TWI467782B - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
TWI467782B
TWI467782B TW100121658A TW100121658A TWI467782B TW I467782 B TWI467782 B TW I467782B TW 100121658 A TW100121658 A TW 100121658A TW 100121658 A TW100121658 A TW 100121658A TW I467782 B TWI467782 B TW I467782B
Authority
TW
Taiwan
Prior art keywords
type semiconductor
semiconductor layer
layer
metal particle
transparent conductive
Prior art date
Application number
TW100121658A
Other languages
Chinese (zh)
Other versions
TW201301533A (en
Inventor
Bing Huan Lee
Wen Jiunn Hsieh
Yi Hung Hsieh
Yung Chieh Chien
Original Assignee
Asiatree Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asiatree Technology Co Ltd filed Critical Asiatree Technology Co Ltd
Priority to TW100121658A priority Critical patent/TWI467782B/en
Publication of TW201301533A publication Critical patent/TW201301533A/en
Application granted granted Critical
Publication of TWI467782B publication Critical patent/TWI467782B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

薄膜太陽能電池Thin film solar cell

本發明係一種薄膜太陽能電池,特別係一種包含奈米金屬粒子層之薄膜太陽能電池,藉由奈米金屬粒子層增加入射光的捕捉及光的利用率,以提高光電流及光電轉換效率。The invention relates to a thin film solar cell, in particular to a thin film solar cell comprising a nano metal particle layer, which increases the capture of incident light and the utilization of light by the nano metal particle layer to improve photocurrent and photoelectric conversion efficiency.

國際能源短缺,促使太陽能電池的應用愈來愈受到許多政府與民間之重視,因太陽能供應無匱乏之餘,且生產電能過程不會產生環境汙染,成為熱門的替代能源,帶動太陽能電池產業蓬勃發展。從太陽表面所放射出來的能量,換算成電力約3.8×1023 kW;此太陽能的總量如以距離太陽一億五千萬公里之地球上換算所接收的太陽能量,以電力表示約為1.77×1014 kW左右,這個值大約為全球平均年消耗電力的十萬倍大。若能夠有效的運用此能源,則不僅能解決消耗性能源的問題,連環保問題也可一併獲得解決。在眾多的太陽能電池技術中,薄膜太陽能電池因使用矽原料少、總發電量高及可以與建材結合等優點而備受矚目。The international energy shortage has made the application of solar cells more and more valued by many governments and the public. Because there is no shortage of solar energy supply, and the process of producing electric energy will not cause environmental pollution, it will become a hot alternative energy source and drive the solar cell industry to flourish. . The energy radiated from the surface of the sun is converted into electricity of about 3.8 × 10 23 kW; the total amount of solar energy, such as the amount of solar energy received on the earth converted from the sun 150 million kilometers, is about 1.77 in electricity. ×10 14 kW or so, this value is about 100,000 times the annual average annual power consumption. If this energy can be used effectively, it will not only solve the problem of consumable energy, but even environmental problems can be solved. Among the many solar cell technologies, thin-film solar cells have attracted attention because of the advantages of using less raw materials, high total power generation, and integration with building materials.

目前,以玻璃作為基板的薄膜太陽能電池,大部分採用Superstrate結構。Superstrate結構為在玻璃基板上鍍透明導電層(Transparent Conductive Oxide,TCO)後,再依序鍍P-I-N三層矽薄膜層(又稱光吸收層),最後再鍍上金屬層,入射光經由玻璃基板端進入太陽能電池內。由於Superstrate結構之薄膜太陽能電池之底層為金屬,若入射光沒有完全被光吸收層吸收,可藉由金屬反射層將光反射回吸收層,再次利用光能。但由於金屬層對矽的附著度不佳,若直接沉積金屬層於矽上,在金屬層與矽的接面因缺陷造成光線吸收,使光無法有效反射回吸收層,故常在金屬層與矽之間加入一TCO層,以增加光線的反射率與提高元件的穩定性。At present, most of the thin film solar cells using glass as a substrate adopt a Superstrate structure. The Superstrate structure is to plate a transparent conductive layer (TCO) on a glass substrate, and then sequentially plate a PIN three-layer ruthenium film layer (also referred to as a light absorbing layer), and finally plate a metal layer, and the incident light passes through the glass substrate. The end enters the solar cell. Since the bottom layer of the thin-film solar cell of the Superstrate structure is metal, if the incident light is not completely absorbed by the light absorbing layer, the light can be reflected back to the absorbing layer by the metal reflective layer, and the light energy can be utilized again. However, due to the poor adhesion of the metal layer to the crucible, if the metal layer is directly deposited on the crucible, the light is absorbed by the defect between the metal layer and the crucible, so that the light cannot be effectively reflected back to the absorption layer, so the metal layer and the crucible are often A TCO layer is added between them to increase the reflectivity of the light and improve the stability of the component.

故Superstrate結構薄膜太陽能電池需要上下二層透明導電層,較靠近入射光那層稱為前向透明導電層(Front TCO),另一層稱為背向透明導電層(Back TCO)。若表面平坦,入射光即直進直出薄膜太陽能電池,無法有效利用太陽能,若TCO有不規則的凹凸結構(Texture),則可增加光散射的程度,提高光被吸收的機會。但Superstrate結構薄膜太陽能電池之背向透明導電層,因在蝕刻凹凸結構時,需將整個薄膜太陽能電池浸入酸液中,環境控制不易,可能致使整個薄膜太陽能電池報廢。基於上述問題,因此極需提出一種薄膜太陽能電池,能有效於吸收入射光線,進而提高光電轉換效率。Therefore, the Superstrate structured thin film solar cell requires two layers of transparent conductive layers, the layer closer to the incident light is called the forward transparent conductive layer (Front TCO), and the other layer is called the back transparent conductive layer (Back TCO). If the surface is flat, the incident light is straight into and out of the thin film solar cell, and solar energy cannot be effectively utilized. If the TCO has an irregular texture, the degree of light scattering can be increased, and the chance of light being absorbed can be increased. However, the superstrate structured thin film solar cell faces away from the transparent conductive layer. Because the entire thin film solar cell needs to be immersed in the acid solution when etching the concave and convex structure, the environmental control is not easy, which may cause the entire thin film solar cell to be scrapped. Based on the above problems, it is highly desirable to propose a thin film solar cell that can effectively absorb incident light and thereby improve photoelectric conversion efficiency.

參照美國專利5,213,628號,其揭示一種藉由加入非晶矽本質半導體,增加太陽能電池之載子壽命,減少電子電洞復合機率,以提高光電流轉換效率。然而該專利並未揭示如何增加入射光之使用率且該太陽能電池之效率過低,如此亦同時影響後續應用範圍。Referring to U.S. Patent No. 5,213,628, it is incorporated herein by reference, which discloses the disclosure of the utility of the present invention to increase the carrier lifetime of a solar cell and reduce the electron-electron-composite probability by adding an amorphous germanium-essential semiconductor to improve the photocurrent conversion efficiency. However, this patent does not disclose how to increase the usage of incident light and the efficiency of the solar cell is too low, which also affects the scope of subsequent applications.

參照美國專利5,395,457號,其揭示一種利用半導體製程製作出低廉並適合於模組化之電極,以降低該串連電阻。同樣地,該專利並未揭示入射光之吸收情形,且該太陽能電池之效率過低,如此亦同時影響後續應用範圍。Referring to U. Similarly, this patent does not disclose the absorption of incident light, and the efficiency of the solar cell is too low, which also affects the scope of subsequent applications.

職是之故,申請人乃細心試驗與研究,並一本鍥而不捨的精神,終於研究出一種薄膜太陽能電池,特別係有關於一種含有奈米金屬粒子層之太陽能電池。藉由該奈米金屬粒子層,本發明之一種薄膜太陽能電池可增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升。The job is the reason, the applicant is carefully experimenting and research, and a perseverance spirit, finally developed a thin film solar cell, especially related to a solar cell containing a layer of nano metal particles. With the nano metal particle layer, a thin film solar cell of the present invention can increase the capture of incident light and the utilization of light, thereby improving the photocurrent and power generation efficiency.

本發明之主要目的在於提出一種薄膜太陽能電池,藉由增加奈米金屬粒子層可增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升。The main object of the present invention is to provide a thin film solar cell, which can increase the capture of incident light and the utilization of light by increasing the layer of nano metal particles, thereby improving the photocurrent and power generation efficiency.

本發明之次要目的在於提出一種薄膜太陽能電池,係藉由奈米金屬粒子層形成於複數道雷射處理後之溝槽,進而達到光電流及發電效率的提升。A secondary object of the present invention is to provide a thin film solar cell which is formed by a layer of nano metal particles formed in a plurality of laser-treated trenches to improve photocurrent and power generation efficiency.

為達上述目的,本發明提出一種薄膜太陽能電池,包含:基材、第一透明導電層、P型半導體層、本質(i)型半導體層、N型半導體層、奈米金屬粒子層、第二透明導電層及背電極。其中,第一透明導電層係形成於基材上,用於取出電能;P型半導體層係形成於第一透明導電層上,用於產生電洞;本質(i)型半導體層係形成於P型半導體層上,用於提高可見光譜光子的吸收範圍;N型半導體層係形成於本質(i)半導體層上,用於產生電子;奈米金屬粒子層係形成於N型半導體層上,用於增加光的利用率;第二透明導電層係形成於奈米金屬粒子層上方;背電極則是形成於第二透明導電層上,用於取出電能。To achieve the above object, the present invention provides a thin film solar cell comprising: a substrate, a first transparent conductive layer, a P-type semiconductor layer, an intrinsic (i) type semiconductor layer, an N type semiconductor layer, a nano metal particle layer, and a second Transparent conductive layer and back electrode. Wherein, the first transparent conductive layer is formed on the substrate for taking out electrical energy; the P-type semiconductor layer is formed on the first transparent conductive layer for generating a hole; and the essential (i) type semiconductor layer is formed on the P On the semiconductor layer, for improving the absorption range of visible spectrum photons; the N-type semiconductor layer is formed on the essence (i) semiconductor layer for generating electrons; and the nano metal particle layer is formed on the N-type semiconductor layer, To increase the utilization of light; a second transparent conductive layer is formed over the nano metal particle layer; and a back electrode is formed on the second transparent conductive layer for extracting electrical energy.

本發明另提出一種薄膜太陽能電池,包含基材、第一透明導電層、P型半導體層、本質(i)型半導體層、N型半導體層、第二透明導電層、背電極、複數溝槽與奈米金屬粒子層。其中,第一透明導電層係形成於基材上,用於取出電能;P型半導體層係形成於第一透明導電層上,用於產生電洞;本質(i)型半導體層係形成於P型半導體層上,用於提高可見光譜光子的吸收範圍;N型半導體層係形成於本質(i)半導體層上,用於產生電子;第二透明導電層係形成於N型半導體層上方;背電極,形成於該第二透明導電層上,用於取出電能;複數溝槽,係經由一雷射處理以穿透過該背電極、該第二透明導電層、該N型半導體層、該本質(i)型半導體層、該P型半導體層與該第一透明導電層;以及奈米金屬粒子層,係形成於該些複數溝槽中,該奈米金屬粒子層之粒子晶粒大小係介於5至200奈米之間,且該奈米金屬粒子層之粒子在該些溝槽內之表面覆蓋率為80%以下。The invention further provides a thin film solar cell comprising a substrate, a first transparent conductive layer, a P-type semiconductor layer, an intrinsic (i) type semiconductor layer, an N-type semiconductor layer, a second transparent conductive layer, a back electrode, a plurality of trenches and Nano metal particle layer. Wherein, the first transparent conductive layer is formed on the substrate for taking out electrical energy; the P-type semiconductor layer is formed on the first transparent conductive layer for generating a hole; and the essential (i) type semiconductor layer is formed on the P On the semiconductor layer, for improving the absorption range of visible spectrum photons; the N-type semiconductor layer is formed on the essence (i) semiconductor layer for generating electrons; the second transparent conductive layer is formed above the N-type semiconductor layer; An electrode formed on the second transparent conductive layer for extracting electrical energy; the plurality of trenches are processed through a laser to penetrate the back electrode, the second transparent conductive layer, the N-type semiconductor layer, and the essence The i) type semiconductor layer, the P type semiconductor layer and the first transparent conductive layer; and the nano metal particle layer are formed in the plurality of trenches, and the particle size of the nano metal particle layer is Between 5 and 200 nm, and the surface coverage of the particles of the nano metal particle layer in the grooves is 80% or less.

本發明之一種薄膜太陽能電池具有以下之功效:A thin film solar cell of the present invention has the following effects:

1. 藉由本發明之奈米金屬粒子層可增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升;1. The nano metal particle layer of the invention can increase the capture of incident light and the utilization of light, thereby improving the photocurrent and power generation efficiency;

2. 在本發明之薄膜太陽能電池中,藉由在雷射處理後之溝槽區之奈米金屬粒子,可增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升。2. In the thin film solar cell of the present invention, by capturing the nano metal particles in the trench region after the laser treatment, the capture of the incident light and the utilization of the light can be increased, thereby improving the photocurrent and the power generation efficiency.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features, and advantages of the present invention will become more apparent and understood.

雖然本發明可表現為不同形式之實施例,但附圖所示者及於下文中說明者係為本發明可之較佳實施例,並請瞭解本文所揭示者係考量為本發明之一範例,且並非意圖用以將本發明限制於圖示及/或所描述之特定實施例中。While the invention may be embodied in various forms, the embodiments illustrated in the drawings It is not intended to limit the invention to the particular embodiments illustrated and/or described.

現請參考第1圖,為本發明之薄膜太陽能電池之一實施例之結構示意圖。薄膜太陽能電池100主要包含:基材110、第一透明導電層120、P型半導體層130、本質(i)型半導體層140、N型半導體層150、奈米金屬粒子層160、第二透明導電層170以及背電極180。Referring now to FIG. 1, a schematic structural view of an embodiment of a thin film solar cell of the present invention is shown. The thin film solar cell 100 mainly includes a substrate 110, a first transparent conductive layer 120, a P-type semiconductor layer 130, an intrinsic (i) type semiconductor layer 140, an N-type semiconductor layer 150, a nano metal particle layer 160, and a second transparent conductive layer. Layer 170 and back electrode 180.

基材110係選自玻璃、塑膠基板、半導性基板、絕緣基板、可撓性基板或不鏽鋼板之一種材料。The substrate 110 is selected from the group consisting of a glass, a plastic substrate, a semiconductive substrate, an insulating substrate, a flexible substrate, or a stainless steel plate.

第一透明導電層120係形成於基材110上方,用於取出電能。其中,第一透明導電層120係選自於氧化銦鍚(ITO)、氧化鋁鋅(AZO)、摻氟氧化錫薄膜(FTO)、氧化錫(SnO2 )及氧化鋅(ZnO)之一,且其厚度係介於200奈米至800奈米之間。需注意的是,不同的透明導電膜的製備方式會影響其所具有之光電特性的品質。較佳地,係選用可以耐酸鹼耐熱、耐濕以及成膜原料便宜且生產成本低之摻氟氧化錫薄膜(FTO)。The first transparent conductive layer 120 is formed over the substrate 110 for taking out electrical energy. The first transparent conductive layer 120 is selected from the group consisting of indium oxide oxide (ITO), aluminum zinc oxide (AZO), fluorine-doped tin oxide film (FTO), tin oxide (SnO 2 ), and zinc oxide (ZnO). And its thickness is between 200 nm and 800 nm. It should be noted that the preparation of different transparent conductive films affects the quality of the photoelectric properties they have. Preferably, a fluorine-doped tin oxide film (FTO) which is resistant to acid and alkali heat, moisture, and low in film forming raw materials and low in production cost is used.

P型半導體層130係形成於第一透明導電層120上方,其係用於產生電洞。其中,P型半導體層130之定義:在原本質材料中加入雜質(Impurities)用以產生多餘的電洞,以電洞構成多數載子之半導體層。例:以矽或鍺半導體而言,在其本質半導體中,摻入3價原子的雜質(Impurities)形成多餘的電洞,使該電洞作為電流的運作方式。The P-type semiconductor layer 130 is formed over the first transparent conductive layer 120 for generating a hole. Wherein, the P-type semiconductor layer 130 is defined by adding impurities to the original intrinsic material to generate excess holes, and forming a semiconductor layer of a majority carrier by a hole. Example: In the case of germanium or germanium semiconductors, in their intrinsic semiconductors, impurities doped with trivalent atoms form excess holes, making the hole act as a current.

本質(i)型半導體層140係形成於P型半導體層130上方,其係用於提高可見光譜光子的吸收範圍。其中,本質(i)型半導體層140對於薄膜太陽能電池之電特性影響最大,原因在於電子與電洞在材料內部傳導時,若本質(i)型半導體層140的厚度過厚,兩者重合機率極高,為避免此現象發生,本質(i)型半導體層140不宜過厚。反之,本質(i)型半導體層140厚度過薄時,易造成吸光性不足。An intrinsic (i) type semiconductor layer 140 is formed over the P-type semiconductor layer 130 for enhancing the absorption range of photons in the visible spectrum. Among them, the intrinsic (i) type semiconductor layer 140 has the greatest influence on the electrical characteristics of the thin film solar cell, because when the electron and the hole are conducted inside the material, if the thickness of the intrinsic (i) type semiconductor layer 140 is too thick, the probability of coincidence Extremely high, in order to avoid this phenomenon, the intrinsic (i) type semiconductor layer 140 should not be too thick. On the other hand, when the thickness of the (i) type semiconductor layer 140 is too thin, the light absorbing property is insufficient.

N型半導體層150係形成於本質(i)半導體層140上方,其係用於產生電子。其中,N型半導體層150係指在本質材料中加入的雜質可產生多餘的電子,以電子構成多數載子之半導體,即稱之為N型半導體層。舉例來說,就矽或矽鍺半導體而言,若對本質半導體摻入5價原子的雜質時,會形成多餘之電子,並以電子流做為主要的運作方式。The N-type semiconductor layer 150 is formed over the intrinsic (i) semiconductor layer 140, which is used to generate electrons. The N-type semiconductor layer 150 refers to a semiconductor in which an impurity added to an intrinsic material generates excess electrons and electrons constitute a majority carrier, which is called an N-type semiconductor layer. For example, in the case of germanium or germanium semiconductors, if an intrinsic semiconductor is doped with impurities of a five-valent atom, excess electrons are formed, and electron current is the main mode of operation.

P型半導體層130、本質(i)型半導體層140以及N型半導體層150的製備方式係選自電漿增強型化學式氣相沈積法、熱絲化學氣相沈積法、電子迴旋共振化學氣相沈積法、特高頻電漿增強型化學式氣相沈積法、低壓化學氣相沈積法、電漿輔助式化學氣相沈積與常壓化學氣相沈積法之一。需注意的是,P型半導體層130、本質(i)型半導體層140以及N型半導體層150的製備來源將影響其光電特性的品質。The P-type semiconductor layer 130, the intrinsic (i)-type semiconductor layer 140, and the N-type semiconductor layer 150 are prepared by a plasma enhanced chemical vapor deposition method, a hot wire chemical vapor deposition method, and an electron cyclotron resonance chemical vapor phase. One of deposition method, UHF plasma enhanced chemical vapor deposition method, low pressure chemical vapor deposition method, plasma assisted chemical vapor deposition and atmospheric pressure chemical vapor deposition. It is to be noted that the source of preparation of the P-type semiconductor layer 130, the intrinsic (i)-type semiconductor layer 140, and the N-type semiconductor layer 150 will affect the quality of its photoelectric characteristics.

奈米金屬粒子層160係形成於N型半導體層150上方,其係用於增加光的利用率。其中,奈米金屬粒子層160係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,且奈米金屬粒子層160之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一。A nano metal particle layer 160 is formed over the N-type semiconductor layer 150 for increasing the utilization of light. The nano metal particle layer 160 is selected from one of alloys of gold, silver, copper, platinum, nickel, zinc, tin, aluminum, and the preparation method of the nano metal particle layer 160 is selected from a sputtering method. One of vapor deposition method, electroplating method, chemical vapor deposition method, sol-gel method, spray lysis method, dipping method, spin coating method, screen printing method, and electrochemical method.

值得注意的是,增加光的利用率的原因為:利用奈米金屬的表面特性形成表面電漿,會與入射光形成共振進而增加入射光的捕捉及光的利用率,最後,達到光電流及發電效率的提升。另一方面,在同一入射頻率下,光不能直接激發金屬表面的表面電漿,因為它們的波向量不相符;不過,當金屬奈米化或表面粗糙化時,將使得光的波向量和表面電漿的波向量相等,便可以激發金屬表面的表面電漿,進而增加光的利用率。此外,奈米金屬粒子層160之粒子晶粒大小係在5至200奈米之間。較佳地,奈米金屬粒子層160之粒子晶粒大小係在20至50奈米之間。需注意的是,奈米金屬粒子層160並非完全是連續的薄膜,而是分散的一些奈米金屬粒子所組成。因此,奈米金屬粒子層160之奈米粒子在N型半導體層150之表面覆蓋率為20%~60%之間,亦即是奈米金屬粒子在表面之分布密度為106 ~1010 /m2 。較佳地,該奈米金屬粒子層160之奈米粒子在N型半導體層150之表面覆蓋率係在50%~60%之間;亦即是該奈米金屬粒子在N型半導體層150之表面分布密度為109 ~1010 /m2 。需注意的是,該奈米金屬粒子在表面分布密度大於106 /m2 以上即能有效地提升光電流與光電轉換效率。It is worth noting that the reason for increasing the utilization of light is that the surface plasma is formed by the surface characteristics of the nano metal, which will resonate with the incident light to increase the capture of the incident light and the utilization of light. Finally, the photocurrent is achieved. Increased power generation efficiency. On the other hand, at the same incident frequency, light cannot directly excite the surface plasma of the metal surface because their wave vectors do not match; however, when the metal is nano- or surface roughened, the wave vector and surface of the light will be made. When the wave vectors of the plasma are equal, the surface plasma of the metal surface can be excited, thereby increasing the utilization of light. Further, the nanoparticle particle layer 160 has a particle grain size of between 5 and 200 nm. Preferably, the nanoparticle particle layer 160 has a particle size between 20 and 50 nanometers. It should be noted that the nano metal particle layer 160 is not completely continuous film, but is composed of dispersed nano metal particles. Therefore, the surface coverage of the nanoparticle of the nano metal particle layer 160 in the surface of the N-type semiconductor layer 150 is between 20% and 60%, that is, the distribution density of the nano metal particles on the surface is 10 6 to 10 10 / m 2 . Preferably, the surface coverage of the nanoparticles of the nano metal particle layer 160 in the N-type semiconductor layer 150 is between 50% and 60%; that is, the nano metal particles are in the N-type semiconductor layer 150. The surface distribution density is 10 9 ~ 10 10 /m 2 . It should be noted that the nano metal particles can effectively enhance the photocurrent and photoelectric conversion efficiency when the surface distribution density is greater than 10 6 /m 2 .

第二透明導電層170係形成於奈米金屬粒子層160上方。其中第二透明導電層170係選自於氧化銦鍚(ITO)、氧化鋁鋅(AZO)、摻氟氧化錫薄膜(FTO)、氧化錫(SnO2 )及氧化鋅(ZnO)之一,且其厚度係介於200奈米至800奈米之間。需注意的是,不同的透明導電膜的製備方式會影響其所具有之光電特性的品質。The second transparent conductive layer 170 is formed over the nano metal particle layer 160. The second transparent conductive layer 170 is selected from one of indium tin oxide (ITO), aluminum zinc oxide (AZO), fluorine-doped tin oxide film (FTO), tin oxide (SnO 2 ), and zinc oxide (ZnO), and Its thickness is between 200 nm and 800 nm. It should be noted that the preparation of different transparent conductive films affects the quality of the photoelectric properties they have.

背電極180係形成於第二透明導電層170上方,其係用於取出電能。其中,背電極180係選自鎳、金、銀、鈦、鈀、鉑及鋁等導電材料之一。The back electrode 180 is formed over the second transparent conductive layer 170 for taking out electrical energy. The back electrode 180 is selected from one of conductive materials such as nickel, gold, silver, titanium, palladium, platinum, and aluminum.

需注意的是,在另一實施方式中,第二透明導電層170可以省略。第2圖所示為本發明之薄膜太陽能電池100之另一實施例之結構示意圖,其大致與第1圖相同,主要差異係沒有第二透明導電層170可以省略,亦即是將奈米金屬粒子層160直接沈積在N型半導體層150之表面。奈米金屬粒子在N型半導體層150之表面覆蓋率為20%至90%之間,亦即奈米金屬粒子在N型半導體層150之表面分布密度為106 ~1013 /m2It should be noted that in another embodiment, the second transparent conductive layer 170 may be omitted. 2 is a schematic structural view of another embodiment of the thin film solar cell 100 of the present invention, which is substantially the same as FIG. 1 , and the main difference is that no second transparent conductive layer 170 can be omitted, that is, the nano metal is The particle layer 160 is directly deposited on the surface of the N-type semiconductor layer 150. The surface coverage of the nano metal particles in the N-type semiconductor layer 150 is between 20% and 90%, that is, the distribution density of the nano metal particles on the surface of the N-type semiconductor layer 150 is 10 6 to 10 13 /m 2 .

現請參考第3圖,為本發明之薄膜太陽能電池100之又一實施例之結構示意圖。該薄膜太陽能電池100主要包含:基材110、第一透明導電層120、P型半導體層130、本質(i)型半導體層140、N型半導體層150、奈米金屬粒子層160、第二透明導電層170以及背電極180。與第一實施例大致相同,主要的差異係在該實施方式中,係先將第二透明導電層170形成於N型半導體層150之上,然後再將奈米金屬粒子層160形成於第二透明導電層170上。奈米金屬粒子層160並非完全是連續的薄膜,而是分散的一些奈米金屬粒子所組成,其中,奈米金屬粒子層160係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,且奈米金屬粒子層160之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一。其中,奈米金屬粒子層160之晶粒大小係在5至200奈米之間,且奈米金屬粒子層160之奈米粒子在第二透明導電層170之表面覆蓋率在20%至90%之間,亦即奈米金屬粒子層160之粒子在第二透明導電層170之表面分布密度為106 ~1013 /m2Please refer to FIG. 3 , which is a schematic structural view of still another embodiment of the thin film solar cell 100 of the present invention. The thin film solar cell 100 mainly includes a substrate 110, a first transparent conductive layer 120, a P-type semiconductor layer 130, an intrinsic (i) type semiconductor layer 140, an N-type semiconductor layer 150, a nano metal particle layer 160, and a second transparent layer. Conductive layer 170 and back electrode 180. Roughly the same as the first embodiment, the main difference is that in this embodiment, the second transparent conductive layer 170 is formed on the N-type semiconductor layer 150, and then the nano metal particle layer 160 is formed in the second. On the transparent conductive layer 170. The nano metal particle layer 160 is not completely a continuous film, but is composed of a plurality of dispersed nano metal particles, wherein the nano metal particle layer 160 is selected from the group consisting of gold, silver, copper, platinum, nickel, zinc, tin, One of aluminum or one of alloys, and the preparation method of the nano metal particle layer 160 is selected from the group consisting of sputtering, evaporation, electroplating, chemical vapor deposition, sol-gel method, spray lysis method, and dipping method. One of spin coating, screen printing and electrochemical methods. Wherein, the grain size of the nano metal particle layer 160 is between 5 and 200 nm, and the surface coverage of the nano particles of the nano metal particle layer 160 is 20% to 90% on the surface of the second transparent conductive layer 170. The particles of the nano metal particle layer 160 are distributed on the surface of the second transparent conductive layer 170 at a density of 10 6 to 10 13 /m 2 .

請參考第4圖,為本發明之薄膜太陽能電池200之再一實施例。該實施例提出奈米金屬粒子層係形成於切割薄膜太陽能電池之該些複數個溝槽之間。薄膜太陽能電池200主要包含基材210、第一透明導電層220、P型半導體層230、本質(i)型半導體層240、N型半導體層250、第二透明導電層260以及背電極270。其中,基材210係選自玻璃、塑膠基板、半導性基板、絕緣基板、可撓性基板或不鏽鋼板之一種材料。第一透明導電層220係形成於基材210上方,用於取出電能。第一透明導電層220係選自於氧化銦鍚(ITO)、氧化鋁鋅(AZO)、摻氟氧化錫薄膜(FTO)、氧化錫(SnO2 )及氧化鋅(ZnO)之一,且其厚度係介於200至800奈米之間。需注意的是,不同的透明導電膜的製備方式會影響其所具有之光電特性的品質。較佳地,係選用可以耐酸鹼耐熱、耐濕以及成膜原料便宜且生產成本低之摻氟氧化錫薄膜(FTO)。Please refer to FIG. 4, which illustrates still another embodiment of the thin film solar cell 200 of the present invention. This embodiment suggests that a layer of nano metal particles is formed between the plurality of trenches of the diced thin film solar cell. The thin film solar cell 200 mainly includes a substrate 210, a first transparent conductive layer 220, a P-type semiconductor layer 230, an intrinsic (i) type semiconductor layer 240, an N-type semiconductor layer 250, a second transparent conductive layer 260, and a back electrode 270. The substrate 210 is selected from the group consisting of a glass, a plastic substrate, a semiconductive substrate, an insulating substrate, a flexible substrate, or a stainless steel plate. The first transparent conductive layer 220 is formed over the substrate 210 for taking out electrical energy. The first transparent conductive layer 220 is selected from one of indium lanthanum oxide (ITO), aluminum zinc oxide (AZO), fluorine-doped tin oxide film (FTO), tin oxide (SnO 2 ), and zinc oxide (ZnO), and The thickness is between 200 and 800 nm. It should be noted that the preparation of different transparent conductive films affects the quality of the photoelectric properties they have. Preferably, a fluorine-doped tin oxide film (FTO) which is resistant to acid and alkali heat, moisture, and low in film forming raw materials and low in production cost is used.

P型半導體層230形成於第一透明導電層220上方,用於產生電洞。其中,P型半導體層230之定義:在原本質材料中加入雜質(Impurities)用以產生多餘的電洞,以電洞構成多數載子之半導體層。例:以矽或鍺半導體而言,在其本質半導體中,摻入3價原子的雜質(Impurities)形成多餘的電洞,使該電洞作為電流的運作方式。A P-type semiconductor layer 230 is formed over the first transparent conductive layer 220 for generating a hole. The definition of the P-type semiconductor layer 230 is that impurities are added to the original intrinsic material to generate excess holes, and the semiconductor layer of the majority carrier is formed by the holes. Example: In the case of germanium or germanium semiconductors, in their intrinsic semiconductors, impurities doped with trivalent atoms form excess holes, making the hole act as a current.

本質(i)型半導體層240係形成於P型半導體層230上方,其係用於提高可見光譜光子的吸收範圍。其中,本質(i)型半導體層240對於薄膜太陽能電池之電特性影響最大,其是由於電子與電洞在材料內部傳導時,若本質(i)型半導體層240厚度過厚,兩者重合機率極高,為避免此現象發生,本質(i)型半導體層240不宜過厚。反之,本質(i)型半導體層240厚度過薄時,易造成吸光性不足。An intrinsic (i) type semiconductor layer 240 is formed over the P-type semiconductor layer 230 for enhancing the absorption range of photons in the visible spectrum. The intrinsic (i) type semiconductor layer 240 has the greatest influence on the electrical characteristics of the thin film solar cell. When the electron and the hole are conducted inside the material, if the thickness of the intrinsic (i) type semiconductor layer 240 is too thick, the probability of coincidence Extremely high, in order to avoid this phenomenon, the intrinsic (i) type semiconductor layer 240 should not be too thick. On the other hand, when the thickness of the (i) type semiconductor layer 240 is too thin, the light absorbing property is insufficient.

N型半導體層250係形成於本質(i)半導體層240上方,用於產生電子。其中,N型半導體層250係指在本質材料中加入的雜質可產生多餘的電子,以電子構成多數載子之半導體,即稱之為N型半導體層。舉例來說,就矽或矽鍺半導體而言,若對本質半導體摻入5價原子的雜質時,會形成多餘之電子,並以電子流做為主要的運作方式。An N-type semiconductor layer 250 is formed over the intrinsic (i) semiconductor layer 240 for generating electrons. The N-type semiconductor layer 250 refers to a semiconductor in which an impurity added to an intrinsic material generates excess electrons and electrons constitute a majority carrier, which is called an N-type semiconductor layer. For example, in the case of germanium or germanium semiconductors, if an intrinsic semiconductor is doped with impurities of a five-valent atom, excess electrons are formed, and electron current is the main mode of operation.

P型半導體層230、本質(i)型半導體層240以及N型半導體層250的製備方法係選自電漿增強型化學式氣相沈積法、熱絲化學氣相沈積法、電子迴旋共振化學氣相沈積法、特高頻電漿增強型化學式氣相沈積法、低壓化學氣相沈積法、電漿輔助式化學氣相沈積與常壓化學氣相沈積法之一。需注意的是,P型半導體層230、本質(i)型半導體層240以及N型半導體層250的製備來源會影響其所具有之光電特性的品質。The preparation method of the P-type semiconductor layer 230, the intrinsic (i) type semiconductor layer 240, and the N-type semiconductor layer 250 is selected from the group consisting of a plasma enhanced chemical vapor deposition method, a hot wire chemical vapor deposition method, and an electron cyclotron resonance chemical vapor phase. One of deposition method, UHF plasma enhanced chemical vapor deposition method, low pressure chemical vapor deposition method, plasma assisted chemical vapor deposition and atmospheric pressure chemical vapor deposition. It should be noted that the preparation source of the P-type semiconductor layer 230, the intrinsic (i)-type semiconductor layer 240, and the N-type semiconductor layer 250 may affect the quality of the photoelectric characteristics thereof.

第二透明導電層260係形成於N型半導體層250上方。其中第二透明導電層260係選自於氧化銦鍚(ITO)、氧化鋁鋅(AZO)、摻氟氧化錫薄膜(FTO)、氧化錫(SnO2 )及氧化鋅(ZnO)之一,且其厚度係介於200奈米至800奈米之間。需注意的是,不同的透明導電膜的製備方式會影響其所具有之光電特性的品質。The second transparent conductive layer 260 is formed over the N-type semiconductor layer 250. The second transparent conductive layer 260 is selected from one of indium lanthanum oxide (ITO), aluminum zinc oxide (AZO), fluorine-doped tin oxide film (FTO), tin oxide (SnO 2 ), and zinc oxide (ZnO), and Its thickness is between 200 nm and 800 nm. It should be noted that the preparation of different transparent conductive films affects the quality of the photoelectric properties they have.

背電極270係選自鎳、金、銀、鈦、鈀、鉑及鋁等導電材料之一,其係形成於第二透明導電層260上方,用於取出電能。需注意的是,背電極270為了避免有短路之現象發生,因此下方包含經由雷射處理所形成之複數溝槽,且奈米金屬粒子層280係形成於溝槽內。其中,第一透明導電層220、P型半導體層230、i型半導體層240、N型半導體層250、以及第二透明導電層260亦可包含經由雷射處理所形成之複數溝槽。詳細地,第一透明導電層220係以雷射切割方式形成複數個第一溝槽,將第一透明導電層220分隔成複數個上電極。接著,形成P/i/N型半導體層230、240、250於上電極上填滿所述第一溝槽。然後,再以雷射切割P/i/N型半導體層230、240、250以形成複數個第二溝槽,且所述第二溝槽露出部份該些上電極。隨後,形成第二透明導電層260並填滿該些第二溝槽。接著,形成背電極270於第二透明導電層260上。最後,以雷射切割背電極270與第二透明導電層260以形成複數個第三溝槽290。該些複數個第三溝槽290將薄膜太陽能電池分割成複數個單元電池。The back electrode 270 is selected from one of conductive materials such as nickel, gold, silver, titanium, palladium, platinum, and aluminum, and is formed over the second transparent conductive layer 260 for taking out electrical energy. It should be noted that the back electrode 270 includes a plurality of trenches formed by laser processing in order to avoid the occurrence of a short circuit, and the nano metal particle layer 280 is formed in the trenches. The first transparent conductive layer 220, the P-type semiconductor layer 230, the i-type semiconductor layer 240, the N-type semiconductor layer 250, and the second transparent conductive layer 260 may also include a plurality of trenches formed by laser processing. In detail, the first transparent conductive layer 220 forms a plurality of first trenches in a laser cutting manner, and divides the first transparent conductive layer 220 into a plurality of upper electrodes. Next, the P/i/N type semiconductor layers 230, 240, and 250 are formed to fill the first trenches on the upper electrode. Then, the P/i/N type semiconductor layers 230, 240, 250 are further laser-cut to form a plurality of second trenches, and the second trench exposes portions of the upper electrodes. Subsequently, a second transparent conductive layer 260 is formed and fills the second trenches. Next, a back electrode 270 is formed on the second transparent conductive layer 260. Finally, the back electrode 270 and the second transparent conductive layer 260 are laser-cut to form a plurality of third trenches 290. The plurality of third trenches 290 divide the thin film solar cell into a plurality of unit cells.

此時,奈米金屬粒子層280係分佈在成該些複數個第三溝槽290之間,奈米金屬粒子層280之粒子晶粒大小係介於5至200奈米之間,奈米金屬顆粒不宜過大且不為連續之分佈,且表面覆蓋率為80%以下以避免形成單元電池間的導通,亦即是奈米金屬粒子在表面之分布密度少於1012 /m2 。。奈米金屬粒子層280係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,係由濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一製備而成。At this time, the nano metal particle layer 280 is distributed between the plurality of third trenches 290, and the particle size of the nano metal particle layer 280 is between 5 and 200 nm, and the nano metal is The particles should not be too large and not continuous, and the surface coverage is 80% or less to avoid conduction between the unit cells, that is, the distribution density of the nano metal particles on the surface is less than 10 12 /m 2 . . The nano metal particle layer 280 is one selected from the group consisting of gold, silver, copper, platinum, nickel, zinc, tin, aluminum, or an alloy thereof, by sputtering, evaporation, electroplating, chemical vapor deposition, It is prepared by one of sol-gel method, spray lysis method, dipping method, spin coating method, screen printing method and electrochemical method.

值得注意的是,利用奈米金屬的表面特性形成表面電漿,會與入射光形成共振進而增加入射光的捕捉及光的利用率,最後,達到光電流及發電效率的提升。另一方面,在同一入射頻率下,光不能直接激發金屬表面的表面電漿,因為它們的波向量不相符;不過,當金屬奈米化或表面粗糙化時,將使得光的波向量和表面電漿的波向量相等,便可以激發金屬表面的表面電漿,進而增加光的利用率。It is worth noting that the surface plasma formed by the surface characteristics of the nano metal will resonate with the incident light to increase the capture of incident light and the utilization of light. Finally, the photocurrent and power generation efficiency are improved. On the other hand, at the same incident frequency, light cannot directly excite the surface plasma of the metal surface because their wave vectors do not match; however, when the metal is nano- or surface roughened, the wave vector and surface of the light will be made. When the wave vectors of the plasma are equal, the surface plasma of the metal surface can be excited, thereby increasing the utilization of light.

另,本發明所揭示之結構,適用於非晶矽與微晶矽薄膜太陽能電池。此外,不僅適用於單一單元電池(cell),更可實施於模組化之太陽能電池製程。In addition, the structure disclosed in the present invention is applicable to amorphous germanium and microcrystalline germanium thin film solar cells. In addition, it can be applied not only to a single cell but also to a modular solar cell process.

<實施例1><Example 1>

請配合參照第1圖,首先準備一片長與寬各為5公分與10公分之玻璃基板,接著依序沈積300奈米之FTO第一透明導電層、分別為10/250/10奈米之P/i/N半導體層、尺寸為50奈米之銀奈米金屬粒子層、300奈米之SnO2 第二透明導電層以及300奈米之鋁背電極。銀奈米金屬粒子層在該N型半導體層150之表面覆蓋率為60%。其中,該銀奈米金屬粒子層係由濺鍍而成。在標準光源AM 1.5的照射下,比起未含有銀奈米金屬粒子層之電池,其效率可提升10%。Please refer to Figure 1 first, first prepare a glass substrate with a length and width of 5 cm and 10 cm, and then deposit 300 nm of the FTO first transparent conductive layer, respectively, 10/250/10 nm. /i/N semiconductor layer, 50 nm silver nano metal particle layer, 300 nm SnO 2 second transparent conductive layer, and 300 nm aluminum back electrode. The surface coverage of the silver nanoparticle layer on the N-type semiconductor layer 150 is 60%. Wherein, the silver nano metal particle layer is formed by sputtering. Under the illumination of the standard light source AM 1.5, the efficiency can be increased by 10% compared to the battery without the silver nano metal layer.

<實施例2><Example 2>

本實施例與實施例1之主要差異係:第一透明導電層改為SnO2 ,第二透明導電層改為AZO以及該奈米金屬粒子層係改為尺寸為20奈米之金奈米金屬粒子層,係由蒸鍍法蒸鍍而成。金奈米金屬粒子層在該N型半導體層150之表面覆蓋率為60%。在標準光源AM 1.5的照射下,比起未含有該金奈米金屬粒子層之電池,其效率可提升15%。The main difference between this embodiment and the embodiment 1 is that the first transparent conductive layer is changed to SnO 2 , the second transparent conductive layer is changed to AZO, and the nano metal particle layer is changed to 20 nanometers of gold nano metal. The particle layer is formed by vapor deposition. The surface coverage of the gold nano metal particle layer on the N-type semiconductor layer 150 is 60%. Under the illumination of the standard light source AM 1.5, the efficiency can be increased by 15% compared to the battery which does not contain the layer of the gold nanoparticle.

<實施例3><Example 3>

本實施例與實施例1之主要差異係:奈米金屬粒子層改為尺寸為20奈米之金奈米金屬粒子層係位於該第二透明導電層之後,係由蒸鍍法蒸鍍而成。銀奈米金屬粒子層在第二透明導電層之表面覆蓋率為60%。在標準光源AM 1.5的照射下,比起未含有該金奈米金屬粒子層之電池,其效率可提升12%。The main difference between this embodiment and the first embodiment is that the nano metal particle layer is changed to a 20 nm nanometer gold nanometer metal layer layer, which is formed by evaporation of the second transparent conductive layer. . The surface coverage of the silver nano metal particle layer on the second transparent conductive layer was 60%. Under the illumination of the standard light source AM 1.5, the efficiency can be increased by 12% compared to the battery which does not contain the layer of the gold nanoparticle.

<實施例4><Example 4>

本實施例與實施例1之主要差異係:沒有第二透明導電層,且奈米金屬粒子層為尺寸50奈米之金奈米金屬粒子層,係由蒸鍍法蒸鍍而成。金奈米金屬粒子層在N型半導體層150之表面覆蓋率為60%。在標準光源AM 1.5的照射下,比起未含有金奈米金屬粒子層之電池,其效率可提升10%。The main difference between this embodiment and the first embodiment is that there is no second transparent conductive layer, and the nano metal particle layer is a gold nano metal particle layer having a size of 50 nm, which is formed by vapor deposition. The surface coverage of the gold nano metal particle layer on the N-type semiconductor layer 150 is 60%. Under the illumination of the standard light source AM 1.5, the efficiency can be increased by 10% compared to the battery without the layer of gold nanoparticles.

<實施例5><Example 5>

請配合參照第2圖,首先準備一片長與寬各為1.4公尺與1公分尺之玻璃基板,接著依序沈積300奈米之FTO第一透明導電層、分別為20/350/20奈米之P/i/N半導體層以及300奈米之SnO2 第二透明導電層以及300奈米之鋁背電極。此外,將晶粒大小為30奈米的銀奈米金屬形成於複數道雷射處理後所形成之溝槽內。在標準光源AM 1.5的照射下,比起未含有金奈米金屬粒子層之電池,其效率可提升15%。Please refer to Figure 2 first, first prepare a glass substrate with a length and width of 1.4 meters and 1 cm, and then deposit 300 nm of FTO first transparent conductive layer, respectively, 20/350/20 nm. The P/i/N semiconductor layer and the 300 nm SnO 2 second transparent conductive layer and the 300 nm aluminum back electrode. Further, a silver nano metal having a grain size of 30 nm was formed in a trench formed by a plurality of laser processes. Under the illumination of the standard light source AM 1.5, the efficiency can be increased by 15% compared to the battery without the layer of gold nanoparticles.

綜上所述,本發明之薄膜太陽能電池具有以下之功效:In summary, the thin film solar cell of the present invention has the following effects:

1. 藉由本發明之奈米金屬粒子層可增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升;1. The nano metal particle layer of the invention can increase the capture of incident light and the utilization of light, thereby improving the photocurrent and power generation efficiency;

2. 藉由本發明之薄膜太陽能電池,可進一步利用經由雷射處理所形成之溝槽,且設置奈米金屬粒子層於溝槽中增加入射光的捕捉及光的利用率,進而達到光電流及發電效率的提升。2. With the thin film solar cell of the present invention, the trench formed by the laser treatment can be further utilized, and the nano metal particle layer is provided to increase the capture of the incident light and the utilization of the light in the trench, thereby achieving the photocurrent and Increased power generation efficiency.

雖然本發明已以前述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改。如上述的解釋,都可以作各型式的修正與變化,而不會破壞此發明的精神。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, it is not intended to limit the scope of the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. As explained above, various modifications and variations can be made without departing from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100...薄膜太陽能電池100. . . Thin film solar cell

110...基材110. . . Substrate

120...第一透明導電層120. . . First transparent conductive layer

130...P型半導體層130. . . P-type semiconductor layer

140...本質(i)型半導體層140. . . Essential (i) type semiconductor layer

150...N型半導體層150. . . N-type semiconductor layer

160...奈米金屬粒子層160. . . Nano metal particle layer

170...第二透明導電層170. . . Second transparent conductive layer

180...背電極180. . . Back electrode

200...薄膜太陽能電池200. . . Thin film solar cell

210...基材210. . . Substrate

220...第一透明導電層220. . . First transparent conductive layer

230...P型半導體層230. . . P-type semiconductor layer

240...本質(i)型半導體層240. . . Essential (i) type semiconductor layer

250...N型半導體層250. . . N-type semiconductor layer

260...第二透明導電層260. . . Second transparent conductive layer

270...背電極270. . . Back electrode

280...奈米金屬粒子層280. . . Nano metal particle layer

290...溝槽290. . . Trench

第1圖為本發明之薄膜太陽能電池之一實施例之結構示意圖;1 is a schematic structural view of an embodiment of a thin film solar cell of the present invention;

第2圖為本發明之薄膜太陽能電池之另一實施例之結構示意圖;2 is a schematic structural view of another embodiment of a thin film solar cell of the present invention;

第3圖為本發明之薄膜太陽能電池之又一實施例之結構示意圖;以及3 is a schematic structural view of still another embodiment of the thin film solar cell of the present invention;

第4圖為本發明之薄膜太陽能電池之再一實施例之結構示意圖。Figure 4 is a schematic view showing the structure of still another embodiment of the thin film solar cell of the present invention.

100...薄膜太陽能電池100. . . Thin film solar cell

110...基材110. . . Substrate

120...第一透明導電層120. . . First transparent conductive layer

130...P型半導體層130. . . P-type semiconductor layer

140...本質(i)型半導體層140. . . Essential (i) type semiconductor layer

150...N型半導體層150. . . N-type semiconductor layer

160...奈米金屬粒子層160. . . Nano metal particle layer

170...第二透明導電層170. . . Second transparent conductive layer

180...背電極180. . . Back electrode

Claims (8)

一種薄膜太陽能電池,包含:一基材;一第一透明導電層,形成於該基材上,用於取出電能;一P型半導體層,形成於該第一透明導電層上,用於產生電洞;一本質(i)型半導體層,形成於該P型半導體層上,用於提高可見光譜光子的吸收範圍;一N型半導體層,形成於該本質(i)半導體層上,用於產生電子;一奈米金屬粒子層,形成於該N型半導體層上,用於增加光的利用率;一第二透明導電層,形成於該奈米金屬粒子層上;以及一背電極,形成於該第二透明導電層上,用於取出電能;其中,該奈米金屬粒子層之粒子係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,該奈米金屬粒子層之晶粒大小係為5至200奈米之間,且該奈米金屬粒子層之奈米粒子在該N型半導體層之表面覆蓋率為20%至60%之間。 A thin film solar cell comprising: a substrate; a first transparent conductive layer formed on the substrate for extracting electrical energy; and a P-type semiconductor layer formed on the first transparent conductive layer for generating electricity a substantially (i)-type semiconductor layer formed on the P-type semiconductor layer for enhancing absorption range of visible spectrum photons; an N-type semiconductor layer formed on the essence (i) semiconductor layer for generating An electron; a nano metal particle layer formed on the N-type semiconductor layer for increasing light utilization; a second transparent conductive layer formed on the nano metal particle layer; and a back electrode formed on The second transparent conductive layer is used for extracting electric energy; wherein the particles of the nano metal particle layer are one selected from the group consisting of gold, silver, copper, platinum, nickel, zinc, tin, aluminum, or alloy. The grain size of the rice metal particle layer is between 5 and 200 nm, and the surface coverage of the nanoparticle of the nano metal particle layer is between 20% and 60%. 如請求項1所述之薄膜太陽能電池,其中該奈米金屬粒子層之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電 化學法之一。 The thin film solar cell of claim 1, wherein the method for preparing the nano metal particle layer is selected from the group consisting of sputtering, evaporation, electroplating, chemical vapor deposition, sol-gel, and spray lysis. , dipping method, spin coating method, screen printing method and electricity One of the chemical laws. 一種薄膜太陽能電池,其包含:一基材;一第一透明導電層,形成於該基材上,用於取出電能;一P型半導體層,形成於該第一透明導電層上,其係用於產生電洞;一本質(i)型半導體層,係形成於該P型半導體層上,其係用於提高可見光譜光子的吸收範圍;一N型半導體層,係形成於該本質(i)半導體層上,其係用於產生電子;一第二透明導電層,形成於該N型半導體層上;一背電極,形成於該第二透明導電層上,用於取出電能;複數溝槽,係經由一雷射處理以穿透過該背電極、該第二透明導電層、該N型半導體層、該本質(i)型半導體層、該P型半導體層與該第一透明導電層;以及一奈米金屬粒子層,係形成於該些複數溝槽中,該奈米金屬粒子層之粒子係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,該奈米金屬粒子層之粒子晶粒大小係介於5至200奈米之間,且該奈米金屬粒子層之粒子在該些溝槽內之表面覆蓋率為80%以下。 A thin film solar cell comprising: a substrate; a first transparent conductive layer formed on the substrate for extracting electrical energy; and a P-type semiconductor layer formed on the first transparent conductive layer for use Forming a hole; an intrinsic (i) type semiconductor layer is formed on the P-type semiconductor layer for increasing the absorption range of visible spectrum photons; an N-type semiconductor layer is formed in the essence (i) a semiconductor layer for generating electrons; a second transparent conductive layer formed on the N-type semiconductor layer; a back electrode formed on the second transparent conductive layer for extracting electrical energy; Passing through a laser treatment to penetrate the back electrode, the second transparent conductive layer, the N-type semiconductor layer, the intrinsic (i) type semiconductor layer, the P-type semiconductor layer and the first transparent conductive layer; a layer of nano metal particles formed in the plurality of trenches, the particles of the nano metal particle layer being selected from one of an alloy or an alloy of gold, silver, copper, platinum, nickel, zinc, tin, aluminum, The particle size of the nano metal particle layer is between 5 and 200 The surface coverage of the particles of the nano metal particle layer in the grooves between the nanoparticles is 80% or less. 如請求項3所述之薄膜太陽能電池,其中該奈米金屬粒子層之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一。 The thin film solar cell of claim 3, wherein the method for preparing the nano metal particle layer is selected from the group consisting of sputtering, evaporation, electroplating, chemical vapor deposition, sol-gel, and spray lysis. One of the impregnation method, the spin coating method, the screen printing method, and the electrochemical method. 一種薄膜太陽能電池,包含:一基材;一第一透明導電層,形成於該基材上,用於取出電能;一P型半導體層,形成於該第一透明導電層上,用於產生電洞;一本質(i)型半導體層,形成於該P型半導體層上,用於提高可見光譜光子的吸收範圍;一N型半導體層,形成於該本質(i)半導體層上,用於產生電子;一第二透明導電層,形成於該N型半導體層上;一奈米金屬粒子層,形成於該第二透明導電層上,用於增加光的利用率;以及一背電極,形成於該奈米金屬粒子層上,用於取出電能;其中,該奈米金屬粒子層之粒子係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,該奈米金屬粒子層之晶粒大小係為5至200奈米之間,且該奈米金屬粒子層之奈米粒子在該第二透明導電層之表面覆蓋率為20%至90%之間。 A thin film solar cell comprising: a substrate; a first transparent conductive layer formed on the substrate for extracting electrical energy; and a P-type semiconductor layer formed on the first transparent conductive layer for generating electricity a substantially (i)-type semiconductor layer formed on the P-type semiconductor layer for enhancing absorption range of visible spectrum photons; an N-type semiconductor layer formed on the essence (i) semiconductor layer for generating a second transparent conductive layer formed on the N-type semiconductor layer; a nano metal particle layer formed on the second transparent conductive layer for increasing light utilization; and a back electrode formed on The nano metal particle layer is used for extracting electric energy; wherein the particle of the nano metal particle layer is one of alloy or alloy selected from the group consisting of gold, silver, copper, platinum, nickel, zinc, tin, and aluminum. The grain size of the rice metal particle layer is between 5 and 200 nm, and the surface coverage of the nanoparticle of the nano metal particle layer is between 20% and 90%. 如請求項5所述之薄膜太陽能電池,其中該奈米金屬粒子層之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一。 The thin film solar cell according to claim 5, wherein the method for preparing the nano metal particle layer is selected from the group consisting of a sputtering method, an evaporation method, an electroplating method, a chemical vapor deposition method, a sol-gel method, and a spray cleavage method. One of the impregnation method, the spin coating method, the screen printing method, and the electrochemical method. 一種薄膜太陽能電池,包含:一基材;一第一透明導電層,形成於該基材上,用於取出電能;一P型半導體層,形成於該第一透明導電層上,用於產生電洞;一本質(i)型半導體層,形成於該P型半導體層上,用於提高可見光譜光子的吸收範圍;一N型半導體層,形成於該本質(i)半導體層上,用於產生電子;一奈米金屬粒子層,形成於該N型半導體層上,用於增加光的利用率;以及一背電極,形成於該奈米金屬粒子層上方,用於取出電能;其中,該奈米金屬粒子層之粒子係選自金、銀、銅、鉑、鎳、鋅、錫、鋁的一種或合金之一,該奈米金屬粒子層之晶粒大小係為5至200奈米之間,且該奈米金屬粒子層之奈米 粒子在該N型半導體層之表面覆蓋率為20%至90%之間。 A thin film solar cell comprising: a substrate; a first transparent conductive layer formed on the substrate for extracting electrical energy; and a P-type semiconductor layer formed on the first transparent conductive layer for generating electricity a substantially (i)-type semiconductor layer formed on the P-type semiconductor layer for enhancing absorption range of visible spectrum photons; an N-type semiconductor layer formed on the essence (i) semiconductor layer for generating An electron; a nano metal particle layer formed on the N-type semiconductor layer for increasing light utilization; and a back electrode formed over the nano metal particle layer for extracting electrical energy; wherein the nano The particles of the metal particle layer are selected from one of alloys of gold, silver, copper, platinum, nickel, zinc, tin, aluminum, and the grain size of the nano metal particle layer is between 5 and 200 nm. And the nano metal particle layer of nano The surface coverage of the particles on the N-type semiconductor layer is between 20% and 90%. 如請求項7所述之薄膜太陽能電池,其中該奈米金屬粒子層之製備方法係選自濺鍍法、蒸鍍法、電鍍法、化學氣相沈積法、溶膠-凝膠法、噴霧裂解法、浸漬法、旋轉塗佈法、網印法及電化學法之一。 The thin film solar cell according to claim 7, wherein the method for preparing the nano metal particle layer is selected from the group consisting of a sputtering method, an evaporation method, a plating method, a chemical vapor deposition method, a sol-gel method, and a spray cleavage method. One of the impregnation method, the spin coating method, the screen printing method, and the electrochemical method.
TW100121658A 2011-06-21 2011-06-21 Thin film solar cell TWI467782B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100121658A TWI467782B (en) 2011-06-21 2011-06-21 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100121658A TWI467782B (en) 2011-06-21 2011-06-21 Thin film solar cell

Publications (2)

Publication Number Publication Date
TW201301533A TW201301533A (en) 2013-01-01
TWI467782B true TWI467782B (en) 2015-01-01

Family

ID=48137626

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121658A TWI467782B (en) 2011-06-21 2011-06-21 Thin film solar cell

Country Status (1)

Country Link
TW (1) TWI467782B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201515206A (en) * 2013-10-11 2015-04-16 Wintek Corp Organic light-emitting display with photovoltaic cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200845449A (en) * 2007-02-27 2008-11-16 Bayer Technology Services Gmbh Hybrid organic solar cells comprising semiconductor nanoparticles surrounded by photoactive surface modifiers
TW200913299A (en) * 2007-07-19 2009-03-16 Univ Michigan Efficient solar cells using all-organic nanocrystalline networks
TW200913292A (en) * 2007-07-24 2009-03-16 Applied Materials Inc Multi-junction solar cells and methods and apparatuses for forming the same
TW200937656A (en) * 2008-02-29 2009-09-01 Univ Nat Chiao Tung An organic active-layer solution for a polymer solar cell and a method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200845449A (en) * 2007-02-27 2008-11-16 Bayer Technology Services Gmbh Hybrid organic solar cells comprising semiconductor nanoparticles surrounded by photoactive surface modifiers
TW200913299A (en) * 2007-07-19 2009-03-16 Univ Michigan Efficient solar cells using all-organic nanocrystalline networks
TW200913292A (en) * 2007-07-24 2009-03-16 Applied Materials Inc Multi-junction solar cells and methods and apparatuses for forming the same
TW200937656A (en) * 2008-02-29 2009-09-01 Univ Nat Chiao Tung An organic active-layer solution for a polymer solar cell and a method for preparing the same

Also Published As

Publication number Publication date
TW201301533A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
Tan et al. Highly transparent modulated surface textured front electrodes for high‐efficiency multijunction thin‐film silicon solar cells
CN109004053A (en) The crystalline silicon of double-side photic/film silicon heterojunction solar battery and production method
TWI402992B (en) Solar cell and method for fabricating the same
US20120073641A1 (en) Solar cell apparatus having the transparent conducting layer with the structure as a plurality of nano-level well-arranged arrays
WO2012055302A1 (en) Electrode and manufacturing method thereof
Tamang et al. On the interplay of cell thickness and optimum period of silicon thin‐film solar cells: light trapping and plasmonic losses
JP2011135053A (en) Photoelectric conversion device and method of producing the same
Zahid et al. Improved optical and electrical properties for heterojunction solar cell using Al2O3/ITO double-layer anti-reflective coating
EP2469603A1 (en) Improved method for manufacturing a photovoltaic device comprising a TCO layer
Dhar et al. Light trapping in a-Si/c-Si heterojunction solar cells by embedded ITO nanoparticles at rear surface
Li et al. Quasi‐Omnidirectional Ultrathin Silicon Solar Cells Realized by Industrially Compatible Processes
Huang et al. Plasmonic modulated back reflector for thin film photovoltaics
TWI467782B (en) Thin film solar cell
CN101556973B (en) Film photovoltaic device and composite electrode thereof
JP2004119491A (en) Method for manufacturing thin film solar battery, and thin film solar battery manufactured thereby
CN114582983A (en) Heterojunction solar cell and preparation method thereof
Nowak et al. Optimizing folded silicon thin-film solar cells on ZnO honeycomb electrodes
KR20150006926A (en) Scattering metal-nanostructure-layer covered electrode and solar cell using the same, and a methods of manufacturing them
JP5144949B2 (en) Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same
CN103280466A (en) High-reflection and high-velvet-degree back electrode based on AlOx/Ag/ZnO structure
KR101237369B1 (en) Photovoltaic cell having efficiency improving structure and method of manufacturing the same
RU2501121C2 (en) Photocell and method of making photocell
KR20090110048A (en) Transparent conductive thin film, solar cell and the method thereof
CN101820004A (en) Photo-electro separated solar cell back reflector
Ahrlich et al. Improved light management in silicon heterojunction solar cells by application of a ZnO nanorod antireflective layer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees