TWI468052B - Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal - Google Patents

Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal Download PDF

Info

Publication number
TWI468052B
TWI468052B TW100126826A TW100126826A TWI468052B TW I468052 B TWI468052 B TW I468052B TW 100126826 A TW100126826 A TW 100126826A TW 100126826 A TW100126826 A TW 100126826A TW I468052 B TWI468052 B TW I468052B
Authority
TW
Taiwan
Prior art keywords
rch
frequency
partition
equation
frequency partition
Prior art date
Application number
TW100126826A
Other languages
Chinese (zh)
Other versions
TW201212682A (en
Inventor
Hyunwoo Lee
Hangyu Cho
Jinsam Kwak
Jinyoung Chun
Jinsoo Choi
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW201212682A publication Critical patent/TW201212682A/en
Application granted granted Critical
Publication of TWI468052B publication Critical patent/TWI468052B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Description

用於傳送測距訊號的方法及使用者裝備,以及用於接收測距訊號的方法及基地台Method for transmitting ranging signal and user equipment, and method for receiving ranging signal and base station

本申請案主張2010年8月13日申請之美國臨時申請案第61/373,281號和於2010年8月17日申請的美國臨時申請案第61/374,270號,及2010年3月31日申請之韓國臨時申請案第10-2011-0029916號的優先權,兩申請案在此藉由引用全數併入。This application claims US Provisional Application No. 61/373,281, filed on August 13, 2010, and U.S. Provisional Application No. 61/374,270, filed on August 17, 2010, and filed on March 31, 2010 The priority of the Korean Provisional Application No. 10-2011-0029916, the entire disclosure of which is hereby incorporated by reference.

本發明係關於一種行動通訊系統,及更特定言之係關於用於一種傳送一測距訊號的方法及設備,以及一種用於接收該測距訊號的方法及設備。The present invention relates to a mobile communication system, and more particularly to a method and apparatus for transmitting a ranging signal, and a method and apparatus for receiving the ranging signal.

由電機及電子工程師學會(IEEE)802.16任務群組建立的主要標準分類成為IEEE 802.16-2004(亦稱為一固定式WiMAX),及一IEEE 802.16e-2005(下文稱為「16e」)亦稱為行動WiMAX。IEEE標準802.16e-2005在2005年12月由IEEE定案。一個目前版本之行動WiMAX技術的基本標準包括IEEE 802.16-2004、IEEE標準802.16e-2005(包括IEEE標準802.16-2004的勘誤表)、IEEE標準802.16-2004/Corl-2005、IEEE標準802.16f-2005及IEEE標準802.16TM -2009(IEEE標準802.16-2004的修訂版,由維護任務群組在草案標題「P802.16Rev2」下開發展)且基於IEEE標準802.16g-2007校正及整合。The main standards established by the Institute of Electrical and Electronics Engineers (IEEE) 802.16 task group are classified as IEEE 802.16-2004 (also known as a fixed WiMAX), and an IEEE 802.16e-2005 (hereinafter referred to as "16e"). For action WiMAX. The IEEE standard 802.16e-2005 was finalized by the IEEE in December 2005. A current version of the mobile WiMAX technology basic standards include IEEE 802.16-2004, IEEE standard 802.16e-2005 (including errata for IEEE standard 802.16-2004), IEEE standard 802.16-2004/Corl-2005, IEEE standard 802.16f-2005 and IEEE standard 802.16 TM -2009 (Revision of IEEE 802.16-2004 standard, by the maintenance task group under the title of the draft open development "P802.16Rev2") and is based on IEEE standard 802.16g-2007 correction and consolidation.

用於IEEE 802.16e的測距程序被用於許多目的。更詳言之,測距程序被分類為四個測距程序,即初始測距、交遞測距、週期性測距及頻寬請求測距。在初始測距之情況下,若一使用者裝備(UE)嘗試施行初始網路進入,則初始測距是用於獲取上行鏈路時間同步化(即,時間及頻率的同步化)。在交遞測距之情況下,若連接是從一來源基地台(BS)改變至一目標基地台(BS),交遞測距是用來從目標基地台(BS)獲取初始同步化。週期性測距使一使用者裝備(UE)能定期地更新上行鏈路同步化。頻寬請求測距使一使用者裝備(UE)能從一基地台(BS)請求上行鏈路資源。The ranging procedure for IEEE 802.16e is used for many purposes. More specifically, the ranging procedure is classified into four ranging procedures, namely initial ranging, handover ranging, periodic ranging, and bandwidth request ranging. In the case of initial ranging, if a user equipment (UE) attempts to perform initial network entry, the initial ranging is used to acquire uplink time synchronization (ie, synchronization of time and frequency). In the case of handover ranging, if the connection is changed from a source base station (BS) to a target base station (BS), handover ranging is used to obtain initial synchronization from the target base station (BS). Periodic ranging enables a user equipment (UE) to periodically update uplink synchronization. The bandwidth request ranging enables a user equipment (UE) to request uplink resources from a base station (BS).

現今,用於下一版本行動WiMAX的IEEE 802.16m(下文稱為「16m」)標準化係密集地在IEEE 802.16任務群組的一TGm(802.16任務群組m)中實施。IEEE 802.16m系統使用未在先前版本行動WiMAX中選定的許多技術(如,分頻再使用(FFR)及類似者)。結論是,IEEE 802.16m需要根據上述新近選定技術來校正IEEE 802.16e的測距程序及/或測距通道。Today, the IEEE 802.16m (hereinafter referred to as "16m") standardization for the next version of Mobile WiMAX is densely implemented in a TGm (802.16 Task Group m) of the IEEE 802.16 task group. The IEEE 802.16m system uses many of the techniques not selected in previous versions of Mobile WiMAX (eg, Frequency Division Reuse (FFR) and the like). In conclusion, IEEE 802.16m needs to correct the ranging procedure and/or ranging channel of IEEE 802.16e according to the newly selected techniques described above.

因此,本發明係關於一種用於傳送一測距信號的方法及使用者裝備(UE),及一種用於接收一測距信號的方法及基地台(BS),本發明實質上解決由於先前技術的限制性及缺點導致的一或多個問題。Accordingly, the present invention is directed to a method and user equipment (UE) for transmitting a ranging signal, and a method and base station (BS) for receiving a ranging signal, the present invention substantially solving the prior art One or more of the limitations and disadvantages.

本發明的一目的係提供一種有效率地構造一測距通道的方法。It is an object of the present invention to provide a method of efficiently constructing a ranging channel.

本發明的另一目的係提供一種用於建立一測距結構以最小化一細胞服務區間(inter-cell)干擾效應的方法。Another object of the present invention is to provide a method for establishing a ranging structure to minimize a cell inter-cell interference effect.

應理解,待由本發明達到的技術目的不限於上述技術目的且沒提到的其他技術目的將會從對於本發明領域中一般技藝者從下文描述中顯而易見。It is to be understood that the technical objects to be achieved by the present invention are not limited to the above-described technical objects and other technical objects that are not mentioned will be apparent to those skilled in the art from the following description.

本發明之額外優點、目的及特徵將在以下描述中部分提出,且對於在本發明領域中一般技藝者而言部分將在檢視下文後瞭解或可藉由實踐本發明而習得。本發明之目的及其他優點將會藉由在書面說明及申請專利範圍和附圖中特別指出之結構實現及達到。The additional advantages, objects, and features of the invention are set forth in part in the description which follows. The objectives and other advantages of the invention will be realized and attained by <RTIgt;

為了達成此等及其他優點且根據本發明之目的(如本文所體現及廣義地描述),一種在一無線通訊系統中用於藉由一使用者裝備(UE)傳送一測距訊號之方法包括使用一從一基地台(BS)接收之一前文(preamble)來獲取細胞服務區ID資訊;從基地台(BS)接收頻率分區組態資訊;使用細胞服務區ID資訊及頻率分區組態資訊,來分配一用於傳送測距訊號之測距通道(RCH)至一再使用-1分區或至一功率升高再使用(power-broosted reuse)-3分區(當無再使用-1分區時);及使用測距通道(RCH)傳送測距訊號至基地台。To achieve these and other advantages and in accordance with the purpose of the present invention (as embodied and broadly described herein), a method for transmitting a ranging signal by a user equipment (UE) in a wireless communication system includes Using a preamble received from a base station (BS) to obtain cell service area ID information; receiving frequency partition configuration information from a base station (BS); using cell service area ID information and frequency partition configuration information, To allocate a ranging channel (RCH) for transmitting ranging signals to repeatedly use -1 partition or to a power-broosted reuse-3 partition (when no -1 partition is used again); And use the ranging channel (RCH) to transmit the ranging signal to the base station.

在本發明的另一態樣中,一種在一無線通訊系統中藉由一基地台(BS)接收一測距訊號之方法包括傳送承載細胞服務區ID資訊之一前文及傳送上行鏈路頻率分區組態(UFPC)資訊至一使用者裝備(UE);及使用一再使用-1分區或當再使用-1分區不存在時之一功率升高再使用-3分區基於細胞服務區ID資訊及上行鏈路頻率分區組態(UFPC)資訊接收測距訊號。In another aspect of the present invention, a method for receiving a ranging signal by a base station (BS) in a wireless communication system includes transmitting a carrier cell service area ID information and transmitting an uplink frequency partition. Configure (UFPC) information to a user equipment (UE); and use the -1 partition again or when the reuse -1 partition does not exist, one of the power increases and then use the -3 partition based cell service area ID information and uplink The Link Frequency Partition Configuration (UFPC) information receives the ranging signal.

在本發明的另一態樣中,一種在一無線通訊系統中用於傳送一測距訊號之使用者裝備(UE)包括一接收器;一傳送器;及一處理器,該處理器經組態以控制接收器及傳送器,其中該接收器經組態以從一基地台(BS)接收一前文及頻率分區組態資訊,且該處理器使用一前文來獲取細胞服務區ID資訊,使用細胞服務區ID資訊及頻率分區組態資訊,來分配一用於傳送測距訊號之測距通道(RCH)至一再使用-1分區或至一功率升高再使用-3分區(當該再使用-1分區不存在時);及使用測距通道(RCH)傳送測距訊號至基地台。In another aspect of the present invention, a user equipment (UE) for transmitting a ranging signal in a wireless communication system includes a receiver; a transmitter; and a processor, the processor is grouped State to control the receiver and transmitter, wherein the receiver is configured to receive a preamble and frequency partition configuration information from a base station (BS), and the processor uses a preamble to obtain cell service area ID information, using Cell service area ID information and frequency partition configuration information to allocate a ranging channel (RCH) for transmitting ranging signals to repeatedly use -1 partition or to a power boost and then use -3 partition (when the reuse -1 when the partition does not exist); and use the ranging channel (RCH) to transmit the ranging signal to the base station.

在本發明的另一態樣中,一種用於在一無線通訊系統中接收一測距訊號之一基地台(BS)包括一傳送器;一接收器;及一處理器,該處理器控制該傳送器以傳送承載細胞服務區ID資訊之一前文及傳送上行鏈路頻率分區組態(UFPC)資訊至一使用者裝備(UE);及控制該接收器使用一再使用-1分區或當再使用-1分區不存在時之一功率升高再使用-3分區基於細胞服務區ID資訊及上行鏈路頻率分區組態資訊接收測距訊號。In another aspect of the present invention, a base station (BS) for receiving a ranging signal in a wireless communication system includes a transmitter; a receiver; and a processor that controls the The transmitter transmits the uplink frequency partition configuration (UFPC) information to a user equipment (UE) in advance of transmitting the bearer cell service area ID information; and controls the receiver to use the re-use-1 partition or when used again When the -1 partition does not exist, one of the power increases and then uses the -3 partition based on the cell service area ID information and the uplink frequency partition configuration information to receive the ranging signal.

若使用者裝備(UE)未對於基地台(BS)同步,則測距通道(RCH)係一非同步測距通道(NS-RCH),且非同步測距通道(NS-RCH)的頻率資源係根據方程式1決定:If the user equipment (UE) is not synchronized to the base station (BS), the ranging channel (RCH) is a non-synchronous ranging channel (NS-RCH), and the frequency resource of the asynchronous ranging channel (NS-RCH) Determined according to Equation 1:

[方程式1][Equation 1]

I SB =mod(IDcell ,R SB ) I SB = mod( IDcell , R SB )

其中ISB 係一用於來自RSB 次頻帶中之非同步測距通道(NS-RCH)的次頻帶索引(0,..,RSB -1),且由方程式2決定RSBWhere I SB is used for the sub-band index (0, .., R SB -1) from the asynchronous ranging channel (NS-RCH) in the R SB sub-band, and Equation 2 determines R SB :

[方程式2][Equation 2]

其中LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶鄰接資源單元(CRUs)的數目,且FPi係對應於再使用-1分區或僅當不存在再使用-1分區時對應於功率升高再使用-3。Where L SB-CRU, FPi is the number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition (FPi), and FPi corresponds to re-use-1 partition or only when there is no reuse-1 partition Use -3 after power is increased.

若使用者裝備(UE)對於基地台(BS)同步,測距通道(RCH)係一同步測距通道(S-RCH),且用於同步測距通道(S-RCH)的頻率資源係根據方程式3決定:If the user equipment (UE) synchronizes with the base station (BS), the ranging channel (RCH) is a synchronous ranging channel (S-RCH), and the frequency resource used for the synchronous ranging channel (S-RCH) is based on Equation 3 determines:

[方程式3][Equation 3]

I SB,s =mod(IDcell +1,R SB ) I SB,s =mod( IDcell +1, R SB )

其中ISB 係一用於來自RSB 次頻帶中之同步測距通道(S-RCH)的次頻帶索引(0,..,RSB -1),且由方程式4決定RSB :Where I SB is used for the sub-band index (0, .., R SB -1) from the synchronous ranging channel (S-RCH) in the R SB sub-band, and R SB is determined by Equation 4:

[方程式4][Equation 4]

其中LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶鄰接資源單元(CRUs)的數目,且FPi係對應於再使用-1分區或僅當不存在再使用-1分區時對應於功率升高再使用-3。Where L SB-CRU, FPi is the number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition (FPi), and FPi corresponds to re-use-1 partition or only when there is no reuse-1 partition Use -3 after power is increased.

應理解本發明的先前一般描述及下文詳述兩者係範例性及解釋性且意欲提供如所主張的本發明的進一步解釋。It is to be understood that both the foregoing general description of the invention

上述技術解決辦法僅係本發明具體實施例之一部分,且對於本發明的技術特徵所應用的各種修改可基於以下本發明的詳述,由在本發明所屬技術中一般技藝者理解。The above technical solutions are only a part of the specific embodiments of the present invention, and various modifications applied to the technical features of the present invention can be based on the following detailed description of the present invention, which will be understood by those skilled in the art to which the present invention pertains.

如從上述瞭解,本發明的範例性的具體實施例具有以下效應。本發明的具體實施例可減少在鄰近細胞服務區的訊號中造成高干擾的危險。As is apparent from the above, exemplary embodiments of the present invention have the following effects. Particular embodiments of the present invention reduce the risk of causing high interference in signals adjacent to the cell service area.

本發明的具體實施例可防止控制通道被過量分配給特定頻率分區。Particular embodiments of the present invention may prevent control channels from being over-allocated to specific frequency partitions.

本發明的具體實施例可有效率地傳送上行鏈路控制資訊。Embodiments of the present invention can efficiently transmit uplink control information.

在本發明領域中一般技藝者應瞭解可用本發明達到之效應不受限於以上經特別描述者,且從以下結合附圖的以下詳述將更清楚地理解本發明的其他優點。Other advantages of the present invention will be more clearly understood from the following detailed description of the appended claims.

下文中,本發明之較佳具體實施例將參考附圖描述。應瞭解連同附圖揭示之詳細描述係旨於描述本發明的範例性具體實施例,且非旨於描述可實現本發明的一唯一具體實施例。以下詳述包括細節內容以提供本發明的完全理解。然而,在本發明領域中一般技藝者應瞭解可無須細節內容來實現本發明。例如,雖然以下描述是基於對應於一IEEE 802.16系統的一行動通訊系統,但可將以下描述應用於除了IEEE 802.16系統的唯一特徵以外其他行動通訊系統。Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. It is to be understood that the detailed description of the embodiments of the invention are in the The following detailed description includes the details to provide a complete understanding of the invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without the details. For example, although the following description is based on a mobile communication system corresponding to an IEEE 802.16 system, the following description can be applied to other mobile communication systems other than the unique features of the IEEE 802.16 system.

在一些情況下,為了防止本發明的概念產生歧義,將省略已知技術的結構及設備,或將基於各結構及設備的主要功能之一方塊圖的形式圖示。另外,當可能時,遍及圖式及說明書將使用相同的元件符號來代表相同或類似部分。In some cases, in order to prevent ambiguity in the concept of the present invention, the structures and devices of the known art will be omitted or will be illustrated in the form of a block diagram based on one of the main functions of the structures and devices. In addition, the same component symbols will be used throughout the drawings and the description to represent the same or the like.

同時,在本發明中,若某一訊號係分配予超訊框/訊框/次訊框/符號/載波/次載波,其意味著某一訊號是在對應的超訊框/訊框/次訊框/符號之一週期/時序期間透過對應的載波/次載波傳送。Meanwhile, in the present invention, if a certain signal is assigned to a hyperframe/frame/subframe/symbol/carrier/subcarrier, it means that a certain signal is in the corresponding hyperframe/frame/time. One of the frame/symbol periods/times is transmitted through the corresponding carrier/subcarrier.

第1圖係說明一範例性無線通訊系統之組態的圖式。Figure 1 is a diagram illustrating the configuration of an exemplary wireless communication system.

參考第1圖,一無線通訊系統100包括複數個基地台(BSs)110a、110b及110C及複數個使用者裝備(UEs)120a至120i。一基地台(BS)通常指一固定式台,該基地台(BS)與一使用者裝備及/或另一基地台施行通訊,且與該使用者裝備及另一基地台交換各種類的資料及控制資訊。基地台可指例如一進化NodeB(eNB)、一基地收發器系統(BTS)、一存取點(AP)及先進基地台(ABS)的另一術語(eNB)。各BS110a、110b或110c將服務提供給各BS110a、110b或110c的特定地理區域102a、102b或102c。通常將特定地理區域102a、102b或102c稱作一細胞服務區。由於改良系統效能的目的,可將細胞服務區進一步分成複數個更小區域104a、104b及104c。此等更小區域可稱為扇區(sector)或片段。在本發明中,一細胞服務區、一扇區或一片段指一BS或一天線群組提供本發明中的一通訊服務之一地理區域。因此,與一特定細胞服務區、一特定扇區或一特定片段的通訊可等於與一在特定細胞服務區、特定扇區或特定片段中提供一通訊服務的一天線群組的通訊。在特定細胞服務區、扇區或片段中的一下行鏈路/上行鏈路訊號為來自或到達提供在特定細胞服務區、扇區或片段中之一通訊服務的天線群組的一下行鏈路/上行鏈路訊號。此外,特定細胞服務區、扇區或片段的通道狀態/品質係一通道或在天線群組與對應於該特定細胞服務區、扇區或片段之一地理區域的一特定UE間建立的通道或通訊鏈路的通道狀態/品質。為了參考,用於IEEE(電機及電子工程師學會)802.16m系統中之一細胞服務區識別符係基於整個系統分配。另一方面,一扇區或片段識別符係基於一特定區域分配,在該特定區域中一服務係從各基地台(BS)提供,及分配0至2的任何值。可將所有次載波基於扇區或片段識別符分類。Referring to FIG. 1, a wireless communication system 100 includes a plurality of base stations (BSs) 110a, 110b, and 110C and a plurality of user equipments (UEs) 120a to 120i. A base station (BS) generally refers to a fixed station, the base station (BS) communicates with a user equipment and/or another base station, and exchanges various types of data with the user equipment and another base station. And control information. A base station may refer to another term (eNB) such as an evolved NodeB (eNB), a base transceiver system (BTS), an access point (AP), and an advanced base station (ABS). Each BS 110a, 110b or 110c provides a service to a particular geographic area 102a, 102b or 102c of each BS 110a, 110b or 110c. A particular geographic area 102a, 102b, or 102c is typically referred to as a cellular service area. The cell service area can be further divided into a plurality of smaller regions 104a, 104b, and 104c for the purpose of improving system performance. These smaller areas may be referred to as sectors or segments. In the present invention, a cell service area, a sector or a segment refers to a BS or an antenna group providing a geographical area of a communication service in the present invention. Thus, communication with a particular cell service area, a particular sector, or a particular segment can be equal to communication with an antenna group that provides a communication service in a particular cell service area, a particular sector, or a particular segment. A downlink/uplink signal in a particular cell service area, sector or segment is a downlink from an antenna group that provides communication services in one of a particular cell service area, sector or segment. /Uplink signal. Furthermore, the channel state/quality of a particular cell service area, sector or segment is a channel or a channel established between an antenna group and a particular UE corresponding to a geographic area of the particular cell service area, sector or segment or Channel status/quality of the communication link. For reference, one of the cell service area identifiers used in the IEEE (Institute of Electrical and Electronics Engineers) 802.16m system is based on the entire system allocation. On the other hand, a sector or segment identifier is based on a specific area in which a service is provided from each base station (BS) and assigns any value from 0 to 2. All subcarriers can be classified based on sector or segment identifiers.

一使用者裝備(UE)120a至120i指一行動或固定類型的使用者終端。使用者裝備的實例包括各種裝備,該各種裝備將使用者資料及/或各種類的控制資訊傳送至一基地台及自該基地台接收。可將終端設備稱作一終端裝備(TE)、一行動台(MS)、一先進行動台(AMS)、一行動終端(MT),一使用者終端(UT)、一用戶台(SS)、一無線裝置、一個人數位助理(PDA)、一無線數據機或一手持裝置。另外,在本發明中,一基地台(BS)指一固定式台,基地台(BS)與一使用者裝備及/或另一基地台施行通訊,且與使用者裝備及另一基地台交換各種類的資料及控制資訊。基地台可指例如一進化NodeB(eNB)、一基地收發器系統(BTS)及一存取點(AP)的另一術語。A User Equipment (UE) 120a through 120i refers to a mobile terminal of a mobile or fixed type. Examples of user equipment include various equipment that transmits user data and/or various types of control information to and from a base station. The terminal device may be referred to as a terminal equipment (TE), a mobile station (MS), an advanced mobile station (AMS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), A wireless device, a PDA, a wireless data modem, or a handheld device. In addition, in the present invention, a base station (BS) refers to a fixed station, and the base station (BS) communicates with a user equipment and/or another base station, and exchanges with user equipment and another base station. Various types of information and control information. A base station may refer to another term such as an evolved NodeB (eNB), a base transceiver system (BTS), and an access point (AP).

各UE可在一時間點處與在一下行鏈路及一上行鏈路上之至少一BS通訊。通訊可在分頻多工存取(FDMA)、分時多工存取(TDMA)、分碼多工存取(CDMA)、單一載波-FDMA(SC-FDMA)、多載波-FDMA(MC-FDMA)、正交分頻多工存取(OFDMA)或以上各者的組合中實行。在此,一下行鏈路指經導向從一BS至一UE的一通訊鏈路且一上行鏈路指一經導向從UE至BS的通訊鏈路。Each UE can communicate with at least one BS on a downlink and an uplink at a point in time. Communication can be divided into frequency division multiplexing access (FDMA), time division multiplexing access (TDMA), code division multiplexing access (CDMA), single carrier-FDMA (SC-FDMA), multi-carrier-FDMA (MC- FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), or a combination of the above. Here, the downlink refers to a communication link directed from a BS to a UE and an uplink refers to a communication link directed from the UE to the BS.

第2圖為用於實施本發明之一UE及一BS的一方塊圖。Figure 2 is a block diagram of a UE and a BS for implementing the present invention.

UE用作為上行鏈路上的一傳送裝置及作為下行鏈路上的接收裝置。反之,BS可用作為上行鏈路上之一接收裝置及作為下行鏈路上的一傳送裝置。The UE is used as a transmitting device on the uplink and as a receiving device on the downlink. Conversely, the BS can be used as one of the receiving devices on the uplink and as a transmitting device on the downlink.

UE及BS包括用於接收資訊、資料、訊號及/或訊息的天線500a及500b,傳送器100a及100b用於藉由控制天線500a及500b傳送訊息,接收器300a及300b用於藉由控制天線500a及500b接收訊息,且記憶體200a及200b用於儲存關聯無線通訊系統中之通訊的資訊。UE及BS進一步分別包括處理器400a及400b,處理器400a及400b經調適以藉由控制UE及BS的組件(例如傳送器100a及100b、接收器300a及300b與記憶體200a及200b)施行本發明。UE中的傳送器100a、記憶體200a、接收器300a及處理器400a可經組態成為分離晶片上的獨立組件或該等分離晶片可併到一單一晶片內。同樣地,BS中的傳送器100b、記憶體200b、接收器300b及處理器400b可經組態成為分離晶片上的獨立組件或該等分離晶片可併到一單一晶片內。傳送器及接收器可經組態作為UE或BS中之一單一收發器或一射頻(RF)模組。The UE and the BS include antennas 500a and 500b for receiving information, data, signals and/or messages, and the transmitters 100a and 100b are for transmitting messages by controlling the antennas 500a and 500b, and the receivers 300a and 300b are for controlling the antennas. The 500a and 500b receive messages, and the memories 200a and 200b are used to store information of communications in the associated wireless communication system. The UE and the BS further include processors 400a and 400b, respectively, which are adapted to control the components of the UE and the BS (e.g., transmitters 100a and 100b, receivers 300a and 300b, and memories 200a and 200b). invention. Transmitter 100a, memory 200a, receiver 300a, and processor 400a in the UE can be configured to be separate components on separate wafers or the separate wafers can be combined into a single wafer. Similarly, transmitter 100b, memory 200b, receiver 300b, and processor 400b in the BS can be configured to be separate components on separate wafers or the separate wafers can be incorporated into a single wafer. The transmitter and receiver can be configured as a single transceiver or a radio frequency (RF) module in the UE or BS.

天線500a及500b將所產生的訊號從傳送器100a及100b傳送至外部,或將從外部接收到的無線電訊號轉移至接收器300a及300b。天線500a及500b可稱為天線埠。各天線埠可對應一實體天線或可由多於一實體天線元件的組合來組態。不論哪種情況,從各天線埠傳送的訊號未經設計成由UE接收器300a進一步解構。對應於一給定天線埠的經傳送參考訊號界定來自UE之點的天線埠,及使UE能推導出用於該天線埠之一頻率評估,不論該天線埠是否代表來自一實體天線之一單一無線電通道,或來自複數個一起包含該天線埠之實體天線元件的一複合通道。即,根據本發明具體實施例的天線埠,用於在天線埠上傳送一符號之一通道可從在相同天線埠上傳送一不同符號之相同天線埠所經由的該通道推導出。若傳送器100a及100b及/或接收器300a及300b使用複數個天線來支援一多輸入多輸出(MIMO)功能,可將傳送器100a及100b及/或接收器300a及300b之各者連接至兩個或兩個以上的天線。The antennas 500a and 500b transmit the generated signals from the transmitters 100a and 100b to the outside, or transfer the received radio signals to the receivers 300a and 300b. Antennas 500a and 500b may be referred to as antennas. Each antenna 埠 may correspond to a physical antenna or may be configured by a combination of more than one physical antenna element. In either case, the signals transmitted from each antenna are not designed to be further deconstructed by the UE receiver 300a. A transmitted reference signal corresponding to a given antenna 界定 defines an antenna 埠 from a point of the UE, and enables the UE to derive a frequency estimate for the antenna , whether or not the antenna 代表 represents a single from a physical antenna A radio channel, or a composite channel from a plurality of physical antenna elements that together comprise the antenna. That is, in accordance with an antenna port of an embodiment of the present invention, one of the channels for transmitting a symbol on the antenna frame can be derived from the channel through which the same antenna 传送 transmitting a different symbol on the same antenna frame. If the transmitters 100a and 100b and/or the receivers 300a and 300b use a plurality of antennas to support a multiple input multiple output (MIMO) function, each of the transmitters 100a and 100b and/or the receivers 300a and 300b can be connected to Two or more antennas.

處理器400a及400b大體上提供對於UE及BS的模組之總體控制。尤其,處理器400a及400b可實行一控制功能用於施行本發明,一基於服務特性及一傳播環境之一媒體存取控制(MAC)訊框可變控制功能,一用於控制閒置模式操作之功率節省模式功能,一交遞功能,及一鑑別及加密功能。處理器400a及400b亦可稱作控制器、微控制器、微處理器、微電腦等等。處理器400a及400b可在硬體、韌體、軟體,或硬體、韌體、軟體的組合中組態。在一硬體組態中,處理器400a及400b可設有一或多個應用特定積體電路(ASICs)、數位訊號處理器(DSPs)、數位訊號處理裝置(DSPDs)、可程式邏輯裝置(PLDs)及/或現場可程式閘極陣列(FPGAs),以用於實施本發明。在一韌體或軟體組態中,可組態韌體或軟體以包括一模組、一程序、一功能等等,以施行本發明的功能或操作。可在處理器400a及400b中提供此韌體或軟體,或可在記憶體200a及200b中儲存及由處理器400a及400b驅動。Processors 400a and 400b generally provide overall control of the modules of the UE and the BS. In particular, the processors 400a and 400b may implement a control function for performing the present invention, a media access control (MAC) frame variable control function based on a service characteristic and a propagation environment, and a control mode for idle mode operation. Power save mode function, a handover function, and an authentication and encryption function. Processors 400a and 400b may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, and the like. The processors 400a and 400b can be configured in hardware, firmware, software, or a combination of hardware, firmware, and software. In a hardware configuration, the processors 400a and 400b may be provided with one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and programmable logic devices (PLDs). And/or field programmable gate arrays (FPGAs) for use in practicing the invention. In a firmware or software configuration, the firmware or software can be configured to include a module, a program, a function, etc., to perform the functions or operations of the present invention. The firmware or software may be provided in the processors 400a and 400b or may be stored in the memory 200a and 200b and driven by the processors 400a and 400b.

傳送器100a及100b對於訊號及/或資料施行預定編碼及調變,預定編碼及調變係藉由連接至處理器400a及400b的排程器排程且傳送給外部,而後將經調變的訊號及/或資料轉移至天線500a及500b。例如,傳送器100a及100b藉由解多工、通道編碼、調變等等將一傳送資料串流轉換成為K層。該等K層在傳送器100a及100b的傳送處理器中處理以後透過天線500a及500b傳送。UE及BS的傳送器100a及100b和接收器300a及300b可根據處理傳送訊號及接收訊號的程序以不同方式組態。The transmitters 100a and 100b perform predetermined encoding and modulation on the signals and/or data. The predetermined encoding and modulation are scheduled by the scheduler connected to the processors 400a and 400b and transmitted to the outside, and then modulated. Signals and/or data are transferred to antennas 500a and 500b. For example, the transmitters 100a and 100b convert a transport stream into a K layer by demultiplexing, channel encoding, modulation, and the like. The K layers are transmitted through the antennas 500a and 500b after being processed in the transport processors of the transmitters 100a and 100b. The transmitters 100a and 100b and the receivers 300a and 300b of the UE and the BS can be configured differently according to a procedure for processing the transmitted signal and receiving the signal.

記憶體200a及200b可儲存處理器400a及400b的訊號處理及控制所需的程式及暫時儲存輸入及輸出資訊。記憶體200a及200b之各者可實施成為一快閃記憶體類型儲存媒體、一硬碟類型儲存媒體、一多媒體卡片微類型儲存媒體、一卡片類型記憶體(如,一安全數位(SD)或eXtreme數位(XD)記憶體)、一隨機存取記憶體(RAM)、一唯讀記憶體(ROM)、一電可抹除可程式唯讀記憶體(EEPROM)、一可程式唯讀記憶體(PROM)、一磁性記憶體、一磁碟或一光碟。The memories 200a and 200b can store programs required for signal processing and control of the processors 400a and 400b and temporarily store input and output information. Each of the memories 200a and 200b can be implemented as a flash memory type storage medium, a hard disk type storage medium, a multimedia card micro type storage medium, a card type memory (eg, a secure digital position (SD) or eXtreme digital (XD) memory), a random access memory (RAM), a read-only memory (ROM), an electrically erasable programmable read-only memory (EEPROM), a programmable read-only memory (PROM), a magnetic memory, a disk or a compact disc.

第3圖係在UE及BS之各者中的一範例性傳送器之一方塊圖。傳送器100a及100b的操作將在下文中參考第3圖更詳細描述。Figure 3 is a block diagram of an exemplary transmitter in each of the UE and the BS. The operation of the transmitters 100a and 100b will be described in more detail below with reference to FIG.

參考第3圖,正交分頻多工存取(OFDMA)傳送器100a及100b之各者包括一MIMO編碼器110、一MIMO預編碼器120、次載波140-1至140-K、及一OFDMA訊號產生器150。傳送器100a及100b的各者係連接至Nt 傳送天線500-1至500-N。Referring to FIG. 3, each of the orthogonal frequency division multiplexing access (OFDMA) transmitters 100a and 100b includes a MIMO encoder 110, a MIMO precoder 120, subcarriers 140-1 to 140-K, and a OFDMA signal generator 150. Each of the transmitters 100a and 100b is connected to the N t transmitting antennas 500-1 to 500-N.

MIMO編碼器110根據一預定編碼方案將一傳送資料串流編碼以形成編碼資料及調變該編碼資料以依一預定調變方案配置成為表示一訊號群集上之位置的符號。輸入至MIMO編碼器110的傳送資料串流可藉由使從一MAC層接收的一資料區塊經受各種訊號處理而產生,處理例如通道編碼、交錯及攪頻。可將資料串流稱作一碼字或一層及等於來自MAC層的一資料區塊。將來自MAC層的資料區塊稱作一運輸區塊。調變方案可為(但不限於)m相移鍵控(m-PSK)及m正交振幅調變(m-QAM)之任一者。為了調變編碼資料,MIMO編碼器110可具有一獨立調變模組。同時,MIMO編碼器110可定義輸入符號之MINO串流,使得MIMO預編碼器120可將天線特定符號分佈至對應天線路徑。一MINO串流指輸入至MIMO預編碼器120之一資訊路徑,且可將MIMO預編碼器120前的資訊路徑稱作一虛擬天線或一MINO串流。為了界定符號的MINO串流,MIMO編碼器110可具有組態作為一獨立模組的一MINO串流映射器(mapper)。The MIMO encoder 110 encodes a transport stream according to a predetermined coding scheme to form an encoded data and modulate the encoded data to be configured to represent a location on a cluster of signals in accordance with a predetermined modulation scheme. The transport stream stream input to the MIMO encoder 110 can be generated by subjecting a data block received from a MAC layer to various signal processing, such as channel coding, interleaving, and frequency agitation. The data stream can be referred to as a codeword or layer and equal to a data block from the MAC layer. The data block from the MAC layer is referred to as a transport block. The modulation scheme can be, but is not limited to, any of m phase shift keying (m-PSK) and m quadrature amplitude modulation (m-QAM). In order to modulate the encoded data, the MIMO encoder 110 can have an independent modulation module. At the same time, MIMO encoder 110 may define a MINO stream of input symbols such that MIMO precoder 120 may distribute antenna specific symbols to corresponding antenna paths. A MINO stream refers to an information path input to the MIMO precoder 120, and the information path before the MIMO precoder 120 can be referred to as a virtual antenna or a MINO stream. To define the MINO stream of symbols, MIMO encoder 110 may have a MINO stream mapper configured as a separate module.

MIMO預編碼器120藉由根據多傳送天線500-1至500-Nt 根據一MIMO方案處理接收到符號而將天線特定符號輸出至次載波映射器140-1至140-K。將MINO串流映射至天線500-1至500-Nt 是由MIMO預編碼器120施行。明確言之,MIMO預編碼器120將MIMO編碼器110的輸出x乘以一Nt ×Mt 預編碼矩陣W。MIMO預編碼器120的輸出可表示為一Nt ×NF 矩陣z。The MIMO precoder 120 outputs antenna specific symbols to the subcarrier mappers 140-1 to 140-K by processing the received symbols according to a MIMO scheme according to the multi-transmitting antennas 500-1 to 500- Nt . Mapping the MINO stream to antennas 500-1 through 500-N t is performed by MIMO precoder 120. Specifically, MIMO precoder 120 multiplies the output x of MIMO encoder 110 by an N t × M t precoding matrix W. The output of MIMO precoder 120 can be represented as an N t × N F matrix z.

次載波映射器140-1至140-K將該等天線特定符號分配至適當次載波且根據UE將符號多工處理。同時,次載波映射器140-1至140-K可包括一邏輯資源單元(LRU)分配區塊(未圖示),用於將經調變符號分成LRU大小的片段及將各片段分配給LRU。次載波映射器140-1至140-K可包括一映射區塊(未圖示),用於將LRU映射成為資料叢訊(burst)資料。資料叢訊被分配至在一實體頻域中之一實體資源單元(PRU)。因此,次載波映射器140-1至140-K用以根據在LRU及PRU間之一映射關係將經調變資料映射進入至次載波內。The subcarrier mappers 140-1 through 140-K assign the equal antenna specific symbols to the appropriate subcarriers and process the symbols multiplex according to the UE. Meanwhile, the secondary carrier mappers 140-1 to 140-K may include a logical resource unit (LRU) allocation block (not shown) for dividing the modulated symbols into LRU-sized segments and assigning the segments to the LRUs. . The subcarrier mappers 140-1 through 140-K may include a mapping block (not shown) for mapping the LRUs into data burst data. Data bursts are allocated to one physical resource unit (PRU) in an entity frequency domain. Therefore, the secondary carrier mappers 140-1 to 140-K are configured to map the modulated data into the secondary carrier according to a mapping relationship between the LRU and the PRU.

OFDMA訊號產生器150藉由根據一OFDM調變方案調變天線特定符號而輸出OFDM符號。例如,OFDMA訊號產生器150可針對天線特定符號施行反快速傅立葉轉換(IFFT)及將一循環字首(Prefix)(CP)插入所得IFFT時域符號中。在數位對類比轉換及頻率向上轉換以後,將OFDMA符號透過傳送天線500-1至500Nt 傳送給接收器。OFDMA訊號產生器150可包括一IFFT模組、一CP插件、一數位對類比轉換器(DAC)及一頻率向上轉換器。The OFDMA signal generator 150 outputs an OFDM symbol by modulating an antenna specific symbol according to an OFDM modulation scheme. For example, OFDMA signal generator 150 may perform inverse fast Fourier transform (IFFT) for antenna specific symbols and insert a cyclic prefix (CP) into the resulting IFFT time domain symbols. After the digital pair analog conversion and frequency up conversion, the OFDMA symbols are transmitted to the receiver through the transmit antennas 500-1 to 500N t . The OFDMA signal generator 150 can include an IFFT module, a CP card, a digital-to-digital converter (DAC), and a frequency up-converter.

OFDMA接收器300a及300b以與OFDMA傳送器相反的操作來處理訊號。The OFDMA receivers 300a and 300b process the signals in the opposite operation to the OFDMA transmitter.

更明確言之,接收器300a及300b將透過天線500a及500b從外部接收到的無線電訊號解碼及解調變且將解調變訊號轉移至處理器400a及400b。連接至接收器300a且300b之各者的天線500a或500b可包括Nr 接收天線。透過各別接收天線接收的訊號被向下轉換至基頻訊號,及在多工及通道解調變以後恢復至由傳送器100a或100b意欲發射的一原始資料串流。因此,接收器300a及300b之各者可具有用於將接收到訊號向下轉換至基頻訊號之一訊號恢復器,用於將基頻訊號多工處理的一多工器,及用於將多工處理訊號串流解調變至一資料串流之一通道解調變器。訊號恢復器、多工器及通道解調變器可組態為分離的模組或合併至一單一模組內。更明確而言,訊號恢復器可包括一用於將一類比訊號轉換成一數位訊號之類比對數位轉換器(ADC),一用於從數位訊號移除一CP之CP移除器210,一用於藉由將一快速傅立葉轉換(FFT)應用於CP移除訊號而產生頻率符號的FFT模組220,及一用於將頻率符號恢復成天線特定符號之次載波解映射器/等化器230。一多工器250從天線特定符號恢復MINO串流且一MIMO解碼器260將從MINO串流藉由傳送設備傳送的資料串流恢復。More specifically, the receivers 300a and 300b decode and demodulate the radio signals received from the outside through the antennas 500a and 500b and transfer the demodulation signals to the processors 400a and 400b. The antenna 500a or 500b connected to each of the receivers 300a and 300b may include an N r receiving antenna. The signals received through the respective receiving antennas are downconverted to the baseband signal and restored to an original stream of data intended to be transmitted by the transmitter 100a or 100b after multiplex and channel demodulation. Therefore, each of the receivers 300a and 300b may have a multiplexer for down-converting the received signal to one of the baseband signals for multiplexing the baseband signal, and for The multiplexed processing signal stream demodulation is changed to one channel demodulation transformer of a data stream. The signal recovery, multiplexer, and channel demodulation transformers can be configured as separate modules or incorporated into a single module. More specifically, the signal recovery device may include an analog-to-digital converter (ADC) for converting a analog signal into a digital signal, and a CP remover 210 for removing a CP from the digital signal. An FFT module 220 for generating a frequency symbol by applying a fast Fourier transform (FFT) to the CP removal signal, and a secondary carrier demapper/equalizer 230 for restoring the frequency symbol to the antenna specific symbol . A multiplexer 250 recovers the MINO stream from the antenna specific symbols and a MIMO decoder 260 recovers the stream of data transmitted by the MINO stream by the transmitting device.

與OFDMA傳送器比較,一單一載波分頻多工存取(SC-FDMA)傳送器更包括在次載波映射器140至140-K前之一FFT模組130。相對於OFDMA方案,SC-FDMA傳送器在IFFT施行前透過FFT在頻域中展開複數個資料以明顯地減少尖峰對平均功率比(PAPR)。一SC-FDMA接收器除了包括OFDMA接收器的組件以外在次載波移除映射器/等化器230後更包括一IFFT模組240。SC-FDMA接收器以與SC-FDMA傳送器相反的操作來處理一訊號。Compared to an OFDMA transmitter, a single carrier frequency division multiplexing access (SC-FDMA) transmitter is further included in the FFT module 130 before the secondary carrier mappers 140 to 140-K. In contrast to the OFDMA scheme, the SC-FDMA transmitter spreads a plurality of data in the frequency domain through the FFT prior to the implementation of the IFFT to significantly reduce the peak-to-average power ratio (PAPR). An SC-FDMA receiver includes an IFFT module 240 after the subcarrier removal mapper/equalizer 230 in addition to the components including the OFDMA receiver. The SC-FDMA receiver processes a signal in the opposite operation of the SC-FDMA transmitter.

儘管已於第2圖及第3圖中描述傳送器110a及100b之各者包括MIMO編碼器110、MIMO預編碼器120、次載波映射器140-1至140-K及OFDMA/SC-FDMA訊號產生器150,傳送器的處理器400a及400b可包括MIMO編碼器110、MIMO預編碼器120、次載波映射器140-1至140-K及OFDMA/SC-FDMA訊號產生器150。同樣地,儘管已於第2圖及第3圖中描述接收器300a及300b的各者包括訊號恢復器、多工器及通道解調變器,接收器的處理器400a及400b可包括訊號恢復器、多工器及通道解調變器。下文,為描述方便,MIMO編碼器110、MIMO預編碼器120、次載波映射器140-1至140-K及OFDMA/SC-FDMA訊號產生器150包括在與處理器400a及400b分離的傳送器100a及100b中,傳送器100a及100b控制MIMO編碼器110、MIMO預編碼器120、次載波映射器140-1至140-K及OFDMA/SC-FDMA訊號產生器150之操作。並且,訊號恢復器、多工器及通道解調變器包括在與處理器400a及400b分離的接收器300a與300b內,接收器300a與300b控制訊號恢復器、多工器及通道解調變器之操作。然而,可將本發明的具體實施例同等地應用於其中MIMO編碼器110、MIMO預編碼器120、次載波映射器140-1至140-K及OFDMA/SC-FDMA訊號產生器150被包括在處理器400a及400b之情況,及其中訊號恢復器、多工器及通道解調變器被包括在處理器400a及400b中之情況。Although each of the transmitters 110a and 100b is described in FIGS. 2 and 3, including the MIMO encoder 110, the MIMO precoder 120, the secondary carrier mappers 140-1 to 140-K, and the OFDMA/SC-FDMA signals. Generator 150, transmitter processors 400a and 400b may include MIMO encoder 110, MIMO precoder 120, secondary carrier mappers 140-1 through 140-K, and OFDMA/SC-FDMA signal generator 150. Similarly, although each of the receivers 300a and 300b includes a signal restorer, a multiplexer, and a channel demodulation in Figures 2 and 3, the receiver's processors 400a and 400b may include signal recovery. , multiplexer and channel demodulation transformers. Hereinafter, for convenience of description, the MIMO encoder 110, the MIMO precoder 120, the secondary carrier mappers 140-1 to 140-K, and the OFDMA/SC-FDMA signal generator 150 are included in a transmitter separate from the processors 400a and 400b. In 100a and 100b, transmitters 100a and 100b control the operations of MIMO encoder 110, MIMO precoder 120, secondary carrier mappers 140-1 through 140-K, and OFDMA/SC-FDMA signal generator 150. Moreover, the signal recovery unit, the multiplexer and the channel demodulation converter are included in the receivers 300a and 300b separated from the processors 400a and 400b, and the receivers 300a and 300b control the signal recovery unit, the multiplexer and the channel demodulation. Operation of the device. However, the specific embodiments of the present invention can equally be applied to the MIMO encoder 110, the MIMO precoder 120, the secondary carrier mappers 140-1 to 140-K, and the OFDMA/SC-FDMA signal generator 150 being included in The case of the processors 400a and 400b, and the case where the signal recovery, multiplexer, and channel demodulation transformers are included in the processors 400a and 400b.

第4圖說明用於無線通訊系統的IEEE 802.16m的一無線電訊框的一範例性結構。可將無線電訊框結構應用於一分頻雙工(FDD)模式、一半分頻雙工(H-FDD)模式及一分時雙工(TDD)模式。Figure 4 illustrates an exemplary structure of a radio frame for IEEE 802.16m for a wireless communication system. The radio frame structure can be applied to one frequency division duplex (FDD) mode, half frequency division duplex (H-FDD) mode, and one time division duplex (TDD) mode.

參考第4圖,無線電訊框包括20ms的超訊框SU0至SU3,超訊框SU0至SU3支援5MHz、8.75MHz、10MHz或20MHz的一頻寬。各超訊框包括有相同大小的5ms的四個訊框F0至F3。Referring to Figure 4, the radio frame includes 20ms of superframes SU0 to SU3, and the superframes SU0 to SU3 support a bandwidth of 5MHz, 8.75MHz, 10MHz or 20MHz. Each hyperframe includes four frames F0 to F3 of the same size of 5 ms.

一訊框可包括某一數量的次訊框。對於一5/10/20MHz系統頻寬,一訊框可包括八個次訊框SF0至SF7。對於一8.75MHz系統頻寬,一個次訊框可包括七個次訊框SF0至SF6。對於一7MHz系統頻寬,一個次訊框可包括六個次訊框SF0至SF5。次訊框係分配用於下行鏈路或上行鏈路傳送。可根據雙工模式不同地組態訊框。例如,因為藉由在FDD模式中的頻率識別下行鏈路傳送及上行鏈路傳送,一訊框包括下行鏈路次訊框或上行鏈路次訊框。在FDD模式中,對於5/10/20MHz之系統頻寬,各訊框的八個次訊框是從0至7標號。一閒置時間可在各訊框的末尾存在。另一方面,因為在TDD模式藉由時間識別下行鏈路傳送及上行鏈路傳送,將訊框內的次訊框分類為下行鏈路次訊框及上行鏈路次訊框。對於5/10/20MHz的一系統頻寬,例如,八個次訊框中的n個下行鏈路次訊框可從0至n-1索引且剩餘(8-n)個上行鏈路次訊框在各訊框中從0至(8-n)-1索引。A frame can include a certain number of subframes. For a 5/10/20 MHz system bandwidth, a frame can include eight sub-frames SF0 through SF7. For an 8.75 MHz system bandwidth, a subframe can include seven subframes SF0 through SF6. For a 7 MHz system bandwidth, one subframe can include six subframes SF0 through SF5. The secondary frame is allocated for downlink or uplink transmission. Frames can be configured differently depending on the duplex mode. For example, because the downlink transmission and the uplink transmission are identified by the frequency in the FDD mode, the frame includes a downlink subframe or an uplink subframe. In the FDD mode, for a system bandwidth of 5/10/20 MHz, the eight subframes of each frame are numbered from 0 to 7. An idle time can exist at the end of each frame. On the other hand, because the downlink transmission and the uplink transmission are identified by time in the TDD mode, the subframes in the frame are classified into a downlink subframe and an uplink subframe. For a system bandwidth of 5/10/20 MHz, for example, n downlink subframes in eight subframes can be indexed from 0 to n-1 and the remaining (8-n) uplink subframes The box is indexed from 0 to (8-n)-1 in each frame.

一個次訊框係一傳送時間間隔(TTI)之一單元。換言之,由一或多個次訊框定義一TTI。一般而言,一基本TTI設定至一個次訊框。TTI指一時間間隔,在該間隔期間一實體層透過一無線電介面傳送經編碼封包。因此,可將一個次訊框或複數個鄰近次訊框用作資料封包的傳送。A sub-frame is a unit of one transmission time interval (TTI). In other words, a TTI is defined by one or more subframes. In general, a basic TTI is set to a sub-frame. The TTI refers to a time interval during which a physical layer transmits an encoded packet through a radio interface. Therefore, a sub-frame or a plurality of adjacent sub-frames can be used as the transmission of the data packet.

一個次訊框包括在時域內之複數個OFDMA符號及頻域中的複數個次載波。可將OFDMA符號根據一多工存取方案稱作OFDMA符號或SC-FDMA符號。次訊框中的OFDMA符號數目可根據一通道頻寬及一CP長度變化。次訊框的類型可根據包括在次訊框中的OFDMA符號的數目識別。例如,次訊框類型-1包括六個OFDMA符號,次訊框類型-2包括七個OFDMA符號,次訊框類型-3包括五個OFDMA符號,且次訊框類型-4包括九個OFDMA符號。一訊框可包括一類型的次訊框或不同類型的次訊框。為方便描述緣故,本發明的具體實施例將在包括六個OFDM符號的次訊框類型-1的前後文中描述。然而,應注意將描述於後的本發明具體實施例亦可以相同模式應用於其他類型的次訊框。A sub-frame includes a plurality of OFDMA symbols in the time domain and a plurality of subcarriers in the frequency domain. The OFDMA symbols may be referred to as OFDMA symbols or SC-FDMA symbols according to a multiplex access scheme. The number of OFDMA symbols in the subframe can vary according to a channel bandwidth and a CP length. The type of the subframe can be identified based on the number of OFDMA symbols included in the subframe. For example, subframe type-1 includes six OFDMA symbols, subframe type-2 includes seven OFDMA symbols, subframe type-3 includes five OFDMA symbols, and subframe type-4 includes nine OFDMA symbols. . A frame may include a type of subframe or a different type of subframe. For convenience of description, a specific embodiment of the present invention will be described in the context of a subframe type-1 including six OFDM symbols. However, it should be noted that the specific embodiments of the present invention, which will be described hereinafter, can also be applied to other types of subframes in the same mode.

在頻域中,一OFDMA符號包括複數個次載波且根據FFT的大小決定次載波的數目。可將該等次載波分類為用於資料傳送之資料次載波、用於通道評估的引導頻次載波、及用作為一保護頻帶之一空次載波及一DC組件。OFDMA符號的參數包括(例如)BW、Nused 、n、G等。BW係一標稱通道頻寬,Nused 係用於訊號傳送的次載波數目。另外,n係一取樣因數,n決定一次載波間距及一與BW及Nused 一起的有用符號時間。G係CP時間對一有用符號時間的比。In the frequency domain, an OFDMA symbol includes a plurality of subcarriers and the number of subcarriers is determined according to the size of the FFT. The secondary carriers may be classified into a data subcarrier for data transmission, a pilot frequency carrier for channel estimation, and a null carrier and a DC component used as one of the guard bands. The parameters of the OFDMA symbol include, for example, BW, N used , n, G, and the like. BW is a nominal channel bandwidth, and N used is the number of secondary carriers used for signal transmission. In addition, n is a sampling factor, and n determines the primary carrier spacing and a useful symbol time with BW and N used . G is the ratio of CP time to a useful symbol time.

一邏輯頻域中的一基本資源分配單元係稱作一邏輯資源單元(LRU)且一實體頻域中的一基本資源分配單元稱作一實體資源單元(PRU)。PRU藉由頻率置換映射至LRU。置換指一將預定實體資源映射至邏輯資源的一過程。A basic resource allocation unit in a logical frequency domain is referred to as a logical resource unit (LRU) and a basic resource allocation unit in an entity frequency domain is referred to as a physical resource unit (PRU). The PRU is mapped to the LRU by frequency permutation. Permutation refers to a process of mapping a predetermined entity resource to a logical resource.

次訊框包括在頻域內的複數個PRU。各PRU包括在時域內之複數個鄰接OFDMA符號及頻域中之複數個鄰接次載波。例如,PRU中之OFDMA符號數目Nsym 可等於在次訊框中包括的OFDMA符號的數目。同時,PRU內次載波的數目可係18。在此情況下,類型-1次訊框的PRU包括6個OFDM符號×18個次載波。PRU可取決於一資源分配類型為一分佈式資源單元(DRU)或一鄰接資源單元(CRU)。一上行鏈路DRU的一基本置換單元係由6個次載波及Nsym 的符號組成的一微磚(tile)。一下行鏈路DRU的一基本置換單元係包括兩次載波及一符號之一音調(tone)對。若為次訊框類型-1,一PRU包括108個音調。亦可將一音調稱作一資源元素(RE)。鄰接邏輯資源單元(CLRUs)係透過CRU的直接映射獲得。兩種類型的CLRU、次頻帶LRU及迷你頻帶LRU分別根據兩種類型的CRU、基於次頻帶的CRU及基於迷你頻帶的CRU支援。The subframe includes a plurality of PRUs in the frequency domain. Each PRU includes a plurality of contiguous OFDMA symbols in the time domain and a plurality of contiguous subcarriers in the frequency domain. For example, the number of OFDMA symbols N sym in the PRU may be equal to the number of OFDMA symbols included in the subframe. At the same time, the number of subcarriers within the PRU can be 18. In this case, the PRU of the Type-1 subframe includes 6 OFDM symbols × 18 subcarriers. The PRU may depend on a resource allocation type as a distributed resource unit (DRU) or a contiguous resource unit (CRU). A basic permutation unit of an uplink DRU is a micro-tile consisting of 6 subcarriers and symbols of N sym . A basic permutation unit of a downlink DRU includes two carriers and one tone pair of symbols. If it is a sub-frame type -1, a PRU includes 108 tones. A tone can also be referred to as a resource element (RE). Adjacent logical resource units (CLRUs) are obtained through direct mapping of CRUs. Two types of CLRU, sub-band LRU, and mini-band LRU are supported according to two types of CRUs, sub-band based CRUs, and mini-band based CRUs, respectively.

可將一頻帶分成次頻帶及/或迷你頻帶,次頻帶及/或迷你頻帶各包括一預定數目的資源單元(RUs)。一次頻帶包括N1 (如4)鄰接PRU且一迷你頻帶包括N2 (如1)鄰接PRU。A frequency band can be divided into sub-bands and/or mini-bands, each of which includes a predetermined number of resource units (RUs). The primary frequency band includes N 1 (eg, 4) contiguous PRUs and a mini frequency band includes N 2 (eg, 1) contiguous PRUs.

各超訊框含有一超訊框標頭(SFH)。SFH承載基本系統參數及系統組態資訊。SFH可位在一超訊框之第一次訊框中及使用在第一次訊框內形成類型-3次訊框的最後5個OFDM符號。SFH包括一用於廣播待由一UE辨識之重要系統資訊的控制通道。SFH承載基本系統參數及系統組態資訊。可將SFH分類為一主要SFH(P-SFH)及一次要SFH(S-SFH)。每一超訊框傳送P-SFH。可能每一超訊框傳送S-SFH。可將S-SFH分成三個次封包(S-SFH SP1、SUESFH SP2,及S-SFH SP3),因此傳送三個次封包。S-SFH的次封包(下文稱為S-SFHSP)可週期性地傳送。個別次封包可具有不同傳送週期。Each hyperframe contains a Hyper Frame Header (SFH). SFH carries basic system parameters and system configuration information. The SFH can be located in the first frame of the frame and use the last 5 OFDM symbols of the type-3 frame in the first frame. The SFH includes a control channel for broadcasting important system information to be recognized by a UE. SFH carries basic system parameters and system configuration information. The SFH can be classified into a primary SFH (P-SFH) and a primary SFH (S-SFH). Each hyperframe transmits P-SFH. It is possible that each superframe transmits S-SFH. The S-SFH can be divided into three sub-packets (S-SFH SP1, SUESFH SP2, and S-SFH SP3), so three sub-packets are transmitted. The secondary packet of S-SFH (hereinafter referred to as S-SFHSP) may be transmitted periodically. Individual sub-packets can have different transfer cycles.

一超訊框承載至多四個下行鏈路同步訊號。一下行鏈路同步訊號係用於下行鏈路同步化。在一IEEE 802.16m系統中,(例如)一下行鏈路同步訊號包括一主要同步訊號與一主要先進前文(PA-preamble)及一次要同步訊號與一次要先進前文(SA-preamble)。PA-preamble、SA-preamble及一DL LBS位置信標(beacon)的各者係位於FDD模式及TDD模式中之一訊框的第一符號中。PA-preamble傳遞關於一系統頻寬及一載波組態的資訊。因此一UE可從PA-preamble獲取系統頻寬及載波組態資訊。SA-preamble承載一BS的一細胞服務區識別符(ID)。SA-preamble位在超訊框中之第一及第三訊框的第一符號處,因此可累積兩次。一UE可使用在一超訊框中傳送兩次的SA-preamble,偵測BS的細胞服務區ID或在交遞期間施行細胞服務區掃描。更詳言之,PA-preamble位在超訊框內之第二訊框F1的第一符號處,且SA-preamble位在其他三訊框F0及F2的第一符號處。若超訊框用於DL LBS之位置測量,則超訊框內之最後訊框F3的第一符號含有DL LBS位置信標,或超訊框內之最後訊框F3的第一符號含有一資料訊號。A hyperframe carries up to four downlink synchronization signals. A downlink synchronization signal is used for downlink synchronization. In an IEEE 802.16m system, for example, the downlink synchronization signal includes a primary synchronization signal and a primary advanced preamble (PA-preamble) and a primary synchronization signal and an SA-preamble. Each of the PA-preamble, the SA-preamble, and the DL LBS location beacon is located in the first symbol of one of the FDD mode and the TDD mode. The PA-preamble conveys information about a system bandwidth and a carrier configuration. Therefore, a UE can obtain system bandwidth and carrier configuration information from the PA-preamble. The SA-preamble carries a cell service area identifier (ID) of a BS. The SA-preamble is located at the first symbol of the first and third frames in the hyperframe and can therefore be accumulated twice. A UE may use a SA-preamble transmitted twice in a hyperframe to detect the cell service area ID of the BS or perform a cell service area scan during handover. More specifically, the PA-preamble bit is at the first symbol of the second frame F1 in the hyperframe, and the SA-preamble bit is at the first symbol of the other three frames F0 and F2. If the hyperframe is used for position measurement of the DL LBS, the first symbol of the last frame F3 in the superframe contains the DL LBS position beacon, or the first symbol of the last frame F3 in the superframe contains a data. Signal.

另一方面,上行鏈路同步之一測距訊號可透過一上行鏈路(UL)測距通道(RCH)傳送。UL測距通道(RCH)係用作UL同步。可將UL RCH進一步分類為分別用於非同步與同步UE的非同步測距通道(NS-RCH)及同步測距通道(S-RCH)。將S-RCH用作週期性測距。將NS-RCH用作初始存取及交遞。週期性測距可指示一用於使一UE能週期性地更新UL同步的一操作及程序。初始存取測距可當一UE初始存取一無線通訊系統時,指示上行鏈路時間/頻率同步獲取的一操作及程序。當一UE從一目前BS交遞至一不同BS時,交遞測距可指示用於與上述不同BS建立初始同步的一操作及程序。On the other hand, one of the uplink synchronization ranging signals can be transmitted through an uplink (UL) ranging channel (RCH). The UL Ranging Channel (RCH) is used for UL synchronization. The UL RCH can be further classified into a non-synchronous ranging channel (NS-RCH) and a synchronous ranging channel (S-RCH) for the asynchronous and synchronous UEs, respectively. The S-RCH is used as a periodic ranging. The NS-RCH is used as the initial access and handover. Periodic ranging may indicate an operation and procedure for enabling a UE to periodically update UL synchronization. The initial access ranging may be an operation and procedure indicating uplink time/frequency synchronization acquisition when a UE initially accesses a wireless communication system. When a UE hands over from a current BS to a different BS, the handover ranging may indicate an operation and procedure for establishing initial synchronization with the different BSs described above.

測距係獲取正確時序偏移、頻率偏移及功率調整的過程,因此UE的傳送與BS對準,且係在適當接收臨限之內接收。在DL同步以後,UE嘗試施行與BS的初始測距。若施行測距程序成功地完成,則UE係對於BS UL同步。The ranging system acquires the process of correct timing offset, frequency offset, and power adjustment, so the UE's transmission is aligned with the BS and received within the appropriate reception threshold. After DL synchronization, the UE attempts to perform initial ranging with the BS. If the ranging procedure is successfully completed, the UE is synchronized to the BS UL.

上述結構僅係範例性。因此,可對超訊框的長度、超訊框中包括的次訊框數目、一次訊框中包括的OFDMA符號數目及OFDMA符號的參數進行各種修改。例如,在一訊框中包括的次訊框的數目可根據通道頻寬及CP長度變化。The above structure is merely exemplary. Therefore, various modifications can be made to the length of the hyperframe, the number of subframes included in the superframe, the number of OFDMA symbols included in the subframe, and the parameters of the OFDMA symbol. For example, the number of subframes included in a frame may vary depending on the channel bandwidth and the CP length.

第5圖範例性地說明用於分頻再使用(FFR)的頻率分區。明確而言,第5圖係說明根據再使用-3情節的分頻再使用(FFR)的一概念性圖式。Figure 5 exemplarily illustrates frequency partitioning for frequency division reuse (FFR). Specifically, Figure 5 illustrates a conceptual diagram of Frequency Division Reuse (FFR) based on the Reuse-3 scenario.

在一頻域中,PRU可分配至至少一頻率分區(FP)。可將一頻率分區用於例如FFR的目的。分頻再使用(FFR)技術允許在不同頻率分區上應用不同頻率再使用因數。根據IEEE 802.16m系統,可將一系統頻寬分成最多4個FP(FP0、FP1、FP2及FP3)。參考第5圖,在再使用-3之情節中,可在一邏輯頻域中將一系統頻寬分成四個FP(FP0、FP1、FP2及FP3)。在四FP(FP0、FP1、FP2及FP3)中,可將FP0稱作一再使用-1分區,且可將剩下的三個FP(FP1、FP2及FP3)稱作再使用-3分區。在此情況下,一特定分區可能不分配實際頻率資源,及視需要可不構造及使用。FP可如第5圖顯示具有不同功率位準。從再使用-3分區中,可將具有比其他再使用-3分區更高功率位準的一再使用-3分區稱作一功率升高再使用-3分區。參考第5圖,在FFR模式(FFR模式1、FFR模式2及FFR模式3)中,功率升高再使用-3分區分別可為FP1、FP2及FP3。可將不同FFR模式以不同方法用在鄰接或鄰近細胞服務區中,使得來自其他細胞服務區的干擾在各細胞服務區之內在功率升高再使用-3分區中減到最少。In a frequency domain, a PRU can be assigned to at least one frequency partition (FP). A frequency partition can be used for purposes such as FFR. Frequency division reuse (FFR) technology allows different frequency reuse factors to be applied across different frequency partitions. According to the IEEE 802.16m system, a system bandwidth can be divided into up to four FPs (FP0, FP1, FP2, and FP3). Referring to Figure 5, in the case of Re-use-3, a system bandwidth can be divided into four FPs (FP0, FP1, FP2, and FP3) in a logical frequency domain. In the four FPs (FP0, FP1, FP2, and FP3), FP0 can be referred to as a reuse-1 partition, and the remaining three FPs (FP1, FP2, and FP3) can be referred to as reuse-3 partitions. In this case, a particular partition may not allocate actual frequency resources and may not be constructed and used as needed. The FP can be displayed with different power levels as shown in Figure 5. From the reuse-3 partition, the re-use-3 partition with a higher power level than the other reuse-3 partitions can be referred to as a power boost reuse-3 partition. Referring to Fig. 5, in the FFR mode (FFR mode 1, FFR mode 2, and FFR mode 3), the power increase and the -3 partition can be FP1, FP2, and FP3, respectively. Different FFR patterns can be used in adjacent or adjacent cell service regions in different ways such that interference from other cell service regions is minimized within the respective cell service regions in terms of increased power and then used-3 partitions.

各頻率分區(FP)可包括一或多個PRU。可將分佈式資源分配及/或鄰接資源分配應用於各FP。一邏輯資源單元(LRU)可為用於分佈式資源分配及鄰接資源分配的一基本邏輯單元。一邏輯分佈式資源單元(LDRU)可包括在頻帶內分佈的複數個次載波(Sc)。LDRU可具有與PRU大小相同的大小。亦可將LDRU稱作一分佈式LRU(DLRU)。一邏輯鄰接資源單元(LCRU)可包括鄰接次載波(Sc)。LCRU具有與PRU大小相同的大小。LCRU亦稱作一CLRU。Each frequency partition (FP) may include one or more PRUs. Distributed resource allocation and/or contiguous resource allocation can be applied to each FP. A logical resource unit (LRU) can be a basic logical unit for distributed resource allocation and contiguous resource allocation. A logical distributed resource unit (LDRU) may include a plurality of secondary carriers (Sc) distributed within a frequency band. The LDRU can have the same size as the PRU. The LDRU can also be referred to as a distributed LRU (DLRU). A logically adjacent resource unit (LCRU) may include a neighboring secondary carrier (Sc). The LCRU has the same size as the PRU. The LCRU is also known as a CLRU.

包括FP數目及各FP大小的ULFFR可透過SFH係廣播。例如,ULFP組態資訊可透過S-SFH SP2根據一FFT大小以一上行鏈路頻率分區組態(UFPC)欄位的形式傳送。表1範例性顯示對於2048 FFT的UFPC及頻率分區。表2範例性地顯示對於1024 FFT的UFPC及頻率分區。表3範例性顯示對於512FFT的UFPC及頻率分區。The ULFFR including the number of FPs and the size of each FP can be broadcasted through the SFH system. For example, ULFP configuration information can be transmitted in the form of an Uplink Frequency Partition Configuration (UFPC) field based on an FFT size via S-SFH SP2. Table 1 shows an example of UFPC and frequency partitioning for the 2048 FFT. Table 2 exemplarily shows UFPC and frequency partitioning for a 1024 FFT. Table 3 exemplarily shows UFPC and frequency partitioning for 512 FFT.

在表1至3中,FP0係一再使用-1分區,及FP1、FP2或FP3係一再使用-3分區。頻率分區計數(FPCT)可定義FP的數目,且FPSi(頻率分區大小i)可定義分配至第i個FP的PRU的數目。NPRU 係由一對應系統頻寬所支援的PRU的一總數。NPRU 可根據一FFT大小及一系統頻寬改變。FPi、FPCT及FPSi可根據UFPC決定,如表1至3中顯示。In Tables 1 to 3, FP0 uses the -1 partition again and again, and FP1, FP2, or FP3 reuses the -3 partition. The frequency partition count (FPCT) may define the number of FPs, and FPSi (frequency partition size i) may define the number of PRUs allocated to the i-th FP. The N PRU is a total number of PRUs supported by a corresponding system bandwidth. The N PRU can vary based on an FFT size and a system bandwidth. FPi, FPCT and FPSi can be determined according to UFPC, as shown in Tables 1 to 3.

在表1至3中,在FP0:FP1:FP2:FP3中,「0」可指示對應FP未使用。例如,如從表1可見,假定將DFPC設定成1,達到「FP0:FP1:FP2:FP3=0:1:1:1」,意指作為再使用-1分區之FP0未使用。In Tables 1 to 3, in FP0:FP1:FP2:FP3, "0" indicates that the corresponding FP is not used. For example, as can be seen from Table 1, it is assumed that DFPC is set to 1, and "FP0:FP1:FP2:FP3=0:1:1:1" is reached, meaning that FP0 as a reuse-1 partition is not used.

第6圖範例性地說明用於IEEE 802.16m系統之一下行鏈路次訊框結構。明確而言,第6圖範例性顯示在一UL次訊框中分配之資料通道及UL控制通道。Figure 6 exemplarily illustrates a downlink sub-frame structure for one of the IEEE 802.16m systems. Specifically, FIG. 6 exemplarily shows the data channel and the UL control channel allocated in a UL subframe.

參考第6圖,可將UL頻率分區中的DLRU分成資料、頻寬請求及回授區域。一回授區域由回授通道組成,該等回授通道可用於HARQ ACK(確認)/NACK(否定確認)及快速回授兩者。頻寬請求區域可由可用於一頻寬請求的頻寬請求通道組成。可將一資料區域用於資料傳送。除了一測距通道(RCH)以外的UL控制通道可用一第一DLRU開始,及可依以下次序在一頻率分區(FP)內分配至DLRU:UL HARQ回授通道(UL HFBCH) UL快速回授通道(UL FFBCH) UL頻寬請求(UL BW REQ)通道 及UL資料通道。Referring to FIG. 6, the DLRU in the UL frequency partition can be divided into a data, a bandwidth request, and a feedback area. A feedback area consists of feedback channels that can be used for both HARQ ACK/NACK (negative acknowledgement) and fast feedback. The bandwidth request area may consist of a bandwidth request channel available for a bandwidth request. A data area can be used for data transfer. A UL control channel other than a ranging channel (RCH) can be started with a first DLRU and can be allocated to a DLRU in a frequency partition (FP) in the following order: UL HARQ feedback channel (UL HFBCH) UL fast return Grant Channel (UL FFBCH) UL Bandwidth Request (UL BW REQ) Channel and UL Data Channel.

DLRU在頻率分區以後使用。因此,一第一DLRU在各FP中出現。此外,假定將FFR用於一UL次訊框,可將UL控制通道分配至一再使用-1分區或功率升高再使用-3分區。因此,需要關於包括UL控制通道之一頻率分區(FP)的資訊。一基地台(BS)可將一FP通知一UE,其中UL控制通道將透過SFH定位。例如,關於UL控制通道將定位其中的FP的資訊可由S-SFH SP1指示,如下表4中顯示。The DLRU is used after frequency partitioning. Therefore, a first DLRU appears in each FP. In addition, assuming that the FFR is used for a UL subframe, the UL Control Channel can be assigned to the Re-Use-1 partition or the Power Up Reuse-3 partition. Therefore, information about a frequency partition (FP) including one of the UL control channels is required. A base station (BS) can notify a UE of a FP, wherein the UL control channel will be located through the SFH. For example, information about the FP in which the UL control channel will be located may be indicated by S-SFH SP1, as shown in Table 4 below.

參考表4,基地台(BS)可廣播S-SFH SP1,其中「用於UL控制通道的頻率分區位置」欄位被設定成0b0或0b1。當將包含在S-SFH SP1的上述欄位設定成0b0時,一已接收S-SFH SP1之一UE將一UL控制通道分配給再使用-1分區,及將UL控制通道傳送至BS。若包含在S-SFH SP1的上述欄位設定成0b1時,UE將UL控制通道分配至功率升高再使用-1分區及將UL控制通道傳送至BS。Referring to Table 4, the base station (BS) can broadcast S-SFH SP1, in which the "frequency partition location for UL control channel" field is set to 0b0 or 0b1. When the above-mentioned field included in the S-SFH SP1 is set to 0b0, one UE that has received the S-SFH SP1 assigns a UL control channel to the reuse-1 partition, and transmits the UL control channel to the BS. If the above field included in the S-SFH SP1 is set to 0b1, the UE allocates the UL control channel to the power increase and then uses the -1 partition and transmits the UL control channel to the BS.

第7圖說明其中鄰近細胞服務區使用複數個頻率分區的一實例。Figure 7 illustrates an example in which a plurality of frequency partitions are used in adjacent cell service areas.

多頻率分區係針對一特定目的設計。大體上,功率升高再使用-3分區經設計以比一非功率升高再使用-3分區更高的傳送(Tx)功率傳送一上行鏈路訊號。與以如位於一細胞服務區邊緣之UE相同的方式,一BS係設計用於使一經受一高傳播損失或不良通道狀態之UE能夠使用功率升高再使用-3分區以更高傳送(Tx)功率傳送一上行鏈路訊號。為了使起因於功率升高再使用-3分區之鄰接細胞服務區的干擾減至最少,鄰近細胞服務區可使用與功率升高再使用-3分區不同的頻率分區,如第7圖中顯示。Multi-frequency partitioning is designed for a specific purpose. In general, the power boost and then -3 partitions are designed to transmit an uplink signal at a higher transmit (Tx) power than a non-power boost and then use the -3 partition. In the same way as a UE located at the edge of a cell service area, a BS is designed to enable a UE that experiences a high propagation loss or poor channel state to use the power to increase the -3 partition for higher transmission (Tx The power transmits an uplink signal. In order to minimize interference from the adjacent cell service area of the -3 partition due to increased power, the adjacent cell service area may use a different frequency partition than the power increase reuse-3 partition, as shown in FIG.

第8及9圖說明在一時域中可用於本發明的具體實施例之一測距通道結構。明確而言,第8圖範例性圖示用於非同步UE之一測距通道(RCH),且第8圖範例性地圖示用於同步UE之一測距通道(RCH)。Figures 8 and 9 illustrate a ranging channel structure that may be used in one embodiment of the present invention in a time domain. Specifically, FIG. 8 exemplarily illustrates one of the non-synchronized UEs' Ranging Channels (RCH), and FIG. 8 exemplarily illustrates one of the UEs' Ranging Channels (RCH).

參考第8圖,將NS-RCH用作初始網路進入及聯結且在交遞期間相對於一目標BS測距。一實體NS-RCH由具有根據測距次載波間距ΔfRP 的TRP 的長度之測距前文(RP),及在時域中具有TRCP 的長度之測距循環字首(RCP)組成。RCP係RP的後部分的複製,而沒有RCP及RP之間的相位不連續性。一NS-RCH占用一與1個次頻帶對應的局部頻寬。NS-RCH可由格式0或格式1組成。參考第8(a)圖,格式0之NS-RCH在一個UL次訊框中構成。參考第8(b)圖,格式1之NS-RCH在三個UL次訊框中構成。NS-RCH的傳送開始時間與DL同步UE處的對應UL AAI次訊框開始時間對準。Referring to Figure 8, the NS-RCH is used as the initial network entry and association and is measured relative to a target BS during handover. An entity NS-RCH consists of a ranging front (RP) having a length of T RP according to the ranging subcarrier spacing Δf RP and a ranging cyclic prefix (RCP) having a length of T RCP in the time domain. RCP is a replication of the latter part of the RP without phase discontinuity between the RCP and the RP. An NS-RCH occupies a local bandwidth corresponding to one sub-band. The NS-RCH may consist of format 0 or format 1. Referring to Figure 8(a), the NS-RCH of format 0 is constructed in a UL subframe. Referring to Figure 8(b), the NS-RCH of Format 1 is constructed in three UL subframes. The transmission start time of the NS-RCH is aligned with the corresponding UL AAI subframe start time at the DL synchronization UE.

參考第9圖,將S-RCH用作週期性測距。一已對於T-ABS同步的UE允許傳送週期性測距訊號。S-RCH的實體結構由6個OFDMA符號占用72個次載波,OFDMA符號從一次訊框內之第一OFDMA符號開始,其中存在兩個重複的訊號波形且作為一基本單元各訊號波形是由透過除以3個OFDMA符號之72個次載波的前文產生。在第9圖中,將Tb 定義為一有用符號時間,且將Tg 定義為一CP時間。Tb 定義為1/ΔF,且將Tg 定義為G‧Tb 。在此情況下,G係CP時間(Tg )對有用符號時間(Tb )的比。例如,可將G設定成1/4、1/8、1/16等等的任一者。Referring to Figure 9, the S-RCH is used as a periodic ranging. A UE that has been synchronized for T-ABS is allowed to transmit a periodic ranging signal. The physical structure of the S-RCH occupies 72 subcarriers by 6 OFDMA symbols, and the OFDMA symbol starts from the first OFDMA symbol in the primary frame, where there are two repeated signal waveforms and as a basic unit, each signal waveform is transmitted through Divided by the previous generation of 72 subcarriers of 3 OFDMA symbols. In Fig. 9, Tb is defined as a useful symbol time, and Tg is defined as a CP time. T b is defined as 1/ΔF, and T g is defined as G‧T b . In this case, the G system CP time (T g ) versus the useful symbol time (T b ). For example, G can be set to any of 1/4, 1/8, 1/16, and the like.

UE可藉由來自BS的廣播訊號傳遞來辨識NS-RCH或S-RCH的一時間位置。可每一或多個訊框/超訊框週期分配NS-RCH或S-RCH,及可在每一分配週期分配至由一特定次訊框偏移所偏移的一次訊框位置。The UE can identify a time position of the NS-RCH or S-RCH by means of broadcast signal transmission from the BS. Each of the frames/superframe periods may be assigned an NS-RCH or S-RCH, and may be assigned to a subframe position offset by a particular subframe offset during each allocation period.

另一方面,NS-RCH或S-RCH之一頻率位置可為特定於細胞服務區決定而無須額外訊號傳遞。分配至NS-RCH之一次頻帶及分配至S-RCH之一次頻帶可由一細胞服務區ID(IDcell)及經分配次頻帶的數目(YSB )決定,如方程式1及2中顯示。On the other hand, one of the frequency positions of the NS-RCH or S-RCH can be determined specific to the cell service area without additional signal transmission. The primary frequency band allocated to the NS-RCH and the primary frequency band allocated to the S-RCH may be determined by a cell service area ID (IDcell) and the number of allocated secondary frequency bands (Y SB ), as shown in Equations 1 and 2.

[方程式1][Equation 1]

I SB =mod(IDcell ,Y SB ) I SB = mod( IDcell , Y SB )

在方程式1中,ISB 係從YSB 次頻帶中分配至NS-RCH的次頻帶索引(0,..,YSB -1)。In Equation 1, I SB is a sub-band index (0, .., Y SB -1) assigned from the Y SB sub-band to the NS-RCH.

[方程式2][Equation 2]

I SB , s =mod(IDcell +1,Y SB ) I SB , s = mod ( IDcell +1, Y SB )

在方程式2中,ISB 係從YSB 次頻帶中分配至S-RCH的一次頻帶索引(0,..,YSB -1)。In Equation 2, I SB is a primary band index (0, .., Y SB -1) assigned from the Y SB sub-band to the S-RCH.

可由以下方程式3計算在所有頻率分區上測距的次頻帶之一總數(YSB )。The total number of subbands (Y SB ) of ranging on all frequency partitions can be calculated by Equation 3 below.

[方程式3][Equation 3]

在方程式3中,LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶CRU的數目。N1 係構成一個次頻帶之PRU的數目。例如,可將N1 設定成4。In Equation 3, L SB-CRU, FPi is the number of sub-band CRUs assigned to a frequency partition (FPi). N 1 is the number of PRUs that make up a sub-band. For example, N 1 can be set to 4.

如可從圖6看見,除了RCH以外的UL控制通道可分配的一頻率位置可限於再使用-1分區或功率升高再使用-3分區。相反地,根據方程式1及2,可在所有分區分配NS-RCH及S-RCH的頻率位置。As can be seen from Figure 6, a frequency location that can be allocated by the UL control channel other than the RCH can be limited to reuse -1 partition or power boost and then use -3 partition. Conversely, according to Equations 1 and 2, the frequency positions of the NS-RCH and S-RCH can be allocated in all partitions.

RCH係一基於爭用的通道,因此大體上難以正確地控制RCH的Tx功率。此外,當嘗試施行RCH傳送時,RCH的Tx功率的上升經施行,使得RCH可以高功率傳送。若將具有上述特性的RCH分配至功率升高再使用-3分區,則RCH可在一鄰近細胞服務區的功率升高再使用-3分區中產生高干擾。因此,RCH頻率位置必須在依如在其他UL控制通道中的相同方式考慮一頻率分區(FP)來決定。RCH is a contention based channel, so it is generally difficult to properly control the Tx power of the RCH. Furthermore, when an attempt is made to perform RCH transmission, the rise in the Tx power of the RCH is performed so that the RCH can be transmitted with high power. If the RCH having the above characteristics is allocated to the power increase and then the -3 partition is used, the RCH can generate high interference in the power increase in the adjacent cell service area and then in the -3 partition. Therefore, the RCH frequency position must be determined in consideration of a frequency partition (FP) in the same manner as in other UL control channels.

為了克服由方程式1或2分配RCH時遇到之問題,可考慮一種用於將RCH分配至其他UL控制通道所分配之一頻率分區(FP)的方法。然而,在其中將RCH分配至與其他UL控制通道之FP相同的FP之情況下,過載將會在上述FP中發生。若由FFR使用數個FP,可將例如高速回授通道或BW REQ通道的UL控制通道僅分配至由SFH指示之一特定FP。因此,各FP的容量受限制,使得將大量UL控制通道分配至一特定FP時有局限性。換言之,UE的數目(其各可將UL控制通道分配至一特定FP)可被限制。當將RCH分配至UL控制通道所分配的FP時,上述局限性變得嚴重。因為一RCH占用一個次頻帶,NS-RCH及S-RCH的傳送需要兩個次頻帶。因此,若將其他UL控制通道及RCH分配至由SFH指示的一特定FP,則可由在特定FP中由其他UL控制通道使用的頻率資源可被減少至與用於RCH一樣多。雖然有特定FP的大量資源以RCH及其他UL控制通道可同時使用資源的此一方式,但在分配RCH及UL控制通道以後剩下的資源的數量減少,亦可減少資料通訊的資源。在此情況下,雖然具有不良通道狀態之一細胞服務區邊緣UE透過再使用-1分區或功率升高再使用-3分區將控制資訊有效地傳給BS,但對應FP具有不足數量的資源用於資料通訊,使得減少實質通訊處理量。To overcome the problems encountered when assigning RCHs by Equation 1 or 2, a method for allocating RCHs to one of the frequency partitions (FPs) allocated by other UL control channels can be considered. However, in the case where the RCH is assigned to the same FP as the FP of the other UL control channel, an overload will occur in the above FP. If several FPs are used by the FFR, the UL control channel such as the high speed feedback channel or the BW REQ channel can be assigned only to one of the specific FPs indicated by the SFH. Therefore, the capacity of each FP is limited, so that there are limitations when assigning a large number of UL control channels to a specific FP. In other words, the number of UEs, each of which can assign a UL control channel to a particular FP, can be limited. The above limitations become severe when the RCH is assigned to the FP allocated by the UL control channel. Since one RCH occupies one sub-band, the transmission of NS-RCH and S-RCH requires two sub-bands. Therefore, if other UL control channels and RCHs are allocated to a particular FP indicated by the SFH, the frequency resources that can be used by other UL control channels in a particular FP can be reduced to as much as for RCH. Although there are a large number of resources of a specific FP in which the RCH and other UL control channels can simultaneously use resources, the number of resources remaining after the allocation of the RCH and the UL control channel is reduced, and the resources of the data communication can also be reduced. In this case, although the cell service area edge UE having one of the bad channel states transmits the control information to the BS efficiently by using the -1 partition or the power increase and then using the -3 partition, the corresponding FP has an insufficient number of resources. In data communication, the amount of substantial communication processing is reduced.

因此,為了同時克服上述問題,同時有效地傳送RCH,用於選擇用於RCH傳送的頻率資源的以下具體實施例如下提出。Therefore, in order to simultaneously overcome the above problem while efficiently transmitting the RCH, the following specific embodiment for selecting a frequency resource for RCH transmission is proposed as follows.

<第一具體實施例:使用複製的頻率分區(FPs)><First embodiment: Using duplicated frequency partitions (FPs)>

第一具體實施例將RCH分配至再使用-1分區及功率升高再使用-3分區,而非將RCH僅分配至其他UL控制通道所分配之一頻率分區(FP)。The first embodiment assigns the RCH to the Reuse-1 partition and the Power Up Reuse-3 partition instead of assigning the RCH only to one of the frequency partitions (FP) allocated by the other UL Control Channel.

第10圖範例性地說明根據本發明的一第一具體實施例之測距通道(RCH)分配。明確而言,第10(a)圖圖示其中用於UL控制通道而非RCH之一頻率分區(FP)位置指示功率升高再使用-3分區的一實例。第10(b)圖圖示其中用於其他UL控制通道而非RCH之一頻率分區(FP)位置指示再使用-1分區的一實例。用於其他UL控制通道的上述FP可透過SFH由BS指示,如前述。Figure 10 exemplarily illustrates a ranging channel (RCH) allocation in accordance with a first embodiment of the present invention. In particular, Figure 10(a) illustrates an example in which a frequency control partition (FP) position for a UL control channel, rather than a RCH, indicates a power boost reuse-3 partition. Figure 10(b) illustrates an example in which one of the other UL control channels is used instead of one of the RCH frequency partition (FP) locations indicating reuse of the -1 partition. The above FP for other UL control channels can be indicated by the BS through the SFH, as described above.

不論用於其他UL控制通道的FP係再使用-1分區或功率升高再使用-3分區,定位於一預定細胞服務區的UE將對應RCH分配至用於預定細胞服務區的再使用-1分區或功率升高再使用-3分區。參考方程式1及2,用於RCH的頻率資源使用分配至所有FP之次頻帶的一總數(YSB )來決定。即,根據方程式1及2,RCH的頻率資源可為從YSB 次頻帶中特定於細胞服務區選擇的。然而,本發明的第一具體實施例從再使用-1分區及功率升高再使用-3分區中選擇RCH頻率資源。Regardless of whether the FP system for other UL control channels reuses the -1 partition or the power boost and then uses the -3 partition, the UE located in a predetermined cell service area assigns the corresponding RCH to the reuse for the predetermined cell service area -1 The partition or power is increased and the -3 partition is used. Referring to Equations 1 and 2, the frequency resources for the RCH are determined using a total number (Y SB ) assigned to the sub-bands of all FPs. That is, according to Equations 1 and 2, the frequency resource of the RCH can be selected from the cell service area selected from the Y SB sub-band. However, the first embodiment of the present invention selects the RCH frequency resource from the reuse-1 partition and the power boost reuse-3 partition.

例如,根據以下方程式,RCH頻率資源可為特定於細胞服務區決定而無須額外訊號傳遞。分配至NS-RCH的次頻帶及分配至S-RCH的次頻帶可由一細胞服務區ID(IDcell)及分配至再使用-1分區及功率升高再使用-3分區之次頻帶數目(RSB )決定,如方程式4及5中顯示。For example, according to the following equation, the RCH frequency resource can be determined for a cell-specific service area without additional signal transmission. The sub-band allocated to the NS-RCH and the sub-band allocated to the S-RCH may be a cell service area ID (IDcell) and the number of sub-bands allocated to the re-use-1 partition and the power increase reuse-3 partition (R SB The decision is shown in Equations 4 and 5.

[方程式4][Equation 4]

I SB =mod(IDcell ,R SB ) I SB = mod( IDcell , R SB )

在方程式4中,ISB 係從RSB 次頻帶中分配至NS-RCH的次頻帶索引(0,..,RSB -1)。In Equation 4, I SB is a sub-band index (0, .., R SB -1) assigned from the R SB sub-band to the NS-RCH.

[方程式5][Equation 5]

I SB , s =mod(IDcell +1,R SB ) I SB , s = mod ( IDcell +1, R SB )

在方程式5中,ISB,s 係從RSB 次頻帶中分配至S-RCH的次頻帶索引(0,..,RSB -1)。In Equation 5, I SB,s is the sub-band index (0, .., R SB -1) assigned from the R SB sub-band to the S-RCH.

可由以下方程式6計算分配至再使用-1分區及功率升高再使用-3分區之次頻帶的數目(RSB )。The number of sub-bands (R SB ) assigned to the reuse-1 partition and the power boost reuse-3 partition can be calculated by Equation 6 below.

[方程式6][Equation 6]

在方程式6中,LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶CRU的數目。In Equation 6, L SB-CRU, FPi is the number of sub-band CRUs assigned to a frequency partition (FPi).

根據本發明之第一具體實施例的UE可根據方程式4將NS-RCH分配至再使用-1分區及功率升高再使用-3分區的任一者。UE分配其他UL控制通道(如一回授通道或BW REQ通道)至由S-SFH SP1從再使用-1分區或功率升高再使用-3分區中指示的一頻率分區(FP)。因此,根據本發明的第一具體實施例,可將其他UL控制通道及RCH分配至相同FP或不同FP。然而,不將任何控制通道分配至一非功率升高FP。The UE according to the first embodiment of the present invention may assign the NS-RCH to any of the reuse-1 partition and the power boost reuse-3 partition according to Equation 4. The UE allocates other UL control channels (such as a feedback channel or BW REQ channel) to a frequency partition (FP) indicated by the S-SFH SP1 from the Reuse-1 partition or the Power Up Reuse-3 partition. Thus, in accordance with the first embodiment of the present invention, other UL control channels and RCHs can be assigned to the same FP or different FPs. However, no control channels are assigned to a non-power boost FP.

<第二具體實施例:使用不同於其他UL控制通道之FP><Second embodiment: using FP different from other UL control channels>

本發明之第二具體實施例將RCH分配至FP,該FP不同於其他UL控制通道所分配之一FP。例如,假定將例如一回授通道及一BW REQ通道之UL控制通道分配至由S-SFH SP1指示的再使用-1分區及功率升高再使用-3分區的任一分區,則可將RCH分配至其他UL通道未分配的一不同分區(從再使用-1分區及功率升高再使用-3分區中)。A second embodiment of the present invention assigns an RCH to an FP that is different from one of the FPs assigned by other UL control channels. For example, assuming that a UL control channel such as a feedback channel and a BW REQ channel is assigned to any of the partitions of the reuse-1 partition and the power boost reuse-3 partition indicated by S-SFH SP1, the RCH can be used. Assign to a different partition that is not assigned by other UL channels (from the Reuse-1 partition and the power boost to the -3 partition).

例如,假定例如一回授通道及一BW REQ通道之其他UL控制通道被分配至由S-SFH SP1指示的再使用-1分區及功率升高再使用-3分區的任何一個,則將RCH分配至上述其他UL通道沒分配的一不同分區(從再使用-1分區及功率升高再使用-3分區中)。For example, assuming that, for example, a feedback channel and other UL control channels of a BW REQ channel are assigned to any of the reuse-1 partition and the power boost reuse-3 partition indicated by S-SFH SP1, the RCH is allocated. To a different partition that is not allocated by the other UL channels (from the reuse -1 partition and the power increase and then use the -3 partition).

第11圖範例性地說明根據本發明的一第二具體實施例之RCH分配。第11(a)圖圖示其中用於UL控制通道而非RCH之一頻率分區(FP)位置指示功率升高再使用-3分區的一實例。第11(b)圖圖示其中用於其他UL控制通道而非RCH之一頻率分區(FP)位置指示再使用-1分區的一實例。用於其他UL控制通道的上述FP可透過SFH由BS指示,如前述。Figure 11 exemplarily illustrates an RCH allocation in accordance with a second embodiment of the present invention. Figure 11(a) illustrates an example in which a frequency control partition (FP) position for the UL control channel is used instead of the RCH to indicate that the power is increased and the -3 partition is used. Figure 11(b) illustrates an example in which one of the other UL control channels is used instead of one of the RCH frequency partition (FP) locations indicating the reuse of the -1 partition. The above FP for other UL control channels can be indicated by the BS through the SFH, as described above.

參考第11(a)圖,假定用於其他UL控制通道的一FP係功率升高再使用-3分區,則位於一預定細胞服務區中的一UE將對應RCH分配至再使用-1分區。參考第11(b)圖,假定用於其他UL控制通道的FP係再使用-1分區,則UE將對應RCH分配至預定細胞服務區的功率升高再使用-3分區。換言之,已接收其中將「用於UL控制通道的頻率分區(FP)位置欄位」欄位設定成0b0之S-SFH SP1的一UE,將其他UL控制通道分配至再使用-1分區,將RCH分配至功率升高再使用-3分區,及傳送分配的結果。另一方面,已接收其中將「用於UL控制通道的頻率分區(FP)位置欄位」欄位設定成0b1之S-SFH SP1的一UE,將其他UL控制通道分配至功率升高再使用-3分區,且將RCH分配至再使用-1分區,及傳送分配的結果。Referring to Fig. 11(a), assuming that one FP system power boost for other UL control channels reuses the -3 partition, a UE located in a predetermined cell service area assigns the corresponding RCH to the reuse-1 partition. Referring to FIG. 11(b), assuming that the FP system for other UL control channels reuses the -1 partition, the UE increases the power allocated to the predetermined cell service area by the corresponding RCH and uses the -3 partition. In other words, a UE in which the "frequency partition (FP) location field for the UL control channel" field is set to the S-SFH SP1 of 0b0 has been received, and the other UL control channels are assigned to the reuse-1 partition, The RCH is allocated to the power increase and then the -3 partition is used, and the result of the assignment is transmitted. On the other hand, a UE in which the "frequency partition (FP) location field for the UL control channel" field is set to the S-SFH SP1 of 0b1 has been received, and the other UL control channels are allocated to the power increase and then used. -3 partition, and assign RCH to reuse -1 partition, and transfer the result of the allocation.

然而,根據在表1至3顯示的UL頻率分區組態,可能不組態再使用-1分區及功率升高再使用-3分區的任何一分區。在此情況下,UE可將RCH分配至相同頻率分區(FP),如經指示用於UL控制通道的一頻率分區(FP)。However, depending on the UL frequency partition configuration shown in Tables 1 through 3, it may not be possible to configure any partitions that use -1 partitions and power boosts to reuse -3 partitions. In this case, the UE may assign the RCH to the same frequency partition (FP), such as a frequency partition (FP) indicated for the UL control channel.

例如,根據以下方程式,RCH頻率資源可為特定於細胞服務區決定而無額外訊號傳遞。分配至NS-RCH的次頻帶及分配至S-RCH的次頻帶可藉由一細胞服務區ID(IDcell)及分配至再使用-1分區或功率升高再使用-3分區之次頻帶數目(RSB )決定,如方程式7及8中顯示。For example, according to the following equation, the RCH frequency resource can be determined for cell-specific service area without additional signal transmission. The sub-band allocated to the NS-RCH and the sub-band allocated to the S-RCH may be by a cell service area ID (IDcell) and the number of sub-bands allocated to the reuse--1 partition or the power-up-reuse-3 partition ( R SB ) is determined as shown in Equations 7 and 8.

[方程式7][Equation 7]

I SB =mod(IDcell ,R SB ) I SB = mod( IDcell , R SB )

在方程式7中,ISB 係從RSB 次頻帶中分配至NS-RCH的次頻帶索引(0,..,RSB -1)。In Equation 7, I SB is a sub-band index (0, .., R SB -1) assigned from the R SB sub-band to the NS-RCH.

[方程式8][Equation 8]

I SB , s =mod(IDcell +1,R SB ) I SB , s = mod ( IDcell +1, R SB )

在方程式8中,ISB,s 係從RSB 次頻帶中分配至S-RCH的一次頻帶索引(0,..,RSB -1)。In Equation 8, I SB,s is a primary band index (0, .., R SB -1) assigned from the R SB sub-band to the S-RCH.

可由以下方程式9計算分配至再使用-1分區或功率升高再使用-3分區之次頻帶的數目(RSB )。The number of sub-bands (R SB ) assigned to the reuse--1 partition or the power-up-reuse-3 partition can be calculated by Equation 9 below.

[方程式9][Equation 9]

在方程式9中,LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶CRU的數目。在方程式9中,FPi可從再使用-1分區及功率升高再使用-3分區中指示一分區,而非由BS指示用於其他UL控制通道。例如,用於其他控制通道之頻率分區(FP)可透過在S-SFH SP1中用於UL控制通道之頻率分區欄位從BS訊號傳遞至UE。In Equation 9, L SB-CRU, FPi is the number of sub-band CRUs assigned to a frequency partition (FPi). In Equation 9, FPi may indicate a partition from the Reuse-1 partition and the Power Increase Reuse-3 partition instead of being indicated by the BS for other UL control channels. For example, a frequency partition (FP) for other control channels can be transmitted from the BS signal to the UE through the frequency partition field for the UL control channel in the S-SFH SP1.

根據本發明之一第二具體實施例的一UE可根據方程式7從再使用-1分區及功率升高再使用-3分區中將NS-RCH分配至一分區的次頻帶的任一者(未指示用於UL控制通道)。根據本發明之第二具體實施例的UE可根據方程式8從再使用-1分區或功率升高再使用-3分區中將S-RCH分配至一分區的次頻帶的任一者(未指示用於UL控制通道)。UE可分配其他UL控制通道(如一回授通道或BW REQ通道)到經指示用於UL控制通道的一頻率。因此,根據本發明的第二具體實施例,不將上述其他UL控制通道及RCH分配至相同頻率分區(FP),除非再使用-1分區及/或再使用-2分區不存在。A UE according to a second embodiment of the present invention may allocate NS-RCH to any of the sub-bands of a partition from the Re-use-1 partition and the Power Increase Reuse-3 partition according to Equation 7 (not The indication is for the UL Control Channel). The UE according to the second embodiment of the present invention may allocate the S-RCH to any one of the sub-bands of a partition from the reuse-1 partition or the power increase reuse-3 partition according to Equation 8 (not indicated) In the UL control channel). The UE may allocate other UL control channels (such as a feedback channel or BW REQ channel) to a frequency indicated for the UL control channel. Thus, in accordance with the second embodiment of the present invention, the other UL control channels and RCHs described above are not assigned to the same frequency partition (FP) unless the -1 partition and/or the reuse-2 partition are not present.

<第三具體實施例:使用根據預定義優先權的頻率分區(FP)><Third embodiment: Using frequency partitioning (FP) according to a predefined priority>

本發明的第三具體實施例將RCH分配至一有大量頻率資源的分區,而不論其他UL控制通道所分配的一頻率分區(FP)。本發明之第三具體實施例可當控制資源被集中且分配至一特定FP時防止資源的一短缺。如可從表1、2及3看見,在許多情況下,來自FP0、FP1、FP2及FP3中的FP0使用最大量資源,且FP0大體上可為再使用-1分區。因此,根據本發明的第三具體實施例,可將RCH主要分配至具有最大量資源的FP0。A third embodiment of the present invention allocates RCH to a partition having a large number of frequency resources regardless of a frequency partition (FP) allocated by other UL control channels. A third embodiment of the present invention can prevent a shortage of resources when control resources are concentrated and assigned to a particular FP. As can be seen from Tables 1, 2 and 3, in many cases, FP0 from FP0, FP1, FP2, and FP3 uses the largest amount of resources, and FP0 can be substantially a reuse-1 partition. Therefore, according to the third embodiment of the present invention, the RCH can be mainly allocated to the FP0 having the largest amount of resources.

如從表1、2及3可見,可能發生一其中一FP0或一再使用-1分區不存在的一特殊情況。關於上述情況,可預定哪一頻率分區(FPs)被分配RCH。例如,假定FP0不存在,可預定將RCH分配至功率升高再使用-3分區。在另一實例中,假定沒有FP0或再使用-1分區,則可預定將RCH分配至具有最小索引(或最高索引)的一分區。As can be seen from Tables 1, 2 and 3, a special case where one of the FP0 or the repeated use-1 partition does not exist may occur. Regarding the above, it is possible to reserve which frequency partitions (FPs) are assigned RCH. For example, assuming FP0 does not exist, it may be scheduled to allocate the RCH to a power boost and then use the -3 partition. In another example, assuming that there is no FP0 or reuse -1 partition, then the RCH can be scheduled to be allocated to a partition with the smallest index (or highest index).

第12圖範例性地說明根據本發明的一第三具體實施例之測距通道(RCH)分配。明確而言,第12(a)圖範例性圖示在再使用-1分區經組態及再使用-1分區係一用於UL控制通道之頻率分區(FP)的情況下之RCH分配,第12(b)圖範例性圖示在再使用-1分區經組態及功率升高再使用-3分區係一用於UL控制通道之頻率分區(FP)的情況下之RCH分配,且第12(c)圖範例性圖示在再使用-1分區未經組態的情況下之RCH分配Fig. 12 exemplarily illustrates a ranging channel (RCH) allocation in accordance with a third embodiment of the present invention. Specifically, the example of Figure 12(a) illustrates the RCH allocation in the case of reusing -1 partition configured and reusing -1 partitioning for a frequency partition (FP) of the UL control channel, An example of the 12(b) diagram shows the RCH allocation in the case of re-use-1 partition configuration and power boosting and then using -3 partitioning for a frequency partition (FP) for the UL control channel, and 12th (c) Diagrammatic illustration of RCH allocation in the case of re-use-1 partition without configuration

參考第12(a)圖,一UE可將RCH分配至再使用-1分區,及可將一般UL控制通道(例如,一回授通道及一BW REQ通道)分配至由BS從再使用-1分區及功率升高再使用-3分區中間指示的一特定再使用-1分區。在此情況下,不僅可將UE的其他控制通道亦可將RCH分配至再使用-1分區,然後傳送給BS。Referring to FIG. 12(a), a UE may allocate an RCH to a re-use-1 partition, and may allocate a general UL control channel (eg, a feedback channel and a BW REQ channel) to the BS for reuse. The partition and power are raised again using a specific reuse-1 partition indicated by the middle of the -3 partition. In this case, not only the other control channels of the UE but also the RCH can be allocated to the reuse-1 partition and then transmitted to the BS.

參考第12(b)圖,UE可將RCH分配至再使用-1分區,及可將其他UL控制通道分配至由BS為UL控制通道指示的功率升高再使用-3分區。在此情況下,可將UE之RCH分配至不同於其他控制通道之頻率分區的一頻率分區,然後傳送給BS。Referring to FIG. 12(b), the UE may allocate the RCH to the reuse-1 partition, and may assign other UL control channels to the power boost reuse-3 partition indicated by the BS for the UL control channel. In this case, the RCH of the UE can be allocated to a frequency partition different from the frequency partition of the other control channels and then transmitted to the BS.

參考第12(c)圖,若無再使用-1分區,則UE可根據一預定規則將RCH分配(例如)給功率升高再使用-3分區。Referring to Figure 12(c), if the -1 partition is not used again, the UE may allocate (e.g., increase) the RCH to the -3 partition according to a predetermined rule.

UE可決定是否再使用-1分區(或FP0)係基於從BS發送的上行鏈路頻率分區組態(UFPC)資訊而組態。The UE may decide whether to use the -1 partition (or FP0) again based on the uplink frequency partition configuration (UFPC) information transmitted from the BS.

例如,根據以下方程式,RCH頻率資源可為特定於細胞服務區決定而無額外訊號傳遞。分配至NS-RCH的次頻帶及分配至S-RCH的次頻帶可藉由一細胞服務區ID(IDcell)及分配至再使用-1分區或功率升高再使用-3分區之次頻帶數目(RSB )決定,如方程式10及11中顯示。For example, according to the following equation, the RCH frequency resource can be determined for cell-specific service area without additional signal transmission. The sub-band allocated to the NS-RCH and the sub-band allocated to the S-RCH may be by a cell service area ID (IDcell) and the number of sub-bands allocated to the reuse--1 partition or the power-up-reuse-3 partition ( R SB ) is determined as shown in Equations 10 and 11.

[方程式10][Equation 10]

I SB =mod(IDcell ,R SB ) I SB = mod ( IDcell , R SB )

在方程式10中,ISB 係從RSB 次頻帶中分配至NS-RCH的次頻帶索引(0,..,RSB -1)。In Equation 10, I SB is a sub-band index (0, .., R SB -1) assigned from the R SB sub-band to the NS-RCH.

[方程式11][Equation 11]

I SB , s =mod(IDcell +1,R SB ) I SB , s = mod ( IDcell +1, R SB )

在方程式11中,ISB,s 係從RSB 次頻帶中分配至S-RCH的次頻帶索引(0,..,RSB -1)。In Equation 11, I SB,s is the sub-band index (0, .., R SB -1) assigned from the R SB sub-band to the S-RCH.

可由以下方程式12計算分配至再使用-1分區或功率升高再使用-3分區之次頻帶的數目(RSB )。The number of sub-bands (R SB ) assigned to the reuse-1 partition or the power boost reuse-3 partition can be calculated by Equation 12 below.

[方程式12][Equation 12]

在方程式12中,LSB-CRU,FPi 係分配予一頻率分區(FPi)的次頻帶CRU的數目。在此情況中,FPi可指示再使用-1分區。然而,當沒有再使用-1分區時,FPi可對應於一功率升高再使用-3分區。In Equation 12, L SB-CRU, FPi is the number of sub-band CRUs allocated to a frequency partition (FPi). In this case, FPi may indicate that the -1 partition is reused. However, when the -1 partition is not used again, the FPi can correspond to a power boost and then use the -3 partition.

根據本發明之一第三具體實施例的一UE可根據方程式10將NS-RCH分配至再使用-1分區的次頻帶的任一者。然而,若沒有再使用-1分區時,將NS-RCH分配至功率升高再使用-3分區的次頻帶的任一者。根據本發明之第三具體實施例的UE可根據方程式11將S-RCH分配至再使用-1分區的次頻帶的任一者。然而,僅若沒有再使用-1分區時,將S-RCH分配至功率升高再使用-3分區的次頻帶的任一者。各UE可分配其他UL控制通道(如一回授通道及一BW REQ通道)至經指示用於UL控制通道的一分區。A UE according to a third embodiment of the present invention may assign NS-RCH to any of the sub-bands of the reuse-1 partition according to Equation 10. However, if the -1 partition is not used again, the NS-RCH is allocated to any of the sub-bands where the power is increased and then the -3 partition is used. The UE according to the third embodiment of the present invention may assign the S-RCH to any one of the sub-bands of the reuse-1 partition according to Equation 11. However, if the -1 partition is not used again, the S-RCH is allocated to any of the sub-bands where the power is increased and then the -3 partition is used. Each UE may allocate other UL control channels (such as a feedback channel and a BW REQ channel) to a partition indicated for the UL control channel.

為了參考,如可從方程式1至12看見,LSB-CRU,FPi 可指示分配至FPi的次頻帶CRU的數目。依一次頻帶的單位分配至FPi(其中i≧0)的CRU之一總數可由指示上行鏈路CRU分配大小的UCASi 給定。For reference, as can be seen from Equations 1 through 12, L SB-CRU, FPi may indicate the number of sub-band CRUs allocated to FPi. The total number of CRUs allocated to FPi (where i ≧ 0) in units of primary bands can be given by UCAS i indicating the size of the uplink CRU allocation.

在FP0中,基於次頻帶之CRU的數目可由UCASSB,0 決定。UE可透過SFH辨識關於FP0的UCASSB,0 。例如,BS可在SFH上施行關於FP0的UCASSB,0 之訊號傳遞。可由以下方程式13計算FP0中基於次頻帶的CRU的數目(LSB-CRU,FP0 )。In FP0, the number of CRUs based on the subband can be determined by UCAS SB,0 . The UE can identify the UCAS SB,0 of the FP0 through the SFH. For example, the BS can perform signal transmission on the SFH for the UCAS SB, 0 of FP0. The number of sub-band based CRUs in the FP0 (L SB - CRU, FP0 ) can be calculated by Equation 13 below.

[方程式13][Equation 13]

關於FPi(i>0,FPCT≠2),為了施行經分配CRU之相同數目的訊號傳遞,只具有一值的UCASi 可經訊號傳遞用於所有i值(其中i>0)。若將UFPC設定至零(UFPC=0),UCASi (i>0)可係零。UE可透過SFH對於FPi(i>0,FPCT≠2)接收UCASi 。在此情況下,出現在FPi(i>0)之次頻帶CRU的數目(LSB-CRU,FPi )可由以下方程式14計算。Regarding FPi (i > 0, FPCT ≠ 2), in order to perform the same number of signal transmissions of the assigned CRUs, only UCAS i having a value can be signaled for all i values (where i > 0). If UFPC is set to zero (UFPC=0), UCAS i (i>0) can be zeroed. The UE can receive UCAS i for FPi (i>0, FPCT≠2) through SFH. In this case, the number of sub-band CRUs (L SB - CRU, FPi ) appearing at FPi (i > 0) can be calculated by the following Equation 14.

[方程式14][Equation 14]

若將FPCT設定成2(FPCT=2),用於i值(i =1及i=2)之UCASSB,i 可使用UCASSB,0 在SFH中訊號傳遞。若將FPCT設置成2(FPCT=2),FP0及FP3之各者變空,LSB-CRU,FP0 設定至零(LSB-CRU,FP0 =0),及LSB-CRU,FP3 係設定至零。關於i=1及i=2,達到LSB-CRU,FPi =N1 ‧UCASSB,0If FPCT is set to 2 (FPCT=2), UCAS SB for i values ( i = 1 and i = 2) , i can use UCAS SB, 0 signal transmission in SFH. If FPCT is set to 2 (FPCT=2), each of FP0 and FP3 becomes empty, L SB-CRU, FP0 is set to zero (L SB-CRU, FP0 =0), and L SB-CRU, FP3 is set. To zero. Regarding i=1 and i=2, L SB-CRU is reached , FPi = N 1 ‧UCAS SB,0 .

第13圖係說明根據本發明的具體實施例之測距訊號傳送之一流程圖。Figure 13 is a flow chart showing one of the ranging signal transmissions in accordance with an embodiment of the present invention.

參考第13圖,BS可傳送一前文(例如,SA-preamble),該前文在步驟S1010a承載指示細胞服務區ID資訊的一細胞服務區ID(IDcell)。此外,BS對於一特定細胞服務區決定一UL頻率分區,及可在步驟S1010b將UL頻率分區組態(UFPC)資訊傳送到定位於特定細胞服務區中的UE。BS可透過SFH廣播UFPC資訊。Referring to Fig. 13, the BS may transmit a preamble (e.g., SA-preamble) carrying a cell service area ID (IDcell) indicating cell service area ID information in step S1010a. In addition, the BS determines a UL frequency partition for a particular cell service area, and may transmit UL Frequency Partition Configuration (UFPC) information to UEs located in a particular cell service area in step S1010b. The BS can broadcast UFPC information through SFH.

UE可於步驟S1010a接收前文,及可從接收到前文獲取一細胞服務區ID。例如,UE可使用以下方法從SA-preamble推導出一細胞服務區ID。各細胞服務區都具有由從0至767的整數表示之一細胞服務區ID(IDcell)。可由一片段索引定義該細胞服務區ID(IDcell)。大體上,可由以下方程式15決定IDcell。The UE may receive the foregoing in step S1010a, and may acquire a cell service area ID from the received preamble. For example, the UE may derive a cell service area ID from the SA-preamble using the following method. Each cell service area has one cell service area ID (IDcell) represented by an integer from 0 to 767. The cell service area ID (IDcell) can be defined by a segment index. In general, the IDcell can be determined by Equation 15 below.

[方程式15][Equation 15]

IDcell =256n +Idx IDcell = 256n + Idx

在方程式15中,n係表示片段ID之SA-preamble載波設定0、1及2的索引。可根據以下描述決定片段ID。In Equation 15, n is an index indicating the SA-preamble carrier set 0, 1, and 2 of the segment ID. The segment ID can be determined according to the following description.

可使分配至一SA-preamble的次載波數目根據FFT(快速傅立葉轉換)的大小改變。例如,SA-preamble的長度分別對於512-FFT、1024-FFT及2048-FFT可具有144、288及576。在其中一FDMA/SC-FDMA傳送器之一M點IFFT模組施行512-IFFT之情況下,可分配至多144次載波至一SA-preamble。在1024-IFFT的情況下,可分配至多288次載波至一SA-preamble。在2048-IFFT的情況下,可分配至多576次載波至一SA-preamble。若次載波索引係256、512及1024的次載波分別保留用於512-FFT、1024-FFT及2048-FFT的DC組件,分配至SA-preamble的次載波可根據以下方程式決定。The number of subcarriers allocated to an SA-preamble can be changed according to the size of the FFT (Fast Fourier Transform). For example, the length of the SA-preamble may have 144, 288, and 576 for 512-FFT, 1024-FFT, and 2048-FFT, respectively. In the case where one of the FDMA/SC-FDMA transmitters M-point IFFT module performs 512-IFFT, up to 144 carriers can be allocated to an SA-preamble. In the case of 1024-IFFT, up to 288 carriers can be allocated to an SA-preamble. In the case of 2048-IFFT, up to 576 carriers can be allocated to an SA-preamble. If the subcarriers of the subcarrier index systems 256, 512, and 1024 respectively reserve DC components for 512-FFT, 1024-FFT, and 2048-FFT, the subcarriers allocated to the SA-preamble may be determined according to the following equation.

[方程式16][Equation 16]

在方程式16中,SAPreambleCarrierSetn 規定所有次載波分配至特定SA-preamble。在方程式16中,n係指示片段ID的一載波集索引。片段0使用載波集0,片段1使用載波集1,及片段2使用載波集2。NSAP 指分配用於SA-preamble的次載波數目,及對於512-FFT、1024-FFT及2048-FFT可具有144、288及576之值。另外,k對於各FFT大小係一執行索引0至NSAP -1。In Equation 16, SAPreambleCarrierSet n specifies that all secondary carriers are assigned to a particular SA-preamble. In Equation 16, n is a carrier set index indicating the segment ID. Fragment 0 uses carrier set 0, segment 1 uses carrier set 1, and segment 2 uses carrier set 2. N SAP refers to the number of secondary carriers allocated for the SA-preamble, and may have values of 144, 288, and 576 for 512-FFT, 1024-FFT, and 2048-FFT. In addition, k performs index 0 to N SAP -1 for each FFT size.

Idx可根據以下方程式決定。Idx can be determined according to the following equation.

[方程式17][Equation 17]

在方程式17中,q係一執行索引0至255。通常將一SA-preamble分成複數個序列子區塊。在512-FFT之情況下,將288位元的SA-preamble分成各有一長度36位元之八個序列子區塊A、B、C、D、E、F、G及H,然後可映射進入至次載波。各序列子區塊由3個PRU組成。換言之,各序列子區塊包括54個次載波。另外,在依次調變A、B、C、D、E、F、G及H之後,A、B、C、D、E、F、G及H被映射成為與片段ID對應的SA-preamble次載波集。在大於512-FFT之FFT的情況下,基本子區塊A、B、C、D、E、F、G及H以相同次序重複然後映射成為SA-preamble次載波集內。例如,在1024-FFT之情況下,E、F、G、H、A、B、C、D、E、F、G、H、A、B、C及D被調變然後依次地映射成為SA-preamble次載波集。各片段ID具有不同序列子區塊。用於序列子區塊A、B、C、D、E、F、G及H之256個序列係針對各片段ID定義,及由從0至255之q索引。因此,與一特定片段ID的一特定序列索引q對應的一序列的子區塊A、B、C、D、E、F、G及H可從用於特定片段ID的256個序列識別。In Equation 17, q performs an index of 0 to 255. An SA-preamble is usually divided into a plurality of sequence sub-blocks. In the case of 512-FFT, the 288-bit SA-preamble is divided into eight sub-blocks A, B, C, D, E, F, G, and H each having a length of 36 bits, which can then be mapped into To the secondary carrier. Each sequence sub-block consists of 3 PRUs. In other words, each sequence sub-block includes 54 subcarriers. In addition, after sequentially modulating A, B, C, D, E, F, G, and H, A, B, C, D, E, F, G, and H are mapped to SA-preamble times corresponding to the segment ID. Carrier set. In the case of an FFT greater than 512-FFT, the basic sub-blocks A, B, C, D, E, F, G, and H are repeated in the same order and then mapped into an SA-preamble subcarrier set. For example, in the case of 1024-FFT, E, F, G, H, A, B, C, D, E, F, G, H, A, B, C, and D are modulated and then sequentially mapped to SA. -preamble subcarrier set. Each segment ID has a different sequence sub-block. The 256 sequences used for the sequence sub-blocks A, B, C, D, E, F, G, and H are defined for each fragment ID, and indexed by q from 0 to 255. Thus, a sequence of sub-blocks A, B, C, D, E, F, G, and H corresponding to a particular sequence index q of a particular segment ID can be identified from 256 sequences for a particular segment ID.

因此,UE可基於SA-preamble之一子區塊序列及一SA-preamble載波集索引推導出一細胞服務區ID(IDcell)。Therefore, the UE may derive a cell service area ID (IDcell) based on one of the SA-preamble sub-block sequences and an SA-preamble carrier set index.

另一方面,UE可於步驟S1010b接收UL頻率分區組態(UFPC)資訊,及可根據UFPC資訊組態一或多個頻率分區(FPs)。UE可基於UFPC資訊辨識FP數目及各FP的大小。Alternatively, the UE may receive UL Frequency Partition Configuration (UFPC) information in step S1010b, and may configure one or more frequency partitions (FPs) based on the UFPC information. The UE can identify the number of FPs and the size of each FP based on the UFPC information.

另一方面,UE可從FFR模式中決定用於經組態FP的一FFR模式。用於各細胞服務區之FFR模式可為特定於細胞服務區決定。例如,若組態四個頻率分區(FPs),各細胞服務區可選擇FFR模式(模式1、模式2及模式3)之一。在另一實例中,若組態三個FP且FP3大小不等於零(0),則可從與如第5圖中顯示之FFR模式相同的模式中選擇用於各細胞服務區的FFR模式。On the other hand, the UE can determine an FFR mode for the configured FP from the FFR mode. The FFR mode for each cell service area can be determined for a cell-specific service area. For example, if four frequency partitions (FPs) are configured, one of the FFR modes (mode 1, mode 2, and mode 3) can be selected for each cell service area. In another example, if three FPs are configured and the FP3 size is not equal to zero (0), the FFR mode for each cell service area can be selected from the same mode as the FFR mode as shown in FIG.

可特定於細胞服務區地決定FFR模式。BS可將指示一FFR模式待由UE使用的資訊傳送至UE。然而,細胞服務區之一UE可從SA-preamble推導出一細胞服務區ID(IDcell),及可根據該細胞服務區ID(IDcell)決定FFR模式。此外,可根據特定於細胞服務區傳送的SA-preamble決定用於一特定細胞服務區的FFR模式。例如,各細胞服務區採用與由以下方程式決定的模式k對應的FFR模式。The FFR mode can be determined specific to the cell service area. The BS may transmit information indicating that an FFR mode is to be used by the UE to the UE. However, one of the cell service areas UE may derive a cell service area ID (IDcell) from the SA-preamble, and may determine the FFR mode according to the cell service area ID (IDcell). In addition, the FFR mode for a particular cell service area can be determined based on the SA-preamble specific to the cell service area delivery. For example, each cell service area adopts an FFR mode corresponding to the mode k determined by the following equation.

[方程式18][Equation 18]

k =Segment_ID +1 k = Segment_ID +1

例如,一已使用載波集0接收經傳送SA-preamble之UE可決定模式1為待由UE使用的一FFR模式。在此情況下,BS無須額外施行資訊的訊號傳遞用於通知UE該FFR模式。For example, a UE that has received a transmitted SA-preamble using carrier set 0 may decide that mode 1 is an FFR mode to be used by the UE. In this case, the signal transmission of the BS without additional information is used to inform the UE of the FFR mode.

UE可在步驟S1020處根據本發明的第一至第三具體實施例之任一者使用一IDcell及UL頻率分區組態(UFPC)資訊針對RCH決定頻率資源。根據本發明的第一具體實施例,非同步UE可根據方程式4及6針對NS-RCH決定頻率資源。同步UE可根據方程式5及6針對S-RCH決定頻率資源。根據本發明的第二具體實施例,非同步UE可根據方程式7及9針對NS-RCH決定頻率資源,且同步UE可根據方程式8及9針對S-RCH決定頻率資源。根據本發明的第三具體實施例,非同步UE可根據方程式10及12針對NS-RCH決定頻率資源,且同步UE可根據方程式9及12針對S-RCH決定頻率資源。The UE may determine the frequency resource for the RCH using an IDcell and UL Frequency Partition Configuration (UFPC) information in accordance with any of the first to third embodiments of the present invention at step S1020. According to a first embodiment of the present invention, the non-synchronized UE may determine frequency resources for the NS-RCH according to Equations 4 and 6. The synchronous UE can determine the frequency resource for the S-RCH according to Equations 5 and 6. According to a second embodiment of the present invention, the non-synchronized UE may determine the frequency resource for the NS-RCH according to Equations 7 and 9, and the synchronous UE may determine the frequency resource for the S-RCH according to Equations 8 and 9. According to a third embodiment of the present invention, the non-synchronized UE may determine the frequency resource for the NS-RCH according to Equations 10 and 12, and the synchronous UE may determine the frequency resource for the S-RCH according to Equations 9 and 12.

對於BS非同步的UE可於步驟S1030使用分配NS-RCH將一測距訊號傳送給BS。對於BS同步的UE可於步驟S1030使用分配S-RCH將一測距訊號傳送給BS。For the BS non-synchronized UE, a ranging signal may be transmitted to the BS using the allocation NS-RCH in step S1030. The UE synchronized to the BS may transmit a ranging signal to the BS using the allocation S-RCH in step S1030.

BS已辨識一IDcell、一UFPC及一FFR模式,使得BS可決定將哪一個頻率資源用於RCH傳送。BS可於步驟S1030處使用分配至根據本發明的第一至第三具體實施例之任一者決定的資源的RCH從UE接收一測距訊號。The BS has identified an IDcell, a UFPC, and an FFR mode so that the BS can decide which frequency resource to use for RCH transmission. The BS may receive a ranging signal from the UE using the RCH allocated to the resource determined according to any one of the first to third embodiments of the present invention at step S1030.

BS處理器400b可在步驟S1010a處控制BS傳送器100b,用於傳送承載作為細胞服務區ID資訊之一細胞服務區ID(IDcell)的前文(例如,SA-preamble)。此外,BS處理器400b可在步驟S1010b處針對一特定細胞服務區決定UL頻率分區組態(UFPC),及可控制BS傳送器100b以傳送UFPC資訊至位於特定細胞服務區處的UE。BS400b可控制BS傳送器100b以透過SFH廣播UFPC。The BS processor 400b may control the BS transmitter 100b at step S1010a for transmitting a preamble (e.g., SA-preamble) carrying a cell service area ID (IDcell) as one of the cell service area ID information. Further, BS processor 400b may determine a UL frequency partition configuration (UFPC) for a particular cell service area at step S1010b, and may control BS transmitter 100b to transmit UFPC information to a UE located at a particular cell service area. The BS 400b can control the BS transmitter 100b to broadcast the UFPC through the SFH.

UE接收器300a可在步驟S1010a處接收上述前文。UE處理器400a可從上述前文推導出一細胞服務區ID(IDcell)。例如,如從方程式15至17可見,UE處理器400a可基於SA-preamble序列及SA-preamble載波集索引獲取一IDcell。The UE receiver 300a may receive the above preamble at step S1010a. The UE processor 400a may derive a cell service area ID (IDcell) from the foregoing. For example, as can be seen from Equations 15 through 17, the UE processor 400a may acquire an ID cell based on the SA-preamble sequence and the SA-preamble carrier set index.

另一方面,UE接收器300a可在步驟S1010b處自BS接收UL頻率分區組態(UFPC)資訊。UE處理器400a可根據UFPC資訊組態一或多個FP。例如,UE處理器400a可根據由UFPC資訊指示的FP的數目及各FP大小將一資源單元(RU)分配至各頻率分區(FP)。例如,根據表1至3,UE處理器400a不僅可基於一DFPC從FP(FP0:FP1:FP2:FP3)中辨識一資源單元(RU)所分配的FP而且可辨識分配至各FP的資源單元(RU)數目。UE處理器400a不指派資源單元(即,0資源單元)至FP(FP0:FP1:FP2:FP3)中具有與零(0)對應的一值的一FP。即,具有與零對應之一值的FP未被組態。UE傳送器100a可在UE處理器400a的控制下將PRU映射至各FP。On the other hand, the UE receiver 300a may receive UL Frequency Partition Configuration (UFPC) information from the BS at step S1010b. The UE processor 400a can configure one or more FPs based on the UFPC information. For example, the UE processor 400a may allocate a resource unit (RU) to each frequency partition (FP) according to the number of FPs indicated by the UFPC information and each FP size. For example, according to Tables 1 to 3, the UE processor 400a can recognize not only the FP allocated by a resource unit (RU) from the FP (FP0: FP1: FP2: FP3) but also the resource unit allocated to each FP based on a DFPC. (RU) number. The UE processor 400a does not assign a resource unit (ie, 0 resource unit) to an FP of FP (FP0: FP1: FP2: FP3) having a value corresponding to zero (0). That is, an FP having a value corresponding to zero is not configured. The UE transmitter 100a may map the PRU to each FP under the control of the UE processor 400a.

另一方面,UE處理器400a可從諸FFR模式中決定用於經組態FP的一FFR模式。例如,若BS傳送指示FFR模式的資訊,則UE處理器400a可根據所指示的FFR模式決定FP的不同功率位準。在另一實例中,UE處理器400a可基於一IDcell或SA-preamble載波集索引決定一FFR模式。在其中根據SA-preamble載波集索引決定FFR模式的情況下,UE處理器400a可根據方程式18決定FFR模式。因此,根據本發明具體實施例的UE處理器400a可從再使用-3分區中決定哪一FP係功率升高再使用-1分區。Alternatively, UE processor 400a may determine an FFR mode for the configured FP from the FFR modes. For example, if the BS transmits information indicating the FFR mode, the UE processor 400a may determine different power levels of the FP according to the indicated FFR mode. In another example, UE processor 400a may determine an FFR mode based on an IDcell or SA-preamble carrier set index. In the case where the FFR mode is determined according to the SA-preamble carrier set index, the UE processor 400a may determine the FFR mode according to Equation 18. Therefore, the UE processor 400a according to an embodiment of the present invention can determine which FP system power is raised from the reuse-3 partition and then use the -1 partition.

UE處理器400a可在步驟1020處根據本發明的第一至第三具體實施例中任一者使用IDcell及頻率分區組態資訊(即UFPC)針對RCH分配頻率資源。若UE未對於BS同步,根據本發明第一具體實施例的UE處理器400a可根據方程式4及6針對NS-RCH分配頻率資源。若UE與BS同步,UE處理器400a可根據方程式5及6針對S-RCH分配頻率資源。若UE未對於BS同步,根據本發明第二具體實施例的UE處理器400a可根據方程式7及9針對NS-RCH分配頻率資源。若UE對於BS同步,UE處理器400a可根據方程式8及9針對S-RCH分配頻率資源。若UE對於BS同步,根據本發明第三具體實施例的UE處理器400a可根據方程式10及12針對NS-RCH分配頻率資源。若UE未對於BS同步,UE處理器400a可根據方程式9及12針對S-RCH決定頻率資源。The UE processor 400a may allocate frequency resources for the RCH using the IDcell and frequency partition configuration information (ie, UFPC) in accordance with any of the first to third embodiments of the present invention at step 1020. If the UE is not synchronized to the BS, the UE processor 400a according to the first embodiment of the present invention may allocate frequency resources for the NS-RCH according to Equations 4 and 6. If the UE is synchronized with the BS, the UE processor 400a may allocate frequency resources for the S-RCH according to Equations 5 and 6. If the UE is not synchronized to the BS, the UE processor 400a according to the second embodiment of the present invention may allocate frequency resources for the NS-RCH according to Equations 7 and 9. If the UE is synchronized to the BS, the UE processor 400a may allocate frequency resources for the S-RCH according to Equations 8 and 9. If the UE synchronizes with the BS, the UE processor 400a according to the third embodiment of the present invention may allocate frequency resources for the NS-RCH according to Equations 10 and 12. If the UE is not synchronized for the BS, the UE processor 400a may determine the frequency resource for the S-RCH according to Equations 9 and 12.

對於BS非同步的UE處理器400a可於步驟S1030處使用經分配的NS-RCH控制UE傳送器100a將一測距訊號傳送給BS。對於BS同步的UE處理器400a可於步驟S1030處使用經分配的S-RCH控制UE傳送器100a將一測距訊號傳送給BS。The UE non-synchronized UE processor 400a may control the UE transmitter 100a to transmit a ranging signal to the BS using the assigned NS-RCH at step S1030. The UE processor 400a for BS synchronization may control the UE transmitter 100a to transmit a ranging signal to the BS using the assigned S-RCH at step S1030.

BS處理器400b已針對一特定細胞服務區辨識一IDcell、一UFPC及一FFR模式,使得BS處理器400b可辨識將哪一個頻率資源藉由位在特定細胞服務區處之UE用於RCH傳送。根據本發明的第一至第三具體實施例之任一者,BS處理器400b可決定用於UE的測距訊號傳送之RCH的頻率資源。BS處理器400b可控制BS接收器300b以使用分配給經決定頻率資源的RCH接收測距訊號。在分配給由方程式4及6決定的頻率資源之NS-RCH中或在分配至由方程式5及6決定的頻率資源的S-RCH中,根據本發明第一具體實施例的BS處理器400b可控制BS接收器300b以接收UE測距訊號。根據本發明第二具體實施例的BS處理器400b可控制BS接收器300b以在分配至由方程式7及9決定的頻率資源的NS-RCH中或在分配至由方程式8及9決定的頻率資源的S-RCH中接收UE測距訊號。根據本發明第三具體實施例的BS處理器400b可控制BS接收器300b以在分配至由方程式10及12決定的頻率資源的NS-RCH中或在分配至由方程式11及12決定的頻率資源的S-RCH中接收UE測距訊號。The BS processor 400b has identified an IDcell, a UFPC, and an FFR mode for a particular cell service area such that the BS processor 400b can identify which frequency resource is used for RCH transmission by the UE located at a particular cell service area. According to any of the first to third embodiments of the present invention, the BS processor 400b may determine the frequency resource of the RCH for the ranging signal transmission of the UE. The BS processor 400b can control the BS receiver 300b to receive the ranging signal using the RCH allocated to the determined frequency resource. In the NS-RCH allocated to the frequency resources determined by Equations 4 and 6, or in the S-RCH allocated to the frequency resources determined by Equations 5 and 6, the BS processor 400b according to the first embodiment of the present invention may The BS receiver 300b is controlled to receive the UE ranging signal. The BS processor 400b according to the second embodiment of the present invention can control the BS receiver 300b to be allocated to the NS-RCH allocated to the frequency resources determined by Equations 7 and 9 or to the frequency resources determined by Equations 8 and 9. Receive the UE ranging signal in the S-RCH. The BS processor 400b according to the third embodiment of the present invention may control the BS receiver 300b to be allocated to the NS-RCH allocated to the frequency resources determined by Equations 10 and 12 or to the frequency resources determined by Equations 11 and 12. Receive the UE ranging signal in the S-RCH.

根據本發明的上述具體實施例,RCH可依減少影響一鄰接細胞服務區之干擾的此一模式分配。此外,根據本發明的具體實施例,防止將過多UL控制通道集中及指派至一特定FP,使得可減少造成在特定FP中之缺乏資料資源的可能性。結論是,根據本發明的具體實施例,可改良一通訊系統之一總處理量。In accordance with the above-described embodiments of the present invention, the RCH can be allocated in accordance with this mode of reducing interference affecting an adjacent cell service area. Moreover, in accordance with a particular embodiment of the present invention, the concentration and assignment of too many UL control channels to a particular FP is prevented, such that the likelihood of lacking data resources in a particular FP can be reduced. In conclusion, according to a particular embodiment of the invention, one of the total throughput of a communication system can be improved.

在本發明領域中一般技藝者將會瞭解可依其他特定形式體現本發明而不脫離本發明之精神及基本特性。因此,上文所述具體實施例係要全面視為說明性而非限制性。本發明的範疇應由隨附申請專利範圍的合理解釋來決定,且落入本發明的均等範疇的所有變化且被包括在本發明的範疇內。It will be apparent to those skilled in the art that the present invention may be embodied in a particular form without departing from the spirit and scope of the invention. The specific embodiments described above are therefore to be considered in a The scope of the invention is to be determined by a reasonable interpretation of the scope of the appended claims, and all changes that fall within the scope of the invention are included in the scope of the invention.

本發明的具體實施例可應用於基地台、使用者裝備或無線通訊系統中的其他通訊裝置。Embodiments of the invention may be applied to base stations, user equipment, or other communication devices in a wireless communication system.

100...無線通訊系統100. . . Wireless communication system

100a...傳送器100a. . . Transmitter

100b...傳送器100b. . . Transmitter

102a...地理區域102a. . . Geographical area

102b...地理區域102b. . . Geographical area

102c...地理區域102c. . . Geographical area

104a...區域104a. . . region

104b...區域104b. . . region

104c...區域104c. . . region

110...MIMO編碼器110. . . MIMO encoder

110a...基地台/BS110a. . . Base station/BS

110b...基地台/BS110b. . . Base station/BS

110c...基地台/BS110c. . . Base station/BS

120...MIMO預編碼器120. . . MIMO precoder

120a-120i...使用者裝備/UE120a-120i. . . User equipment/UE

130...FFT模組130. . . FFT module

140-1至140-K...次載波140-1 to 140-K. . . Secondary carrier

150...OFDMA訊號產生器150. . . OFDMA signal generator

200a...記憶體200a. . . Memory

200b...記憶體200b. . . Memory

210...CP移除器210. . . CP remover

220...FFT模組220. . . FFT module

230...次載波解映射器/等化器230. . . Subcarrier demapper/equalizer

240...IFFT模組240. . . IFFT module

250...多工器250. . . Multiplexer

260...MIMO解碼器260. . . MIMO decoder

300a...接收器300a. . . receiver

300b...接收器300b. . . receiver

400a...處理器400a. . . processor

400b...處理器400b. . . processor

500a...控制天線500a. . . Control antenna

500b...控制天線500b. . . Control antenna

500-1至500-N...傳送天線500-1 to 500-N. . . Transmitting antenna

提供本發明的一進一步理解且併入及構成此申請案之一部分的附圖說明本發明的具體實施例,且與該描述一起用於解釋本發明的原理。圖中:The accompanying drawings, which are incorporated in and in in In the picture:

第1圖係說明一範例性無線通訊系統之組態的一圖式;Figure 1 is a diagram illustrating the configuration of an exemplary wireless communication system;

第2圖係用於實施本發明的一具體實施例之一使用者裝備(UE)及一基地台(BS)的一方塊圖;2 is a block diagram of a user equipment (UE) and a base station (BS) for implementing one embodiment of the present invention;

第3圖係在一使用者裝備(UE)及一基地台(BS)的各者中的一範例性傳送器之一方塊圖;Figure 3 is a block diagram of an exemplary transmitter in a user equipment (UE) and a base station (BS);

第4圖說明根據本發明的一具體實施例用於無線通訊系統的IEEE 802.16m的一無線電訊框的一範例性結構;4 is a diagram showing an exemplary structure of a radio frame of IEEE 802.16m for a wireless communication system in accordance with an embodiment of the present invention;

第5圖範例性地說明用於分頻再使用(FFR)的頻率分區;Figure 5 exemplarily illustrates frequency partitioning for frequency division reuse (FFR);

第6圖範例性地說明用於一IEEE 802.16m系統之一下行鏈路次訊框結構;Figure 6 exemplarily illustrates a downlink sub-frame structure for one of the IEEE 802.16m systems;

第7圖說明其中鄰近細胞服務區使用複數頻率分區的一實例;Figure 7 illustrates an example in which a plurality of frequency partitions are used in adjacent cell service areas;

第8及9圖說明在一時域中可用於本發明的具體實施例之一測距通道結構;Figures 8 and 9 illustrate a ranging channel structure that may be used in a particular embodiment of the invention in a time domain;

第10圖範例性地說明根據本發明的一第一具體實施例之測距通道(RCH)分配;Figure 10 exemplarily illustrates a ranging channel (RCH) allocation according to a first embodiment of the present invention;

第11圖範例性地說明根據本發明的一第二具體實施例之測距通道(RCH)分配;FIG. 11 exemplarily illustrates a ranging channel (RCH) allocation according to a second embodiment of the present invention;

第12圖範例性地說明根據本發明的一第三具體實施例之測距通道(RCH)分配;及FIG. 12 exemplarily illustrates a ranging channel (RCH) allocation according to a third embodiment of the present invention; and

第13圖係說明根據本發明的具體實施例之測距訊號傳送之一流程圖。Figure 13 is a flow chart showing one of the ranging signal transmissions in accordance with an embodiment of the present invention.

本代表圖中無元件符號There is no component symbol in this representative figure

Claims (8)

一種在一無線通訊系統中用於藉由一使用者裝備(UE)傳送一測距訊號之方法,該方法包括以下步驟:從一基地台(BS)接收頻率分區組態資訊;基於該BS之細胞服務區ID資訊(IDcell)及該頻率分區組態資訊,在一再使用-1頻率分區中決定一測距通道(RCH),或當無再使用-1頻率分區時改在一功率升高再使用-3頻率分區中決定該RCH;及使用該RCH來傳送該測距訊號至該BS,其中:當該UE未對於該BS同步時,則該RCH係一非同步測距通道(NS-RCH),且用於該NS-RCH的一頻率資源係根據方程式1決定:[方程式1]I SB =mod(IDcell ,R SB )其中ISB 係用於來自RSB 次頻帶中之該NS-RCH的一次頻帶索引(0,..,RSB -1),且由方程式2決定RSB 其中LSB-CRU,FPi 係分配予一頻率分區FPi的次頻帶鄰接資源單元(CRUs)的一數目,且FPi係對應於該再使用-1頻率分區或僅當無再使用-1頻率分區時對應於該功率升高再使用-3頻率分區。A method for transmitting a ranging signal by a user equipment (UE) in a wireless communication system, the method comprising the steps of: receiving frequency partition configuration information from a base station (BS); The cell service area ID information (IDcell) and the frequency partition configuration information determine a ranging channel (RCH) in a re-use-1 frequency partition, or change to a power increase when the -1 frequency partition is not used again. Determining the RCH by using a -3 frequency partition; and using the RCH to transmit the ranging signal to the BS, wherein: when the UE is not synchronized to the BS, the RCH is a non-synchronous ranging channel (NS-RCH) And a frequency resource for the NS-RCH is determined according to Equation 1: [Equation 1] I SB = mod ( IDcell , R SB ) where I SB is used for the NS-RCH from the R SB sub-band The primary frequency band index (0, .., R SB -1), and Equation 2 determines R SB : Where L SB-CRU, FPi is a number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition FPi, and FPi corresponds to the re-use-1 frequency partition or only when there is no reuse-1 frequency partition The -3 frequency partition is used corresponding to the power increase. 如請求項1之方法,其中:當該UE對於該BS同步時,該RCH係一同步測距通道(S-RCH),且用於該S-RCH的一頻率資源係根據方程式3決定:[方程式3]I SB ,s =mod(IDcell +1,R SB )其中ISB,s 係用於來自RSB 次頻帶中之該S-RCH的一次頻帶索引(0,..,RSB -1)。The method of claim 1, wherein: when the UE synchronizes with the BS, the RCH is a synchronous ranging channel (S-RCH), and a frequency resource for the S-RCH is determined according to Equation 3: Equation 3] I SB , s = mod ( IDcell +1, R SB ) where I SB, s is used for the primary band index (0, .., R SB -1 from the S-RCH in the R SB sub-band ). 一種在一無線通訊系統中用於藉由一基地台(BS)接收一測距訊號之方法,該方法包括以下步驟:傳送頻率分區組態資訊;及基於該BS之細胞服務區ID資訊(IDcell)及該頻率分區組態資訊,在一再使用-1頻率分區中使用一測距通道(RCH)來從一使用者裝備(UE)處接收該測距訊號,或當無再使用-1頻率分區時改在一功率升高再使用-3頻率分區中使用該RCH來從該UE處接收該測距訊號,其中:當該UE未對於該BS同步時,則該RCH係一非同步測距通道(NS-RCH),且用於該NS-RCH的一頻率資源係根據方程式1決定: [方程式1]I SB =mod(IDcell ,R SB )其中ISB 係用於來自RSB 次頻帶中之該NS-RCH的一次頻帶索引(0,..,RSB -1),且由方程式2決定RSB 其中LSB-CRU,FPi 係分配予一頻率分區FPi的次頻帶鄰接資源單元(CRUs)的一數目,且FPi係對應於該再使用-1頻率分區或僅當無再使用-1頻率分區時對應於該功率升高再使用-3頻率分區。A method for receiving a ranging signal by a base station (BS) in a wireless communication system, the method comprising the steps of: transmitting frequency partition configuration information; and cell service area ID information based on the BS (IDcell And the frequency partition configuration information, using a ranging channel (RCH) in a re-use-1 frequency partition to receive the ranging signal from a user equipment (UE), or when there is no reuse-1 frequency partition The RCH is used to receive the ranging signal from the UE in a power boost and then use -3 frequency partition, wherein: when the UE is not synchronized to the BS, the RCH is a non-synchronous ranging channel (NS-RCH), and a frequency resource for the NS-RCH is determined according to Equation 1: [Equation 1] I SB = mod ( IDcell , R SB ) where I SB is used from the R SB sub-band The primary frequency band index (0, .., R SB -1) of the NS-RCH, and the R SB is determined by Equation 2: Where L SB-CRU, FPi is a number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition FPi, and FPi corresponds to the re-use-1 frequency partition or only when there is no reuse-1 frequency partition The -3 frequency partition is used corresponding to the power increase. 如請求項3之方法,其中:當該UE對於該BS同步時,該RCH係一同步測距通道(S-RCH),且用於該S-RCH的一頻率資源係根據方程式3決定:[方程式3]I SB ,s =mod(IDcell +1,R SB )其中ISB,s 係用於來自RSB 次頻帶中之該S-RCH的一次頻帶索引(0,..,RSB -1)。The method of claim 3, wherein: when the UE synchronizes with the BS, the RCH is a synchronous ranging channel (S-RCH), and a frequency resource for the S-RCH is determined according to Equation 3: Equation 3] I SB , s = mod ( IDcell +1, R SB ) where I SB, s is used for the primary band index (0, .., R SB -1 from the S-RCH in the R SB sub-band ). 一種在一無線通訊系統中用於傳送一測距訊號之使用者裝備(UE),該UE包含: 一接收器;一傳送器;及一處理器,該處理器經組態以控制該接收器及該傳送器,其中該接收器經組態以從一基地台(BS)接收頻率分區組態資訊,及該處理器基於該BS之細胞服務區ID資訊(IDcell)及該頻率分區組態資訊,而在一再使用-1頻率分區中決定一測距通道(RCH),或當無再使用-1頻率分區時改在一功率升高再使用-3頻率分區中決定該RCH,且該處理器使用該RCH來控制該傳送器以傳送該測距訊號至該BS,其中:當該UE未對於該BS同步時,則該RCH係一非同步測距通道(NS-RCH),且該處理器經組態以根據方程式1決定用於該NS-RCH的一頻率資源:[方程式1]I SB =mod(IDcell ,R SB )其中ISB 係用於來自RSB 次頻帶中之該NS-RCH的一次頻帶索引(0,..,RSB -1),且該處理器經組態以根據方程式2決定RSB :[方程式2] 其中LSB-CRU,FPi 係分配予一頻率分區FPi的次頻帶鄰接資源單元(CRUs)的一數目,且FPi係對應於該再使用-1頻率分區或僅當無再使用-1頻率分區時對應於該功率升高再使用-3頻率分區。A user equipment (UE) for transmitting a ranging signal in a wireless communication system, the UE comprising: a receiver; a transmitter; and a processor configured to control the receiver And the transmitter, wherein the receiver is configured to receive frequency partition configuration information from a base station (BS), and the processor is based on the cell service area ID information (IDcell) of the BS and the frequency partition configuration information Determining a RCH in a re-use -1 frequency partition, or determining the RCH in a power boost and then using -3 frequency partition when no -1 frequency partition is used again, and the processor Using the RCH to control the transmitter to transmit the ranging signal to the BS, wherein: when the UE is not synchronized to the BS, the RCH is a non-synchronous ranging channel (NS-RCH), and the processor It is configured to determine a frequency resource for the NS-RCH according to Equation 1: [Equation 1] I SB = mod ( IDcell , R SB ) where I SB is used for the NS-RCH from the R SB sub-band Primary band index (0, .., R SB -1), and the processor is configured to determine R SB according to Equation 2: [Equation 2 ] Where L SB-CRU, FPi is a number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition FPi, and FPi corresponds to the re-use-1 frequency partition or only when there is no reuse-1 frequency partition The -3 frequency partition is used corresponding to the power increase. 如請求項5之使用者裝備(UE),其中:當該UE對於該BS同步時,則該RCH係一同步測距通道(S-RCH),且該處理器經組態以根據方程式3決定用於該S-RCH的一頻率資源:[方程式3]I SB ,s =mod(IDcell +1,R SB )其中ISB,s 係用於來自RSB 次頻帶中之該S-RCH的一次頻帶索引(0,..,RSB -1)。The user equipment (UE) of claim 5, wherein: when the UE synchronizes with the BS, the RCH is a synchronous ranging channel (S-RCH), and the processor is configured to determine according to Equation 3. A frequency resource for the S-RCH: [Equation 3] I SB , s = mod ( IDcell +1, R SB ) where I SB, s is used for the S-RCH from the R SB sub-band Band index (0, .., R SB -1). 一種用於在一無線通訊系統中接收一測距訊號之基地台(BS),該BS包含:一傳送器;一接收器;及一處理器,該處理器控制該傳送器以傳送頻率分區組態資訊,且該處理器基於該BS之細胞服務區ID資訊(IDcell)及該頻率分區組態資訊,來控制該接收器 以在一再使用-1頻率分區中使用一測距通道(RCH)而從一使用者裝備(UE)處接收該測距訊號,或當無再使用-1頻率分區時改在一功率升高再使用-3頻率分區中使用該RCH而從該UE處接收該測距訊號,其中:當該UE未對於該BS同步時,則該RCH係一非同步測距通道(NS-RCH),且該處理器經組態以根據方程式1決定用於該NS-RCH的一頻率資源:[方程式1]I SB =mod(IDcell ,R SB )其中ISB 係用於來自RSB 次頻帶中之該NS-RCH的一次頻帶索引(0,..,RSB -1),且該處理器經組態以根據方程式2決定RSB 其中LSB-CRU,FPi 係分配予一頻率分區FPi的次頻帶鄰接資源單元(CRUs)的一數目,且FPi係對應於該再使用-1頻率分區或僅當無再使用-1頻率分區時對應於該功率升高再使用-3頻率分區。A base station (BS) for receiving a ranging signal in a wireless communication system, the BS comprising: a transmitter; a receiver; and a processor that controls the transmitter to transmit a frequency partition group State information, and the processor controls the receiver to use a ranging channel (RCH) in a reuse-1 frequency partition based on the cell service area ID information (IDcell) of the BS and the frequency partition configuration information. Receiving the ranging signal from a user equipment (UE), or using the RCH in a power boost and then using the -3 frequency partition when the unused -1 frequency partition is not used, receiving the ranging from the UE a signal, wherein: when the UE is not synchronized for the BS, the RCH is a non-synchronous ranging channel (NS-RCH), and the processor is configured to determine a one for the NS-RCH according to Equation 1. Frequency resource: [Equation 1] I SB = mod ( IDcell , R SB ) where I SB is used for the primary band index (0, .., R SB -1) from the NS-RCH in the R SB sub-band, And the processor is configured to determine R SB according to Equation 2: Where L SB-CRU, FPi is a number of sub-band contiguous resource elements (CRUs) allocated to a frequency partition FPi, and FPi corresponds to the re-use-1 frequency partition or only when there is no reuse-1 frequency partition The -3 frequency partition is used corresponding to the power increase. 如請求項7之基地台(BS),其中:當該UE對於該BS同步時,則該RCH係一同步測距 通道(S-RCH),且該處理器經組態以根據方程式3決定用於該S-RCH的一頻率資源:[方程式3]I SB ,s =mod(IDcell +1,R SB )其中ISB,s 係用於來自RSB 次頻帶中之該S-RCH的一次頻帶索引(0,..,RSB -1)。The base station (BS) of claim 7, wherein: when the UE synchronizes with the BS, the RCH is a synchronous ranging channel (S-RCH), and the processor is configured to determine according to Equation 3. A frequency resource of the S-RCH: [Equation 3] I SB , s = mod ( IDcell +1, R SB ) where I SB, s is used for the primary frequency band from the S-RCH in the R SB sub-band Index (0, .., R SB -1).
TW100126826A 2010-08-13 2011-07-28 Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal TWI468052B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37328110P 2010-08-13 2010-08-13
US37427010P 2010-08-17 2010-08-17
KR1020110029916A KR101233184B1 (en) 2010-08-13 2011-03-31 Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal

Publications (2)

Publication Number Publication Date
TW201212682A TW201212682A (en) 2012-03-16
TWI468052B true TWI468052B (en) 2015-01-01

Family

ID=46130972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126826A TWI468052B (en) 2010-08-13 2011-07-28 Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal

Country Status (3)

Country Link
KR (1) KR101233184B1 (en)
MY (1) MY165252A (en)
TW (1) TWI468052B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897219B2 (en) 2010-08-13 2014-11-25 Lg Electronics Inc. Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal
KR20200105712A (en) * 2018-01-08 2020-09-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Service transmission method and apparatus, computer storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002977A1 (en) * 2005-07-04 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for scheduling data in a modem
WO2009120031A2 (en) * 2008-03-27 2009-10-01 Lg Electronics Inc. Method for performing ranging in wireless communication system supporting two wireless communication schemes
WO2010090467A2 (en) * 2009-02-05 2010-08-12 Lg Electronics Inc. Method and apparatus of transmitting uplink control signal in wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101633128B1 (en) * 2009-08-28 2016-06-24 엘지전자 주식회사 Method and apparatus of allocating ranging channel for synchronized mobile station in wireless communication system
KR20110052420A (en) * 2009-11-11 2011-05-18 엘지전자 주식회사 The method of channel state estimation in wireless communication using fractional frequency reuse and mobile station using the same method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002977A1 (en) * 2005-07-04 2007-01-04 Samsung Electronics Co., Ltd. Apparatus and method for scheduling data in a modem
WO2009120031A2 (en) * 2008-03-27 2009-10-01 Lg Electronics Inc. Method for performing ranging in wireless communication system supporting two wireless communication schemes
WO2010090467A2 (en) * 2009-02-05 2010-08-12 Lg Electronics Inc. Method and apparatus of transmitting uplink control signal in wireless communication system

Also Published As

Publication number Publication date
KR101233184B1 (en) 2013-02-15
MY165252A (en) 2018-03-14
KR20120023503A (en) 2012-03-13
TW201212682A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
US8743815B2 (en) Method and base station for transmitting SA-preamble and method and user equipment for receiving SA-preamble
US8897219B2 (en) Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal
JP5349601B2 (en) Method and apparatus for allocating resources for multicast and / or broadcast service data in a wireless communication system
KR101785658B1 (en) A method and a user equipment for transmitting uplink signals for location based service, and a method and a base station for measuring a location of a user equipment
US20110164549A1 (en) Mobile communication system
AU2012274232B2 (en) Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
US11888671B2 (en) Transmitting apparatus, receiving apparatus, transmitting method, and receiving method
US8249623B2 (en) Method and base station for transmitting location measurement reference signal, and method and user equipment for receiving location measurement reference signal
US8811255B2 (en) Method for allocating resource for multicast and/or broadcast service data in wireless communication system and an apparatus therefor
EP2525510B1 (en) Mbs data transmission method, mbs data receiving method, and user equipment
US10862643B2 (en) Device and user equipment to process a channel state information reference signal
US11252000B2 (en) Device to process data to be transmitted via a first radio module
US8953536B2 (en) Method and a user equipment for transmitting a signal, and a method and a base station for receiving a signal
TWI468052B (en) Method and user equipment for transmitting ranging signal, and method and base station for receiving ranging signal
WO2018198287A1 (en) Transmission device and reception device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees