TWI463772B - Pfc controller and bridgeless pfc circuit with the pfc controller - Google Patents
Pfc controller and bridgeless pfc circuit with the pfc controller Download PDFInfo
- Publication number
- TWI463772B TWI463772B TW101101819A TW101101819A TWI463772B TW I463772 B TWI463772 B TW I463772B TW 101101819 A TW101101819 A TW 101101819A TW 101101819 A TW101101819 A TW 101101819A TW I463772 B TWI463772 B TW I463772B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- circuit
- potential
- power factor
- factor correction
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Rectifiers (AREA)
Description
本發明係關於一種功率因數修正控制器及其應用電路,尤其關於是一種適用於無橋式功率因數修正電路之功率因數修正控制器。 The present invention relates to a power factor correction controller and an application circuit thereof, and more particularly to a power factor correction controller suitable for a bridgeless power factor correction circuit.
在環保節能日受重視下,交流隔離型交換式電源供應器在效率上的改善,有朝向次級側同步整流控制以及初級側功率因數修正(PFC)拓樸應用之趨勢發展。 In the environmental protection and energy-saving day, the improvement of the efficiency of the AC-isolated switching power supply has a tendency toward the secondary side synchronous rectification control and the primary side power factor correction (PFC) topology application.
第1A與1B圖係一傳統全橋式功率因數應用電路之示意圖。如圖中所示,此應用電路可區分為橋式整流電路與直流轉換電路兩個部分。交流電源AC所提供之交流電能先經由橋式整流電路轉換為直流後,再經由直流轉換電路轉換為輸出電壓Vo提供給負載(Load)Ro。 Figures 1A and 1B are schematic diagrams of a conventional full bridge power factor application circuit. As shown in the figure, the application circuit can be divided into two parts: a bridge rectifier circuit and a DC conversion circuit. The AC power provided by the AC power source AC is first converted to DC by the bridge rectifier circuit, and then converted to the output voltage Vo via the DC conversion circuit to be supplied to the load (Ro).
如圖中所示,當交流電源AC所提供之交流電壓處於正半週時,交流電源AC所產生之電流係經由二極體d1、電感Li、導通之開關元件sw0與二極體d4,回流至交流電源AC。當開關元件sw0關斷時,電感Li之釋能電流則是由電感Li,經由二極體Do、負載Ro、二極體d4、交流電源AC與二極體d1,回流至電感Li。當交流電源AC所提供之交流電壓處於負半週時,交流電源AC所產生之電流係經由二極體d2、電感Li、導通之開關元件sw0與二極體d3,回流至交流電源AC。當開關元件sw0關斷時,電感Li之釋能電流則是由電感Li,經由二極體Do、負載Ro、二極體d3、交流電源AC與二極體d2,回流至電感Li。 As shown in the figure, when the AC voltage supplied by the AC power source AC is in the positive half cycle, the current generated by the AC power source AC is recirculated through the diode d1, the inductor Li, the turned-on switching element sw0, and the diode d4. To AC power AC. When the switching element sw0 is turned off, the discharge current of the inductor Li is returned to the inductor Li via the inductor Li through the diode Do, the load Ro, the diode d4, the alternating current power source AC and the diode d1. When the AC voltage supplied by the AC power source AC is in the negative half cycle, the current generated by the AC power source AC is returned to the AC power source AC via the diode d2, the inductor Li, the turned-on switching element sw0, and the diode d3. When the switching element sw0 is turned off, the discharging current of the inductor Li is returned to the inductor Li via the inductor Li through the diode Do, the load Ro, the diode d3, the alternating current power source AC and the diode d2.
目前,功率因數修正拓樸之應用面有朝向無橋式設計之方向發展。無橋式功率因數修正電路拓樸顧名思義就是將傳統橋式整流與功率因數修正分開控制的電路拓樸改變為共用結構之電路拓樸,藉以節省橋式整流順向壓降損失以提昇電源供應器效率。 At present, the application of the power factor correction topology has developed toward a bridgeless design. The bridgeless power factor correction circuit topology is the circuit topology that separates the traditional bridge rectifier and power factor correction into a circuit topology of the shared structure, thereby saving the bridge rectifier rectification loss and increasing the power supply. effectiveness.
第2A與2B圖係一典型之無橋式功率因數修正應用電路之示意圖。此應用電路係將橋式整流電路之四個二極體與功率因數修正電路加以整合,利用二個二極體d5,d6與二個開關元件sw1,sw2,取代原本之橋式整流電路的功能。同時透過控制此二個開關元件sw1,sw2之導通與關斷,來達到功率因數修正之目的。如圖中所示,當交流電源AC所提供之交流電壓處於正半週時,交流電源AC所產生之電流係經由電感Li、導通之開關元件sw1與sw2,回流至交流電源AC,以對電感Li充電。當開關元件sw1與sw2關斷時,電感Li所產生之釋能電流則是由電感Li,經由二極體d5、負載Ro與開關元件sw2之體二極體(body diode)ds2,回流至電感Li。 2A and 2B are schematic diagrams of a typical bridgeless power factor correction application circuit. The application circuit integrates the four diodes of the bridge rectifier circuit with the power factor correction circuit, and replaces the functions of the original bridge rectifier circuit by using two diodes d5, d6 and two switching elements sw1, sw2. . At the same time, the power factor correction is achieved by controlling the on and off of the two switching elements sw1 and sw2. As shown in the figure, when the AC voltage supplied by the AC power source AC is in the positive half cycle, the current generated by the AC power source AC is returned to the AC power source AC through the inductor Li, the conduction switching elements sw1 and sw2, to the inductor. Li charging. When the switching elements sw1 and sw2 are turned off, the discharge current generated by the inductor Li is returned to the inductor by the inductor Li via the diode d5, the load Ro and the body diode ds2 of the switching element sw2. Li.
當交流電源AC所提供之交流電壓處於負半週時,交流電源AC所產生之電流係經由導通之開關元件sw2與sw1,流經電感Li,再回流至交流電源AC,以對電感Li充電。當開關元件sw1與sw2關斷時,電感Li所產生之釋能電流則是由電感Li,經過交流電源AC、二極體d6、負載Ro與開關元件sw1之體二極體ds1,回流至電感Li。 When the AC voltage supplied by the AC power source AC is in the negative half cycle, the current generated by the AC power source AC flows through the conduction element Li through the conduction switching elements sw2 and sw1, and then flows back to the AC power source AC to charge the inductor Li. When the switching elements sw1 and sw2 are turned off, the discharge current generated by the inductor Li is returned by the inductor Li through the AC power source AC, the diode d6, the load Ro and the body diode ds1 of the switching element sw1, and is returned to the inductor. Li.
對於橋式功率因數修正應用電路而言,其橋式整流之電流路徑需經過兩個二極體,這些二極體會產生導通損失而影響整體轉換效率。相較之下,無橋式功率因數修正應用電路可以減 少電流流經之二極體數量,有效降低整流過程因為二極體所導致的壓降與耗損。 For the bridge power factor correction application circuit, the bridge rectified current path needs to pass through two diodes, which will cause conduction loss and affect the overall conversion efficiency. In contrast, the bridgeless power factor correction application circuit can be reduced. The number of diodes flowing through less current effectively reduces the voltage drop and loss caused by the diode during the rectification process.
第3A與3B圖係另一典型之無橋式功率因數修正應用電路之示意圖。此應用電路係採用圖騰柱(Totem pole)之驅動方式,因而需要額外的高壓側驅動電路(high side driver)。因此,此種應用電路之驅動控制較之第2A與2B圖應用電路來的複雜。 Figures 3A and 3B are schematic diagrams of another typical bridgeless power factor correction application circuit. This application circuit is driven by a Totem pole and requires an additional high side driver. Therefore, the drive control of such an application circuit is more complicated than that of the application circuits of FIGS. 2A and 2B.
如圖中所示,當交流電源AC所提供之交流電壓處於正半週且開關元件sw3關斷時,交流電源AC所產生之電流係經由電感Li、導通之開關元件sw4與二極體d8,回流至交流電源AC,以對電感Li充電。當開關元件sw4關斷而開關元件sw3導通時,電感Li所產生之釋能電流則是由電感Li,經由導通之開關元件sw3、負載Ro與二極體d8,回流至電感Li。 As shown in the figure, when the AC voltage supplied by the AC power source AC is in the positive half cycle and the switching element sw3 is turned off, the current generated by the AC power source AC is via the inductor Li, the turned-on switching element sw4, and the diode d8. Return to the AC power source AC to charge the inductor Li. When the switching element sw4 is turned off and the switching element sw3 is turned on, the discharge current generated by the inductor Li is returned to the inductor Li by the inductor Li through the turned-on switching element sw3, the load Ro and the diode d8.
當交流電源AC所提供之交流電壓處於負半週且開關元件sw4關斷時,交流電源AC所產生之電流係經由二極體d7與導通之開關元件sw3,流經電感Li,再回流至交流電源AC,以對電感Li充電。當開關元件sw3關斷時,電感Li所產生之釋能電流則是由電感Li,經過交流電源AC、二極體d7、負載Ro與導通之開關元件sw4,回流至電感Li。 When the AC voltage supplied by the AC power source AC is in the negative half cycle and the switching element sw4 is turned off, the current generated by the AC power source AC flows through the diode D7 and the turned-on switching element sw3, flows through the inductor Li, and then flows back to the AC. The power supply AC is used to charge the inductor Li. When the switching element sw3 is turned off, the discharge current generated by the inductor Li is returned to the inductor Li by the inductor Li through the AC power source AC, the diode d7, the load Ro, and the switching element sw4 that is turned on.
前述二個無橋式功率因數修正應用電路之電感Li在交流電源AC處於正半週或負半週輸出時,都會進行儲能釋能的運作。換言之,無論交流電源AC處於正半週或負半週輸出時,都必須對於開關元件sw1,sw2,sw3,sw4作出適當的控制。因而會面臨電感線圈電流與開關元件之電流狀態偵測不易,而無法對於開關元件sw1,sw2,sw3,sw4作出適當控制的問題。 The inductance Li of the two bridgeless power factor correction application circuits performs the energy storage and discharge operation when the AC power source AC is in the positive half cycle or the negative half cycle output. In other words, regardless of whether the AC power source AC is in the positive half cycle or the negative half cycle output, it is necessary to appropriately control the switching elements sw1, sw2, sw3, sw4. Therefore, it is difficult to detect the current state of the inductor current and the switching element, and it is impossible to properly control the switching elements sw1, sw2, sw3, sw4.
本發明之主要目的在於提供一種功率因數修正控制電路,可以配合交流電源之正半週與負半週輸出,有效偵測轉換電路之電感上之正方向與負方向的電流。 The main object of the present invention is to provide a power factor correction control circuit that can cooperate with the positive half cycle and the negative half cycle output of the AC power source to effectively detect the positive and negative currents on the inductance of the conversion circuit.
本發明之另一目的在於提供一種功率因數修正控制電路,可以配合交流電源之正半週與負半週輸出,有效偵測開關元件之導通電流。 Another object of the present invention is to provide a power factor correction control circuit that can cooperate with the positive half cycle and the negative half cycle output of the AC power source to effectively detect the on current of the switching element.
本發明之一實施例提供一種功率因數修正(PFC)控制器,用以控制至少一開關元件之導通狀態。此功率因數修正控制器具有一回授控制電路、一導通電流偵測電路與一開關元件控制電路。回授控制電路係依據一回授電壓信號,產生一回授控制信號用以控制該開關元件中斷。導通電流偵測電路,具有一箝位電路。此箝位電路至少依據一導通電流偵測信號之負電位部分,產生一在正電位範圍內變化之電位變化信號。導通電流偵測電路至少依據前揭電位變化信號,產生一截止信號以控制開關元件中斷。開關元件控制電路係依據回授控制信號與截止信號,控制開關元件中斷。 An embodiment of the present invention provides a power factor correction (PFC) controller for controlling an on state of at least one switching element. The power factor correction controller has a feedback control circuit, a conduction current detection circuit and a switching element control circuit. The feedback control circuit generates a feedback control signal for controlling the interruption of the switching element according to a feedback voltage signal. The conduction current detecting circuit has a clamp circuit. The clamp circuit generates a potential change signal that varies within a positive potential range based on at least a negative potential portion of the on current detection signal. The on current detecting circuit generates a cutoff signal to control the switching element interruption according to at least the previous potential change signal. The switching element control circuit controls the switching element to be interrupted according to the feedback control signal and the cutoff signal.
本發明之另一實施例提供一種無橋式功率因數修正電路。此無橋式功率因數修正電路包括一轉換電路、一開關電流偵測電路與一功率因數修正控制器。轉換電路具有一高壓側線路與一低壓側線路,並包括一第一高壓側整流元件與一第一低壓側整流元件、一第二高壓側整流元件與一第二低壓側整流元件、至少一電感與一輸出電容。其中,第一高壓側整流元件與第一低壓側整流元件係串接於高壓側線路與低壓側線路之間,並且,第一高壓側整流元件與第一低壓側整流元件間定義 有一第一接點。第二高壓側整流元件與第二低壓側整流元件係串接於高壓側線路與低壓側線路之間,並且,第二高壓側整流元件與第二低壓側整流元件間定義有一第二接點。電感係連接於一交流電源與第一接點間,並且,此交流電源與電感係串接於第一接點與第二接點間。輸出電容係連接於高壓側線路與低壓側線路之間。第一高壓側整流元件、第一低壓側整流元件、第二高壓側整流元件與第二低壓側整流元件之至少其中之一係一開關元件。 Another embodiment of the present invention provides a bridgeless power factor correction circuit. The bridgeless power factor correction circuit includes a conversion circuit, a switch current detection circuit and a power factor correction controller. The conversion circuit has a high-voltage side line and a low-voltage side line, and includes a first high-voltage side rectifying element and a first low-voltage side rectifying element, a second high-voltage side rectifying element and a second low-voltage side rectifying element, and at least one inductor With an output capacitor. Wherein, the first high-voltage side rectifying element and the first low-voltage side rectifying element are connected in series between the high-voltage side line and the low-voltage side line, and the first high-voltage side rectifying element and the first low-voltage side rectifying element are defined There is a first contact. The second high-voltage side rectifying element and the second low-voltage side rectifying element are connected in series between the high-voltage side line and the low-voltage side line, and a second contact is defined between the second high-voltage side rectifying element and the second low-voltage side rectifying element. The inductor is connected between an AC power source and the first contact, and the AC power source and the inductor are connected in series between the first contact and the second contact. The output capacitor is connected between the high side line and the low side line. At least one of the first high-voltage side rectifying element, the first low-voltage side rectifying element, the second high-voltage side rectifying element, and the second low-voltage side rectifying element is a switching element.
開關電流偵測電路係連接至開關元件,偵測流經開關元件之一導通電流,以產生一導通電流偵測信號。功率因數修正控制器具有一回授控制電路、一導通電流偵測電路與一開關元件控制電路。回授控制電路係依據一回授電壓信號,產生一回授控制信號用以控制該開關元件中斷。導通電流偵測電路具有一箝位電路。此箝位電路至少依據導通電流偵測信號之負電位部分,產生一在正電位範圍內變化之電位變化信號。導通電流偵測電路至少依據前揭電位變化信號,產生一截止信號以控制開關元件中斷。開關元件控制電路係依據回授控制信號與截止信號,控制開關元件中斷。 The switch current detecting circuit is connected to the switching element to detect a conducting current flowing through one of the switching elements to generate a conducting current detecting signal. The power factor correction controller has a feedback control circuit, a conduction current detection circuit and a switching element control circuit. The feedback control circuit generates a feedback control signal for controlling the interruption of the switching element according to a feedback voltage signal. The on current detecting circuit has a clamp circuit. The clamp circuit generates a potential change signal that varies within a positive potential range based at least on a negative potential portion of the on current detection signal. The on current detecting circuit generates a cutoff signal to control the switching element interruption according to at least the previous potential change signal. The switching element control circuit controls the switching element to be interrupted according to the feedback control signal and the cutoff signal.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
第4圖顯示本發明一種功率因數修正控制器之應用電路一較佳實施例之示意圖。如圖中所示,此應用電路可區分為橋式整流電路B0與直流轉換電路兩個部分。交流電源AC所提供之交流電能先經由橋式整流電路B0轉換為直流後,再經由直流轉換電路轉換為輸出電壓Vo提供給負載R1。 Figure 4 is a block diagram showing a preferred embodiment of an application circuit of a power factor correction controller of the present invention. As shown in the figure, the application circuit can be divided into two parts: a bridge rectifier circuit B0 and a DC conversion circuit. The AC power provided by the AC power source AC is first converted to DC by the bridge rectifier circuit B0, and then converted to the output voltage Vo via the DC conversion circuit to be supplied to the load R1.
直流轉換電路具有一電感L1、一開關Q1、一個二極體D1、一電容C1、一開關電流偵測電路170、一輔助電感L2、一分壓電路(由電阻R2與R3構成)與功率因數修正控制器160。開關電流偵測電路170具有一電阻,串接至開關Q1,以將流經開關Q1之導通電流轉換為一導通電流偵測信號VCS。輔助電感L2係用以偵測電感L1上之電感電流,以產生一電感電流偵測信號VZCD。在輔助電感L2與功率因數修正控制器160之間連接有一電阻Rb。此電阻Rb可防止電感電流偵測信號VZCD直接灌入功率因數修正控制器160而造成電路異常。直流轉換電路之輸出電壓Vo係透過分壓電路轉換為一回授電壓信號VFB,輸出至功率因數修正控制器160。綜上述,本實施例之功率因數修正控制器160除了透過開關電流偵測電路170偵測開關Q1的導通電流,以及透過分壓電路偵測輸出電壓Vo外,也透過輔助電感L2偵測電感L1上的電感電流。 The DC conversion circuit has an inductor L1, a switch Q1, a diode D1, a capacitor C1, a switch current detecting circuit 170, an auxiliary inductor L2, a voltage dividing circuit (consisting of resistors R2 and R3) and power Factor correction controller 160. The switch current detecting circuit 170 has a resistor connected in series to the switch Q1 to convert the on current flowing through the switch Q1 into a turn-on current detecting signal VCS. The auxiliary inductor L2 is used to detect the inductor current on the inductor L1 to generate an inductor current detecting signal VZCD. A resistor Rb is connected between the auxiliary inductor L2 and the power factor correction controller 160. The resistor Rb prevents the inductor current detection signal VZCD from being directly injected into the power factor correction controller 160 to cause a circuit abnormality. The output voltage Vo of the DC conversion circuit is converted into a feedback voltage signal VFB through the voltage dividing circuit, and is output to the power factor correction controller 160. In summary, the power factor correction controller 160 of the present embodiment detects the conduction current of the switch Q1 through the switch current detecting circuit 170, and detects the output voltage Vo through the voltage dividing circuit, and also detects the inductance through the auxiliary inductor L2. Inductor current on L1.
第5圖係本發明一種功率因數修正控制器之應用電路另一實施例之示意圖。圖中係以一無橋式功率因數修正電路為例進行說明。如圖中所示,此無橋式功率因數修正電路包括一轉換電路、一開關電流偵測電路270與一功率因數修正控制器260。以下係針對本實施例之應用電路與第4圖之應用電路的差異處進行說明,相似處,例如:電阻Rb的設置、分壓電路的設置等,則不再贅述。 Figure 5 is a schematic diagram of another embodiment of an application circuit of a power factor correction controller of the present invention. In the figure, a bridgeless power factor correction circuit is taken as an example for description. As shown in the figure, the bridgeless power factor correction circuit includes a conversion circuit, a switch current detection circuit 270 and a power factor correction controller 260. The differences between the application circuit of the present embodiment and the application circuit of FIG. 4 will be described below. Similarities, for example, the setting of the resistor Rb, the setting of the voltage dividing circuit, and the like, will not be described again.
轉換電路具有一高壓側線路HL與一低壓側線路LL(本實施例之低壓側線路LL係為接地),並包括一第一高壓側整流元件DH1與一第一低壓側整流元件QL1、一第二高壓側整流元件DH2與一第二低壓側整流元件QL2、一電感L1與一輸出電容C1。其中,第一高壓側整流元件DH1與第一低壓側整流元件 QL1係串接於高壓側線路HL與低壓側線路LL之間,並且,第一高壓側整流元件DH1與第一低壓側整流元件QL1間定義有一第一接點N1。第二高壓側整流元件DH2與第二低壓側整流元件QL2係串接於高壓側線路HL與低壓側線路LL之間,並且,第二高壓側整流元件DH2與第二低壓側整流元QL2件間定義有一第二接點N2。電感L1係連接於一交流電源AC與第一接點N1間,並且,此交流電源AC與電感L1係串接於第一接點N1與第二接點N2間。輸出電容C1係連接於高壓側線路HL與低壓側線路LL之間。 The conversion circuit has a high-voltage side line HL and a low-voltage side line LL (the low-voltage side line LL of the embodiment is grounded), and includes a first high-voltage side rectifying element DH1 and a first low-voltage side rectifying element QL1, a first The second high-voltage side rectifying element DH2 and a second low-voltage side rectifying element QL2, an inductor L1 and an output capacitor C1. Wherein the first high side rectifying element DH1 and the first low side rectifying element The QL1 is connected in series between the high-voltage side line HL and the low-voltage side line LL, and a first contact point N1 is defined between the first high-voltage side rectifying element DH1 and the first low-voltage side rectifying element QL1. The second high-voltage side rectifying element DH2 and the second low-voltage side rectifying element QL2 are connected in series between the high-voltage side line HL and the low-voltage side line LL, and between the second high-voltage side rectifying element DH2 and the second low-voltage side rectifying element QL2 A second contact N2 is defined. The inductor L1 is connected between the AC power source AC and the first contact point N1, and the AC power source AC and the inductor L1 are connected in series between the first contact point N1 and the second contact point N2. The output capacitor C1 is connected between the high-voltage side line HL and the low-voltage side line LL.
在本實施例中,第一高壓側整流元件DH1與第二高壓側整流元件DH2係兩個二極體,分別順向連接於第一接點N1與高壓側線路HL間以及第二接點N2與高壓側線路HL間。第一低壓側整流元件QL1與第二低壓側整流元件QL2係開關元件。由此觀之,此轉換電路之運作拓樸係類似於第2A與2B圖之轉換電路。開關電流偵測電路270係連接至開關元件QL1、QL2或同時連接二者,以偵測流經開關元件之一導通電流。功率因數修正控制器260除了透過開關電流偵測電路270偵測開關Q2的導通電流外,也透過輔助電感L2,偵測在電感L1上的電感電流,藉以產生驅動信號DRV同步控制第一低壓側整流元件QL1與第二低壓側整流元件QL2之導通狀態。 In this embodiment, the first high-voltage side rectifying element DH1 and the second high-voltage side rectifying element DH2 are two diodes, which are respectively connected in the forward direction between the first contact N1 and the high-voltage side line HL and the second contact N2. Between the high voltage side line HL. The first low-voltage side rectifying element QL1 and the second low-voltage side rectifying element QL2 are switching elements. From this point of view, the operational topology of the conversion circuit is similar to the conversion circuit of Figures 2A and 2B. The switch current detecting circuit 270 is connected to the switching elements QL1, QL2 or both to detect the conduction current flowing through one of the switching elements. The power factor correction controller 260 detects the on-current of the switch Q2 through the switch current detecting circuit 270, and detects the inductor current on the inductor L1 through the auxiliary inductor L2, thereby generating the drive signal DRV to synchronously control the first low-voltage side. The conduction state of the rectifier element QL1 and the second low-voltage side rectifying element QL2.
第6圖係本發明一種功率因數修正控制器之應用電路又一實施例之示意圖。本實施例與第5圖之實施例的主要差異在於開關電流偵測電路270,370的不同。在本實施例中,開關電流偵測電路370包括一第一偵測二極體DT1與一第二偵測二極體DT2。第一偵測二極體DT1之陰極端與第二偵測二極體DT2之陰極端分別連接第一接點N1與第二接點N2。第一偵測二極體DT1之陽極端與第二偵測二極體DT2之陽極端相連於一第三 接點N3,並於第三接點N3產生導通電流偵測信號VCS。因此,相較於第5圖之開關電流偵測電路270須串接電阻至開關元件QL1,QL2以偵測導通電流之方式,本實施例之開關電流偵測電路370可減少電阻導通耗損的產生。 Figure 6 is a schematic diagram of still another embodiment of an application circuit of a power factor correction controller of the present invention. The main difference between this embodiment and the embodiment of Fig. 5 is the difference of the switch current detecting circuits 270, 370. In this embodiment, the switch current detecting circuit 370 includes a first detecting diode DT1 and a second detecting diode DT2. The cathode end of the first detecting diode DT1 and the cathode end of the second detecting diode DT2 are respectively connected to the first contact N1 and the second contact N2. The anode end of the first detecting diode DT1 is connected to the anode end of the second detecting diode DT2 to a third The contact N3 is generated, and the conduction current detection signal VCS is generated at the third contact N3. Therefore, the switch current detecting circuit 370 of the present embodiment can reduce the resistance conduction loss by the series connection of the resistors to the switching elements QL1 and QL2 to detect the conduction current. .
第7圖係本發明功率因數修正控制器400一實施例之示意圖。以下係以此功率因數修正控制器400應用於第6圖之應用電路為例進行說明。應用電路中相應信號的波形,如交流電源AC之交流電壓信號VAC、導通電流偵測信號VCS、以及由交流電源AC產生之輸入電流Iin的波型,可參照第8圖。 Figure 7 is a schematic illustration of an embodiment of a power factor correction controller 400 of the present invention. The following is an example in which the power factor correction controller 400 is applied to the application circuit of FIG. The waveform of the corresponding signal in the application circuit, such as the AC voltage signal VAC of the AC power source AC, the ON current detection signal VCS, and the waveform of the input current Iin generated by the AC power source AC can be referred to FIG.
如第7圖所示,本實施例之功率因數修正控制器400包括一零電流偵測電路420、一導通電流偵測電路440、一回授控制電路450與一開關元件控制電路460。其中,零電流偵測電路420具有一第一箝位電路422、一第一比較器COM1、一第二比較器COM2與一邏輯電路424。第一箝位電路422至少依據一電感電流偵測信號VZCD之負電位部分,產生一在正電位範圍內變化之第一電位變化信號VZCD’。零電流偵測電路420則是依據此第一電位變化信號VZCD’,產生一零電流信號SZC控制開關元件(即第4圖中之開關Q1、第5與6圖中之第一低壓側整流元件QL1與第二低壓側整流元件QL2)導通。 As shown in FIG. 7, the power factor correction controller 400 of the present embodiment includes a zero current detection circuit 420, a conduction current detection circuit 440, a feedback control circuit 450, and a switching element control circuit 460. The zero current detecting circuit 420 has a first clamping circuit 422, a first comparator COM1, a second comparator COM2, and a logic circuit 424. The first clamp circuit 422 generates a first potential change signal VZCD' that varies within a positive potential range based on at least a negative potential portion of the inductor current detection signal VZCD. The zero current detecting circuit 420 generates a zero current signal SZC according to the first potential change signal VZCD' to control the switching element (ie, the switch Q1 in FIG. 4, the first low side rectifying element in the fifth and sixth figures) QL1 is electrically connected to the second low-voltage side rectifying element QL2).
在本實施例中,第一比較器COM1之正輸入端係接收第一電位變化信號VZCD’,負輸入端係接收一第一參考電位Vr1,以產生一第一比較信號VCOM1。第二比較器COM2之負輸入端係接收第一電位變化信號VZCD’,正輸入端係接收一第二參考電位Vr2,以產生一第二比較信號VCOM2。第一邏輯電路424係接收第一比較信號VCOM1與第二比較信號VCOM2,以產生零電流信號SZC。 In this embodiment, the positive input terminal of the first comparator COM1 receives the first potential change signal VZCD', and the negative input terminal receives a first reference potential Vr1 to generate a first comparison signal VCOM1. The negative input terminal of the second comparator COM2 receives the first potential change signal VZCD', and the positive input terminal receives a second reference potential Vr2 to generate a second comparison signal VCOM2. The first logic circuit 424 receives the first comparison signal VCOM1 and the second comparison signal VCOM2 to generate a zero current signal SZC.
在本實施例中,第一邏輯電路424具有一第一單擊電路OS1、一第二單擊電路OS2與一或閘OR1。第一單擊電路OS1接收第一比較信號VCOM1,並於第一比較信號VCOM1之高低電位切換時點產生一第一脈衝信號PUL1。第二單擊電路OS2接收第二比較信號VCOM2,並於第二比較信號VCOM2之高低電位切換時點產生一第二脈衝信號PUL2。或閘OR1係接收第一脈衝信號PUL1與第二脈衝信號PUL2,以產生零電流信號SZC。 In this embodiment, the first logic circuit 424 has a first click circuit OS1, a second click circuit OS2, and an OR gate OR1. The first click circuit OS1 receives the first comparison signal VCOM1 and generates a first pulse signal PUL1 at the time of switching between the high and low potentials of the first comparison signal VCOM1. The second click circuit OS2 receives the second comparison signal VCOM2, and generates a second pulse signal PUL2 when the high comparison potential of the second comparison signal VCOM2 is switched. The OR gate OR1 receives the first pulse signal PUL1 and the second pulse signal PUL2 to generate a zero current signal SZC.
當交流電壓VAC處於負半週時,請參照第8圖與第9A圖,輸入電流Iin為負(即電流由電感L1向左朝向交流電源AC之方向流動),並且,輸入電流Iin會在負值與零之間進行震盪。如第9A圖所示,當輸入電流Iin上升趨近於零時,電感電流偵測信號VZCD係由負電位轉換為正電位。此電感電流偵測信號VZCD經過本實施例之第一箝位電路422轉換後,產生在預設高低電位間進行變化之第一電位變化信號VZCD’。此預設高低電位均大於零。就一實施例而言,前述預設高電位係高於第一參考電位Vr1與第二參考電位Vr2,前述預設低電位係落於第一參考電位Vr1與第二參考電位Vr2之間。 When the AC voltage VAC is in the negative half cycle, please refer to Figure 8 and Figure 9A. The input current Iin is negative (that is, the current flows from the inductor L1 to the left toward the AC power source AC), and the input current Iin will be negative. The value is oscillated between zero. As shown in FIG. 9A, when the input current Iin rises to approach zero, the inductor current detection signal VZCD is converted from a negative potential to a positive potential. After the inductor current detecting signal VZCD is converted by the first clamp circuit 422 of this embodiment, a first potential change signal VZCD' that changes between preset high and low potentials is generated. This preset high and low potential is greater than zero. In one embodiment, the preset high potential system is higher than the first reference potential Vr1 and the second reference potential Vr2, and the predetermined low potential is between the first reference potential Vr1 and the second reference potential Vr2.
在本實施例中,電感電流偵測信號VZCD之電位會受到交流電壓之電位影響。本實施例利用第一箝位電路422將電感電流偵測信號VZCD轉換為第一電位變化信號VZCD’,即是限縮電感電流偵測信號VZCD之電位變化,以利於功率因數修正控制器400之後續處理。 In this embodiment, the potential of the inductor current detecting signal VZCD is affected by the potential of the alternating voltage. In this embodiment, the first clamping circuit 422 converts the inductor current detecting signal VZCD into a first potential change signal VZCD', that is, a potential change of the limiting inductor current detecting signal VZCD, to facilitate the power factor correction controller 400. Follow-up processing.
當第一電位變化信號VZCD’上升超過第一參考電位Vr1,第一比較器COM1輸出之第一比較信號VCOM1由低電位轉變為高電位。第一單擊電路OS1偵測到第一比較信號VCOM1由 低電位至高電位之轉換,隨即產生第一脈衝信號PUL1控制開關元件QL1,QL2導通,亦即開關元件QL1,QL2的閘極電位VG由低電位轉變為高電位。在開關元件QL1,QL2導通後,交流電源AC開始對電感L1充電。 When the first potential change signal VZCD' rises above the first reference potential Vr1, the first comparison signal VCOM1 output from the first comparator COM1 transitions from a low potential to a high potential. The first click circuit OS1 detects that the first comparison signal VCOM1 is The transition from low potential to high potential, and then the first pulse signal PUL1 is generated to control the switching element QL1, and QL2 is turned on, that is, the gate potential VG of the switching elements QL1, QL2 is changed from a low potential to a high potential. After the switching elements QL1, QL2 are turned on, the AC power source AC starts charging the inductor L1.
前揭實施例係利用第一比較器COM1比較第一電位變化信號VZCD’與第一參考電位Vr1,以達到控制開關元件QL1,QL2導通的目的。不過,本發明並不限於此。如第9A圖所示,由於電感電流偵測信號VZCD係在正負電位間震盪,透過適當設定第一參考電位Vr1’的準位,亦可直接利用電感電流偵測信號VZCD與第一參考電位Vr1’的比較結果來控制開關元件QL1,QL2導通。 The foregoing embodiment compares the first potential change signal VZCD' with the first reference potential Vr1 by the first comparator COM1 to achieve the purpose of controlling the switching elements QL1, QL2 to be turned on. However, the invention is not limited thereto. As shown in FIG. 9A, since the inductor current detecting signal VZCD is oscillated between positive and negative potentials, the inductor current detecting signal VZCD and the first reference potential Vr1 can be directly used by appropriately setting the level of the first reference potential Vr1'. The comparison result of 'controls the switching elements QL1, QL2 is turned on.
當交流電壓VAC處於正半週時,請參照第8圖與第9B圖,輸入電流Iin為正(即電流由交流電源AC朝向電感L1之方向流動),並且,輸入電流Iin會在正值與零之間進行震盪。如第9B圖所示,當輸入電流Iin下降趨近於零時,電感電流偵測信號VZCD係由正電位轉換為負電位。此電感電流偵測信號VZCD經過本實施例之第一箝位電路422轉換後,產生在預設高低電位間進行變化之第一電位變化信號VZCD’。此預設高低電位均大於零,並且,就一實施例而言,前述預設高電位係高於第一參考電位Vr1與第二參考電位Vr2,前述預設低電位係位於第一參考電位Vr1與第二參考電位Vr2間。 When the AC voltage VAC is in the positive half cycle, please refer to Figure 8 and Figure 9B. The input current Iin is positive (that is, the current flows from the AC power source AC toward the inductor L1), and the input current Iin will be positive. Occur between zeros. As shown in FIG. 9B, when the input current Iin falls close to zero, the inductor current detection signal VZCD is converted from a positive potential to a negative potential. After the inductor current detecting signal VZCD is converted by the first clamp circuit 422 of this embodiment, a first potential change signal VZCD' that changes between preset high and low potentials is generated. The preset high and low potentials are all greater than zero, and, in an embodiment, the preset high potential system is higher than the first reference potential Vr1 and the second reference potential Vr2, and the preset low potential is located at the first reference potential Vr1 Between the second reference potential Vr2.
當第一電位變化信號VZCD’之電位下降至低於第二參考電位Vr2,第二比較器COM2輸出之第二比較信號VCOM2由低電位轉變為高電位。第二單擊電路OS2偵測到第二比較信號VCOM2由低電位至高電位之轉換,隨即產生第二脈衝信號PUL2控制開關元件QL1,QL2導通。在開關元件QL1,QL2導通後,交 流電源AC開始對電感L1充電。 When the potential of the first potential change signal VZCD' falls below the second reference potential Vr2, the second comparison signal VCOM2 outputted by the second comparator COM2 transitions from a low potential to a high potential. The second click circuit OS2 detects the transition of the second comparison signal VCOM2 from low potential to high potential, and then generates the second pulse signal PUL2 to control the switching elements QL1 and QL2 to be turned on. After the switching elements QL1, QL2 are turned on, The streaming power supply AC begins to charge the inductor L1.
前揭實施例係利用第二比較器COM2比較第一電位變化信號VZCD’與第二參考電位Vr2,以達到控制開關元件QL1,QL2導通的目的。不過,本發明並不限於此。如第9B圖所示,由於電感電流偵測信號VZCD係在正負電位間震盪,透過適當設定第二參考電位Vr2’的準位,亦可直接利用電感電流偵測信號VZCD與第二參考電位Vr2’的比較結果來控制開關元件QL1,QL2導通。綜上述,就另一實施例而言,透過適當設定第一參考電位Vr1’與第二參考電位Vr2’的準位,本發明可省略第一箝位電路422而不至於影響零電流偵測電路420之正常運作。 The foregoing embodiment compares the first potential change signal VZCD' with the second reference potential Vr2 by the second comparator COM2 to achieve the purpose of controlling the switching elements QL1, QL2 to be turned on. However, the invention is not limited thereto. As shown in FIG. 9B, since the inductor current detection signal VZCD is oscillated between positive and negative potentials, the inductor current detection signal VZCD and the second reference potential Vr2 can be directly used by appropriately setting the level of the second reference potential Vr2'. The comparison result of 'controls the switching elements QL1, QL2 is turned on. In summary, in another embodiment, by appropriately setting the level of the first reference potential Vr1' and the second reference potential Vr2', the present invention can omit the first clamping circuit 422 without affecting the zero current detecting circuit. The normal operation of the 420.
本實施例之零電流偵測電路420係利用第一比較器COM1與第二比較器COM2分別偵測電感電流偵測信號VZCD對應於交流電壓VAC之負半週之一第一部分與對應於正半週之一第二部分,以解決傳統功率因數修正控制器未能有效偵測電感上之雙向電流的問題。 The zero current detecting circuit 420 of the embodiment uses the first comparator COM1 and the second comparator COM2 to respectively detect that the inductor current detecting signal VZCD corresponds to the first half of the negative half cycle of the alternating current voltage VAC and corresponds to the positive half. The second part of the week solves the problem that the conventional power factor correction controller fails to effectively detect the bidirectional current on the inductor.
導通電流偵測電路440具有一第二箝位電路442、一第三比較器COM3、一第四比較器COM4與一第二邏輯電路444。第二箝位電路442至少依據一導通電流偵測信號VCS之負電位部分產生一在正電位範圍內變化之第二電位變化信號VCS’。導通電流偵測電路444依據此第二電位變化信號VCS’產生一截止信號SCS控制開關元件QL1,QL2中斷。第三比較器COM3係接收第二電位變化信號VCS’與一第三參考電位Vr3,以產生一第三比較信號VCOM3,第四比較器COM4係接收導通電流偵測信號VCS與一第四參考電位Vr4,以產生一第四比較信號VCOM4。前揭第三參考電位Vr3與第四參考電位Vr4可以係等 電位或不同電位。本實施例係設定第三參考電位Vr3與第四參考電位Vr4為等電位,以簡化電路設計。第二邏輯電路444係接收第三比較信號VCOM3與第四比較信號VCOM4,以產生截止信號SCS控制開關元件QL1,QL2關斷。 The on current detecting circuit 440 has a second clamping circuit 442, a third comparator COM3, a fourth comparator COM4 and a second logic circuit 444. The second clamp circuit 442 generates a second potential change signal VCS' which varies within a positive potential range based on at least a negative potential portion of the on current detecting signal VCS. The on current detecting circuit 444 generates an off signal SCS according to the second potential change signal VCS' to control the switching elements QL1, QL2 to be interrupted. The third comparator COM3 receives the second potential change signal VCS' and a third reference potential Vr3 to generate a third comparison signal VCOM3, and the fourth comparator COM4 receives the conduction current detection signal VCS and a fourth reference potential. Vr4 to generate a fourth comparison signal VCOM4. The third reference potential Vr3 and the fourth reference potential Vr4 may be exposed before Potential or different potential. In this embodiment, the third reference potential Vr3 and the fourth reference potential Vr4 are set to be equipotential to simplify the circuit design. The second logic circuit 444 receives the third comparison signal VCOM3 and the fourth comparison signal VCOM4 to generate the off signal SCS to control the switching elements QL1, and QL2 is turned off.
在本實施例中,第二箝位電路442係一升壓電路(level shifter),用以將導通電流偵測信號VCS之負電位部分,整體向上提升一預設電壓Va,以產生一在正電位範圍內變化之第二電位變化信號VCS’,其電位等同於VCS+Va。 In this embodiment, the second clamp circuit 442 is a level shifter for boosting the negative potential portion of the on current detection signal VCS upward by a predetermined voltage Va to generate a positive The second potential change signal VCS', which varies in the potential range, has a potential equal to VCS+Va.
當交流電壓VAC處於負半週時,請參照第10A圖,輸入電流Iin係於負值與零之間進行震盪,同時,導通電流偵測信號VCS亦落在負電位。就第三比較器COM3而言,由於第三參考電位Vr3為正,導通電流偵測信號VCS為負,因此,第三比較器COM3會持續輸出低電位的第三比較信號VCOM3。不過,本實施例之第二箝位電路442係將導通電流偵測信號VCS向上提升一預設電壓Va以產生第二電位變化信號VCS’,而使第三參考電位Vr3落於第二電位變化信號VCS’之電位變化範圍內。 When the AC voltage VAC is in the negative half cycle, please refer to FIG. 10A. The input current Iin is oscillated between a negative value and zero, and the on current detection signal VCS also falls at a negative potential. As for the third comparator COM3, since the third reference potential Vr3 is positive, the on current detection signal VCS is negative, and therefore, the third comparator COM3 continues to output the third comparison signal VCOM3 of the low potential. However, the second clamp circuit 442 of the embodiment raises the on current detection signal VCS upward by a predetermined voltage Va to generate the second potential change signal VCS′, and causes the third reference potential Vr3 to fall on the second potential change. The potential of the signal VCS' varies within the range.
在開關元件QL1,QL2導通時(即開關元件之閘極電位VG處於高電位時),交流電源AC係透過開關元件QL1,QL2對於電感L1充電。此時,導通電流偵測信號VCS的電位會隨著輸入電流Iin之絕對值的增加而逐漸下降。當第二電位變化信號VCS’之電位降低至小於第三參考電位Vr3時,第三比較器COM3隨即輸出高準位之第三比較信號VCOM3以控制開關元件QL1,QL2關斷。 When the switching elements QL1 and QL2 are turned on (that is, when the gate potential VG of the switching element is at a high potential), the AC power source AC is charged through the switching elements QL1 and QL2 to the inductor L1. At this time, the potential of the on current detecting signal VCS gradually decreases as the absolute value of the input current Iin increases. When the potential of the second potential change signal VCS' is lowered to be smaller than the third reference potential Vr3, the third comparator COM3 then outputs the third comparison signal VCOM3 of the high level to control the switching elements QL1, QL2 to be turned off.
同時請參照第6圖與第10A圖,本實施例之開關電流偵測 電路370必須在第二接點N2或是第一接點N1之電位與第三接點N3之電位差超過偵測二極體DT1,DT2之順向偏壓時,才能有效偵測開關元件QL1或QL2之導通電流。進一步來說,在開關元件QL1,QL2導通之初,第一接點N1之電位尚未降低至足以導通偵測二極體DT1,導通電流偵測信號VCS的電位會維持在零電位。隨後,在第一接點N1之電位與第三接點N3之電位差超過偵測二極體DT1後,導通電流偵測信號VCS的電位才會開始隨著流經開關元件QL1之導通電流的增加而逐漸降低。 Please also refer to FIG. 6 and FIG. 10A for the switch current detection of this embodiment. The circuit 370 must effectively detect the switching element QL1 when the potential difference between the potential of the second contact N2 and the first contact N1 and the third contact N3 exceeds the forward bias of the detecting diodes DT1, DT2. The conduction current of QL2. Further, at the beginning of the switching elements QL1, QL2 being turned on, the potential of the first contact N1 has not been lowered enough to turn on the detecting diode DT1, and the potential of the turn-on current detecting signal VCS is maintained at zero potential. Then, after the potential difference between the potential of the first contact N1 and the third contact N3 exceeds the detecting diode DT1, the potential of the on current detecting signal VCS starts to increase with the conduction current flowing through the switching element QL1. And gradually decrease.
另一方面,請參照第10B圖所示,當交流電壓VAC處於正半週時,輸入電流Iin係於正值與零之間進行震盪。不過,由於開關電流偵測電路370必須在第二接點N2或是第一接點N1之電位與第三接點N3之電位差超過偵測二極體DT1,DT2之順向偏壓時,才能有效偵測開關元件QL1或QL2之導通電流,此時,導通電流偵測信號VCS之波型與交流電壓VAC處於負半週時之導通電流偵測信號VCS的情形相同。也因此,導通電流偵測電路440實際上亦是依據第四比較器COM4之比較結果控制開關元件QL1,QL2關斷。 On the other hand, as shown in FIG. 10B, when the AC voltage VAC is in the positive half cycle, the input current Iin is oscillated between a positive value and zero. However, since the switch current detecting circuit 370 must have a potential difference between the potential of the second contact N2 or the first contact N1 and the third contact N3 exceeding the forward bias of the detecting diodes DT1, DT2, The on-current of the switching element QL1 or QL2 is effectively detected. At this time, the mode of the on-current detection signal VCS is the same as the case of the on-current detection signal VCS when the AC voltage VAC is in the negative half cycle. Therefore, the on current detecting circuit 440 actually controls the switching elements QL1 and QL2 to be turned off according to the comparison result of the fourth comparator COM4.
回到第7圖,功率因數修正控制電路400另具有回授控制電路450控制開關元件QL1,QL2關斷。同時請參照第4,5與6圖,回授控制電路450係透過一分壓電路(由電阻R2與R3構成)取得一對應於輸出電壓之一回授電壓信號VFB,並依據此回授電壓信號產生一回授控制信號SFB。在本實施例中,此回授控制信號SFB、前揭第三比較信號VCOM3與第四比較信號VCOM4係同時輸入或閘OR2,以產生截止信號SCS。不過,本發明並不限於此。前揭第三比較信號VCOM3與第四比較信號VCOM4可先輸入一或閘,此或閘之輸出信號再與此回授控制信號SFB同時輸入另一或閘,以產生截止信號SCS控制開關元件 QL1,QL2關斷。 Returning to Fig. 7, the power factor correction control circuit 400 further has a feedback control circuit 450 for controlling the switching elements QL1, and QL2 is turned off. At the same time, please refer to the fourth, fifth and sixth diagrams. The feedback control circuit 450 obtains a feedback voltage signal VFB corresponding to one of the output voltages through a voltage dividing circuit (consisting of resistors R2 and R3), and according to this feedback The voltage signal produces a feedback control signal SFB. In this embodiment, the feedback control signal SFB, the third comparison signal VCOM3 and the fourth comparison signal VCOM4 are simultaneously input or gate OR2 to generate the OFF signal SCS. However, the invention is not limited thereto. The third comparison signal VCOM3 and the fourth comparison signal VCOM4 may be first input to a gate, and the output signal of the gate or the feedback control signal SFB is simultaneously input to another gate to generate a cutoff signal SCS to control the switching component. QL1, QL2 are turned off.
功率因數修正控制器400之開關元件控制電路460具有一正反器。此正反器之二接收端S,R分別接收零電流信號SZC與截止信號SCS,其反向輸出端QB輸出一驅動信號DRV用以控制開關元件QL1,QL2之導通狀態。在本實施例中,驅動信號DRV之高低電壓變化與開關元件QL1,QL2之閘極電位的變化相反。不過,本發明並不限於此。依據開關元件控制電路166所連接之驅動電路(未圖示)的不同、開關元件的不同、或是轉換電路操作拓樸的不同,亦可利用正反器之正向輸出端所輸出之信號或是同時利用正反器正向與反向輸出之信號作為驅動信號DRV。 The switching element control circuit 460 of the power factor correction controller 400 has a flip-flop. The second receiving end S, R of the flip-flop receives the zero current signal SZC and the cutoff signal SCS, respectively, and the reverse output terminal QB outputs a driving signal DRV for controlling the conduction state of the switching elements QL1, QL2. In the present embodiment, the high and low voltage variations of the drive signal DRV are opposite to the changes in the gate potential of the switching elements QL1, QL2. However, the invention is not limited thereto. Depending on the driving circuit (not shown) to which the switching element control circuit 166 is connected, the difference in switching elements, or the topology of the conversion circuit, the signal output from the forward output of the flip-flop or the signal may be used. It is a signal that uses both the forward and reverse outputs of the flip-flop as the drive signal DRV.
第7圖之功率因數修正控制器應用於第5圖之應用電路的情況,會因為所使用之開關電流偵測電路270之差異而有所不同。在開關電流偵測電路270係利用電阻偵測流經開關元件QL1,QL2之電流的情況下,導通電流偵測信號VCS的波型因為交流電壓VAC處於正半週或負半週而有差異。 The case where the power factor correction controller of Fig. 7 is applied to the application circuit of Fig. 5 differs depending on the difference of the switch current detecting circuit 270 used. In the case where the switch current detecting circuit 270 detects the current flowing through the switching elements QL1, QL2 by the resistor, the waveform of the on current detecting signal VCS differs because the alternating voltage VAC is in the positive half cycle or the negative half cycle.
在交流電壓VAC處於正半週時,導通電流偵測信號VCS的電位會隨著流經開關元件QL1,QL2之導通電流的增加而逐漸升高。此時,透過第二箝位電路442所產生之第二電位變化信號VCS’的電位會維持在第三參考電位Vr3之上,第三比較器COM3持續輸出低電位之第三比較信號VCOM3。不過,就第四比較器COM4而言,第四參考電位Vr4則是被設定在導通電流偵測信號VCS之電位變化範圍內。當導通電流偵測信號VCS之電位上升至高於第四參考電位Vr4時,第四比較器COM4隨即輸出高準位之第四比較信號VCOM4以控制開關元件QL1,QL2關斷。 When the AC voltage VAC is in the positive half cycle, the potential of the on current detecting signal VCS gradually increases as the conduction current flowing through the switching elements QL1 and QL2 increases. At this time, the potential of the second potential change signal VCS' generated by the second clamp circuit 442 is maintained above the third reference potential Vr3, and the third comparator COM3 continues to output the third comparison signal VCOM3 of the low potential. However, in the case of the fourth comparator COM4, the fourth reference potential Vr4 is set within the potential variation range of the on current detecting signal VCS. When the potential of the on current detection signal VCS rises above the fourth reference potential Vr4, the fourth comparator COM4 then outputs the fourth comparison signal VCOM4 of the high level to control the switching elements QL1, QL2 to be turned off.
在交流電壓VAC處於負半週時,導通電流偵測信號VCS的電位為負,並且會隨著流經開關元件QL1,QL2之導通電流的增加變得更負。此時,導通電流偵測信號VCS的電位係維持在第四參考電位Vr4之下,第四比較器COM4持續輸出低電位之第四比較信號VCOM4。另一方面,就第三比較器COM3而言,第二箝位電路442係將導通電流偵測信號VCS的電位向上提升而產生之第二電位變化信號VCS’,第三參考電位Vr3會落於第二電位變化信號VCS’之電位變化範圍內。當第二電位變化信號VCS’之電位下降至低於第三參考電位Vr3,第三比較器COM3隨即輸出高電位之第三比較信號VCOM3控制開關元件QL1,QL2關斷。 When the AC voltage VAC is in the negative half cycle, the potential of the on current detecting signal VCS is negative, and becomes more negative as the conduction current flowing through the switching element QL1 and QL2 increases. At this time, the potential of the on current detecting signal VCS is maintained below the fourth reference potential Vr4, and the fourth comparator COM4 continues to output the fourth comparison signal VCOM4 of the low potential. On the other hand, in the third comparator COM3, the second clamp circuit 442 is a second potential change signal VCS' generated by raising the potential of the on current detection signal VCS upward, and the third reference potential Vr3 will fall on The potential of the second potential change signal VCS' varies within a range. When the potential of the second potential change signal VCS' falls below the third reference potential Vr3, the third comparator COM3 then outputs a high potential third comparison signal VCOM3 to control the switching elements QL1, QL2 to be turned off.
依此,本實施例之導通電流偵測電路440係利用第三比較器COM3與第四比較器COM4分別偵測開關元件QL1,QL2對應於交流電壓VAC之正半週與負半週之導通電流,以解決傳統功率因數修正控制器無法有效偵測流經開關元件QL1,QL2之雙向導通電流的問題。 Accordingly, the on-current detecting circuit 440 of the present embodiment detects the switching element QL1 by using the third comparator COM3 and the fourth comparator COM4, respectively, and the QL2 corresponds to the positive half cycle and the negative half cycle of the alternating current voltage VAC. In order to solve the problem that the conventional power factor correction controller cannot effectively detect the double-conducting current flowing through the switching elements QL1 and QL2.
在第7圖之實施例中,電感電流偵測信號VZCD經第一箝位電路422轉換產生之第一電位變化信號VZCD’,係同時輸出至第一比較器COM1之正輸入端與第二比較器COM2之負輸入端。相較之下,第二箝位電路442則是一升壓電路,其將導通電流偵測信號VCS轉換為第二電位變化信號VCS’後,僅將此第二電位變化信號VCS’僅輸出至第三比較器COM3之負輸入端。第四比較器COM4之正輸入端則是接收導通電流偵測信號VCS以進行判斷。 In the embodiment of FIG. 7, the first potential change signal VZCD' generated by the inductor current detection signal VZCD is converted by the first clamp circuit 422, and simultaneously output to the positive input terminal of the first comparator COM1 and compared with the second. The negative input of COM2. In contrast, the second clamp circuit 442 is a booster circuit. After converting the on current detection signal VCS into the second potential change signal VCS', only the second potential change signal VCS' is output only to The negative input of the third comparator COM3. The positive input terminal of the fourth comparator COM4 receives the on current detection signal VCS for judgment.
不過,本發明並不限於此。零電流偵測電路420與導通電 流偵測電路440所使用之箝位電路的類型可視其所偵測之信號的準位高低、準位變化範圍、以及比較器之參考電位的設定等因素進行調整。其次,由於第6圖之實施例所提供之開關電流偵測電路370所產生之導通電流偵測信號大致上並不會受到導通電流的方向影響。因此,應用於此應用電路之控制器可進一步省略第四比較器COM4而不至於影響其正常運作。 However, the invention is not limited thereto. Zero current detection circuit 420 and conduction The type of the clamp circuit used by the stream detecting circuit 440 can be adjusted according to factors such as the level of the detected signal, the range of the level change, and the setting of the reference potential of the comparator. Secondly, the on-current detection signal generated by the switch current detecting circuit 370 provided in the embodiment of FIG. 6 is substantially not affected by the direction of the on current. Therefore, the controller applied to this application circuit can further omit the fourth comparator COM4 without affecting its normal operation.
其次,本發明之功率因數修正控制器除了可適用於第5與6圖之無橋式功率因數修正電路外,亦可直接適用於如第4圖所示之傳統全橋式功率因數修正電路。此外,雖然本發明僅以第5與6圖之無橋式功率因數修正電路為例進行說明,不過,本發明並不限於此。本發明之功率因數修正控制器之技術特徵係針對功率因數修正電路因為交流電壓之正負半週之變化所衍生出電流偵測問題,而非未限定本發明所應適用之功率因數修正電路的種類。透過調整功率因數修正控制器之驅動電路,本發明亦可應用於其他種類之無橋式功率因數修正電路,如第3A與3B圖所示之無橋式功率因數修正電路或是其他類型之無橋式功率因數修正電路。雖然第7圖之實施例所輸出之驅動信號係控制應用電路之二個開關元件QL1,QL2同時導通與截止,不過,本發明亦不限於此。第7圖之實施例所輸出之驅動信號DRV透過適當的調整後,亦可用以驅動二個交替導通之開關元件,以因應他種無橋式功率因數修正電路之需求。 Secondly, the power factor correction controller of the present invention can be directly applied to the conventional full bridge power factor correction circuit as shown in FIG. 4, in addition to the bridgeless power factor correction circuit of FIGS. 5 and 6. Further, although the present invention has been described by taking only the bridgeless power factor correction circuit of Figs. 5 and 6 as an example, the present invention is not limited thereto. The technical feature of the power factor correction controller of the present invention is directed to the current detection problem caused by the change of the positive and negative half cycles of the AC voltage of the power factor correction circuit, and not the type of the power factor correction circuit to which the present invention is applicable. . By adjusting the driving circuit of the power factor correction controller, the present invention can also be applied to other types of bridgeless power factor correction circuits, such as the bridgeless power factor correction circuit shown in FIGS. 3A and 3B or other types. Bridge power factor correction circuit. Although the driving signal outputted in the embodiment of FIG. 7 controls the switching elements QL1 and QL2 of the application circuit to be simultaneously turned on and off, the present invention is not limited thereto. The drive signal DRV outputted in the embodiment of FIG. 7 can also be used to drive two alternately turned-on switching elements through appropriate adjustments to meet the needs of other types of bridgeless power factor correction circuits.
無論交流電源AC處於正半週或負半週輸出,本發明之功率因數修正控制器都可以有效偵測無橋式功率因數修正電路之電感線圈電流與開關元件之導通電流,因而可以解決無橋式功率因數修正電路控制不易的問題。此外,本發明之功率因數修正控制器亦不僅只能適用於無橋式功率因數修正電路,如第4圖所示,本發明之功率因數修正控制器亦可適用於傳統之全 橋式功率因數修正轉換電路,而無須變更電路設計。 Regardless of whether the AC power source AC is in the positive half cycle or the negative half cycle output, the power factor correction controller of the present invention can effectively detect the inductor current of the bridgeless power factor correction circuit and the conduction current of the switching element, thereby solving the bridgeless The power factor correction circuit controls the problem that is not easy. In addition, the power factor correction controller of the present invention can be applied not only to the bridgeless power factor correction circuit, but also as shown in FIG. 4, the power factor correction controller of the present invention can also be applied to the conventional Bridge power factor correction conversion circuit without changing the circuit design.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。 The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.
AC‧‧‧交流電源 AC‧‧‧AC power supply
Vo‧‧‧輸出電壓 Vo‧‧‧ output voltage
d1,d2,d3,d4,d5,d6,d7,d8‧‧‧二極體 D1, d2, d3, d4, d5, d6, d7, d8‧‧ ‧ diode
Li‧‧‧電感 Li‧‧‧Inductance
sw0,sw1,sw2,sw3,sw4‧‧‧開關元件 Sw0, sw1, sw2, sw3, sw4‧‧‧ switching elements
Do‧‧‧二極體 Do‧‧‧ diode
Ro,R1‧‧‧負載 Ro, R1‧‧‧ load
ds1,ds2‧‧‧體二極體(body diode) Ds1, ds2‧‧‧ body diode
B0‧‧‧橋式整流電路 B0‧‧‧Bridge rectifier circuit
L1‧‧‧電感 L1‧‧‧Inductance
Q1‧‧‧開關 Q1‧‧‧ switch
D1‧‧‧二極體 D1‧‧‧ diode
C1‧‧‧電容 C1‧‧‧ capacitor
L2‧‧‧輔助電感 L2‧‧‧Auxiliary Inductance
Rb,R2,R3‧‧‧電阻 Rb, R2, R3‧‧‧ resistance
160,260,400‧‧‧功率因數修正控制器 160,260,400‧‧‧Power Factor Correction Controller
170,270,370‧‧‧開關電流偵測電路 170,270,370‧‧‧Switch current detection circuit
VCS‧‧‧導通電流偵測信號 VCS‧‧‧ conduction current detection signal
VZCD‧‧‧電感電流偵測信號 VZCD‧‧‧Inductance current detection signal
VFB‧‧‧回授電壓信號 VFB‧‧‧ feedback voltage signal
HL‧‧‧高壓側線路 HL‧‧‧High-voltage side line
LL‧‧‧低壓側線路 LL‧‧‧Low-voltage side line
DH1‧‧‧第一高壓側整流元件 DH1‧‧‧First high-voltage side rectifying element
QL1‧‧‧第一低壓側整流元件 QL1‧‧‧First low-voltage side rectifying element
DH2‧‧‧第二高壓側整流元件 DH2‧‧‧Second high-voltage side rectifying element
QL2‧‧‧第二低壓側整流元件 QL2‧‧‧Second low-voltage side rectifying element
N1‧‧‧第一接點 N1‧‧‧ first joint
N2‧‧‧第二接點 N2‧‧‧second junction
DT1‧‧‧第一偵測二極體 DT1‧‧‧First Detection Diode
DT2‧‧‧第二偵測二極體 DT2‧‧‧Second detection diode
N3‧‧‧第三接點 N3‧‧‧ third joint
Iin‧‧‧輸入電流 Iin‧‧‧ input current
420‧‧‧零電流偵測電路 420‧‧‧zero current detection circuit
440‧‧‧導通電流偵測電路 440‧‧‧Continuous current detection circuit
450‧‧‧回授控制電路 450‧‧‧Feedback control circuit
260‧‧‧開關元件控制電路 260‧‧‧Switching element control circuit
422‧‧‧第一箝位電路 422‧‧‧First Clamp Circuit
424‧‧‧第一邏輯電路 424‧‧‧First logic circuit
COM1‧‧‧第一比較器 COM1‧‧‧First Comparator
COM2‧‧‧第二比較器 COM2‧‧‧Second comparator
VZCD’‧‧‧第一電位變化信號 VZCD’‧‧‧First potential change signal
SFB‧‧‧回授控制信號 SFB‧‧‧ feedback control signal
SZC‧‧‧零電流信號 SZC‧‧‧Zero current signal
Vr1,Vr1’‧‧‧第一參考電位 Vr1, Vr1'‧‧‧ first reference potential
VCOM1‧‧‧第一比較信號 VCOM1‧‧‧ first comparison signal
Vr2,Vr2’‧‧‧第二參考電位 Vr2, Vr2'‧‧‧ second reference potential
VCOM2‧‧‧第二比較信號 VCOM2‧‧‧ second comparison signal
OS1‧‧‧第一單擊電路 OS1‧‧‧first click circuit
OS2‧‧‧第二單擊電路 OS2‧‧‧ second click circuit
OR1,OR2‧‧‧或閘 OR1, OR2‧‧‧ or gate
PUL1‧‧‧第一脈衝信號 PUL1‧‧‧ first pulse signal
PUL2‧‧‧第二脈衝信號 PUL2‧‧‧second pulse signal
442‧‧‧第二箝位電路 442‧‧‧Second clamp circuit
444‧‧‧第二邏輯電路 444‧‧‧Second logic circuit
COM3‧‧‧第三比較器 COM3‧‧‧ third comparator
COM4‧‧‧第四比較器 COM4‧‧‧fourth comparator
VCS’‧‧‧第二電位變化信號 VCS’‧‧‧second potential change signal
Vr3‧‧‧第三參考電位 Vr3‧‧‧ third reference potential
VCOM3‧‧‧第三比較信號 VCOM3‧‧‧ third comparison signal
Vr4‧‧‧第四參考電位 Vr4‧‧‧ fourth reference potential
VCOM4‧‧‧第四比較信號 VCOM4‧‧‧ fourth comparison signal
SCS‧‧‧截止信號 SCS‧‧‧ cutoff signal
Va‧‧‧預設電壓 Va‧‧‧Preset voltage
DRV‧‧‧驅動信號 DRV‧‧‧ drive signal
VG‧‧‧閘極電位 VG‧‧‧gate potential
460‧‧‧開關元件控制電路 460‧‧‧Switching element control circuit
VAC‧‧‧交流電壓 VAC‧‧‧AC voltage
第1A與1B圖係一傳統全橋式功率因數應用電路之示意圖。 Figures 1A and 1B are schematic diagrams of a conventional full bridge power factor application circuit.
第2A與2B圖係一典型之無橋式功率因數修正應用電路之示意圖。 2A and 2B are schematic diagrams of a typical bridgeless power factor correction application circuit.
第3A與3B圖係另一典型之無橋式功率因數修正應用電路之示意圖。 Figures 3A and 3B are schematic diagrams of another typical bridgeless power factor correction application circuit.
第4圖係本發明一種功率因數修正應用電路一實施例之示意圖。 Figure 4 is a schematic diagram of an embodiment of a power factor correction application circuit of the present invention.
第5圖係本發明一種功率因數修正應用電路另一實施例之示意圖。 Figure 5 is a schematic diagram of another embodiment of a power factor correction application circuit of the present invention.
第6圖係本發明一種功率因數修正應用電路又一實施例之示意圖。 Figure 6 is a schematic diagram of still another embodiment of a power factor correction application circuit of the present invention.
第7圖係本發明一種功率因數修正控制器一實施例之示意圖。 Figure 7 is a schematic diagram of an embodiment of a power factor correction controller of the present invention.
第8圖係第6圖之功率因數修正應用電路之動作波形圖。 Fig. 8 is an operation waveform diagram of the power factor correction application circuit of Fig. 6.
第9A與9B圖係第7圖之零電流偵測電路之動作波形圖。 Figures 9A and 9B are diagrams showing the action waveforms of the zero current detecting circuit of Fig. 7.
第10A圖與10B圖係第7圖之導通電流偵測電路之動作波形圖。 10A and 10B are diagrams showing the operation waveforms of the on current detecting circuit of Fig. 7.
400‧‧‧功率因數修正控制器 400‧‧‧Power Factor Correction Controller
420‧‧‧零電流偵測電路 420‧‧‧zero current detection circuit
440‧‧‧導通電流偵測電路 440‧‧‧Continuous current detection circuit
460‧‧‧開關元件控制電路 460‧‧‧Switching element control circuit
422‧‧‧第一箝位電路 422‧‧‧First Clamp Circuit
424‧‧‧第一邏輯電路 424‧‧‧First logic circuit
COM1‧‧‧第一比較器 COM1‧‧‧First Comparator
COM2‧‧‧第二比較器 COM2‧‧‧Second comparator
VCS‧‧‧導通電流偵測信號 VCS‧‧‧ conduction current detection signal
VZCD’‧‧‧第一電位變化信號 VZCD’‧‧‧First potential change signal
SZC‧‧‧零電流信號 SZC‧‧‧Zero current signal
Vr1‧‧‧第一參考電位 Vr1‧‧‧ first reference potential
VCOM1‧‧‧第一比較信號 VCOM1‧‧‧ first comparison signal
Vr2‧‧‧第二參考電位 Vr2‧‧‧ second reference potential
VCOM2‧‧‧第二比較信號 VCOM2‧‧‧ second comparison signal
OS1‧‧‧第一單擊電路 OS1‧‧‧first click circuit
OS2‧‧‧第二單擊電路 OS2‧‧‧ second click circuit
OR1,OR2‧‧‧或閘 OR1, OR2‧‧‧ or gate
PUL1‧‧‧第一脈衝信號 PUL1‧‧‧ first pulse signal
PUL2‧‧‧第二脈衝信號 PUL2‧‧‧second pulse signal
442‧‧‧第二箝位電路 442‧‧‧Second clamp circuit
444‧‧‧第二邏輯電路 444‧‧‧Second logic circuit
COM3‧‧‧第三比較器 COM3‧‧‧ third comparator
COM4‧‧‧第四比較器 COM4‧‧‧fourth comparator
VCS’‧‧‧第二電位變化信號 VCS’‧‧‧second potential change signal
Vr3‧‧‧第三參考電位 Vr3‧‧‧ third reference potential
VCOM3‧‧‧第三比較信號 VCOM3‧‧‧ third comparison signal
Vr4‧‧‧第四參考電位 Vr4‧‧‧ fourth reference potential
VCOM4‧‧‧第四比較信號 VCOM4‧‧‧ fourth comparison signal
SCS‧‧‧截止信號 SCS‧‧‧ cutoff signal
Va‧‧‧預設電壓 Va‧‧‧Preset voltage
DRV‧‧‧驅動信號 DRV‧‧‧ drive signal
450‧‧‧回授控制電路 450‧‧‧Feedback control circuit
VFB‧‧‧回授電壓信號 VFB‧‧‧ feedback voltage signal
SFB‧‧‧回授控制信號 SFB‧‧‧ feedback control signal
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101101819A TWI463772B (en) | 2012-01-17 | 2012-01-17 | Pfc controller and bridgeless pfc circuit with the pfc controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101101819A TWI463772B (en) | 2012-01-17 | 2012-01-17 | Pfc controller and bridgeless pfc circuit with the pfc controller |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201332264A TW201332264A (en) | 2013-08-01 |
TWI463772B true TWI463772B (en) | 2014-12-01 |
Family
ID=49479155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101101819A TWI463772B (en) | 2012-01-17 | 2012-01-17 | Pfc controller and bridgeless pfc circuit with the pfc controller |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI463772B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI822088B (en) * | 2021-11-08 | 2023-11-11 | 立錡科技股份有限公司 | Power factor correction converter, power factor correction controller and control method of power factor correction converter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200836050A (en) * | 2007-02-16 | 2008-09-01 | Lead Year Entpr Co Ltd | Soft switching circuit of power supply |
US7630221B2 (en) * | 2008-03-11 | 2009-12-08 | Delta Electronics, Inc. | Bridgeless PFC circuit for CRM and controlling method thereof |
-
2012
- 2012-01-17 TW TW101101819A patent/TWI463772B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200836050A (en) * | 2007-02-16 | 2008-09-01 | Lead Year Entpr Co Ltd | Soft switching circuit of power supply |
US7630221B2 (en) * | 2008-03-11 | 2009-12-08 | Delta Electronics, Inc. | Bridgeless PFC circuit for CRM and controlling method thereof |
Non-Patent Citations (3)
Title |
---|
", Critical Conduction Mode PFC Controller Utilizing a Transconductance Error Amplifier", www.onsemi.com, 2010.06 ", Interleaved, 2-Phase Power Factor Controller", www.onsemi.com, 2009.08 * |
"NCP1608, Critical Conduction Mode PFC Controller Utilizing a Transconductance Error Amplifier", www.onsemi.com, 2010.06 "NCP1631, Interleaved, 2-Phase Power Factor Controller", www.onsemi.com, 2009.08 * |
Hsi-Chao Chen*,Jun-Yu Lin,Chi-Hao Yang and Yi-Xuan Lu,Effects of Radiation Characteristic and Luminous Efficiency for LED Lampshade with Cylindrical Lens,Proc. SPIE7784,P.77841A-1~8,(2010.8).(EI) * |
Also Published As
Publication number | Publication date |
---|---|
TW201332264A (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130249504A1 (en) | Power factor correction (pfc) controller and bridgeless pfc circuit with the same | |
CN103458579B (en) | Load driving circuit and method | |
CN103108470B (en) | Dynamic linear control light emitting diode (LED) driver circuit | |
US8305784B2 (en) | High efficiency universal input switching power supply with switchable PFC circuits | |
CN104349548B (en) | Ignition device and ligthing paraphernalia | |
EP3186877B1 (en) | Floating output voltage boost-buck regulator using a buck controller with low input and low output ripple | |
CN102523661B (en) | Circuit for driving LED light source, method and controller | |
US9042140B2 (en) | Bridge-less step-up switching power supply device | |
US11469683B2 (en) | Rectifying control module, bridge rectifying control apparatus using active switch and method of operating the same | |
US10470268B2 (en) | Light emitting diode driving circuit and light emitting diode lighting device | |
US11509238B2 (en) | AC/DC power supply, rectifier circuit and control method | |
JP5809739B2 (en) | Control system for feedback driven LED drive circuit | |
CN203072226U (en) | Dynamic-linear-control LED driving circuit | |
US10833587B1 (en) | Control circuit having extended hold-up time and conversion system having extended hold-up time | |
US20190319480A1 (en) | Emergency driver system for providing a low float charge power to a rechargeable battery | |
TWI463772B (en) | Pfc controller and bridgeless pfc circuit with the pfc controller | |
CN209823498U (en) | Power supply circuit | |
CN104394635B (en) | A kind of LED driver | |
CN107820348B (en) | Linear full-voltage variable-frequency constant-current circuit and LED lamp with same | |
CN106341048B (en) | A kind of constant pressure Switching Power Supply | |
CN206250994U (en) | A kind of AC DC power supply circuits | |
JP6791486B2 (en) | Light emitting element drive device and its drive method | |
US11304280B2 (en) | Drive circuit for flicker-free LED lighting having high power factor | |
US8841850B2 (en) | Dimming angle sensing circuit and driving method thereof | |
US9287775B2 (en) | Power supply device and lighting device |