生估計位置DPA2(具有一陀螺儀估計座標),且根據感測信號S321和S322而產生估計位置DP41。控制單元31比較估計位置DP41和估計位置DPA2來產生在特定方向NA42下的一位置誤差DE11。例如,位置誤差DE11是一位置累計誤差。Under the condition that the remote control device 601 satisfies the quasi-stationary state AV1, the remote control device 601 has a short quasi-stationary state and a specific direction NA42. In a specific direction NA42, the control unit 31 generates an estimated position DPA2 (having a gyro estimated coordinate) based on the sensing signal S331 and the estimated position DP21, and generates an estimated position DP41 based on the sensing signals S321 and S322. The control unit 31 compares the estimated position DP41 with the estimated position DPA2 to generate a position error DE11 in the specific direction NA42. For example, the position error DE11 is a position cumulative error.

在位置誤差DE11已被產生的條件下,控制單元31不是立刻就使游標K31移動來修正位置誤差DE11。因為這時候,使用者的手部使遙控裝置601在該準靜止狀態中,游標K31若突然移動,會造成使用者的困擾。所以,控制單元31會先記錄位置誤差DE11,另外再找機會修正或補償位置誤差DE11。Under the condition that the position error DE11 has been generated, the control unit 31 does not immediately move the cursor K31 to correct the position error DE11. Because at this time, the user's hand causes the remote control device 601 to be in the quasi-stationary state, and if the cursor K31 suddenly moves, it may cause trouble to the user. Therefore, the control unit 31 first records the position error DE11, and then finds an opportunity to correct or compensate the position error DE11.

一般而言,使用者在使用滑鼠時會有個傾向:在快速移動游標時,通常只求游標快速移到目的地附近,對於游標精確的行經位置不是十分在意;當慢速移動游標時,通常是在做微調動作,這時對游標位置的可控制性就會很在意。也就是說,使用者在慢速移動游標時,希望游標能充分被手部細微的動作所支配,而不喜歡有其他的干擾。所以,當遙控裝置601響應作用力F3而控制游標K31快速移動時,控制單元31分次地修正或補償位置誤差DE11。游標K31的移動速度愈快,位置誤差DE11的愈大部分在一次中被補償。游標K31的移動速度愈慢,每次補償的誤差量就愈少,甚至於就暫時不補償。例如,控制單元31根據可變速度VF和可變估計角速度DW1的其中之一而分次地補償位置誤差DE11。接著,說明分次地補償位置誤差DE11的一實施例。In general, users have a tendency to use the mouse: when moving the cursor quickly, usually only the cursor is quickly moved to the vicinity of the destination, and the precise position of the cursor is not very concerned; when moving the cursor slowly, Usually you are doing fine-tuning, and the controllability of the cursor position will be very interesting. That is to say, when the user moves the cursor slowly, he hopes that the cursor can be fully controlled by the delicate movement of the hand, and does not like other interference. Therefore, when the remote control device 601 controls the cursor K31 to move rapidly in response to the force F3, the control unit 31 corrects or compensates for the position error DE11 in a divided manner. The faster the cursor K31 moves, the more the position error DE11 is compensated in one pass. The slower the moving speed of the cursor K31, the less the amount of error per compensation, or even the temporary compensation. For example, the control unit 31 compensates the position error DE11 in a divided manner based on one of the variable speed VF and the variable estimated angular velocity DW1. Next, an embodiment in which the position error DE11 is compensated in stages is explained.

當使用者揮動遙控裝置601時,由於可變方向NAV的改變,陀螺儀估計座標的值也就一再更新。控制單元31每次產生一筆新的陀螺儀估計座標的位置訊息就會透過通信模組32把該位置訊息傳輸給電腦42。例如,控制單元31使包含估計位置DPA2的一位置訊息傳輸給電腦42。例如,當使用者快速揮動遙控裝置601時,控制單元31每秒會送出一百多筆位置訊息。所謂分次補償位置誤差DE11,就是控制單元31每產生陀螺儀估計座標的一特定估計位置就補償位置誤差DE11的一部分,以將該特定估計位置調整為一經調整位置,且將該經調整位置傳輸給電腦42。When the user swings the remote control device 601, the gyroscope estimates that the value of the coordinate is updated again and again due to the change in the variable direction NAV. The control unit 31 transmits the position information to the computer 42 via the communication module 32 each time a new position information of the gyroscope estimated coordinates is generated. For example, control unit 31 transmits a location message containing estimated location DPA2 to computer 42. For example, when the user quickly swings the remote control device 601, the control unit 31 will send more than one hundred position messages per second. The so-called fractional compensation position error DE11 is that the control unit 31 compensates a part of the position error DE11 for each specific estimated position of the gyro estimated coordinate to adjust the specific estimated position to an adjusted position, and transmits the adjusted position. Give the computer 42.

例如,控制單元31利用X座標軸和Y座標軸來表示在預設位置結構DRH3下的一估計位置的座標。例如,在時間點t0 ,位置誤差DE11具有在X座標軸上的位置誤差分量EX (t0 ),且具有在Y座標軸上的位置誤差分量EY (t0 )。在時間點t0 ,陀螺儀估計座標的估計位置DPA1具有在X座標軸上的位置分量CX (t0 ),且具有在Y座標軸上的位置分量CY (t0 )。例如,如果位置誤差DE11沒有被補償,控制單元31傳輸位置分量CX (t0 )和CY (t0 )給電腦42。For example, the control unit 31 uses the X coordinate axis and the Y coordinate axis to represent the coordinates of an estimated position under the preset position structure DRH3. For example, at time t 0 , the position error DE11 has a position error component E X (t 0 ) on the X coordinate axis and has a position error component E Y (t 0 ) on the Y coordinate axis. At the time point t 0 , the estimated position DPA1 of the gyroscope estimated coordinate has a position component C X (t 0 ) on the X coordinate axis, and has a position component C Y (t 0 ) on the Y coordinate axis. For example, if the position error DE11 is not compensated, the control unit 31 transmits the position components C X (t 0 ) and C Y (t 0 ) to the computer 42.

為了分次修正或補償位置誤差DE11,在特定方向NA41下,控制單元31根據感測信號S331和估計位置DP21而產生在預設位置結構DRH3下的估計位置DPA1。控制單元31根據估計位置DPA1、可變估計角速度DW1和位置誤差DE11將估計位置DPA1調整為經調整位置DPB1。例如,可變估計角速度DW1具有一偏轉分量ωX (t)和一俯仰分量ωY (t);經調整位置DPB1具有在X座標軸上的位置分量(CX (t0 )-AXX (t0 ))‧EX (t0 )),且具有在Y座標軸上的位置分量(CY (t0 )-AYY (t0 ))‧EY (t0 ))。因此,控制單元31替換估計位置DPA1而改為將經調整位置DPB1傳輸給電腦42。例如,AXX (t))及AYY (t))分別是偏轉分量ωX (t)和俯仰分量ωY (t)的函數,且AXX (t))及AYY (t))的值始終小於1。當偏轉分量ωX (t)和俯仰分量ωY (t)愈大時,AXX (t))及AYY (t))愈大;反之,則愈小。例如,在下一個時間點t1 ,待補償的位置累計誤差(包含在X座標軸上的誤差分量EX (t1 )和在Y座標軸上的誤差分量EY (t1 ))變為:In order to correct or compensate the position error DE11 in stages, in a specific direction NA41, the control unit 31 generates an estimated position DPA1 under the preset position structure DRH3 based on the sensing signal S331 and the estimated position DP21. The control unit 31 adjusts the estimated position DPA1 to the adjusted position DPB1 based on the estimated position DPA1, the variable estimated angular velocity DW1, and the position error DE11. For example, the variable estimated angular velocity DW1 has a deflection component ω X (t) and a pitch component ω Y (t); the adjusted position DPB1 has a position component on the X coordinate axis (C X (t 0 )-A X (ω) X (t 0 ))‧E X (t 0 )), and has a position component on the Y coordinate axis (C Y (t 0 )-A YY (t 0 ))‧E Y (t 0 )) . Therefore, the control unit 31 replaces the estimated position DPA1 and instead transmits the adjusted position DPB1 to the computer 42. For example, A XX (t)) and A YY (t)) are functions of the deflection component ω X (t) and the pitch component ω Y (t), respectively, and A XX (t) And the value of A YY (t)) is always less than 1. When the deflection component ω X (t) and the pitch component ω Y (t) are larger, A XX (t)) and A YY (t)) are larger; otherwise, the smaller. For example, the next time point t 1, the position to be compensated cumulative error (error component included in the E X X coordinate axis (t 1) and the error component E Y Y coordinate axis (t 1)) becomes:

EX (t1 )=EX (t0 )‧(1-AXX (t0 )))E X (t 1 )=E X (t 0 )‧(1-A XX (t 0 )))

EY (t1 )=EY (t0 )‧(1-AYY (t0 )))E Y (t 1 )=E Y (t 0 )‧(1-A YY (t 0 )))

如此重複進行,待補償的位置累計誤差就會愈來愈小。到了某個時間點tn ,若有重新計算位置累計誤差,就以新的計算結果作為待補償的位置累計誤差。在一實施例中,在特定方向NA42下,控制單元31根據感測信號S331和估計位置DP21而產生估計方向DAA2,且根據感測信號S321和S322而產生估計方向DA41。控制單元31比較估計方向DA41和估計方向DAA2來產生在特定方向NA42下的一方向誤差。接著,控制單元31分次地補償該方向誤差來將一估計位置調整為一經調整位置。Repeatedly, the cumulative error of the position to be compensated will become smaller and smaller. When a certain time point t n is reached, if the position cumulative error is recalculated, the new calculation result is used as the position cumulative error to be compensated. In an embodiment, under a specific direction NA42, the control unit 31 generates an estimated direction DAA2 based on the sensing signal S331 and the estimated position DP21, and generates an estimated direction DA41 based on the sensing signals S321 and S322. The control unit 31 compares the estimated direction DA41 with the estimated direction DAA2 to generate a directional error in the specific direction NA42. Next, the control unit 31 compensates the direction error in stages to adjust an estimated position to an adjusted position.

有些時候,使用者可能會在一段相對長的第一特定期間中一直揮動遙控裝置601,且在該第一特定期間中沒有暫時的準靜止動作。在這種情況下,控制單元31就沒有機會產生用於估算可變方向NAV的一個準確的估計方向、及累計誤差,當然也沒辦法去補償累計誤差。這情況若持續下去,會導致游標K31的位置和在操作區域431上遙控裝置601所指的位置愈離愈遠。為避免這種情況過分惡化,在使用者仍在揮動遙控裝置601的條件下,只要在一第二特定時間內,控制單元31沒有準靜止狀態的機會產生用於估算可變方向NAV的準確的估計方向,則控制單元31就要估算一次可變方向NAV。In some cases, the user may wave the remote control device 601 for a relatively long period of a certain specific period, and there is no temporary quasi-stationary motion during the first specific period. In this case, the control unit 31 has no chance to generate an accurate estimation direction and cumulative error for estimating the variable direction NAV, and of course there is no way to compensate for the accumulated error. If this situation continues, the position of the cursor K31 and the position pointed by the remote control device 601 on the operation area 431 are further away. In order to avoid excessive deterioration of the situation, under the condition that the user is still waving the remote control device 601, as long as the control unit 31 has no quasi-stationary state for a second specific time, an accurate estimation for the variable direction NAV is generated. To estimate the direction, the control unit 31 estimates the variable direction NAV once.

在這種的條件下,因為可變方向NAV一直被改變,控制單元31不能如在準靜止狀態一樣,偵測可變方向NAV很多次來產生多筆方向訊息,再對該多筆方向訊息的方向值做平均。控制單元31只能以一次機會估算可變方向NAV,然後就產生累計誤差。因為此時游標K31一直在移動,而且累計誤差要分散在好幾次做補償。當游標K31移動愈快、或使用者愈不在意游標K31的位置的準確性時,累計誤差的愈大部分在一次中被補償;當游標K31移動愈慢、或使用者愈在意游標K31的位置的準確性時,累計誤差的愈小部分在一次中被補償。所以使用者不會明顯地感覺游標K31的位置被修正。Under such conditions, since the variable direction NAV is always changed, the control unit 31 cannot detect the variable direction NAV many times to generate a plurality of directions information as in the quasi-stationary state, and then the multi-directional direction message The direction values are averaged. The control unit 31 can only estimate the variable direction NAV with one chance, and then generates a cumulative error. Because the cursor K31 is always moving at this time, and the accumulated error is dispersed several times to compensate. When the cursor K31 moves faster, or the user does not care about the accuracy of the position of the cursor K31, the more the cumulative error is compensated in one time; when the cursor K31 moves slower, or the user cares more about the position of the cursor K31 The accuracy of the cumulative error is compensated in one pass. Therefore, the user does not notice that the position of the cursor K31 is corrected.

例如,關於所述沒有暫時的準靜止動作的情況,在操作狀態B11中,處理單元39判定可變計時長度DT2是否滿足一超時條件AU1以設定一判定H12。當判定H12是肯定時,處理單元39離開操作狀態B11,且進入操作狀態B12。在操作狀態B12中,在特定方向NA43下,處理單元39根據信號S32而產生在估計方向結構DRG3下的估計方向DA45,且根據信號S33和估計方向DA21而產生估計方向DAA5,根據轉換關係RT1而將估計方向DA45轉換為估計位置DP45,根據轉換關係RT1而將估計方向DAA5轉換為估計位置DPA5,估算在估計位置DPA5和估計位置DP45之間的一位置誤差DE21,根據位置誤差DE21而設定可變位置誤差DE1,重置可變計時長度DT2,離開操作狀態B12,且重新進入操作狀態B11。例如,位置誤差DE21是一累計誤差。For example, in the case of the non-temporary quasi-stationary action, in the operation state B11, the processing unit 39 determines whether the variable timing length DT2 satisfies a timeout condition AU1 to set a decision H12. When it is determined that H12 is affirmative, the processing unit 39 leaves the operation state B11 and enters the operation state B12. In the operation state B12, in the specific direction NA43, the processing unit 39 generates the estimation direction DA45 under the estimated direction structure DRG3 according to the signal S32, and generates the estimation direction DAA5 according to the signal S33 and the estimation direction DA21, according to the conversion relationship RT1. The estimated direction DA45 is converted into the estimated position DP45, the estimated direction DAA5 is converted into the estimated position DPA5 according to the conversion relationship RT1, a position error DE21 between the estimated position DPA5 and the estimated position DP45 is estimated, and the variable is set according to the position error DE21. The position error DE1 resets the variable timing length DT2, leaves the operational state B12, and re-enters the operational state B11. For example, the position error DE21 is a cumulative error.

例如,對於特定方向NA43,處理單元39接收感測信號S321的一第一目前訊息和感測信號S322的一第二目前訊息,且根據該第一目前訊息和該第二目前訊息而產生估計方向DA45。For example, for a specific direction NA43, the processing unit 39 receives a first current message of the sensing signal S321 and a second current message of the sensing signal S322, and generates an estimated direction according to the first current message and the second current message. DA45.

在一實施例中,上述的補償累計誤差的過程有個例外情形。操作區域431具有一邊緣區域。例如,周邊區域431A包含該邊緣區域。遙控裝置601原本指向在操作區域431中的一第一特定位置,然後突然被揮動而變成指向在操作區域431外的一第二特定位置。在這情形下,控制單元31使游標K31先隨著可變方向NAV的改變往操作區域431的該邊緣區域移動;當游標K31碰到操作區域431的該邊緣區域時,控制單元31使游標K31貼在該邊緣區域中的一第三特定位置不動。在這情形下,控制單元31不會補償累計誤差,且控制單元31會藉由地磁儀35和水平儀36不停地偵測可變方向NAV來產生一可變估計方向。例如,在特定方向NA44下,控制單元31根據感測信號S321和S322而產生在估計方向結構DRG3下的一估計方向DA31、和在預設位置結構DRH3下的一估計位置DP31。In an embodiment, the above-described process of compensating for accumulated errors has an exception. The operation area 431 has an edge area. For example, the peripheral area 431A includes the edge area. The remote control device 601 originally points to a first specific position in the operation area 431, and then suddenly is swung to become a second specific position outside the operation area 431. In this case, the control unit 31 causes the cursor K31 to first move toward the edge region of the operation region 431 as the variable direction NAV changes; when the cursor K31 hits the edge region of the operation region 431, the control unit 31 causes the cursor K31 Sticking to a third specific position in the edge region does not move. In this case, the control unit 31 does not compensate for the accumulated error, and the control unit 31 generates a variable estimation direction by continuously detecting the variable direction NAV by the geometer 35 and the level 36. For example, in a specific direction NA44, the control unit 31 generates an estimated direction DA31 under the estimated direction structure DRG3 and an estimated position DP31 under the preset position structure DRH3 based on the sensing signals S321 and S322.

然後,在螢幕43上,可變方向NAV所指向的位置從操作區域431外移動到操作區域431內。當控制單元31一旦發現在估計方向範圍DRP1和該可變估計方向之間具有一交集時,控制單元31會以此時的該可變估計方向產生在預設位置結構DRH3下與該可變估計方向對應的一估計位置,並將該估計位置傳輸到電腦42;換句話說,在這時候,累計誤差為零。然後,控制單元31進一步藉由陀螺儀34而產生陀螺儀估計座標的一估計位置,以控制游標K31的一定位操作。然後,控制單元31在適當時間點產生一累計誤差並且分次補償該累計誤差。Then, on the screen 43, the position pointed by the variable direction NAV is moved from outside the operation area 431 to the operation area 431. When the control unit 31 finds that there is an intersection between the estimated direction range DRP1 and the variable estimation direction, the control unit 31 generates the variable estimation direction at the preset position structure DRH3 and the variable estimation. The estimated position corresponding to the direction is transmitted to the computer 42; in other words, at this time, the cumulative error is zero. Then, the control unit 31 further generates an estimated position of the gyroscope estimated coordinates by the gyroscope 34 to control a positioning operation of the cursor K31. Then, the control unit 31 generates an accumulated error at an appropriate time point and compensates the accumulated error in stages.

如上所述,遙控裝置601是一種有指向性的裝置(譬如一有指向性的空中滑鼠)。當使用者將遙控裝置601指向在操作區域431上的一特定位置且按壓按鍵單元33時,游標K31就會出現在該特定位置附近。如果游標K31在操作區域431上出現的位置不夠理想,使用者可以左右或上下地揮動遙控裝置601來改變可變方向NAV。如此,游標的位置K31也就隨著可變方向NAV的改變而改變。如果,在螢幕43上,可變方向NAV所指向的位置超出操作區域431的範圍,則游標K31貼在操作區域431的該邊緣區域中的一位置而不動。然後,直到使用者把在螢幕43上可變方向NAV所指向的位置再度移到操作區域431的範圍內,游標K31才會再度移動。As mentioned above, the remote control device 601 is a directional device (such as a directional airborne mouse). When the user points the remote control device 601 at a specific position on the operation area 431 and presses the button unit 33, the cursor K31 appears near the specific position. If the position where the cursor K31 appears on the operation area 431 is not ideal, the user can swing the remote control device 601 left and right or up and down to change the variable direction NAV. Thus, the position K31 of the cursor changes as the variable direction NAV changes. If, on the screen 43, the position pointed by the variable direction NAV exceeds the range of the operation area 431, the cursor K31 is attached to a position in the edge area of the operation area 431 without moving. Then, until the user moves the position pointed by the variable direction NAV on the screen 43 to the range of the operation area 431 again, the cursor K31 will move again.

如上所述,遙控裝置601被拿在空中來控制游標K31的移動,同時使游標K31的位置與可變方向NAV關聯。例如,當遙控裝置601指向在螢幕43上操作區域431中的一第一特定位置時,游標K31就出現在該第一特定位置附近;當遙控裝置601指向操作區域431之外時,游標K31就貼在操作區域431上的該邊緣區域中的一第二特定位置不動。As described above, the remote control device 601 is taken in the air to control the movement of the cursor K31 while associating the position of the cursor K31 with the variable direction NAV. For example, when the remote control device 601 points to a first specific position in the operation area 431 on the screen 43, the cursor K31 appears near the first specific position; when the remote control device 601 points outside the operation area 431, the cursor K31 A second specific position in the edge region affixed to the operation area 431 does not move.

如上所述,遙控裝置601包含地磁儀35、水平儀36和陀螺儀34,其中水平儀36可以包含一加速度計361、或由加速度計所組成。控制單元31通過地磁儀35和水平儀36而響應作用力F3來偵測可變方向NAV。控制單元31通過陀螺儀34而響應作用力F3來讓游標K31的操控圓滑順手。另外,控制單元31利用一誤差補償程序來協調地磁儀35、水平儀36和陀螺儀34之間的控制行為。As noted above, the remote control device 601 includes a geomagnetic instrument 35, a level 36, and a gyroscope 34, wherein the level 36 can include or consist of an accelerometer. The control unit 31 detects the variable direction NAV in response to the force F3 by the geomagnet 35 and the level 36. The control unit 31 responds to the force F3 by the gyroscope 34 to make the manipulation of the cursor K31 smooth and smooth. In addition, control unit 31 utilizes an error compensation procedure to coordinate control behavior between geomagnet 35, level 36, and gyroscope 34.

請參閱第六圖,其為本發明一實施例所提供的與一遙控裝置801相關的一操作系統80的示意圖。如圖所示,操作系統80包含遙控裝置801、耦合於遙控裝置801的一電腦42、和耦合於電腦42的一螢幕43。遙控裝置801用於控制螢幕43的一操作Q1。遙控裝置801包含一感測單元87和一感測單元88。感測單元87響應一作用力(Applied force) F3而產生相對於螢幕43的資料DR1。感測單元88根據資料DR1,響應作用力F3來控制操作Q1。例如,遙控裝置801包含一空中滑鼠805,且空中滑鼠805包含感測單元87和88。Please refer to a sixth figure, which is a schematic diagram of an operating system 80 associated with a remote control device 801 according to an embodiment of the invention. As shown, the operating system 80 includes a remote control device 801, a computer 42 coupled to the remote control device 801, and a screen 43 coupled to the computer 42. The remote control device 801 is used to control an operation Q1 of the screen 43. The remote control device 801 includes a sensing unit 87 and a sensing unit 88. The sensing unit 87 generates the data DR1 with respect to the screen 43 in response to an applied force F3. The sensing unit 88 controls the operation Q1 in response to the force F3 based on the data DR1. For example, remote control device 801 includes an aerial mouse 805, and aerial mouse 805 includes sensing units 87 and 88.

在一實施例中,螢幕43包含一操作區域431和界定操作區域431的一幾何參考432,幾何參考432和遙控裝置801之間具有一方向結構RG3,且操作Q1包含在操作區域431上的一定位操作。操作區域431參考遙控裝置801來形成與操作區域431對應的一參考方向範圍RP1,且包含一特定位置P21,其中方向結構RG3界定參考方向範圍RP1。例如,操作區域431是一影像區域。In an embodiment, the screen 43 includes an operation area 431 and a geometric reference 432 defining the operation area 431. The geometric reference 432 and the remote control unit 801 have a directional structure RG3, and the operation Q1 is included in the operation area 431. Positioning operation. The operation area 431 refers to the remote control device 801 to form a reference direction range RP1 corresponding to the operation area 431, and includes a specific position P21, wherein the direction structure RG3 defines the reference direction range RP1. For example, the operation area 431 is an image area.

在一實施例中,資料DR1包含用於估算方向結構RG3的一估計方向結構DRG3、和與估計方向結構DRG3對應的一預設位置結構DRH3。根據估計方向結構DRG3,資料DR1更包含一估計方向DA21、一估計方向DA41、和用於估算參考方向範圍RP1的一估計方向範圍DRP1。根據預設位置結構DRH3,資料DR1更包含用於界定操作區域431的一預設區域D431。根據估計方向結構DRG3和預設位置結構DRH3,資料DR1更包含在估計方向結構DRG3和預設位置結構DRH3之間的一轉換關係RT1、和分別與估計方向DA21與DA41對應的一估計位置DP21與一估計位置DP41。例如,估計位置DP21界定特定位置P21,且預設位置結構DRH3界定幾何參考432。In an embodiment, the data DR1 includes an estimated direction structure DRG3 for estimating the direction structure RG3 and a preset position structure DRH3 corresponding to the estimated direction structure DRG3. According to the estimated direction structure DRG3, the data DR1 further includes an estimated direction DA21, an estimated direction DA41, and an estimated direction range DRP1 for estimating the reference direction range RP1. According to the preset position structure DRH3, the data DR1 further includes a preset area D431 for defining the operation area 431. According to the estimated direction structure DRG3 and the preset position structure DRH3, the data DR1 further includes a conversion relationship RT1 between the estimated direction structure DRG3 and the preset position structure DRH3, and an estimated position DP21 corresponding to the estimated directions DA21 and DA41, respectively. An estimated position DP41. For example, the estimated position DP21 defines a particular position P21 and the preset position structure DRH3 defines a geometric reference 432.

在一實施例中,估計方向結構DRG3界定估計方向範圍DRP1,且包含一估計方向DA11和一估計方向DA12。幾何參考432包含一特定位置P11和與特定位置P11成斜對角的一特定位置P12。方向結構RG3包含與特定位置P11對應的一特定方向NA31、和與特定位置P12對應的一特定方向NA32。遙控裝置301承受作用力F3,作用力F3包含一接觸力F31,且遙控裝置301響應作用力F3而具有一特定運動MT3,其中接觸力F31依序包含一成分力F311、一成分力F312和一成分力F313。例如,接觸力F31更包含用於握持遙控裝置301的一握持力。In an embodiment, the estimated direction structure DRG3 defines an estimated direction range DRP1 and includes an estimated direction DA11 and an estimated direction DA12. The geometric reference 432 includes a specific position P11 and a specific position P12 that is diagonally opposite the specific position P11. The directional structure RG3 includes a specific direction NA31 corresponding to the specific position P11 and a specific direction NA32 corresponding to the specific position P12. The remote control device 301 is subjected to a force F3. The force F3 includes a contact force F31, and the remote control device 301 has a specific motion MT3 in response to the force F3. The contact force F31 sequentially includes a component force F311, a component force F312, and a Component strength F313. For example, the contact force F31 further includes a holding force for holding the remote control device 301.

在一實施例中,該遙控裝置801具有一參考定向NF3,參考定向NF3具有一參考軸NU3、一可變速度VF和一可變角速度ωE ,且參考軸NU3具有一可變方向NAV。可變方向NAV參考一座標系統RX3來形成一方向參數CQ1,以表示可變方向NAV,其中方向參數CQ1包含一偏轉角θE 和一俯仰角αE 。可變方向NAV依序被配置成為特定方向NA31、特定方向NA32、一特定方向NA33和一特定方向NA42,其中估計方向DA41被產生來估算特定方向NA42。例如,座標系統RX3是固定的。In one embodiment, the remote control device 801 has a reference orientation NF3 having a reference axis NU3, a variable speed VF, and a variable angular velocity ω E , and the reference axis NU3 has a variable direction NAV. The variable direction NAV refers to the landmark system RX3 to form a direction parameter CQ1 to represent the variable direction NAV, wherein the direction parameter CQ1 includes a deflection angle θ E and a pitch angle α E . The variable direction NAV is sequentially configured to a specific direction NA31, a specific direction NA32, a specific direction NA33, and a specific direction NA42, wherein the estimation direction DA41 is generated to estimate the specific direction NA42. For example, the coordinate system RX3 is fixed.

在一實施例中,感測單元87響應作用力F3而產生一信號S4,且包含一感測組件97和一處理單元873。信號S4包含一信號S31和一信號S32。處理單元873通過感測組件97而響應作用力F3來校正方向結構RG3以產生資料DR1。感測組件97包含一介面單元371和一感測模組372。介面單元371耦合於處理單元873,且響應作用力F3而產生與接觸力F31相關的一信號S31。感測模組372耦合於處理單元873,且響應作用力F3而產生與特定運動MT3相關的一信號S32。處理單元873響應信號S31和信號S32而產生資料DR1。例如,處理單元873根據信號S4而校正方向結構RG3以產生估計方向結構DRG3,且根據估計方向結構DRG3而產生資料DR1。In an embodiment, the sensing unit 87 generates a signal S4 in response to the force F3, and includes a sensing component 97 and a processing unit 873. Signal S4 includes a signal S31 and a signal S32. The processing unit 873 corrects the directional structure RG3 in response to the force F3 by the sensing component 97 to generate the data DR1. The sensing component 97 includes an interface unit 371 and a sensing module 372. The interface unit 371 is coupled to the processing unit 873 and generates a signal S31 associated with the contact force F31 in response to the force F3. The sensing module 372 is coupled to the processing unit 873 and generates a signal S32 associated with the particular motion MT3 in response to the force F3. Processing unit 873 generates data DR1 in response to signal S31 and signal S32. For example, the processing unit 873 corrects the directional structure RG3 according to the signal S4 to generate the estimated directional structure DRG3, and generates the data DR1 according to the estimated directional structure DRG3.

在一實施例中,介面單元371包含一按鍵單元3711和一按鍵單元33。按鍵單元3711耦合於處理單元873,響應成分力F311而使處理單元873確定與特定位置P11對應的特定方向NA31以產生用於估算特定方向NA31的估計方向DA11,且響應成分力F312而使處理單元873確定與特定位置P12對應的特定方向NA32以產生用於估算特定方向NA32的估計方向DA12。按鍵單元33耦合於處理單元873,且響應成分力F313而使處理單元873確定特定方向NA33,以產生用於估算特定方向NA33的估計方向DA21。In an embodiment, the interface unit 371 includes a button unit 3711 and a button unit 33. The button unit 3711 is coupled to the processing unit 873, and in response to the component force F311, causes the processing unit 873 to determine a specific direction NA31 corresponding to the specific position P11 to generate an estimated direction DA11 for estimating the specific direction NA31, and to cause the processing unit in response to the component force F312 873 determines a specific direction NA32 corresponding to the specific position P12 to generate an estimated direction DA12 for estimating the specific direction NA32. The button unit 33 is coupled to the processing unit 873 and causes the processing unit 873 to determine the specific direction NA33 in response to the component force F313 to generate an estimated direction DA21 for estimating the specific direction NA33.

在一實施例中,感測模組372包含一水平儀36和一地磁儀35。水平儀36耦合於處理單元873,且響應作用力F3而使處理單元873估算俯仰角αE 。地磁儀35耦合於處理單元873,且響應作用力F3而使處理單元873估算偏轉角θE 。感測單元88包含一感測組件98和一處理單元883。感測組件98包含一陀螺儀34,且響應作用力F3而產生與特定運動MT3相關的一信號S33。處理單元883響應資料DR1和信號S33而產生用於控制操作Q1的資料DS1、和與資料DS1相關的誤差資料DF,且根據信號S33和誤差資料DF將資料DS1調整為經調整資料DS3。陀螺儀34耦合於處理單元883,且響應作用力F3而使處理單元883估算可變角速度ωEIn one embodiment, the sensing module 372 includes a level 36 and a geophone 35. The level 36 is coupled to the processing unit 873 and causes the processing unit 873 to estimate the pitch angle α E in response to the force F3. The geomagnetic instrument 35 is coupled to the processing unit 873 and causes the processing unit 873 to estimate the deflection angle θ E in response to the force F3. The sensing unit 88 includes a sensing component 98 and a processing unit 883. The sensing component 98 includes a gyroscope 34 and generates a signal S33 associated with the particular motion MT3 in response to the force F3. The processing unit 883 generates the data DS1 for controlling the operation Q1 and the error data DF associated with the data DS1 in response to the data DR1 and the signal S33, and adjusts the data DS1 to the adjusted data DS3 based on the signal S33 and the error data DF. The gyroscope 34 is coupled to the processing unit 883 and causes the processing unit 883 to estimate the variable angular velocity ω E in response to the force F3.

在一實施例中,處理單元883包含一控制單元81和耦合於控制單元31的一通信模組32,其中通信模組32耦合於電腦42。例如,控制單元31是一微處理器。控制單元31耦合於感測組件98、處理單元873和通信模組32。控制單元81響應資料DR1和信號S33而產生用於控制操作Q1的資料DS1、和與資料DS1相關的誤差資料DF,且根據信號S33和誤差資料DF將資料DS1調整為經調整資料DS3。例如,經調整資料DS3包含一特定估計位置,且控制單元81通過通信模組32而將該特定估計位置傳輸到電腦42,以控制操作Q1,其中該特定估計位置是經調整位置DPB1和經調整位置DPC1的其中之一。In one embodiment, the processing unit 883 includes a control unit 81 and a communication module 32 coupled to the control unit 31, wherein the communication module 32 is coupled to the computer 42. For example, control unit 31 is a microprocessor. Control unit 31 is coupled to sensing component 98, processing unit 873, and communication module 32. The control unit 81 generates the data DS1 for controlling the operation Q1 and the error data DF associated with the data DS1 in response to the data DR1 and the signal S33, and adjusts the data DS1 to the adjusted data DS3 based on the signal S33 and the error data DF. For example, the adjusted data DS3 includes a particular estimated location, and the control unit 81 transmits the particular estimated location to the computer 42 via the communication module 32 to control operation Q1, wherein the particular estimated location is the adjusted location DPB1 and adjusted One of the locations DPC1.

以上所述者僅為本案之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本案精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。The above descriptions are only preferred embodiments of the present invention. Any equivalent modifications or variations made by those skilled in the art of the present invention should be included in the scope of the following patent application.

10、20、30、60、80...操作系統10, 20, 30, 60, 80. . . operating system

101、201、305、605、805...空中滑鼠101, 201, 305, 605, 805. . . Air mouse

102、42...電腦102, 42. . . computer

103、43...螢幕103, 43. . . Screen

11、21...微處理器11, 21. . . microprocessor

12、22、32...通信模組12, 22, 32. . . Communication module

13、23...主動鍵13,23. . . Active button

14、34...陀螺儀14, 34. . . Gyro

25、35...地磁儀25, 35. . . Geomagnetic instrument

26、36...水平儀26, 36. . . Level

261、361...加速度計261, 361. . . Accelerometer

301、601、801...遙控裝置301, 601, 801. . . Remote control device

31、81...控制單元31, 81. . . control unit

37、38、87、88...感測單元37, 38, 87, 88. . . Sensing unit

371...介面單元371. . . Interface unit

3711、33...按鍵單元3711, 33. . . Button unit

372...感測模組372. . . Sensing module

39、873、883...處理單元39, 873, 883. . . Processing unit

431...操作區域431. . . Operating area

431A、D43K...周邊區域431A, D43K. . . Surrounding area

431P...可變位置431P. . . Variable position

432...幾何參考432. . . Geometric reference

97、98...感測組件97, 98. . . Sensing component

AU1、AU2...超時條件AU1, AU2. . . Timeout condition

AV1...準靜止條件AV1. . . Quasi-stationary condition

B11、B12、B13、B14、B15、B16、B17、B18...操作狀態B11, B12, B13, B14, B15, B16, B17, B18. . . Operating state

CQ1...方向參數CQ1. . . Direction parameter

D431...預設區域D431. . . Preset area

DA11、DA12、DA15、DA16、DA21、DA31、DA41、DA45、DAA1、DAA2、DAA5...估計方向DA11, DA12, DA15, DA16, DA21, DA31, DA41, DA45, DAA1, DAA2, DAA5. . . Estimated direction

DAB1...經調整方向DAB1. . . Adjusted direction

DPB1、DPC1、DPF1...經調整位置DPB1, DPC1, DPF1. . . Adjusted position

DE1...可變位置誤差DE1. . . Variable position error

DE11、DE21...位置誤差DE11, DE21. . . Position error

DF、DF1、DF2...誤差資料DF, DF1, DF2. . . Error data

DP11、DP12、DP21、DP31、DP41、DP45、DP71、DPA1、DPA2、DPA5...估計位置DP11, DP12, DP21, DP31, DP41, DP45, DP71, DPA1, DPA2, DPA5. . . Estimated position

DR1、DR11、DR12、DR21、DR22、DR23、DR25、DS1、DS21、DS23、DS25...資料DR1, DR11, DR12, DR21, DR22, DR23, DR25, DS1, DS21, DS23, DS25. . . data

DRG3...估計方向結構DRG3. . . Estimated directional structure

DRH3...預設位置結構DRH3. . . Preset position structure

DRP1...估計方向範圍DRP1. . . Estimated direction range

DS3、DS31...經調整資料DS3, DS31. . . Adjusted data

DT1、DT2...可變計時長度DT1, DT2. . . Variable timing length

DTH、DTQ...門檻計時長度DTH, DTQ. . . Threshold length

DU1、DU2...速度資料DU1, DU2. . . Speed data

DV1、DV2...可變估計速度DV1, DV2. . . Variable estimation speed

DU21...水平向資料分量DU21. . . Horizontal data component

DU22...垂直向資料分量DU22. . . Vertical data component

DVA、DVB...估計速度範圍DVA, DVB. . . Estimated speed range

DW1...可變估計角速度DW1. . . Variable estimated angular velocity

DWH...門檻角速度DWH. . . Threshold angle

E11、E12、E13、E14、E15...交集E11, E12, E13, E14, E15. . . Intersection

F2、F3...作用力F2, F3. . . Force

F22、F32...地磁力F22, F32. . . Earth magnet

F31...接觸力F31. . . Contact force

F311、F312、F313...成分力F311, F312, F313. . . Ingredient force

G11、G12、G13...成分信號G11, G12, G13. . . Composition signal

H11、H12、H13、H14、H15、H16、H17、H18...判定H11, H12, H13, H14, H15, H16, H17, H18. . . determination

K11、K31...游標K11, K31. . . cursor

L3...參考原點L3. . . Reference origin

MT2、MT3...特定運動MT2, MT3. . . Specific sport

NA2、NAV...可變方向NA2, NAV. . . Variable direction

NA31、NA32、NA33、NA35、NA36、NA41、NA42、NA43、NA44...特定方向NA31, NA32, NA33, NA35, NA36, NA41, NA42, NA43, NA44. . . Specific direction

NF2、NF3...參考定向NF2, NF3. . . Reference orientation

NU2、NU3...參考軸NU2, NU3. . . Reference axis

P11、P12、P15、P16、P21、P22、P1A1、P1A2、PA1...特定位置P11, P12, P15, P16, P21, P22, P1A1, P1A2, PA1. . . Specific location

Q1...操作Q1. . . operating

RG3...方向結構RG3. . . Directional structure

RP1...參考方向範圍RP1. . . Reference direction range

RT1...轉換關係RT1. . . Conversion relationship

RX2、RX3...座標系統RX2, RX3. . . Coordinate system

S11、S21、S22、S31、S32、S33、S4...信號S11, S21, S22, S31, S32, S33, S4. . . signal

S311、S312、S321、S322、S331...感測信號S311, S312, S321, S322, S331. . . Sense signal

T1...特定期間T1. . . Specific period

TA...作用期間TA. . . Period of action

TA1...特定時間點TA1. . . Specific time

VF...可變速度VF. . . Variable speed

θA 、θE ...偏轉角θ A , θ E . . . Deflection angle

θB1 、θF1 ...估計偏轉角θ B1 , θ F1 . . . Estimated deflection angle

αA 、αE ...俯仰角α A , α E . . . Pitch angle

αB1 、αF1 ...估計俯仰角α B1 , α F1 . . . Estimated pitch angle

ΔθB1 ...估計偏轉角變化Δθ B1 . . . Estimated deflection angle change

ΔαB1 ...估計俯仰角變化Δα B1 . . . Estimated pitch angle change

ωE ...可變角速度ω E . . . Variable angular velocity

ωX (t)...偏轉分量ω X (t). . . Deflection component

ωY (t)...俯仰分量ω Y (t). . . Pitch component

本案得藉由下列圖式之詳細說明,俾得更深入之瞭解:This case can be further explained by the detailed description of the following drawings:

第一圖:在先前技術中與一空中滑鼠相關的一操作系統的示意圖;First: a schematic diagram of an operating system associated with an aerial mouse in the prior art;

第二圖:在先前技術中與一空中滑鼠相關的一操作系統的示意圖;Second diagram: a schematic diagram of an operating system associated with an aerial mouse in the prior art;

第三圖:本發明一實施例所提供的與一遙控裝置相關的一操作系統的示意圖;FIG. 3 is a schematic diagram of an operating system related to a remote control device according to an embodiment of the present invention; FIG.

第四圖:本發明一實施例所提供的操作系統的一操作程序的示意圖;FIG. 4 is a schematic diagram of an operating procedure of an operating system according to an embodiment of the present invention;

第五圖:本發明一實施例所提供的與一遙控裝置相關的一操作系統的示意圖;以及FIG. 5 is a schematic diagram of an operating system related to a remote control device according to an embodiment of the present invention; and

第六圖:本發明一實施例所提供的與一遙控裝置相關的一操作系統的示意圖。Figure 6 is a schematic diagram of an operating system associated with a remote control device according to an embodiment of the present invention.

30...操作系統30. . . operating system

301...遙控裝置301. . . Remote control device

305...空中滑鼠305. . . Air mouse

31...控制單元31. . . control unit

32...通信模組32. . . Communication module

34...陀螺儀34. . . Gyro

35...地磁儀35. . . Geomagnetic instrument

36...水平儀36. . . Level

361...加速度計361. . . Accelerometer

37、38...感測單元37, 38. . . Sensing unit

371...介面單元371. . . Interface unit

3711、33...按鍵單元3711, 33. . . Button unit

372...感測模組372. . . Sensing module

39...處理單元39. . . Processing unit

42...電腦42. . . computer

43...螢幕43. . . Screen

431...操作區域431. . . Operating area

431A...周邊區域431A. . . Surrounding area

431P...可變位置431P. . . Variable position

432...幾何參考432. . . Geometric reference

AU1、AU2...超時條件AU1, AU2. . . Timeout condition

AV1...準靜止條件AV1. . . Quasi-stationary condition

B11、B12、B13、B14、B15、B16、B17、B18...操作狀態B11, B12, B13, B14, B15, B16, B17, B18. . . Operating state

CQ1...方向參數CQ1. . . Direction parameter

D431...預設區域D431. . . Preset area

DA11、DA12、DA21、DA31、DA41、DA45、DAA1、DAA2、DAA5...估計方向DA11, DA12, DA21, DA31, DA41, DA45, DAA1, DAA2, DAA5. . . Estimated direction

DAB1...經調整方向DAB1. . . Adjusted direction

DPB1、DPC1、DPF1...經調整位置DPB1, DPC1, DPF1. . . Adjusted position

DE1...可變位置誤差DE1. . . Variable position error

DE11、DE21...位置誤差DE11, DE21. . . Position error

DF、DF1、DF2...誤差資料DF, DF1, DF2. . . Error data

DP11、DP12、DP21、DP31、DP41、DP45、DP71、DPA1、DPA2、DPA5...估計位置DP11, DP12, DP21, DP31, DP41, DP45, DP71, DPA1, DPA2, DPA5. . . Estimated position

DR1、DR11、DR12、DR21、DR22、DR23、DR25、DS1、DS21、DS23、DS25...資料DR1, DR11, DR12, DR21, DR22, DR23, DR25, DS1, DS21, DS23, DS25. . . data

DRG3...估計方向結構DRG3. . . Estimated directional structure

DRH3...預設位置結構DRH3. . . Preset position structure

DRP1...估計方向範圍DRP1. . . Estimated direction range

DS3、DS31...經調整資料DS3, DS31. . . Adjusted data

DT1、DT2...可變計時長度DT1, DT2. . . Variable timing length

DTH、DTQ...門檻計時長度DTH, DTQ. . . Threshold length

DV1、DV2...可變估計速度DV1, DV2. . . Variable estimation speed

DVA、DVB...估計速度範圍DVA, DVB. . . Estimated speed range

DW1...可變估計角速度DW1. . . Variable estimated angular velocity

E11、E12、E13、E14、E15...交集E11, E12, E13, E14, E15. . . Intersection

F3...作用力F3. . . Force

F32...地磁力F32. . . Earth magnet

F31...接觸力F31. . . Contact force

F311、F312、F313...成分力F311, F312, F313. . . Ingredient force

G11、G12、G13...成分信號G11, G12, G13. . . Composition signal

H11、H12、H13、H14、H15、H16、H17、H18...判定H11, H12, H13, H14, H15, H16, H17, H18. . . determination

K31...游標K31. . . cursor

MT3...特定運動MT3. . . Specific sport

NAV...可變方向NAV. . . Variable direction

NA31、NA32、NA33、NA41、NA42、NA43、NA44...特定方向NA31, NA32, NA33, NA41, NA42, NA43, NA44. . . Specific direction

NF3...參考定向NF3. . . Reference orientation

NU3...參考軸NU3. . . Reference axis

P11、P12、P21、P22、P1A1、P1A2、PA1...特定位置P11, P12, P21, P22, P1A1, P1A2, PA1. . . Specific location

Q1...操作Q1. . . operating

RG3...方向結構RG3. . . Directional structure

RP1...參考方向範圍RP1. . . Reference direction range

RT1...轉換關係RT1. . . Conversion relationship

RX3...座標系統RX3. . . Coordinate system

S31、S32、S33、S4...信號S31, S32, S33, S4. . . signal

S311、S312、S321、S322、S331...感測信號S311, S312, S321, S322, S331. . . Sense signal

T1...特定期間T1. . . Specific period

TA...作用期間TA. . . Period of action

TA1...特定時間點TA1. . . Specific time

VF...可變速度VF. . . Variable speed

θE ...偏轉角θ E . . . Deflection angle

θF1 ...估計偏轉角θ F1 . . . Estimated deflection angle

αE ...俯仰角α E . . . Pitch angle

αF1 ...估計俯仰角α F1 . . . Estimated pitch angle

ωE ...可變角速度ω E . . . Variable angular velocity

Claims (12)

一種遙控裝置,用於控制一螢幕的一第一操作,該螢幕具有一第一幾何參考,且該第一幾何參考和該遙控裝置之間具有一第一方向結構,該遙控裝置包含:一第一感測單元,包含一地磁儀;一第二感測單元,包含一陀螺儀;以及一處理單元,通過該第一感測單元的該地磁儀而響應一作用力來校正該第一方向結構以產生第一資料,且根據該第一資料,通過該第二感測單元的該陀螺儀而響應該作用力來產生用於控制該第一操作的第二資料,其中:該第一資料包含一估計方向結構、一預設位置結構、一估計方向範圍及一預設區域;以及該估計方向結構及該預設位置結構具有在其間的一轉換關係。 A remote control device for controlling a first operation of a screen, the screen having a first geometric reference, and a first direction structure between the first geometric reference and the remote control device, the remote control device comprising: a first a sensing unit comprising a geophone; a second sensing unit comprising a gyroscope; and a processing unit for correcting the first direction structure in response to a force by the geomagnet of the first sensing unit Generating a first data, and according to the first data, responding to the force by the gyroscope of the second sensing unit to generate second data for controlling the first operation, wherein: the first data includes An estimated direction structure, a preset position structure, an estimated direction range, and a preset area; and the estimated direction structure and the preset position structure have a conversion relationship therebetween. 如申請專利範圍第1項所述的遙控裝置,其中:該螢幕包含一操作區域和界定該操作區域的該第一幾何參考,且該第一操作包含在該操作區域上的一定位操作;該操作區域參考該遙控裝置來形成與該操作區域對應的一參考方向範圍,且包含一第一特定位置,其中該第一方向結構界定該參考方向範圍;該估計方向結構用於估算該第一方向結構,且該預設位置結構與該估計方向結構對應;根據該估計方向結構,該第一資料更包含一第一估計方向DA21、一第二估計方向DA41、和一第三估計方向DA45,其中用於估算該參考方向範圍的該估計方向範圍是 根據該估計方向結構而被包含在該第一資料中;用於界定該操作區域的該預設區域是根據該預設位置結構而被包含在該第一資料中;根據該估計方向結構和該預設位置結構,該第一資料更包含在該估計方向結構和該預設位置結構之間的該轉換關係、和分別與該第一、該第二與該第三估計方向對應的一第一估計位置DP21、一第二估計位置DP41與一第三估計位置DP45,其中該第一估計位置界定該第一特定位置;該估計方向結構界定該估計方向範圍,且包含一第四估計方向DA11和一第五估計方向DA12;該第一幾何參考包含一第二特定位置和與該第二特定位置成斜對角的一第三特定位置;該第一方向結構包含與該第二特定位置對應的一第一特定方向、和與該第三特定位置對應的一第二特定方向;該第二資料包含在該估計方向結構下的一第六估計方向DAA1、一第七估計方向DAA2與一第八估計方向DAA5、和在該預設位置結構下分別與該第六、該第七與該第八估計方向對應的一第四估計位置DPA1、一第五估計位置DPA2與一第六估計位置DPA5;該處理單元具有一可變位置誤差,且當該第二估計位置DP41和該第五估計位置DPA2被產生時,根據在該第二估計位置和該第五估計位置之間的一第一位置誤差設定該可變位置誤差;該處理單元根據該可變位置誤差將該第四估計位置DPA1調整為一第一經調整位置DPB1; 該作用力包含一接觸力,且使該遙控裝置具有一特定運動,其中該接觸力依序包含一第一成分力、一第二成分力和一第三成分力;該第一感測單元響應該作用力而產生一第一信號,該第一信號包含一第二信號和一第三信號,且該第一感測單元包含:一介面單元,耦合於該處理單元,且響應該作用力而產生與該接觸力相關的該第二信號,該第二信號包含一第一感測信號和一第二感測信號;以及一感測模組,耦合於該處理單元,且響應該作用力而產生與該特定運動相關的該第三信號,該第三信號包含一第三感測信號和一第四感測信號;該介面單元包含:一第一按鍵單元,耦合於該處理單元,且響應該作用力而產生該第一感測信號,其中該第一按鍵單元依序響應該第一成分力和該第二成分力來使該第一感測信號具有分別與該第一成分力和該第二成分力對應的一第一成分信號和一第二成分信號;以及一第二按鍵單元,耦合於該處理單元,且響應該作用力而產生該第二感測信號,其中該第二按鍵單元響應該第三成分力來使該第二感測信號具有與該第三成分力對應的一第三成分信號,該第三成分信號具有一作用期間,且該作用期間具有一特定時間點和跟隨該特定時間點的一特定期間;該感測模組包含: 一水平儀,耦合於該處理單元,且響應該作用力而產生該第三感測信號;以及該地磁儀,耦合於該處理單元,且響應該作用力而產生該第四感測信號;該第二感測單元響應該作用力而產生與該特定運動相關的一第四信號,其中該第四信號包含一第五感測信號,且該陀螺儀耦合於該處理單元,並且響應該作用力而產生該第五感測信號;以及該處理單元響應該第一信號而產生該第一資料,且響應該第一資料和該第四信號而產生該第二資料。 The remote control device of claim 1, wherein: the screen comprises an operation area and the first geometric reference defining the operation area, and the first operation comprises a positioning operation on the operation area; The operation area refers to the remote control device to form a reference direction range corresponding to the operation area, and includes a first specific position, wherein the first direction structure defines the reference direction range; the estimated direction structure is used to estimate the first direction a structure, and the preset position structure corresponds to the estimated direction structure; according to the estimated direction structure, the first data further includes a first estimation direction DA21, a second estimation direction DA41, and a third estimation direction DA45, wherein The estimated direction range for estimating the reference direction range is And being included in the first data according to the estimated direction structure; the preset area for defining the operation area is included in the first data according to the preset position structure; according to the estimated direction structure and the a preset position structure, the first data further includes the conversion relationship between the estimated direction structure and the preset position structure, and a first corresponding to the first, the second, and the third estimated direction respectively Estimating a position DP21, a second estimated position DP41 and a third estimated position DP45, wherein the first estimated position defines the first specific position; the estimated direction structure defines the estimated direction range, and includes a fourth estimated direction DA11 and a fifth estimation direction DA12; the first geometric reference includes a second specific position and a third specific position diagonally opposite the second specific position; the first direction structure includes a second specific position a first specific direction and a second specific direction corresponding to the third specific position; the second data includes a sixth estimation direction DAA1, a seventh estimate under the estimated direction structure a direction DAA2 and an eighth estimation direction DAA5, and a fourth estimated position DPA1 and a fifth estimated position DPA2 corresponding to the sixth, the seventh and the eighth estimated direction respectively under the preset position structure a sixth estimated position DPA5; the processing unit has a variable position error, and when the second estimated position DP41 and the fifth estimated position DPA2 are generated, according to between the second estimated position and the fifth estimated position a first position error setting the variable position error; the processing unit adjusts the fourth estimated position DPA1 to a first adjusted position DPB1 according to the variable position error; The force includes a contact force, and the remote control device has a specific motion, wherein the contact force sequentially includes a first component force, a second component force, and a third component force; the first sensing unit rings A first signal is generated by the force, the first signal includes a second signal and a third signal, and the first sensing unit comprises: an interface unit coupled to the processing unit and responsive to the force Generating the second signal related to the contact force, the second signal includes a first sensing signal and a second sensing signal; and a sensing module coupled to the processing unit and responsive to the force Generating the third signal related to the specific motion, the third signal includes a third sensing signal and a fourth sensing signal; the interface unit includes: a first button unit coupled to the processing unit, and The first sensing signal should be generated by the force, wherein the first button unit sequentially responds to the first component force and the second component force to cause the first sensing signal to have a first component force and the first Second component force pair a first component signal and a second component signal; and a second button unit coupled to the processing unit, and generating the second sensing signal in response to the force, wherein the second button unit is responsive to the third The component is configured to have the second sensing signal having a third component signal corresponding to the third component force, the third component signal having an active period, and the active period having a specific time point and following the specific time point a specific period; the sensing module comprises: a level, coupled to the processing unit, and generating the third sensing signal in response to the force; and the geophone coupled to the processing unit and generating the fourth sensing signal in response to the force; The second sensing unit generates a fourth signal related to the specific motion in response to the force, wherein the fourth signal includes a fifth sensing signal, and the gyroscope is coupled to the processing unit, and in response to the force Generating the fifth sensing signal; and the processing unit generates the first data in response to the first signal, and generates the second data in response to the first data and the fourth signal. 如申請專利範圍第2項所述的遙控裝置,其中:該遙控裝置具有一參考定向,該參考定向具有一參考軸、一可變速度和一可變角速度,且該參考軸具有一可變方向;該可變方向依序被配置成為該第一特定方向、該第二特定方向和一第三特定方向;該處理單元響應該第一成分信號而確定該第一特定方向,且根據該二信號而產生用於估算該第一特定方向的該第四估計方向;該處理單元響應該第二成分信號而確定該第二特定方向,且根據該二信號而產生用於估算該第二特定方向的該第五估計方向;該處理單元根據該第四估計方向和該第五估計方向而產生該估計方向結構和該估計方向範圍,且根據該估計方向結構和該預設位置結構而產生該轉換關係,其中該預設 位置結構界定該預設區域;該處理單元更具有一第一可變計時長度和一第二可變計時長度;該處理單元預設一第一估計速度範圍、一第二估計速度範圍、一第一門檻計時長度、一第二門檻計時長度和一門檻角速度DWH;該處理單元在該特定期間中依序具有一第一操作狀態、一第二操作狀態、一第三操作狀態、一第四操作狀態、一第五操作狀態、一第六操作狀態、一第七操作狀態和一第八操作狀態;在該作用期間中,該處理單元根據該第四信號而產生用於估算該可變角速度的一可變估計角速度,根據該第三感測信號而產生用於估算該可變速度的一第一可變估計速度,且根據該第四信號而產生用於估算該可變速度的一第二可變估計速度,其中該第一資料更包含該第一可變估計速度;該處理單元響應該第三成分信號而確定該第三特定方向,且根據該第三信號而產生該第一估計方向;當該第一估計方向被產生時,該處理單元判定在該估計方向範圍和該第一估計方向之間是否具有一第一交集以設定一第一判定;當該第一判定是否定時,該處理單元繼續響應該第一信號;以及當該第一判定是肯定時,該處理單元根據該轉換關係而將該第一估計方向轉換為該第一估計位置,在該特定時 間點傳輸用於該第一操作的該第一估計位置,使該可變位置誤差DE1歸零,重置該第一可變計時長度DT1和該第二可變計時長度DT2,且進入該第一操作狀態。 The remote control device of claim 2, wherein: the remote control device has a reference orientation having a reference axis, a variable speed, and a variable angular velocity, and the reference axis has a variable direction The variable direction is sequentially configured to be the first specific direction, the second specific direction, and a third specific direction; the processing unit determines the first specific direction in response to the first component signal, and according to the two signals Generating a fourth estimation direction for estimating the first specific direction; the processing unit determines the second specific direction in response to the second component signal, and generating, according to the two signals, an estimate for the second specific direction The fifth estimation direction; the processing unit generates the estimated direction structure and the estimated direction range according to the fourth estimation direction and the fifth estimation direction, and generates the conversion relationship according to the estimated direction structure and the preset position structure , where the preset The location structure defines the preset area; the processing unit further has a first variable timing length and a second variable timing length; the processing unit presets a first estimated speed range, a second estimated speed range, and a first a threshold length, a second threshold length, and a corner speed DWH; the processing unit sequentially has a first operating state, a second operating state, a third operating state, and a fourth operation during the specific period a state, a fifth operating state, a sixth operating state, a seventh operating state, and an eighth operating state; during the active period, the processing unit generates a variable angular velocity for estimating the variable angular velocity based on the fourth signal a variable estimated angular velocity, a first variable estimated speed for estimating the variable speed is generated according to the third sensing signal, and a second for estimating the variable speed is generated according to the fourth signal a variable estimated speed, wherein the first data further includes the first variable estimated speed; the processing unit determines the third specific direction in response to the third component signal, and according to the third letter And generating the first estimation direction; when the first estimation direction is generated, the processing unit determines whether there is a first intersection between the estimated direction range and the first estimation direction to set a first determination; Whether the first determination is timing, the processing unit continues to respond to the first signal; and when the first determination is affirmative, the processing unit converts the first estimated direction to the first estimated position according to the conversion relationship, where Specific time Transmitting the first estimated position for the first operation, zeroing the variable position error DE1, resetting the first variable timing length DT1 and the second variable timing length DT2, and entering the first An operational state. 如申請專利範圍第3項所述的遙控裝置,其中:該可變方向更依序被配置成為一第四特定方向、一第五特定方向、一第六特定方向和一第七特定方向,且該預設區域具有一周邊區域;在該第一操作狀態中,該處理單元判定該第二可變計時長度是否滿足一第一超時條件以設定一第二判定,其中當該第二可變計時長度長於該第二門檻計時長度時,則該第二可變計時長度滿足該第一超時條件;當該第二判定是肯定時,該處理單元離開該第一操作狀態,且進入該第二操作狀態;當該第二判定是否定時,該處理單元離開該第一操作狀態,且進入該第三操作狀態;在該第三操作狀態中,該處理單元判定該第一可變計時長度是否滿足一第二超時條件以設定一第三判定,其中當該第一可變計時長度長於該第一門檻計時長度時,則該第一可變計時長度滿足該第二超時條件;當該第三判定是肯定時,該處理單元離開該第三操作狀態,且進入該第四操作狀態;當該第三判定是否定時,該處理單元離開該第三操作狀態,且進入該第五操作狀態;在該第五操作狀態中,在該第四特定方向下,該處理單元根據該第四信號和該第一估計方向而產生該第六估計 方向,根據該第三感測信號而設定該第一可變估計速度,根據該第五感測信號而設定該可變估計角速度和該第二可變估計速度,且判定該參考定向是否滿足一準靜止條件以設定一第四判定,其中當在該第一估計速度範圍和該第一可變估計速度之間具有一第二交集、且在該第二估計速度範圍和該第二可變估計速度之間具有一第三交集時,則該參考定向滿足該準靜止條件;當該第四判定是肯定時,該處理單元以一預設計時長度增加該第一可變計時長度,離開該第五操作狀態,且重新進入該第一操作狀態;當該第四判定是否定時,該處理單元重置該第一可變計時長度,離開該第五操作狀態,且進入該第六操作狀態;在該第六操作狀態中,該處理單元根據該轉換關係而將該第六估計方向轉換為該第四估計位置,且根據該第四估計位置、該可變估計角速度和該可變位置誤差而將該第四估計位置調整為該第一經調整位置,其中當該可變位置誤差為零時,該第一經調整位置相同於該第四估計位置;當該第一經調整位置被產生時,該處理單元判定在該預設區域和該第一經調整位置之間是否具有一第四交集以設定一第五判定;當該第五判定是肯定時,該處理單元傳輸用於該第一操作的該第一經調整位置,且判定該可變位置誤差是否為零以設定一第六判定;當該第六判定是肯定時,該處理單元離開該第六操作狀態,且重新進入該第一操作狀態; 當該第六判定是否定時,該處理單元根據該可變估計角速度和該可變位置誤差而減小該可變位置誤差,離開該第六操作狀態,且重新進入該第一操作狀態;當該第五判定是否定時,該處理單元根據該第一經調整位置和該預設區域而將該第一經調整位置調整為在該周邊區域上的一第二經調整位置,傳輸用於該第一操作的該第二經調整位置,且判定在該第四特定方向下的該可變估計角速度是否大於該門檻角速度以設定一第七判定;當該第七判定是否定時,該處理單元離開該第六操作狀態,且重新進入該第一操作狀態;當該第七判定是肯定時,該處理單元離開該第六操作狀態,且進入該第七操作狀態;在該第四操作狀態中,在該第五特定方向下,該處理單元根據該第三信號而產生在該估計方向結構下的該第二估計方向,根據該第四信號和該第一估計方向而產生該第七估計方向,根據該轉換關係而將該第二估計方向轉換為該第二估計位置,根據該轉換關係而將該第七估計方向轉換為該第五估計位置,離開該第四操作狀態,且進入該第八操作狀態;在該第八操作狀態中,該處理單元估算在該第五估計位置和該第二估計位置之間的該第一位置誤差,根據該第一位置誤差而設定該可變位置誤差,重置該第一可變計時長度和該第二可變計時長度,離開該第八操作狀態,且重新進入該第一操作狀態;在該第二操作狀態中,在該第六特定方向下,該處理 單元根據該第三信號而產生在該估計方向結構下的該第三估計方向,且根據該第四信號和該第一估計方向而產生該第八估計方向,根據轉換關係而將該第三估計方向轉換為該第三估計位置,根據轉換關係而將該第三估計方向轉換為該第六估計位置,估算在該第六估計位置和該第三估計位置之間的一第二位置誤差,根據該第二位置誤差而設定該可變位置誤差,重置該第二可變計時長度,離開該第二操作狀態,且重新進入該第一操作狀態;在該第七操作狀態中,在該第七特定方向下,該處理單元根據該第三信號而產生在該估計方向結構下的一第九估計方向,且判定在該估計方向範圍和該第九估計方向之間是否具有一第五交集以設定一第八判定;當該第八判定是否定時,該處理單元繼續響應該第一信號;以及當該第八判定是肯定時,該處理單元根據該轉換關係而將該第九估計方向轉換為一第七估計位置,傳輸用於該第一操作的該第七估計位置,使該可變位置誤差歸零,重置該第一可變計時長度和該第二可變計時長度,離開該第七操作狀態,且重新進入該第一操作狀態。 The remote control device of claim 3, wherein the variable direction is further configured to be a fourth specific direction, a fifth specific direction, a sixth specific direction, and a seventh specific direction, and The preset area has a peripheral area; in the first operating state, the processing unit determines whether the second variable timing length satisfies a first timeout condition to set a second determination, wherein the second variable When the timing length is longer than the second threshold timing length, the second variable timing length satisfies the first timeout condition; when the second determination is affirmative, the processing unit leaves the first operation state, and enters the first a second operating state; when the second determination is timed, the processing unit leaves the first operating state and enters the third operating state; in the third operating state, the processing unit determines whether the first variable timing length is Satisfying a second timeout condition to set a third determination, wherein when the first variable timing length is longer than the first threshold timing length, the first variable timing length satisfies the second timeout period When the third determination is affirmative, the processing unit leaves the third operational state and enters the fourth operational state; when the third determination is negative, the processing unit leaves the third operational state, and enters the a fifth operational state; in the fifth operational state, in the fourth specific direction, the processing unit generates the sixth estimate according to the fourth signal and the first estimation direction a direction, setting the first variable estimated speed according to the third sensing signal, setting the variable estimated angular velocity and the second variable estimated speed according to the fifth sensing signal, and determining whether the reference orientation satisfies a a quasi-stationary condition to set a fourth decision, wherein there is a second intersection between the first estimated speed range and the first variable estimated speed, and the second estimated speed range and the second variable estimate When there is a third intersection between the speeds, the reference orientation satisfies the quasi-stationary condition; when the fourth determination is affirmative, the processing unit increases the first variable timing length by a preset timing length, leaving the first a five operational state, and re-entering the first operational state; when the fourth determination is timed, the processing unit resets the first variable timing length, leaves the fifth operational state, and enters the sixth operational state; In the sixth operational state, the processing unit converts the sixth estimated direction to the fourth estimated position according to the conversion relationship, and according to the fourth estimated position, the variable estimated angular velocity, and Variable position error and adjusting the fourth estimated position to the first adjusted position, wherein when the variable position error is zero, the first adjusted position is the same as the fourth estimated position; When the adjustment position is generated, the processing unit determines whether there is a fourth intersection between the preset area and the first adjusted position to set a fifth determination; when the fifth determination is affirmative, the processing unit transmits a first adjusted position for the first operation, and determining whether the variable position error is zero to set a sixth determination; when the sixth determination is affirmative, the processing unit leaves the sixth operational state, And re-entering the first operational state; When the sixth determination is timed, the processing unit reduces the variable position error according to the variable estimated angular velocity and the variable position error, leaves the sixth operational state, and re-enters the first operational state; Whether the fifth determination determines whether the first adjusted position is adjusted to a second adjusted position on the peripheral area according to the first adjusted position and the preset area, and is transmitted for the first The second adjusted position of the operation, and determining whether the variable estimated angular velocity in the fourth specific direction is greater than the threshold angular velocity to set a seventh determination; when the seventh determination is negative, the processing unit leaves the first a six operating state, and re-entering the first operating state; when the seventh determination is affirmative, the processing unit leaves the sixth operating state and enters the seventh operating state; in the fourth operating state, in the In the fifth specific direction, the processing unit generates the second estimation direction under the estimated direction structure according to the third signal, according to the fourth signal and the first estimation direction. Generating the seventh estimated direction, converting the second estimated direction to the second estimated position according to the conversion relationship, converting the seventh estimated direction to the fifth estimated position according to the conversion relationship, leaving the fourth operation a state, and entering the eighth operational state; in the eighth operational state, the processing unit estimates the first position error between the fifth estimated position and the second estimated position, according to the first position error Setting the variable position error, resetting the first variable timing length and the second variable timing length, leaving the eighth operational state, and re-entering the first operational state; in the second operational state, In the sixth specific direction, the process The unit generates the third estimation direction under the estimated direction structure according to the third signal, and generates the eighth estimation direction according to the fourth signal and the first estimation direction, and the third estimation according to the conversion relationship Converting the direction to the third estimated position, converting the third estimated direction to the sixth estimated position according to the conversion relationship, and estimating a second position error between the sixth estimated position and the third estimated position, according to Setting the variable position error by the second position error, resetting the second variable timing length, leaving the second operating state, and re-entering the first operating state; in the seventh operating state, in the In a specific direction, the processing unit generates a ninth estimation direction under the estimated direction structure according to the third signal, and determines whether there is a fifth intersection between the estimated direction range and the ninth estimated direction. Setting an eighth determination; when the eighth determination is timed, the processing unit continues to respond to the first signal; and when the eighth determination is affirmative, the processing unit is based on the And converting the ninth estimated direction to a seventh estimated position, transmitting the seventh estimated position for the first operation, zeroing the variable position error, resetting the first variable timing length and the The second variable timing length leaves the seventh operational state and re-enters the first operational state. 一種用於控制一螢幕的一第一操作的方法,包含下列步驟:提供一遙控裝置,該遙控裝置包含一第一感測單元和一第二感測單元,且該第一和該第二感測單元分別包含一地磁儀和一陀螺儀;通過該第一感測單元的該地磁儀而響應一作用力來產 生相對於該螢幕的第一資料,其中該作用力至少包括一第一成分力;響應該第一成分力而對應地產生一第一成分信號,以確定一第一特定方向;提供至少一可變計時長度和一可變位置誤差;以及根據該第一資料,通過該第二感測單元的該陀螺儀而響應該作用力來控制該第一操作。 A method for controlling a first operation of a screen, comprising the steps of: providing a remote control device, the remote control device comprising a first sensing unit and a second sensing unit, and the first and second senses The measuring unit respectively comprises a geomagnetic instrument and a gyroscope; the geomagnetic instrument of the first sensing unit responds to a force to produce Generating a first data relative to the screen, wherein the force includes at least a first component force; correspondingly generating a first component signal in response to the first component force to determine a first specific direction; providing at least one a variable timing length and a variable position error; and according to the first data, the first operation is controlled by the gyroscope of the second sensing unit in response to the force. 如申請專利範圍第5項所述的方法,其中:該螢幕包含一操作區域和界定該操作區域的一第一幾何參考,該第一幾何參考和該遙控裝置之間具有一第一方向結構,且該第一操作包含在該操作區域上的一定位操作;該操作區域參考該遙控裝置來形成與該操作區域對應的一參考方向範圍,且包含一第一特定位置,其中該第一方向結構界定該參考方向範圍;該第一資料包含用於估算該第一方向結構的一估計方向結構、和與該估計方向結構對應的一預設位置結構;根據該估計方向結構,該第一資料更包含一第一估計方向、一第二估計方向、一第三估計方向、和用於估算該參考方向範圍的一估計方向範圍;根據該預設位置結構,該第一資料更包含用於界定該操作區域的一預設區域;根據該估計方向結構和該預設位置結構,該第一資料更包含在該估計方向結構和該預設位置結構之間的一轉換關係、和分別與該第一、該第二與該第三估計方向對應的一第一估計位置、一第二估計位置與一第三估計位置,其 中該第一估計位置界定該第一特定位置;該估計方向結構界定該估計方向範圍,且包含一第四估計方向和一第五估計方向;該第一幾何參考包含一第二特定位置和與該第二特定位置成斜對角的一第三特定位置;該第一方向結構包含與該第二特定位置對應的該第一特定方向、和與該第三特定位置對應的一第二特定方向;該作用力包含一接觸力,且使該遙控裝置具有一特定運動,其中該接觸力依序包含該第一成分力、一第二成分力和一第三成分力;該遙控裝置具有一參考定向,該參考定向具有一參考軸、一可變速度和一可變角速度,且該參考軸具有一可變方向;該可變方向依序被配置成為該第一特定方向、該第二特定方向和一第三特定方向;該方法更包含下列步驟:使該第一感測單元響應該作用力以產生一第一信號,其中該第一信號包含與該接觸力相關的一第二信號和與該特定運動相關的一第三信號;使該第二感測單元響應該作用力以產生與該特定運動相關的一第四信號;以及依序響應該第一成分力、該第二成分力和該第三成分力使該第二信號具有分別與該第一、該第二、和該第三成分力對應的該第一成分信號、一第二成分信號和一第三成分信號,其中: 該第三成分信號具有一作用期間,且該作用期間具有一特定時間點和跟隨該特定時間點的一特定期間;以及該第一資料是響應該第一信號而被產生。 The method of claim 5, wherein the screen comprises an operation area and a first geometric reference defining the operation area, the first geometric reference and the remote control device having a first direction structure, And the first operation includes a positioning operation on the operation area; the operation area refers to the remote control device to form a reference direction range corresponding to the operation area, and includes a first specific position, wherein the first direction structure Defining the reference direction range; the first data includes an estimated direction structure for estimating the first direction structure, and a preset position structure corresponding to the estimated direction structure; according to the estimated direction structure, the first data is further Include a first estimated direction, a second estimated direction, a third estimated direction, and an estimated direction range for estimating the reference direction range; according to the preset position structure, the first data further includes a predetermined area of the operation area; according to the estimated direction structure and the preset position structure, the first data is further included in the estimated direction structure and a conversion relationship between the preset position structures, and a first estimated position, a second estimated position, and a third estimated position respectively corresponding to the first, the second and the third estimated directions, The first estimated position defines the first specific position; the estimated direction structure defines the estimated direction range, and includes a fourth estimated direction and a fifth estimated direction; the first geometric reference includes a second specific position and The second specific position is a third specific position diagonally opposite; the first direction structure includes the first specific direction corresponding to the second specific position, and a second specific direction corresponding to the third specific position The force includes a contact force, and the remote control device has a specific motion, wherein the contact force sequentially includes the first component force, a second component force, and a third component force; the remote control device has a reference Orientation, the reference orientation has a reference axis, a variable speed, and a variable angular velocity, and the reference axis has a variable direction; the variable direction is sequentially configured to be the first specific direction, the second specific direction And a third specific direction; the method further comprising the steps of: causing the first sensing unit to respond to the force to generate a first signal, wherein the first signal includes the contact force a second signal and a third signal associated with the particular motion; causing the second sensing unit to respond to the force to generate a fourth signal associated with the particular motion; and sequentially responding to the first component force The second component force and the third component force cause the second signal to have the first component signal, a second component signal, and a first corresponding to the first, second, and third component forces, respectively Three component signals, where: The third component signal has an active period, and the active period has a specific time point and a specific period following the specific time point; and the first data is generated in response to the first signal. 如申請專利範圍第6項所述的方法,更包含下列步驟:響應該第一成分信號而確定該第一特定方向,且根據該二信號而產生用於估算該第一特定方向的該第四估計方向;響應該第二成分信號而確定該第二特定方向,且根據該二信號而產生用於估算該第二特定方向的該第五估計方向;根據該第四估計方向和該第五估計方向而產生該估計方向結構和該估計方向範圍,且根據該估計方向結構和該預設位置結構而產生該轉換關係,其中該預設位置結構界定該預設區域,且該至少一可變計時長度包含一第一可變計時長度和一第二可變計時長度;預設一第一估計速度範圍、一第二估計速度範圍、一第一門檻計時長度、一第二門檻計時長度和一門檻角速度DWH;在該作用期間中,根據該第四信號而產生用於估算該可變角速度的一可變估計角速度,根據該第三感測信號而產生用於估算該可變速度的一第一可變估計速度,且根據該第四信號而產生用於估算該可變速度的一第二可變估計速度,其中該第一資料更包含該第一可變估計速度;響應該第三成分信號而確定該第三特定方向,且根據該第三信號而產生該第一估計方向; 當該第一估計方向被產生時,判定在該估計方向範圍和該第一估計方向之間是否具有一第一交集以設定一第一判定;當該第一判定是否定時,繼續響應該第一信號;當該第一判定是肯定時,根據該轉換關係而將該第一估計方向轉換為該第一估計位置,在該特定時間點傳輸用於該第一操作的該第一估計位置,重置該可變計時長度,且進入一第一操作狀態;響應該第一資料和該第四信號而產生用於控制該第一操作的第二資料,其中該第二資料包含在該估計方向結構下的一第六估計方向、一第七估計方向與一第八估計方向、和在該預設位置結構下分別與該第六、該第七與該第八估計方向對應的一第四估計位置、一第五估計位置與一第六估計位置;當該第二估計位置和該第五估計位置被產生時,根據在該第二估計位置和該第五估計位置之間的一第一位置誤差,設定該可變位置誤差;以及根據該可變位置誤差將該第四估計位置調整為一第一經調整位置。 The method of claim 6, further comprising the steps of: determining the first specific direction in response to the first component signal, and generating the fourth for estimating the first specific direction based on the two signals Estimating a direction; determining the second specific direction in response to the second component signal, and generating the fifth estimation direction for estimating the second specific direction according to the two signals; according to the fourth estimation direction and the fifth estimate Generating the estimated direction structure and the estimated direction range, and generating the conversion relationship according to the estimated direction structure and the preset position structure, wherein the preset position structure defines the preset area, and the at least one variable timing The length includes a first variable timing length and a second variable timing length; a preset first estimated speed range, a second estimated speed range, a first threshold time length, a second threshold time length, and a threshold An angular velocity DWH; during the active period, a variable estimated angular velocity for estimating the variable angular velocity is generated according to the fourth signal, according to the third sensing signal Generating a first variable estimated speed for estimating the variable speed, and generating a second variable estimated speed for estimating the variable speed according to the fourth signal, wherein the first data further comprises the a first variable estimated speed; determining the third specific direction in response to the third component signal, and generating the first estimated direction according to the third signal; Determining whether there is a first intersection between the estimated direction range and the first estimation direction to set a first determination when the first estimation direction is generated; and continuing to respond to the first determination when the first determination is timed a signal; when the first determination is affirmative, converting the first estimated direction to the first estimated position according to the conversion relationship, transmitting the first estimated position for the first operation at the specific time point, Setting the variable timing length and entering a first operating state; generating second data for controlling the first operation in response to the first data and the fourth signal, wherein the second data is included in the estimated direction structure a sixth estimated direction, a seventh estimated direction and an eighth estimated direction, and a fourth estimated position corresponding to the sixth, the seventh and the eighth estimated direction respectively under the preset position structure a fifth estimated position and a sixth estimated position; when the second estimated position and the fifth estimated position are generated, according to a first positional error between the second estimated position and the fifth estimated position , Sets the variable position error; and the fourth error based on the estimated position of the variable position adjustment is adjusted to a first position. 如申請專利範圍第7項所述的方法,其中該可變方向更依序被配置成為一第四特定方向、一第五特定方向、一第六特定方向和一第七特定方向,該預設區域具有一周邊區域,且該周邊區域具有一第二經調整位置,且該方法更包含下列步驟:在該第一操作狀態中,判定該第二可變計時長度是否 滿足一第一超時條件以設定一第二判定,其中當該第二可變計時長度長於該第二門檻計時長度時,則該第二可變計時長度滿足該第一超時條件;當該第二判定是肯定時,離開該第一操作狀態,且進入一第二操作狀態;當該第二判定是否定時,離開該第一操作狀態,且進入一第三操作狀態;在該第三操作狀態中,判定該第一可變計時長度是否滿足一第二超時條件以設定一第三判定,其中當該第一可變計時長度長於該第一門檻計時長度時,則該第一可變計時長度滿足該第二超時條件;當該第三判定是肯定時,離開該第三操作狀態,且進入一第四操作狀態;當該第三判定是否定時,離開該第三操作狀態,且進入一第五操作狀態;在該第五操作狀態中,在該第四特定方向下,根據該第四信號和該第一估計方向而產生該第六估計方向,根據該第三感測信號而設定該第一可變估計速度,根據該第五感測信號而設定該可變估計角速度和該第二可變估計速度,且判定該參考定向是否滿足一準靜止條件以設定一第四判定,其中當在該第一估計速度範圍和該第一可變估計速度之間具有一第二交集、且在該第二估計速度範圍和該第二可變估計速度之間具有一第三交集時,則該參考定向滿足該準靜止條件;當該第四判定是肯定時,以一預設計時長度增加該第 一可變計時長度,離開該第五操作狀態,且重新進入該第一操作狀態;當該第四判定是否定時,重置該第一可變計時長度,離開該第五操作狀態,且進入一第六操作狀態;在該第六操作狀態中,根據該轉換關係而將該第六估計方向轉換為該第四估計位置,且根據該第四估計位置、該可變估計角速度和該可變位置誤差而將該第四估計位置調整為該第一經調整位置,其中當該可變位置誤差為零時,該第一經調整位置相同於該第四估計位置;當該第一經調整位置被產生時,判定在該預設區域和該第一經調整位置之間是否具有一第四交集以設定一第五判定;當該第五判定是肯定時,傳輸用於該第一操作的該第一經調整位置,且判定該可變位置誤差是否為零以設定一第六判定;當該第六判定是肯定時,離開該第六操作狀態,且重新進入該第一操作狀態;當該第六判定是否定時,根據該可變估計角速度和該可變位置誤差而減小該可變位置誤差,離開該第六操作狀態,且重新進入該第一操作狀態;當該第五判定是否定時,根據該第一經調整位置和該預設區域而將該第一經調整位置調整為在該周邊區域上的一第二經調整位置,傳輸用於該第一操作的該第二經調整位置,且判定在該第四特定方向下的該可變估計角速度是否大於該門檻角速度以設定一第七判定; 當該第七判定是否定時,離開該第六操作狀態,且重新進入該第一操作狀態;當該第七判定是肯定時,離開該第六操作狀態,且進入一第七操作狀態;在該第四操作狀態中,在該第五特定方向下,根據該第三信號而產生在該估計方向結構下的該第二估計方向,根據該第四信號和該第一估計方向而產生該第七估計方向,根據該轉換關係而將該第二估計方向轉換為該第二估計位置,根據該轉換關係而將該第七估計方向轉換為該第五估計位置,離開該第四操作狀態,且進入一第八操作狀態;在該第八操作狀態中,估算在該第五估計位置和該第二估計位置之間的該第一位置誤差,根據該第一位置誤差而設定該可變位置誤差,重置該第一可變計時長度和該第二可變計時長度,離開該第八操作狀態,且重新進入該第一操作狀態;在該第二操作狀態中,在該第六特定方向下,根據該第三信號而產生在該估計方向結構下的該第三估計方向,且根據該第四信號和該第一估計方向而產生該第八估計方向,根據轉換關係而將該第三估計方向轉換為該第三估計位置,根據轉換關係而將該第三估計方向轉換為該第六估計位置,估算在該第六估計位置和該第三估計位置之間的一第二位置誤差,根據該第二位置誤差而設定該可變位置誤差,重置該第二可變計時長度,離開該第二操作狀態,且重新進入該第一操作狀態; 在該第七操作狀態中,在該第七特定方向下,根據該第三信號而產生在該估計方向結構下的一第九估計方向,且判定在該估計方向範圍和該第九估計方向之間是否具有一第五交集以設定一第八判定;當該第八判定是否定時,繼續響應該第一信號;以及當該第八判定是肯定時,根據該轉換關係而將該第九估計方向轉換為一第七估計位置,傳輸用於該第一操作的該第七估計位置,使該可變位置誤差歸零,重置該第一可變計時長度和該第二可變計時長度,離開該第七操作狀態,且重新進入該第一操作狀態。 The method of claim 7, wherein the variable direction is sequentially configured to be a fourth specific direction, a fifth specific direction, a sixth specific direction, and a seventh specific direction, the preset The area has a peripheral area, and the peripheral area has a second adjusted position, and the method further comprises the step of: determining, in the first operating state, whether the second variable timing length is Satisfying a first timeout condition to set a second determination, wherein when the second variable timing length is longer than the second threshold timing length, the second variable timing length satisfies the first timeout condition; When the second determination is affirmative, leaving the first operational state, and entering a second operational state; when the second determination is timed, leaving the first operational state, and entering a third operational state; In the state, determining whether the first variable timing length satisfies a second timeout condition to set a third determination, wherein when the first variable timing length is longer than the first threshold timing length, the first variable The timing length satisfies the second timeout condition; when the third determination is affirmative, the third operation state is left, and a fourth operation state is entered; when the third determination is timed, the third operation state is left, and Entering a fifth operation state; in the fifth operation state, generating the sixth estimation direction according to the fourth signal and the first estimation direction in the fourth specific direction, according to the third sensing signal Determining the first variable estimated speed, setting the variable estimated angular velocity and the second variable estimated velocity according to the fifth sensing signal, and determining whether the reference orientation satisfies a quasi-stationary condition to set a fourth determination, Wherein when there is a second intersection between the first estimated speed range and the first variable estimated speed, and a third intersection between the second estimated speed range and the second variable estimated speed, Then the reference orientation satisfies the quasi-stationary condition; when the fourth determination is affirmative, the first time is increased by a preset timing length a variable timing length, leaving the fifth operational state, and re-entering the first operational state; when the fourth determination is timed, resetting the first variable timing length, leaving the fifth operational state, and entering a a sixth operational state; in the sixth operational state, converting the sixth estimated direction to the fourth estimated position according to the transition relationship, and according to the fourth estimated position, the variable estimated angular velocity, and the variable position Error adjusting the fourth estimated position to the first adjusted position, wherein when the variable position error is zero, the first adjusted position is the same as the fourth estimated position; when the first adjusted position is When generated, determining whether there is a fourth intersection between the preset area and the first adjusted position to set a fifth determination; when the fifth determination is affirmative, transmitting the first for the first operation Once the position is adjusted, and it is determined whether the variable position error is zero to set a sixth determination; when the sixth determination is affirmative, the sixth operational state is left, and the first operational state is re-entered; Determining whether or not timing, reducing the variable position error according to the variable estimated angular velocity and the variable position error, leaving the sixth operational state, and re-entering the first operational state; when the fifth determination is timed, Adjusting the first adjusted position to a second adjusted position on the peripheral area according to the first adjusted position and the preset area, and transmitting the second adjusted position for the first operation, And determining whether the variable estimated angular velocity in the fourth specific direction is greater than the threshold angular velocity to set a seventh determination; When the seventh determination is timed, leaving the sixth operational state, and re-entering the first operational state; when the seventh determination is affirmative, leaving the sixth operational state, and entering a seventh operational state; In the fourth operation state, in the fifth specific direction, the second estimation direction under the estimation direction structure is generated according to the third signal, and the seventh is generated according to the fourth signal and the first estimation direction. Estimating a direction, converting the second estimated direction to the second estimated position according to the conversion relationship, converting the seventh estimated direction to the fifth estimated position according to the conversion relationship, leaving the fourth operating state, and entering An eighth operational state; in the eighth operational state, estimating the first position error between the fifth estimated position and the second estimated position, and setting the variable position error according to the first position error, Resetting the first variable timing length and the second variable timing length, leaving the eighth operational state, and re-entering the first operational state; in the second operational state, at the sixth Determining, according to the third signal, the third estimation direction under the estimated direction structure, and generating the eighth estimation direction according to the fourth signal and the first estimation direction, according to the conversion relationship Converting a third estimated direction to the third estimated position, converting the third estimated direction to the sixth estimated position according to the conversion relationship, and estimating a second position between the sixth estimated position and the third estimated position Error, setting the variable position error according to the second position error, resetting the second variable timing length, leaving the second operating state, and re-entering the first operating state; In the seventh operational state, in the seventh specific direction, a ninth estimation direction under the estimated direction structure is generated according to the third signal, and it is determined that the estimated direction range and the ninth estimated direction are Whether there is a fifth intersection to set an eighth determination; when the eighth determination is timed, continue to respond to the first signal; and when the eighth determination is affirmative, the ninth estimation direction is according to the conversion relationship Converting to a seventh estimated position, transmitting the seventh estimated position for the first operation, zeroing the variable position error, resetting the first variable timing length and the second variable timing length, leaving The seventh operational state and re-entering the first operational state. 一種遙控裝置,用於控制一螢幕的一第一操作,包含:一第一感測單元,包含一地磁儀;一第二感測單元,包含一陀螺儀;以及一處理單元,通過該第一感測單元的該地磁儀而響應一作用力來產生相對於該螢幕的第一資料,且根據該第一資料,通過該第二感測單元的該陀螺儀而響應該作用力來控制該第一操作,其中:該第一資料包含一估計方向結構和一預設位置結構,其中該估計方向結構至少包含一第一估計方向,該預設位置結構界定一預設區域,且該估計方向結構及該預設位置結構具有在其間的一轉換關係;以及該遙控裝置具有一參考定向,該參考定向具有一參考軸和一可變角速度,且該參考軸具有一可變方向。 A remote control device for controlling a first operation of a screen, comprising: a first sensing unit comprising a geophone; a second sensing unit comprising a gyroscope; and a processing unit passing the first The geophone of the sensing unit generates a first data relative to the screen in response to a force, and according to the first data, the gyro is controlled by the gyroscope of the second sensing unit to control the first An operation, wherein: the first data includes an estimated direction structure and a preset position structure, wherein the estimated direction structure includes at least a first estimated direction, the preset position structure defines a preset area, and the estimated direction structure And the preset position structure has a conversion relationship therebetween; and the remote control device has a reference orientation having a reference axis and a variable angular velocity, and the reference axis has a variable direction. 如申請專利範圍第9項所述的遙控裝置,其中:該螢幕包含一操作區域和界定該操作區域的一第一幾 何參考,該第一幾何參考和該遙控裝置之間具有一第一方向結構,且該第一操作包含在該操作區域上的一定位操作;該操作區域參考該遙控裝置來形成與該操作區域對應的一參考方向範圍,且包含一第一特定位置,其中該第一方向結構界定該參考方向範圍;該估計方向結構用於估算該第一方向結構,且該預設位置結構與該估計方向結構對應;根據該估計方向結構,該第一資料更包含一第二估計方向DA41、和用於估算該參考方向範圍的一估計方向範圍,其中該第一估計方向DA21是根據該估計方向結構而被包含;根據該預設位置結構,該第一資料更包含用於界定該操作區域的一預設區域;根據該估計方向結構和該預設位置結構,該第一資料更包含在該估計方向結構和該預設位置結構之間的該轉換關係、和分別與該第一與該第二估計方向對應的一第一估計位置與一第二估計位置,其中該第一估計位置界定該第一特定位置;該估計方向結構界定該估計方向範圍,且包含一第三估計方向和一第四估計方向;該第一幾何參考包含一第二特定位置和與該第二特定位置成斜對角的一第三特定位置;該第一方向結構包含與該第二特定位置對應的一第一特定方向、和與該第三特定位置對應的一第二特定方向;該可變方向參考一座標系統來形成一方向參數,以表 示該可變方向,其中該方向參數包含一偏轉角和一俯仰角;該可變方向依序被配置成為該第一特定方向、該第二特定方向、一第三特定方向和一第四特定方向,其中該第二估計方向被產生來估算該第四特定方向;該作用力包含一接觸力,且使該遙控裝置具有一特定運動,其中該接觸力依序包含一第一成分力、一第二成分力和一第三成分力;該第一感測單元響應該作用力而產生一第一信號,該第二信號包含一第二信號和一第三信號,且該第一感測單元包含:一介面單元,耦合於該處理單元,且響應該作用力而產生與該接觸力相關的該第二信號;以及一感測模組,耦合於該處理單元,且響應該作用力而產生與該特定運動相關的該第三信號;該介面單元包含:一第一按鍵單元,耦合於該處理單元,響應該第一成分力而使該處理單元確定該第一特定方向以產生用於估算該第一特定方向的該第三估計方向,且響應該第二成分力而使該處理單元確定該第二特定方向以產生用於估算該第二特定方向的該第四估計方向;以及一第二按鍵單元,耦合於該處理單元,且響應該第三成分力而使該處理單元確定該第三特定方向,以產生用於估算該第三特定方向的該第一估計方向;該感測模組包含:一水平儀,耦合於該處理單元,且響應該作用力 而使該處理單元估算該俯仰角;以及該地磁儀,耦合於該處理單元,且響應該作用力而使該處理單元估算該偏轉角;該第二感測單元響應該作用力而產生與該特定運動相關的一第四信號,其中該陀螺儀耦合於該處理單元,並且響應該作用力而使該處理單元估算該可變角速度;以及該處理單元響應該第二信號和該第三信號而產生該第一資料,響應該第一資料和該第四信號而產生用於控制該第一操作的第二資料、和與該第二資料相關的誤差資料,且根據該誤差資料將該第二資料調整為經調整資料。 The remote control device of claim 9, wherein: the screen comprises an operation area and a first number defining the operation area For reference, the first geometric reference and the remote control device have a first direction structure, and the first operation includes a positioning operation on the operation area; the operation area is formed with the remote control device to form the operation area Corresponding a reference direction range, and including a first specific position, wherein the first direction structure defines the reference direction range; the estimated direction structure is used to estimate the first direction structure, and the preset position structure and the estimated direction Corresponding to the structure; the first data further includes a second estimation direction DA41, and an estimated direction range for estimating the reference direction range, wherein the first estimation direction DA21 is according to the estimated direction structure. The first data further includes a preset area for defining the operation area according to the preset position structure; and according to the estimated direction structure and the preset position structure, the first data is further included in the estimated direction. The conversion relationship between the structure and the preset position structure, and a first estimate corresponding to the first and second estimation directions, respectively And a second estimated position, wherein the first estimated position defines the first specific position; the estimated direction structure defines the estimated direction range, and includes a third estimated direction and a fourth estimated direction; the first geometric reference a second specific location and a third specific location diagonally opposite the second specific location; the first directional structure includes a first specific direction corresponding to the second specific location, and the third specific location a second specific direction corresponding to the position; the variable direction is referenced to a standard system to form a direction parameter, to The variable direction is illustrated, wherein the direction parameter includes a deflection angle and a pitch angle; the variable direction is sequentially configured to be the first specific direction, the second specific direction, a third specific direction, and a fourth specific a direction, wherein the second estimated direction is generated to estimate the fourth specific direction; the force includes a contact force, and the remote control device has a specific motion, wherein the contact force sequentially includes a first component force, a second component force and a third component force; the first sensing unit generates a first signal in response to the force, the second signal includes a second signal and a third signal, and the first sensing unit The interface includes: an interface unit coupled to the processing unit and responsive to the force to generate the second signal related to the contact force; and a sensing module coupled to the processing unit and generated in response to the force a third signal associated with the particular motion; the interface unit includes: a first button unit coupled to the processing unit, the processing unit determining the first specific direction in response to the first component force Generating the third estimated direction of the first particular direction, and in response to the second component force, causing the processing unit to determine the second particular direction to generate the fourth estimated direction for estimating the second particular direction And a second button unit coupled to the processing unit, and responsive to the third component force, causing the processing unit to determine the third specific direction to generate the first estimated direction for estimating the third specific direction; The sensing module includes: a level, coupled to the processing unit, and responsive to the force And causing the processing unit to estimate the pitch angle; and the geomagnet is coupled to the processing unit, and the processing unit estimates the deflection angle in response to the force; the second sensing unit generates and responds to the force a fourth motion signal associated with the motion, wherein the gyroscope is coupled to the processing unit, and the processing unit estimates the variable angular velocity in response to the force; and the processing unit is responsive to the second signal and the third signal Generating the first data, generating second data for controlling the first operation, and error data related to the second data, in response to the first data and the fourth signal, and using the second data according to the error data The data was adjusted to adjusted data. 一種遙控裝置,用於控制一螢幕的一第一操作,該螢幕包含一第一特定位置,該遙控裝置包含:一第一感測單元,包含一地磁儀,且通過該地磁儀而響應一作用力來產生相對於該螢幕的第一資料;以及一第二感測單元,包含一陀螺儀,且根據該第一資料,通過該陀螺儀而響應該作用力來控制該第一操作,其中:該作用力至少包括一第一成分力;該第一感測單元響應該第一成分力而對應地產生一第一成分信號,以確定一第一特定方向;以及該第一資料包含一估計方向結構和對應於該估計方向結構的一預設位置結構,其中根據該預設位置結構,該第一資料更包括一第一估計位置,以界定該第一特定位置。 A remote control device for controlling a first operation of a screen, the screen comprising a first specific position, the remote control device comprising: a first sensing unit, comprising a geomagnetic instrument, and responding to a function by the geomagnetic device Forces to generate a first data relative to the screen; and a second sensing unit including a gyroscope, and according to the first data, the first operation is controlled by the gyroscope in response to the force, wherein: The force includes at least a first component force; the first sensing unit correspondingly generates a first component signal in response to the first component force to determine a first specific direction; and the first data includes an estimated direction And a predetermined position structure corresponding to the estimated direction structure, wherein the first data further includes a first estimated position to define the first specific position according to the preset position structure. 如申請專利範圍第11項所述的遙控裝置,其中:該螢幕包含一操作區域和界定該操作區域的一第一幾何參考,該第一幾何參考和該遙控裝置之間具有一第一方 向結構,且該第一操作包含在該操作區域上的一定位操作;該操作區域參考該遙控裝置來形成與該操作區域對應的一參考方向範圍,且包含該第一特定位置,其中該第一方向結構界定該參考方向範圍;該估計方向結構用於估算該第一方向結構;根據該估計方向結構,該第一資料更包含一第一估計方向、一第二估計方向、和用於估算該參考方向範圍的一估計方向範圍;根據該預設位置結構,該第一資料更包含用於界定該操作區域的一預設區域;根據該估計方向結構和該預設位置結構,該第一資料更包含在該估計方向結構和該預設位置結構之間的一轉換關係、和分別與該第一與該第二估計方向對應的該第一估計位置與一第二估計位置,其中該第一估計位置界定該第一特定位置;該估計方向結構界定該估計方向範圍,且包含一第三估計方向和一第四估計方向;該第一幾何參考包含一第二特定位置和與該第二特定位置成斜對角的一第三特定位置;該第一方向結構包含與該第二特定位置對應的該第一特定方向、和與該第三特定位置對應的一第二特定方向;該遙控裝置具有一參考定向,該參考定向具有一參考軸和一可變角速度,且該參考軸具有一可變方向;該可變方向參考一座標系統來形成一方向參數,以表示該可變方向,其中該方向參數包含一偏轉角和一俯仰角; 該可變方向依序被配置成為該第一特定方向、該第二特定方向、一第三特定方向和一第四特定方向,其中該第二估計方向被產生來估算該第四特定方向;該作用力包含一接觸力,且使該遙控裝置具有一特定運動,其中該接觸力依序包含該第一成分力、一第二成分力和一第三成分力;該第一感測單元包含:一第一感測組件,響應該作用力而產生一第一信號,該第一信號包含一第二信號和一第三信號;以及一第一處理單元,響應該第一信號來校正該第一方向結構以產生該第一資料;該第一感測組件包含:一介面單元,響應該作用力而產生與該接觸力相關的該第二信號;以及一感測模組,響應該作用力而產生與該特定運動相關的該第三信號,其中該第一處理單元響應該第二信號和該第三信號而產生該第一資料;該介面單元包含:一第一按鍵單元,耦合於該第一處理單元,響應該第一成分力而使該第一處理單元確定該第一特定方向以產生用於估算該第一特定方向的該第三估計方向,且響應該第二成分力而使該第一處理單元確定該第二特定方向以產生用於估算該第二特定方向的該第四估計方向;以及一第二按鍵單元,耦合於該第一處理單元,且響應該第三成分力而使該處理單元確定該第三特定方向,以 產生用於估算該第三特定方向的該第一估計方向;該感測模組包含:一水平儀,耦合於該第一處理單元,且響應該作用力而使該第一處理單元估算該俯仰角;以及該地磁儀,耦合於該第一處理單元,且響應該作用力而使該第一處理單元估算該偏轉角;該第二感測單元耦合於該第一感測單元,且包含:一第二感測組件,包含該陀螺儀,且響應該作用力而產生與該特定運動相關的一第四信號;以及一第二處理單元,響應該第一資料和該第四信號而產生用於控制該第一操作的第二資料、和與該第二資料相關的誤差資料,且根據該誤差資料將該第二資料調整為經調整資料;以及該陀螺儀耦合於該第二處理單元,且響應該作用力而使該第二處理單元估算該可變角速度。 The remote control device of claim 11, wherein the screen comprises an operation area and a first geometric reference defining the operation area, the first geometric reference and the remote control device having a first side a structure, and the first operation includes a positioning operation on the operation area; the operation area refers to the remote control device to form a reference direction range corresponding to the operation area, and includes the first specific position, wherein the first a directional structure defining the reference direction range; the estimated directional structure is configured to estimate the first directional structure; and according to the estimated directional structure, the first data further includes a first estimated direction, a second estimated direction, and used for estimating An estimated direction range of the reference direction range; according to the preset position structure, the first data further includes a preset area for defining the operation area; and according to the estimated direction structure and the preset position structure, the first The data further includes a conversion relationship between the estimated direction structure and the preset position structure, and the first estimated position and a second estimated position respectively corresponding to the first and second estimated directions, wherein the first An estimated position defines the first specific location; the estimated direction structure defines the estimated direction range and includes a third estimated direction and a fourth estimate The first geometric reference includes a second specific position and a third specific position diagonally opposite the second specific position; the first direction structure includes the first specific direction corresponding to the second specific position And a second specific direction corresponding to the third specific position; the remote control device has a reference orientation having a reference axis and a variable angular velocity, and the reference axis has a variable direction; the variable The direction refers to a calibration system to form a direction parameter to represent the variable direction, wherein the direction parameter includes a deflection angle and a pitch angle; The variable direction is sequentially configured to be the first specific direction, the second specific direction, a third specific direction, and a fourth specific direction, wherein the second estimated direction is generated to estimate the fourth specific direction; The force includes a contact force, and the remote control device has a specific motion, wherein the contact force sequentially includes the first component force, a second component force, and a third component force; the first sensing unit includes: a first sensing component responsive to the force to generate a first signal, the first signal comprising a second signal and a third signal; and a first processing unit responsive to the first signal to correct the first Directional structure for generating the first data; the first sensing component includes: an interface unit that generates the second signal related to the contact force in response to the force; and a sensing module responsive to the force Generating the third signal related to the specific motion, wherein the first processing unit generates the first data in response to the second signal and the third signal; the interface unit includes: a first button unit coupled to The first processing unit, in response to the first component force, causing the first processing unit to determine the first specific direction to generate the third estimated direction for estimating the first specific direction, and in response to the second component force The first processing unit determines the second specific direction to generate the fourth estimated direction for estimating the second specific direction; and a second button unit coupled to the first processing unit and responsive to the third component force And causing the processing unit to determine the third specific direction to Generating a first estimated direction for estimating the third specific direction; the sensing module includes: a level coupled to the first processing unit, and causing the first processing unit to estimate the pitch angle in response to the force And the geomagnet is coupled to the first processing unit, and the first processing unit estimates the deflection angle in response to the force; the second sensing unit is coupled to the first sensing unit, and includes: a second sensing component including the gyroscope and generating a fourth signal related to the specific motion in response to the force; and a second processing unit responsive to the first data and the fourth signal for generating Controlling the second data of the first operation and the error data associated with the second data, and adjusting the second data to the adjusted data according to the error data; and the gyroscope is coupled to the second processing unit, and The second processing unit estimates the variable angular velocity in response to the force.
TW101101840A 2012-01-17 2012-01-17 Remote-control device and method for controlling operation of screen TWI468999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101101840A TWI468999B (en) 2012-01-17 2012-01-17 Remote-control device and method for controlling operation of screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101101840A TWI468999B (en) 2012-01-17 2012-01-17 Remote-control device and method for controlling operation of screen

Publications (2)

Publication Number Publication Date
TW201331790A TW201331790A (en) 2013-08-01
TWI468999B true TWI468999B (en) 2015-01-11

Family

ID=49479026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101840A TWI468999B (en) 2012-01-17 2012-01-17 Remote-control device and method for controlling operation of screen

Country Status (1)

Country Link
TW (1) TWI468999B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459265B (en) * 2020-03-02 2023-10-13 杭州嘉澜创新科技有限公司 Interactive device, operation method thereof and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109215A2 (en) * 2004-04-30 2005-11-17 Hillcrest Laboratories, Inc. Methods and devices for removing unintentional movement in free space pointing devices
TW200905526A (en) * 2007-07-23 2009-02-01 Sunplus Mmedia Inc Remote controlled positioning system, control system and display device thereof
TW200910163A (en) * 2007-08-28 2009-03-01 Ind Tech Res Inst Interactive pointing device
US20110080340A1 (en) * 2008-06-04 2011-04-07 Robert Campesi System And Method For Remote Control Of A Computer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109215A2 (en) * 2004-04-30 2005-11-17 Hillcrest Laboratories, Inc. Methods and devices for removing unintentional movement in free space pointing devices
TW200905526A (en) * 2007-07-23 2009-02-01 Sunplus Mmedia Inc Remote controlled positioning system, control system and display device thereof
TW200910163A (en) * 2007-08-28 2009-03-01 Ind Tech Res Inst Interactive pointing device
US20110080340A1 (en) * 2008-06-04 2011-04-07 Robert Campesi System And Method For Remote Control Of A Computer

Also Published As

Publication number Publication date
TW201331790A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
KR101192514B1 (en) Free space pointing devices with tilt compensation and improved usability
KR101956186B1 (en) Position estimation apparatus and method using acceleration sensor
KR101778807B1 (en) Motion capture pointer with data fusion
EP2199888B1 (en) Input device and data processing system
US7933729B2 (en) Operation device control apparatus, operation device control method, information storage medium, and operation device
US8988397B2 (en) Display control apparatus for controlling display responsive to touch input, display control method, and storage medium
EP3062286B1 (en) Optical distortion compensation
JP4725383B2 (en) Pointing device, external information processing device, pointing position specifying device, and pointing position specifying method
CN102377941A (en) Image stabilization control apparatus and control method thereof, optical apparatus, and imaging apparatus
KR101893601B1 (en) Input apparatus of display apparatus, display system and control method thereof
CN107153481B (en) Touch processing method, device and system for correcting pressure value of touch pen
US20200288061A1 (en) Drift Correction With Phase And Amplitude Compensation For Optical Image Stabilization
JP4700584B2 (en) Information processing apparatus, information processing method, and program
US10911675B2 (en) Method for providing shake correction, signal processing device performing the method, and imaging device including the signal processing device
KR20150099605A (en) Method and device for sensing orientation of an object in space in a fixed frame of reference
CN104767930A (en) Device used for image correction and method
JP5660962B2 (en) Camera posture correction
TWI468999B (en) Remote-control device and method for controlling operation of screen
KR100844129B1 (en) A paratus for interfacing a mouse using a camera image, system and method using the paratus, computer readable record medium on which a program therefore is recorded
WO2018018982A1 (en) Yaw angle value calibration method and system for unmanned aerial vehicle
WO2020119633A1 (en) Automatic correction method and system for projected picture
CN106856550A (en) Optical profile type image stabilization module and camera model
KR20150081231A (en) Apparatus and method for correcting image
CN104679294A (en) Touch operation unit and anti-shake method for touch operation
TWI406155B (en) A method for correcting deviation of cursor position