TWI467276B - Reflective display device and method of fabricating the same - Google Patents
Reflective display device and method of fabricating the same Download PDFInfo
- Publication number
- TWI467276B TWI467276B TW100133807A TW100133807A TWI467276B TW I467276 B TWI467276 B TW I467276B TW 100133807 A TW100133807 A TW 100133807A TW 100133807 A TW100133807 A TW 100133807A TW I467276 B TWI467276 B TW I467276B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- layer
- pixel
- display panel
- sub
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Description
本發明係關於一種反射式顯示面板及其製備方法,尤指一種利用干涉原理以及搭配使用高分子分散液晶之彩色反射式顯示面板及其製備方法。The invention relates to a reflective display panel and a preparation method thereof, in particular to a color reflective display panel using the interference principle and the use of the polymer dispersed liquid crystal and a preparation method thereof.
顯示器之應用範圍相當廣泛,例如家用電視、車用電視、工業用顯示器、戶外看板等。顯示器的種類可分為液晶顯示器、陰極射線管(CRT)、發光二極體(LED)、場發射顯示器(FED,Field Emission Display)、以及干涉調變顯示器(Interferometric modulation,IMOD)等。其中,干涉調變顯示器係反射式彩色顯示器之其中一種,其具有低耗電功率、閱讀書適度高、以及輕薄等優點,如圖1所示,其係一習知干涉調變顯示器,係包含一上基板11以及下基板12,上基板11包含有彩色濾光片(圖未示)以達成彩色效果,且上基板11具有複數個子畫素區sub-PR (紅色)、sub-PG (綠色)對應彩色濾光片的各個顏色。下基板12包含有可移動式反射層14R、14G,係分別對應於上基板11之電極16R、16G,上基板11與下基板12之間以隔柱(post)13支撐而具有一間距。當施予電壓至紅色子畫素區sub-PR 時,可移動式反射層14R會由於靜電吸引上移而與電極16R接觸,使得紅色子畫素呈現黑色(即,光線L無法反射出去)。當此電壓移除後,可移動式反射層14R會回復至下方位置,光線L可反射出去,使畫素呈現紅色。而另一個綠色子畫素由於沒有通電壓,因此光線可反射,使綠色子畫素呈現綠色。The range of applications for displays is quite wide, such as home televisions, car televisions, industrial displays, outdoor billboards, and the like. The types of displays can be classified into liquid crystal displays, cathode ray tubes (CRTs), light emitting diodes (LEDs), field emission displays (FEDs), and interferometric modulation (IMOD). Among them, the interferometric modulation display is one of reflective color displays, which has the advantages of low power consumption, moderate reading quality, and lightness and thinness. As shown in FIG. 1 , it is a conventional interference modulation display. An upper substrate 11 and a lower substrate 12, the upper substrate 11 includes a color filter (not shown) to achieve a color effect, and the upper substrate 11 has a plurality of sub-pixel regions sub-P R (red), sub-P G (green) corresponds to each color of the color filter. The lower substrate 12 includes movable reflective layers 14R, 14G corresponding to the electrodes 16R, 16G of the upper substrate 11, respectively, and the upper substrate 11 and the lower substrate 12 are supported by a post 13 with a pitch. When the voltage is applied to the red sub-pixel area sub-P R , the movable reflective layer 14R is brought into contact with the electrode 16R due to the electrostatic attraction up, so that the red sub-pixel is black (ie, the light L cannot be reflected). . When this voltage is removed, the movable reflective layer 14R will return to the lower position, and the light L can be reflected to make the pixels appear red. The other green sub-pixel has no voltage, so the light can be reflected, making the green sub-pixel appear green.
然而,此種干涉調變顯示器雖具有低耗能的效果,但由於可移動式反射層的機械式移動方式會造成穩定度不佳、使用壽命降低、且視角小(僅70°左右)的缺點。此外,由於每一子畫素僅可呈現單一種亮度,因此必須使用多數個子畫素(例如,16個子畫素)來製造灰階效果,因此使得製作步驟以及驅動方式皆非常複雜。因此本領域仍需開發出新的反射式基板結構,使可達到低耗能、輕薄、高穩定度、長使用壽命等優點,並符合製程簡單、低生產成本的商業要求。However, such an interferometric modulation display has a low energy consumption effect, but the mechanical movement of the movable reflective layer causes poor stability, reduced service life, and a small viewing angle (only about 70°). . In addition, since each sub-pixel can only present a single brightness, it is necessary to use a majority of sub-pixels (for example, 16 sub-pixels) to create a gray scale effect, thus making the production steps and driving methods very complicated. Therefore, there is still a need to develop a new reflective substrate structure in the field, which can achieve the advantages of low energy consumption, lightness, high stability, long service life, and the commercial requirements of simple process and low production cost.
藉此,本發明提供了一種反射式顯示面板,包括:一第一基板,其表面係設置有一基底層,該基底層係具有複數個畫素區,該基底層之每一畫素區係具有二個以上之子畫素凹槽,其中,該位於同一畫素區內之子畫素凹槽之深度係不同,且該基底層之子畫素凹槽底部表面設置有一光反射導電層;一第二基板,其表面係設置有一導電層以及一光半反射層;以及一高分子分散液晶(PDLC,Polymer-dispersed liquid crystal),係配置於該第二基板之導電層與該第一基板之基底層之間,且係位於該每一子畫素之凹槽中。Accordingly, the present invention provides a reflective display panel comprising: a first substrate having a substrate layer on a surface thereof, the substrate layer having a plurality of pixel regions, each of the pixel layers having a pixel region Two or more sub-pixel grooves, wherein the sub-pixel grooves in the same pixel region have different depths, and a bottom surface of the sub-pixel groove of the base layer is provided with a light-reflecting conductive layer; a second substrate a conductive layer and a light semi-reflective layer are disposed on the surface, and a polymer-dispersed liquid crystal (PDLC) is disposed on the conductive layer of the second substrate and the base layer of the first substrate Between, and in the groove of each sub-pixel.
本發明之反射式顯示面板為一種具有創新結構之反射式顯示面板,因此可具有低耗能(不需背光,非以移動式反射層作為開關)、輕薄、高穩定度、長使用壽命、減少偏陣片與濾光片的使用數量、成本低、視角大(可達約80°以上)等優點。The reflective display panel of the present invention is a reflective display panel with an innovative structure, so that it can have low energy consumption (no backlight, no moving reflective layer as a switch), light and thin, high stability, long service life, and reduced The number of polarizers and filters used is low, the cost is large, and the viewing angle is large (up to about 80° or more).
本發明之反射式顯示面板為彩色反射式顯示面板。本發明之反射式顯示面板可在不使用彩色偏光片(color filter)的情形下,仍可顯示出各種色彩。The reflective display panel of the present invention is a color reflective display panel. The reflective display panel of the present invention can still display various colors without using a color filter.
本發明之反射式顯示面板主要原理係採用干涉技術,使控制入射及反射之光程差,干涉得到不同顏色的光,並搭配使用高分子分散液晶(PDLC)作為亮度開關的控制,而達到對比佳、高色度的效果。本發明之反射式顯示面板可在不使用彩色偏光片之情形下即產生不同顏色的光。此外,以高分子分散液晶取代機械式移動之可移動式反射層,進而提高穩定度及可靠度。再者,偏陣片與濾光片使用數量的減少更可降低生產成本,並符合環保要求。The main principle of the reflective display panel of the present invention is to use interference technology to control the optical path difference between incident and reflection, to obtain different colors of light, and to use the polymer dispersed liquid crystal (PDLC) as the brightness switch control, and to achieve contrast. Good, high chroma effect. The reflective display panel of the present invention can produce light of different colors without using a color polarizer. In addition, the mechanically movable movable reflective layer is replaced by a polymer-dispersed liquid crystal, thereby improving stability and reliability. Moreover, the reduction in the number of use of the polarizer and the filter can reduce the production cost and meet the environmental requirements.
本發明中,光程差ΔL可依照下列公式計算(並請參考圖2):In the present invention, the optical path difference ΔL can be calculated according to the following formula (and refer to FIG. 2):
ΔL=2ndcosθ3 =mλΔL=2ndcosθ 3 =mλ
其中,λ為入射光,n為折射率,d為高分子分散液晶層之厚度,θ3 為光線入射至高分子分散液晶層的折射角。Here, λ is incident light, n is a refractive index, d is a thickness of a polymer dispersed liquid crystal layer, and θ 3 is a refractive angle at which light is incident on the polymer dispersed liquid crystal layer.
當m為正整數時,可得到建設性干涉(相長干涉);而當m為半整數(例如,3/2、5/2、7/2、9/2等)時,可得到破壞性干涉(相消干涉)。When m is a positive integer, constructive interference (constructive interference) can be obtained; and when m is a half integer (for example, 3/2, 5/2, 7/2, 9/2, etc.), destructiveness can be obtained. Interference (destructive interference).
本發明之反射式顯示面板中所使用之高分子分散液晶(PDLC)由於具有相較於空氣更大之折射率,因此光線入射時入射角的改變範圍會比空氣來的小。由光程差的公式可以得知,減少入射角的影響範圍就能減少色差,且能有效地提高視角。Since the polymer-dispersed liquid crystal (PDLC) used in the reflective display panel of the present invention has a refractive index larger than that of air, the incident angle of the light incident is changed in a smaller range than that of air. It can be known from the formula of the optical path difference that reducing the influence range of the incident angle can reduce the chromatic aberration and effectively improve the viewing angle.
由於本發明之反射式顯示面板使用了高分子分散液晶,因此可製造出灰階效果。習知技術中,干涉調變顯示器必須使用多數個子畫素(例如一個畫素需包含有十六個子畫素)來產生灰階,但本發明不需使用多數個子畫素即可產生灰階。因此,本發明之反射式顯示面板確實符合了製程簡單、低生產成本的商業要求,非常具有產業利用價值。Since the reflective display panel of the present invention uses a polymer dispersed liquid crystal, a gray scale effect can be produced. In the prior art, an interferometric modulation display must use a plurality of sub-pixels (for example, one pixel needs to contain sixteen sub-pixels) to generate gray scales, but the present invention does not need to use a plurality of sub-pixels to generate gray scales. Therefore, the reflective display panel of the present invention does meet the commercial requirements of simple process and low production cost, and has great industrial utilization value.
本發明之反射式顯示面板中,該第二基板表面之導電層較佳係與該第一基板表面之基底層相對面配置,且該導電層與該基底層較佳係位於該第二基板與該第一基板之間。In the reflective display panel of the present invention, the conductive layer on the surface of the second substrate is preferably disposed opposite to the base layer of the surface of the first substrate, and the conductive layer and the base layer are preferably located on the second substrate. Between the first substrates.
本發明之反射式顯示面板中,該每一畫素區所具有之該子畫素凹槽之數目較佳可為三。例如,每一畫素區係包含有一紅色(R)子畫素、一綠色(G)子畫素、以及一藍色(B)子畫素。In the reflective display panel of the present invention, the number of the sub-pixel grooves of each of the pixel regions may preferably be three. For example, each pixel region contains a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel.
本發明之反射式顯示面板中,該子畫素凹槽之深度D與光線入射至高分子分散液晶層的折射角θ3 ,以及一預定該子畫素反射出之光的波長λ較佳可滿足[式1]:In the reflective display panel of the present invention, the depth D of the sub-pixel groove and the refraction angle θ 3 of the light incident on the polymer dispersed liquid crystal layer, and the wavelength λ of the light reflected by the sub-pixel are preferably satisfied. [Formula 1]:
[式1] 2Dcosθ3 =mλ/n[Formula 1] 2Dcosθ 3 =mλ/n
其中,m為1以上之整數(例如,m=1,2,3,4,...等),n為高分子分散液晶折射率(例如,約1.524)。其中,cosθ3 接近數值1為較佳,可得到建設性干涉。例如,當預定設計製作紅色畫素時,由於紅色波長為600nm-700nm,因此紅色子畫素凹槽的深度D3可為約196.85nm-229.66nm、或約393.7nm-459.32nm、或約590.55nm-688.98nm之間等;當預定設計製作綠色畫素時,由於綠色波長為510nm-540nm,因此綠色子畫素凹槽的深度D2可為約167.32nm-177.17nm、或約334.65nm-354.33nm、或約501.97nm-531.50nm之間等;當預定設計製作藍色畫素時,由於藍色波長為455nm-480nm,因此藍色子畫素凹槽的深度D1可為約149.28nm-157.48nm、或約298.56nm-314.96nm、或約447.83nm-472.44nm之間等,以此類推。Wherein m is an integer of 1 or more (for example, m = 1, 2, 3, 4, ..., etc.), and n is a refractive index of a polymer dispersed liquid crystal (for example, about 1.524). Among them, cos θ 3 is close to the value 1 and is preferable, and constructive interference can be obtained. For example, when the red pixel is predetermined to be designed, since the red wavelength is 600 nm to 700 nm, the depth D3 of the red sub-pixel groove may be about 196.85 nm to 229.66 nm, or about 393.7 nm to 459.32 nm, or about 590.55 nm. Between -688.98nm, etc.; when the green pixel is predetermined to be designed, since the green wavelength is 510nm-540nm, the depth D2 of the green sub-pixel groove may be about 167.32nm-177.17nm, or about 334.65nm-354.33nm. Or about 501.97nm-531.50nm, etc.; when the blue pixel is predetermined to be designed, since the blue wavelength is 455nm-480nm, the depth D1 of the blue sub-pixel groove may be about 149.28nm-157.48nm Or, between about 298.56 nm and 314.96 nm, or between about 447.83 nm and 472.44 nm, and so on.
本發明之反射式顯示面板中,該基底層與該第一基板之間較佳可更包括一吸光層。In the reflective display panel of the present invention, the substrate layer and the first substrate preferably further comprise a light absorbing layer.
本發明之反射式顯示面板中,該導電層較佳可配置於該第二基板與該光半反射層之間。In the reflective display panel of the present invention, the conductive layer is preferably disposed between the second substrate and the light semi-reflective layer.
本發明之反射式顯示面板中,該基底層之材質較佳可為一高分子材料。例如,硬化後之低黏度光硬化性樹脂、樹脂型黑色光阻、光間隙光阻、其他光阻、高分子凝膠(polymer gel)、PDMS、SU-8光阻。In the reflective display panel of the present invention, the material of the base layer is preferably a polymer material. For example, a low-viscosity photocurable resin after curing, a resin-type black photoresist, a light gap photoresist, other photoresist, a polymer gel, a PDMS, and a SU-8 photoresist.
本發明之反射式顯示面板中,該高分子分散液晶(PDLC)較佳可包括:一高分子聚合物、以及一液晶。此外,高分子分散液晶可更包括一染劑,染劑的材料無特別限制,可達到濾光效果即可。In the reflective display panel of the present invention, the polymer dispersed liquid crystal (PDLC) preferably comprises: a high molecular polymer, and a liquid crystal. In addition, the polymer dispersed liquid crystal may further include a dyeing agent, and the material of the dyeing agent is not particularly limited, and the filtering effect can be achieved.
本發明之反射式顯示面板中,該第二基板之表面較佳可更配置有一光學膜層。例如,偏光片、濾光片、增反膜等光學膜片。In the reflective display panel of the present invention, the surface of the second substrate is preferably further provided with an optical film layer. For example, an optical film such as a polarizer, a filter, or an antireflection film.
本發明另提供一種反射式顯示面板之製備方法,包括步驟:The invention further provides a method for preparing a reflective display panel, comprising the steps of:
(A) 提供一第一基板;(A) providing a first substrate;
(B) 於該第一基板之表面形成一基底層,該基底層係具有複數個畫素區,該每一畫素區係具有二個以上之子畫素凹槽,其中,該位於同一畫素區內之子畫素凹槽之深度係不同;(B) forming a base layer on the surface of the first substrate, the base layer having a plurality of pixel regions, each of the pixel regions having two or more sub-pixel grooves, wherein the same pixel The depth of the sub-pixel grooves in the zone is different;
(C) 形成一光反射導電層於該基底層之該些子畫素凹槽之底部表面;(C) forming a light-reflective conductive layer on a bottom surface of the sub-pixel grooves of the base layer;
(D) 填充一液晶感光組合物於該些子畫素凹槽中;以及(D) filling a liquid crystal photosensitive composition in the sub-pixel grooves;
(E) 將該第一基板與一表面設有一導電層以及一光半反射層之第二基板組合,且使該基底層、該液晶感光組合物、該導電層、及該光半反射層配置於該第一基板與該第二基板之間;(E) combining the first substrate with a second substrate having a conductive layer and a light semi-reflective layer on the surface, and arranging the base layer, the liquid crystal photosensitive composition, the conductive layer, and the light semi-reflective layer Between the first substrate and the second substrate;
其中,於該步驟(E)之後、或於該步驟(D)與該步驟(E)之間更包括一步驟(F):曝光使該液晶感光組合物硬化(cure)而形成一高分子分散液晶。Wherein, after the step (E), or between the step (D) and the step (E), a step (F) is further included: exposure causes the liquid crystal photosensitive composition to cure to form a polymer dispersion. liquid crystal.
本發明所製作出之反射式顯示面板為一種具有創新結構之反射式顯示面板,因此可具有低耗能(不需背光,非以移動式反射層作為開關)、輕薄、高穩定度、長使用壽命、減少偏陣片與濾光片的使用數量、成本低、視角大(可達約80°以上)等優點。The reflective display panel produced by the invention is a reflective display panel with an innovative structure, so that it can have low energy consumption (no backlight, no moving reflective layer as a switch), light and thin, high stability, long use It has the advantages of long life, reduced number of used polarizers and filters, low cost, and large viewing angle (up to about 80°).
本發明之反射式顯示面板之製備方法簡單,其係由於本發明之反射式顯示面板結構簡單,不需使用彩色偏光片。因此製備方法簡單、快速、且成本低。The reflective display panel of the present invention has a simple preparation method, and the reflective display panel of the present invention has a simple structure and does not require the use of a color polarizer. Therefore, the preparation method is simple, rapid, and low in cost.
由於本發明之反射式顯示面板使用了高分子分散液晶,因此可製造出灰階效果。習知技術中,干涉調變顯示器必須使用多數個子畫素(例如一個畫素需包含有十六個子畫素)來產生灰階,但本發明不需使用多數個子畫素即可產生灰階。因此,本發明之反射式顯示面板確實符合了製程簡單、低生產成本的商業要求,非常具有產業利用價值。Since the reflective display panel of the present invention uses a polymer dispersed liquid crystal, a gray scale effect can be produced. In the prior art, an interferometric modulation display must use a plurality of sub-pixels (for example, one pixel needs to contain sixteen sub-pixels) to generate gray scales, but the present invention does not need to use a plurality of sub-pixels to generate gray scales. Therefore, the reflective display panel of the present invention does meet the commercial requirements of simple process and low production cost, and has great industrial utilization value.
本發明之反射式顯示面板之製備方法中,該步驟(B)中之該基底層較佳可透過以下步驟形成:(B1)形成一前趨物層於該第一基板之表面;(B2)以奈米壓印法使該前趨物層形成具子畫素凹槽之形狀;(B3)固化該前趨物層使形成該基底層(可透過如熱固化或光固化等方式達成)。In the method for preparing a reflective display panel of the present invention, the substrate layer in the step (B) is preferably formed by: (B1) forming a precursor layer on the surface of the first substrate; (B2) The precursor layer is formed into a shape having a sub-pixel groove by nanoimprinting; (B3) curing the precursor layer to form the base layer (which can be achieved by, for example, heat curing or photocuring).
本發明之反射式顯示面板之製備方法中,該步驟(B1)中之該前趨物層之材料較佳可為一高分子材料。例如,低黏度光硬化性樹脂、樹脂型黑色光阻、光間隙光阻、其他光阻、高分子凝膠polymer gel、PDMS、SU-8光阻。In the method for preparing the reflective display panel of the present invention, the material of the precursor layer in the step (B1) is preferably a polymer material. For example, low-viscosity photocurable resin, resin-type black photoresist, optical gap photoresist, other photoresist, polymer gel polymer gel, PDMS, SU-8 photoresist.
本發明之反射式顯示面板之製備方法中,該步驟(D)中之該液晶感光組合物較佳可包括:一感光化合物、一染劑、以及一液晶。並且,液晶感光組合物較佳可更包括一染劑,染劑的材料無特別限制,可達到濾光效果即可。In the method for preparing a reflective display panel of the present invention, the liquid crystal photosensitive composition in the step (D) preferably comprises: a photosensitive compound, a dye, and a liquid crystal. Moreover, the liquid crystal photosensitive composition preferably further comprises a dyeing agent, and the material of the dyeing agent is not particularly limited, and the filtering effect can be achieved.
本發明之反射式顯示面板之製備方法中,該感光化合物、染劑、以及液晶之比例較佳可為:(感光化合物:染劑:液晶)=(5至90重量份:0.1至10重量份:10至95重量份)。In the preparation method of the reflective display panel of the present invention, the ratio of the photosensitive compound, the dye, and the liquid crystal may preferably be: (photosensitive compound: dye: liquid crystal) = (5 to 90 parts by weight: 0.1 to 10 parts by weight) : 10 to 95 parts by weight).
本發明之反射式顯示面板之製備方法中,該步驟(E)中,該導電層較佳可配置於該第二基板與該光半反射層之間。In the method for fabricating the reflective display panel of the present invention, in the step (E), the conductive layer is preferably disposed between the second substrate and the light semi-reflective layer.
本發明之反射式顯示面板之製備方法中,該步驟(B)中,該子畫素凹槽之深度D與光線入射至高分子分散液晶層的折射角θ3 ,以及一預定該子畫素反射出之光的波長λ較佳可滿足[式1]:In the method for preparing a reflective display panel of the present invention, in the step (B), the depth D of the sub-pixel groove and the refraction angle θ 3 of the light incident on the polymer dispersed liquid crystal layer, and a predetermined sub-pixel reflection The wavelength λ of the emitted light preferably satisfies [Equation 1]:
[式1] 2Dcosθ3 =mλ/n[Formula 1] 2Dcosθ 3 =mλ/n
其中,m為1以上之整數(例如,m=1,2,3,4,...等),n為高分子分散液晶折射率(例如,約1.524)。其中,cosθ3 接近數值1為較佳,可得到建設性干涉。例如,當預定設計製作紅色畫素時,由於紅色波長為600nm-700nm,因此紅色子畫素凹槽的深度D3可為約196.85nm-229.66nm、或約393.7nm-459.32nm、或約590.55nm-688.98nm之間等;當預定設計製作綠色畫素時,由於綠色波長為510nm-540nm,因此綠色子畫素凹槽的深度D2可為約167.32nm-177.17nm、或約334.65nm-354.33nm、或約501.97nm-531.50nm之間等;當預定設計製作藍色畫素時,由於藍色波長為455nm-480nm,因此藍色子畫素凹槽的深度D1可為約149.28nm-157.48nm、或約298.56nm-314.96nm、或約447.83nm-472.44nm之間等,以此類推。Wherein m is an integer of 1 or more (for example, m = 1, 2, 3, 4, ..., etc.), and n is a refractive index of a polymer dispersed liquid crystal (for example, about 1.524). Among them, cos θ 3 is close to the value 1 and is preferable, and constructive interference can be obtained. For example, when the red pixel is predetermined to be designed, since the red wavelength is 600 nm to 700 nm, the depth D3 of the red sub-pixel groove may be about 196.85 nm to 229.66 nm, or about 393.7 nm to 459.32 nm, or about 590.55 nm. Between -688.98nm, etc.; when the green pixel is predetermined to be designed, since the green wavelength is 510nm-540nm, the depth D2 of the green sub-pixel groove may be about 167.32nm-177.17nm, or about 334.65nm-354.33nm. Or about 501.97nm-531.50nm, etc.; when the blue pixel is predetermined to be designed, since the blue wavelength is 455nm-480nm, the depth D1 of the blue sub-pixel groove may be about 149.28nm-157.48nm Or, between about 298.56 nm and 314.96 nm, or between about 447.83 nm and 472.44 nm, and so on.
本發明之反射式顯示面板之製備方法中,該步驟(A)與該步驟(B)之間,較佳可更包括一步驟(A1):形成一吸光層於該第一基板之表面。In the preparation method of the reflective display panel of the present invention, between the step (A) and the step (B), it is preferable to further comprise a step (A1) of forming a light absorbing layer on the surface of the first substrate.
本發明之反射式顯示面板之製備方法中,該步驟(E)中,該導電層較佳可配置於該第二基板與該光半反射層之間。In the method for fabricating the reflective display panel of the present invention, in the step (E), the conductive layer is preferably disposed between the second substrate and the light semi-reflective layer.
本發明之反射式顯示面板之製備方法中,該步驟(B)中之該基底層之材質較佳可為高分子材料,例如,硬化後之低黏度光硬化性樹脂、樹脂型黑色光阻、光間隙光阻、其他光阻、高分子凝膠polymer gel、PDMS、SU-8光阻。In the method for preparing a reflective display panel of the present invention, the material of the underlayer in the step (B) is preferably a polymer material, for example, a low-viscosity photocurable resin after curing, a resin-type black photoresist, Optical gap photoresist, other photoresist, polymer gel polymer gel, PDMS, SU-8 photoresist.
本發明之反射式顯示面板之製備方法中,該每一畫素區所具有之該子畫素凹槽之數目較佳可為三。例如,每一畫素區係包含有一紅色(R)子畫素、一綠色(G)子畫素、以及一藍色(B)子畫素。In the method for fabricating the reflective display panel of the present invention, the number of the sub-pixel grooves of each pixel region may preferably be three. For example, each pixel region contains a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel.
以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明之精神下進行各種修飾與變更。The embodiments of the present invention are described by way of specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.
如圖3i所示,其係本發明之反射式顯示面板之一較佳實施態樣。本發明之反射式顯示面板200包括有:第一基板20b,其表面係設置有一固化之高分子膜層25’(基底層),該固化之高分子膜層25’係具有複數個畫素區P,該固化之高分子膜層25’之每一畫素區P係具有二個以上之子畫素凹槽3,其中,該位於同一畫素區P內之子畫素凹槽3之深度D1、D2、D3(如圖3f所示)係不同,且該固化之高分子膜層25’之子畫素凹槽3底部表面設置有一光反射導電層26,26a,26b,26c;第二基板20a,其表面係設置有一導電膜層21以及一光半反射膜層22;以及固化之高分子分散液晶(PDLC)30a、30b、30c,係配置於該第二基板20a之導電膜層21與該第一基板20b之固化之高分子膜層25’之間,且係位於該每一子畫素凹槽3中。As shown in Fig. 3i, it is a preferred embodiment of the reflective display panel of the present invention. The reflective display panel 200 of the present invention comprises: a first substrate 20b having a cured polymer film layer 25' (base layer) disposed on the surface thereof, the cured polymer film layer 25' having a plurality of pixel regions P, each of the pixel regions 25' of the cured polymer film layer 25' has two or more sub-pixel grooves 3, wherein the depth D1 of the sub-pixel grooves 3 in the same pixel region P D2, D3 (as shown in FIG. 3f) are different, and the bottom surface of the sub-pixel groove 3 of the cured polymer film layer 25' is provided with a light-reflecting conductive layer 26, 26a, 26b, 26c; the second substrate 20a, a conductive film layer 21 and a light semi-reflective film layer 22 are disposed on the surface thereof; and cured polymer dispersed liquid crystals (PDLC) 30a, 30b, and 30c are disposed on the conductive film layer 21 of the second substrate 20a and the first A cured polymer film layer 25' of a substrate 20b is located in each of the sub-pixel grooves 3.
以下將詳述本發明之反射式顯示面板之製作方式。The manner in which the reflective display panel of the present invention is fabricated will be described in detail below.
[實施例][Examples]
本實施例中,上基板與下基板之製作順序並無特殊限制,可為一前一後、或是同時製作。In this embodiment, the order of making the upper substrate and the lower substrate is not particularly limited, and may be made one after the other or at the same time.
上基板之製作Fabrication of the upper substrate
首先,如圖3a所示,提供一基板20a,並於該基板20a上方形成一導電膜層21。接著,如圖3b所示,於該導電薄 膜21上方形成一光半反射膜層22。在此,基板20a可為玻璃基板、塑膠基板、或可撓性基板等,無特殊限制。First, as shown in FIG. 3a, a substrate 20a is provided, and a conductive film layer 21 is formed over the substrate 20a. Next, as shown in FIG. 3b, the conductive thin A light semi-reflective film layer 22 is formed over the film 21. Here, the substrate 20a may be a glass substrate, a plastic substrate, or a flexible substrate, and is not particularly limited.
下基板之製作Fabrication of the lower substrate
首先,如圖3c所示,提供一基板20b,並於該基板20b上方形成一吸光膜層24。在此,基板20b可為玻璃基板、塑膠基板、或可撓性基板等,無特殊限制。吸光膜層24之材料可為碲化鎘(CdTe)或是銅錮鎵硒(CIGS)等,但不限於此。接著,如圖3d所示,於該吸光膜層24上方形成一高分子膜層25(或稱前趨物層)。高分子膜層25之材料可為聚二甲基矽氧烷(polydimethylsiloxane,PDMS)、SU-8光阻、低黏度光硬化性樹脂、樹脂型黑色光阻、光間隙光阻、其他光阻、或是高分子凝膠(polymer gel)等,但不限於此;形成方式可為噴霧塗佈法、流動塗佈法、旋轉塗佈法、或捲帶式塗佈法。First, as shown in FIG. 3c, a substrate 20b is provided, and a light absorbing film layer 24 is formed over the substrate 20b. Here, the substrate 20b may be a glass substrate, a plastic substrate, or a flexible substrate, and is not particularly limited. The material of the light absorbing film layer 24 may be cadmium telluride (CdTe) or copper lanthanum gallium selenide (CIGS) or the like, but is not limited thereto. Next, as shown in FIG. 3d, a polymer film layer 25 (or a precursor layer) is formed over the light absorbing film layer 24. The material of the polymer film layer 25 may be polydimethylsiloxane (PDMS), SU-8 photoresist, low viscosity photocurable resin, resin type black photoresist, optical gap photoresist, other photoresist, It may be a polymer gel or the like, but is not limited thereto; the formation method may be a spray coating method, a flow coating method, a spin coating method, or a tape coating method.
接著,如圖3e所示,奈米壓印該高分子膜層25並以熱固法或紫外光(UV)固化成固化之高分子膜層25’(或稱基底層),並形成不同深度之子畫素凹槽3。在此,基板20b係具有複數畫素區(圖未示),而每一畫素區係具有三個子畫素(即,紅色子畫素sub-PR 、綠色子畫素sub-PG 、及藍色子畫素sub-PB )。Next, as shown in FIG. 3e, the polymer film layer 25 is imprinted and cured by thermosetting or ultraviolet light (UV) to form a cured polymer film layer 25' (or a base layer), and formed into different depths. The sub-pixel is groove 3. Here, the substrate 20b has a plurality of pixel regions (not shown), and each pixel region has three sub-pixels (ie, red sub-pixels sub-P R , green sub-pixels sub-P G , And blue sub-primitive sub-P B ).
子畫素凹槽之深度D1,D2,D3與光線入射至高分子分散液晶層的折射角θ3 ,以及一預定該子畫素反射出之光的波長λ係滿足以下[式1]:[式1]2Dcosθ3 =mλ/nThe depth D1, D2, D3 of the sub-pixel groove and the refraction angle θ 3 of the light incident on the polymer dispersed liquid crystal layer, and the wavelength λ of the light reflected by the sub-pixel are satisfied as follows: [Formula 1]: 1] 2Dcosθ 3 =mλ/n
其中,m為1以上之整數(例如,m=1,2,3,4,...等),n為高分子分散液晶折射率(在此約為1.524),cosθ3 接近數值1為較佳,可得到建設性干涉。例如,當預定設計製作紅色畫素時,由於紅色波長為600nm-700nm,因此紅色子畫素凹槽的深度D3可為約196.85nm-229.66nm、或約393.7nm-459.32nm、或約590.55nm-688.98nm之間等;當預定設計製作綠色畫素時,由於綠色波長為510nm-540nm,因此綠色子畫素凹槽的深度D2可為約167.32nm-177.17nm、或約334.65nm-354.33nm、或約501.97nm-531.50nm之間等;當預定設計製作藍色畫素時,由於藍色波長為455nm-480nm,因此藍色子畫素凹槽的深度D1可為約149.28nm-157.48nm、或約298.56nm-314.96nm、或約447.83nm-472.44nm之間等。Wherein m is an integer of 1 or more (for example, m=1, 2, 3, 4, ..., etc.), n is a refractive index of a polymer dispersed liquid crystal (here, about 1.524), and cos θ 3 is close to a value of 1 Good, can get constructive interference. For example, when the red pixel is predetermined to be designed, since the red wavelength is 600 nm to 700 nm, the depth D3 of the red sub-pixel groove may be about 196.85 nm to 229.66 nm, or about 393.7 nm to 459.32 nm, or about 590.55 nm. Between -688.98nm, etc.; when the green pixel is predetermined to be designed, since the green wavelength is 510nm-540nm, the depth D2 of the green sub-pixel groove may be about 167.32nm-177.17nm, or about 334.65nm-354.33nm. Or about 501.97nm-531.50nm, etc.; when the blue pixel is predetermined to be designed, since the blue wavelength is 455nm-480nm, the depth D1 of the blue sub-pixel groove may be about 149.28nm-157.48nm Or between about 298.56 nm and 314.96 nm, or between about 447.83 nm and 472.44 nm.
在本實施例中,該子畫素凹槽之深度D1,D2,D3係分別為149.28nm-157.48nm、167.32nm-177.17nm、及196.85nm-229.66nm。In this embodiment, the depths D1, D2, and D3 of the sub-pixel grooves are 149.28 nm - 157.48 nm, 167.32 nm - 177.17 nm, and 196.85 nm - 229.66 nm, respectively.
其後,如圖3f所示,於每一子畫素凹槽3的底部形成一光反射導電層26,26a,26b,26c。在此,光反射導電層26,26a,26b,26c之材料可為鋁、金、銀、銅、或其混合,形成光反射導電層26,26a,26b,26c之方法可為濺鍍、蒸鍍、離子披覆(ion plating)等,但不限於此。Thereafter, as shown in Fig. 3f, a light-reflecting conductive layer 26, 26a, 26b, 26c is formed at the bottom of each sub-pixel groove 3. Here, the material of the light-reflecting conductive layer 26, 26a, 26b, 26c may be aluminum, gold, silver, copper, or a mixture thereof, and the method of forming the light-reflecting conductive layer 26, 26a, 26b, 26c may be sputtering or steaming. Plating, ion plating, etc., but is not limited thereto.
接著,如圖3g所示,於每一子畫素凹槽3中填入一含液晶之感光性(photo-sensitive)組合物23a,23b,23c。形成方法例如可為噴霧塗佈法、線棒塗佈法、流動塗佈法、或捲帶式塗佈法。而該含液晶之感光性組合物包括:10至95重量百分比之液晶、5至90重量百分比之光聚合(photo-reactive)化合物、0.1至10重量百分比之光起始劑、0.1至10重量百分比之染劑,以上係以該含液晶之感光性組合物之總重為基準。此外,該光聚合化合物可為紫外光固化光學膠(NOA65,Norland Optical Adhesive)、含丙烯酸基之單體、含環氧基之單體、或其混合。如圖3g所示,每一子畫素凹槽3中係包含有液晶27以及光聚合化合物28,其餘未示於圖中。Next, as shown in Fig. 3g, a liquid crystal-containing photo-sensitive composition 23a, 23b, 23c is filled in each of the sub-pixel grooves 3. The formation method may be, for example, a spray coating method, a wire bar coating method, a flow coating method, or a tape coating method. The liquid crystal-containing photosensitive composition includes: 10 to 95% by weight of liquid crystal, 5 to 90% by weight of a photo-reactive compound, 0.1 to 10% by weight of a photoinitiator, and 0.1 to 10% by weight. The dyeing agent is based on the total weight of the liquid crystal-containing photosensitive composition. Further, the photopolymerizable compound may be a UV-curable optical adhesive (NOA65, Norland Optical Adhesive), an acrylic group-containing monomer, an epoxy group-containing monomer, or a mixture thereof. As shown in Fig. 3g, each sub-pixel groove 3 contains a liquid crystal 27 and a photopolymerizable compound 28, and the rest are not shown.
此外,該含液晶之感光性組合物可更包括:0.1至30重量百分比之添加劑,此係以該含液晶之感光性組合物之總重為基準。其中,添加劑可選自由:平坦劑、均化劑、助黏劑、消泡劑、及其混合所組成之群組。Further, the liquid crystal-containing photosensitive composition may further comprise: 0.1 to 30% by weight of an additive based on the total weight of the liquid crystal-containing photosensitive composition. Among them, the additive can be selected from the group consisting of a flat agent, a leveling agent, an adhesion promoter, an antifoaming agent, and a mixture thereof.
接著,如圖3h所示,將基板20a與基板20b組合,使基板20a表面之光半反射膜層22與基板20b表面固化之高分子膜層25’相對面接合。其後,如圖3i所示,使用一光源對該基板20a、基板20b曝光,使該填充於凹槽3內的含液晶之感光性組合物23a,23b,23c轉換為固化之高分子分散液晶30a,30b,30c,而得到本實施例之反射式顯示面板200。如圖3i所示,其中,固化之高分子分散液晶30a,30b,30c係包含液晶27以及固化之高分子聚合物29。Next, as shown in Fig. 3h, the substrate 20a and the substrate 20b are combined, and the light semi-reflective film layer 22 on the surface of the substrate 20a is bonded to the surface of the polymer film layer 25' on which the surface of the substrate 20b is cured. Thereafter, as shown in FIG. 3i, the substrate 20a and the substrate 20b are exposed by using a light source, and the liquid crystal containing photosensitive composition 23a, 23b, 23c filled in the recess 3 is converted into a cured polymer dispersed liquid crystal. 30a, 30b, 30c, the reflective display panel 200 of the present embodiment is obtained. As shown in FIG. 3i, the cured polymer-dispersed liquid crystals 30a, 30b, and 30c comprise a liquid crystal 27 and a cured polymer 29.
本實施例中,依照需求,使感光性組合物23a,23b,23c轉換為固化之高分子分散液晶30a,30b,30c的曝光及/或加熱步驟可於基板20a與基板20b組合前或組合後進行。In the present embodiment, the exposure and/or heating steps of converting the photosensitive composition 23a, 23b, 23c into the cured polymer dispersed liquid crystals 30a, 30b, 30c may be before or after the combination of the substrate 20a and the substrate 20b, as needed. get on.
如圖4a所示,其係本實施例之反射式顯示面板200示意圖。當施與電壓至該反射式顯示面板200時,光線L由基板20a進入至反射式顯示面板200,並經由干涉得到不同顏色的光,並由基板20a表面反射出來。而當未提供電壓時,如圖4b所示,由於液晶分子的旋轉角度改變,使得入射至反射式顯示面板200中的光線無法反射出來,而使畫素呈現黑色。因此,藉由電壓的控制,可使本實施例之反射式顯示面板200呈現出不同畫面。As shown in FIG. 4a, it is a schematic diagram of a reflective display panel 200 of the present embodiment. When a voltage is applied to the reflective display panel 200, the light L enters the reflective display panel 200 from the substrate 20a, and light of different colors is obtained by interference and reflected from the surface of the substrate 20a. When no voltage is supplied, as shown in FIG. 4b, since the rotation angle of the liquid crystal molecules is changed, the light incident into the reflective display panel 200 cannot be reflected, and the pixels appear black. Therefore, the reflective display panel 200 of the present embodiment can be presented with different screens by voltage control.
綜上所述,本發明之反射式顯示面板為一種具有創新結構之反射式顯示面板,因此可具有低耗能(不需背光,非以移動式反射層作為開關)、輕薄、高穩定度、長使用壽命、減少偏陣片與濾光片的使用數量、成本低、視角大(可達約80°以上)等優點。In summary, the reflective display panel of the present invention is a reflective display panel with an innovative structure, so that it can have low energy consumption (no backlight, no moving reflective layer as a switch), light and thin, high stability, Long service life, reduced number of used polarizers and filters, low cost, large viewing angle (up to about 80° or more).
本發明之反射式顯示面板為彩色反射式顯示面板。本發明之反射式顯示面板可在不使用彩色偏光片(color filter)的情形下,仍可顯示出各種色彩。The reflective display panel of the present invention is a color reflective display panel. The reflective display panel of the present invention can still display various colors without using a color filter.
本發明之反射式顯示面板主要原理係採用干涉技術,使控制入射及反射之光程差,干涉得到不同顏色的光,並搭配使用高分子分散液晶(PDLC,Polymer-dispersed liquid crystal)作為亮度開關的控制,而達到對比佳、高色度的效果。本發明之反射式顯示面板可在不使用彩色偏光片之情形下即產生不同顏色的光。此外,以高分子分散液晶取代機械式移動之可移動式反射層,進而提高穩定度及可靠度。再者,偏陣片與濾光片使用數量的減少更可降低生產成本,並符合環保要求。The main principle of the reflective display panel of the present invention is to use interference technology to control the optical path difference between incident and reflection, to obtain different colors of light, and to use a polymer-dispersed liquid crystal (PDLC) as a brightness switch. Control, and achieve better contrast, high chroma effect. The reflective display panel of the present invention can produce light of different colors without using a color polarizer. In addition, the mechanically movable movable reflective layer is replaced by a polymer-dispersed liquid crystal, thereby improving stability and reliability. Moreover, the reduction in the number of use of the polarizer and the filter can reduce the production cost and meet the environmental requirements.
本發明中,光程差ΔL可依照下列公式計算(並請同時參考圖2):In the present invention, the optical path difference ΔL can be calculated according to the following formula (and also refer to FIG. 2):
ΔL=2ndcosθ3 =mλΔL=2ndcosθ 3 =mλ
其中,λ為入射光,n為折射率,d為高分子分散液晶層之厚度,θ3 為光線入射至高分子分散液晶層的折射角。Here, λ is incident light, n is a refractive index, d is a thickness of a polymer dispersed liquid crystal layer, and θ 3 is a refractive angle at which light is incident on the polymer dispersed liquid crystal layer.
當m為正整數時,可得到建設性干涉(相長干涉);而當m為半整數(例如,3/2、5/2、7/2、9/2等)時,可得到破壞性干涉(相消干涉)。When m is a positive integer, constructive interference (constructive interference) can be obtained; and when m is a half integer (for example, 3/2, 5/2, 7/2, 9/2, etc.), destructiveness can be obtained. Interference (destructive interference).
本發明之反射式顯示面板中所使用之高分子分散液晶(PDLC)由於具有相較於空氣更大之折射率,因此光線入射時入射角的改變範圍會比空氣來的小。由光程差的公式可以得知,減少入射角的影響範圍就能減少色差,且能有效地提高視角。Since the polymer-dispersed liquid crystal (PDLC) used in the reflective display panel of the present invention has a refractive index larger than that of air, the incident angle of the light incident is changed in a smaller range than that of air. It can be known from the formula of the optical path difference that reducing the influence range of the incident angle can reduce the chromatic aberration and effectively improve the viewing angle.
由於本發明之反射式顯示面板使用了高分子分散液晶,因此可製造出灰階效果。習知技術中,干涉調變顯示器必須使用多數個子畫素(例如一個畫素需包含有十六個子畫素)來產生灰階,但本發明不需使用多數個子畫素即可產生灰階。因此,本發明之反射式顯示面板確實符合了製程簡單、低生產成本的商業要求,非常具有產業利用價值。Since the reflective display panel of the present invention uses a polymer dispersed liquid crystal, a gray scale effect can be produced. In the prior art, an interferometric modulation display must use a plurality of sub-pixels (for example, one pixel needs to contain sixteen sub-pixels) to generate gray scales, but the present invention does not need to use a plurality of sub-pixels to generate gray scales. Therefore, the reflective display panel of the present invention does meet the commercial requirements of simple process and low production cost, and has great industrial utilization value.
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.
11...上基板11. . . Upper substrate
12...下基板12. . . Lower substrate
13...隔柱13. . . Separator
14R、14G...可移動式反射層14R, 14G. . . Movable reflective layer
16R、16G...電極16R, 16G. . . electrode
sub-PR 、sub-PG 、sub-PB ...子畫素sub-P R , sub-P G , sub-P B . . . Subpixel
P...畫素區P. . . Graphic area
L...光線L. . . Light
200...反射式顯示面板200. . . Reflective display panel
20a、20b...基板20a, 20b. . . Substrate
21...導電膜層twenty one. . . Conductive film layer
22...光半反射膜層twenty two. . . Light semi-reflective coating
23a、23b、23c...感光性組合物23a, 23b, 23c. . . Photosensitive composition
24...吸光膜層twenty four. . . Light absorbing layer
25...高分子膜層25. . . Polymer film
25'...固化之高分子膜層25'. . . Cured polymer film
26、26a、26b、26c...光反射導電層26, 26a, 26b, 26c. . . Light reflective conductive layer
27...液晶27. . . liquid crystal
28...光聚合化合物28. . . Photopolymerizable compound
29...固化之高分子聚合物29. . . Cured polymer
3...子畫素凹槽3. . . Subpixel groove
30a、30b、30c...固化之高分子分散液晶30a, 30b, 30c. . . Cured polymer dispersed liquid crystal
D1、D2、D3...深度D1, D2, D3. . . depth
圖1係習知之干涉調變顯示器。Figure 1 is a conventional interference modulation display.
圖2係本發明計算光程差之示意圖。Figure 2 is a schematic diagram of the calculation of optical path difference in the present invention.
圖3a至3i係本發明一較佳實施例之反射式顯示面板之製作流程圖。3a to 3i are flowcharts showing the fabrication of a reflective display panel in accordance with a preferred embodiment of the present invention.
圖4a及4b係本發明一較佳實施例之反射式顯示面板之操作示意圖。4a and 4b are schematic views showing the operation of a reflective display panel in accordance with a preferred embodiment of the present invention.
sub-PR 、sub-PG 、sub-PB ...子畫素sub-P R , sub-P G , sub-P B . . . Subpixel
P...畫素區P. . . Graphic area
200...反射式顯示面板200. . . Reflective display panel
20a、20b...基板20a, 20b. . . Substrate
21...導電膜層twenty one. . . Conductive film layer
22...光半反射膜層twenty two. . . Light semi-reflective coating
24...吸光膜層twenty four. . . Light absorbing layer
25'...固化之高分子膜層25'. . . Cured polymer film
26、26a、26b、26c...光反射導電層26, 26a, 26b, 26c. . . Light reflective conductive layer
27...液晶27. . . liquid crystal
29...固化之高分子聚合物29. . . Cured polymer
3...子畫素凹槽3. . . Subpixel groove
30a、30b、30c...固化之高分子分散液晶30a, 30b, 30c. . . Cured polymer dispersed liquid crystal
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100133807A TWI467276B (en) | 2011-09-20 | 2011-09-20 | Reflective display device and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100133807A TWI467276B (en) | 2011-09-20 | 2011-09-20 | Reflective display device and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201314300A TW201314300A (en) | 2013-04-01 |
TWI467276B true TWI467276B (en) | 2015-01-01 |
Family
ID=48802485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100133807A TWI467276B (en) | 2011-09-20 | 2011-09-20 | Reflective display device and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI467276B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5680185A (en) * | 1990-11-26 | 1997-10-21 | Seiko Epson Corporation | Polymer dispersed liquid crystal (PDLC) display apparatus |
TW200813528A (en) * | 2001-01-11 | 2008-03-16 | Sipix Imaging Inc | An improved transmissive or reflective liquid crystal display and novel process for its manufacture |
US20100309413A1 (en) * | 2009-06-09 | 2010-12-09 | Samsung Electronics Co., Ltd. | Reflective-type color display devices using polymer dispersed liquid crystals and dyes |
US20110134373A1 (en) * | 2009-12-04 | 2011-06-09 | Samsung Electronics Co., Ltd. | Reflective display devices and methods of manufacturing the same |
-
2011
- 2011-09-20 TW TW100133807A patent/TWI467276B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5680185A (en) * | 1990-11-26 | 1997-10-21 | Seiko Epson Corporation | Polymer dispersed liquid crystal (PDLC) display apparatus |
TW200813528A (en) * | 2001-01-11 | 2008-03-16 | Sipix Imaging Inc | An improved transmissive or reflective liquid crystal display and novel process for its manufacture |
US20100309413A1 (en) * | 2009-06-09 | 2010-12-09 | Samsung Electronics Co., Ltd. | Reflective-type color display devices using polymer dispersed liquid crystals and dyes |
US20110134373A1 (en) * | 2009-12-04 | 2011-06-09 | Samsung Electronics Co., Ltd. | Reflective display devices and methods of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201314300A (en) | 2013-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9323115B2 (en) | Method for preparing liquid crystal display panel, display device and monochromatic quantum dot layer | |
US11480822B2 (en) | Display substrate comprising a light-reflecting wall having a light-transmissive wall and a light-reflecting layer covering a top surface and side surfaces of the light-transmissive wall, method for manufacturing the same, and display device | |
CN108628036B (en) | Photoluminescent device, method of manufacturing the same, and display apparatus having the same | |
KR101794653B1 (en) | Liquid Crystal Display and its panel having a light conversion layer | |
US7580181B2 (en) | Display | |
US9239458B2 (en) | Photoluminescence display device | |
WO2017084149A1 (en) | Manufacturing method for colour filter substrate | |
US11335874B2 (en) | Quantum dot color filter substrate, fabricating method thereof, and display panel | |
CN105242441B (en) | The production method and PDLC display device of PDLC display device | |
CN105093643B (en) | Color light emitting elements and liquid crystal display device | |
WO2019223203A1 (en) | Method for building polarizer in liquid crystal panel, and liquid crystal display device and manufacturing method therefor | |
EP3242342B1 (en) | Oled device having optical resonance layer and preparation method therefor, and display device | |
CN105044963A (en) | Display panel and manufacturing method thereof | |
Qi et al. | Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay | |
CN108957836A (en) | A kind of color membrane substrates and preparation method thereof, display device | |
KR20180114979A (en) | Display apparatus and method of manufacturing the same | |
JP2012103695A (en) | Display device | |
CN103943661A (en) | Display device and manufacturing method thereof | |
WO2019227669A1 (en) | Display panel and display device | |
US12105372B2 (en) | Color film substrate, display panel and display device | |
KR20180107385A (en) | Photoluminescence device, method of manufacturing the same and display apparatus having the same | |
Ye et al. | Highly reflective thin-film optimization for full-angle micro-LEDs | |
CN110473892B (en) | Display device | |
TWI467276B (en) | Reflective display device and method of fabricating the same | |
US10585306B2 (en) | Liquid crystal panel, liquid crystal display, and method for manufacturing a yellow-dye polarizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |