TWI460977B - Voltage supply system and converter therein, and voltage regulating method - Google Patents

Voltage supply system and converter therein, and voltage regulating method Download PDF

Info

Publication number
TWI460977B
TWI460977B TW101142837A TW101142837A TWI460977B TW I460977 B TWI460977 B TW I460977B TW 101142837 A TW101142837 A TW 101142837A TW 101142837 A TW101142837 A TW 101142837A TW I460977 B TWI460977 B TW I460977B
Authority
TW
Taiwan
Prior art keywords
voltage
duty cycle
value
circuit
converter
Prior art date
Application number
TW101142837A
Other languages
Chinese (zh)
Other versions
TW201414153A (en
Inventor
Zhongwang Yang
Guojun Xu
Guisong Huang
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Publication of TW201414153A publication Critical patent/TW201414153A/en
Application granted granted Critical
Publication of TWI460977B publication Critical patent/TWI460977B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

電壓供應系統及其中之變流器以及電壓調整方法 Voltage supply system and converter therein and voltage adjustment method

本發明是有關於一種電壓供應系統,且特別是有關於一種電壓供應系統中之變流器。 The present invention relates to a voltage supply system, and more particularly to a current transformer in a voltage supply system.

嵌入式電源通常採用多層厚銅印刷電路板(PCB)以及表貼功率器件等特殊製程,藉此減小體積,提高可靠性,而其在無線網路、光纖網路設備、伺服器和資料儲存等領域都有廣泛應用。 Embedded power supplies typically use special processes such as multiple layers of thick copper printed circuit boards (PCBs) and surface-mount power devices to reduce size and increase reliability in wireless networks, fiber-optic network devices, servers, and data storage. And other fields have a wide range of applications.

一般而言,當傳統的全調整式變流器(Converter)應用在嵌入式電源領域時,其效率通常受限制而無法有效提升。舉例來說,於全調整式變流器中,電源模組的輸出電壓是經反饋而與固定參考電壓比較,且控制模組依據比較結果調整驅動信號,並藉此調整電源模組的輸出電壓。因此,輸出電壓的大小主要由固定參考電壓與反饋電壓的比較結果所決定。其次,為使電源模組均可依據輸入電壓產生相應的輸出電壓,電源模組中變壓器的繞組匝數比必須設置得相當小,以確保於最小輸入電壓下電源模組仍然能產生與固定參考電壓相應的輸出電壓,讓電源模組仍得以操作在全調整式(Full-Regulated)的狀態,否則變壓器中過大的繞組匝數比會導致電源模組無法產生與固定參考電壓相應的輸出電壓,使得電源模組失去依據輸出電壓的反饋調節功能。 In general, when traditional fully-adjusted converters are used in the field of embedded power supplies, their efficiency is often limited and cannot be effectively improved. For example, in a fully-adjusted converter, the output voltage of the power module is compared with a fixed reference voltage via feedback, and the control module adjusts the driving signal according to the comparison result, thereby adjusting the output voltage of the power module. . Therefore, the magnitude of the output voltage is mainly determined by the comparison of the fixed reference voltage and the feedback voltage. Secondly, in order to make the power module generate corresponding output voltage according to the input voltage, the winding turns ratio of the transformer in the power module must be set relatively small to ensure that the power module can still generate and fix the reference at the minimum input voltage. The corresponding output voltage of the voltage allows the power module to operate in a Full-Regulated state. Otherwise, the excessive turns ratio of the winding in the transformer will cause the power module to fail to generate an output voltage corresponding to the fixed reference voltage. The power module loses the feedback adjustment function according to the output voltage.

然而,由於前述受限繞組匝數比的選擇,因此當電源 模組於高輸入電壓下操作時,其中的輸出電感通常承受很高的伏秒值(V×t),導致輸出電感必須具有較大尺寸的磁芯或更多的繞組匝數,故直接限制了電源模組的功率密度,並使電源模組的效率無法提升。 However, due to the aforementioned selection of the limited winding turns ratio, when the power supply When the module is operated at high input voltage, the output inductor is usually subjected to a very high volt-second value (V×t), which causes the output inductor to have a larger core or more winding turns, so it is directly limited. The power density of the power module and the efficiency of the power module cannot be improved.

本發明內容是在提供一種電壓供應系統、其中之變流器以及電壓調整方法,藉以於輸入電壓增大時,逐漸調整由輸入電壓轉換而得的輸出電壓,以減少輸出電感所承受的伏秒值。 SUMMARY OF THE INVENTION The present invention is directed to a voltage supply system, a converter thereof, and a voltage adjustment method for gradually adjusting an output voltage converted from an input voltage when an input voltage is increased to reduce a volt-second that the output inductor is subjected to. value.

本發明內容之一實施方式係關於一種變流器,其包含功率模組、反饋模組以及控制模組。功率模組用以將一輸入電壓轉換為一輸出電壓。反饋模組與功率模組電性連接,用以產生與輸出電壓相對應之一反饋電壓。控制模組與功率模組及反饋模組電性連接,控制模組用以比較一占空比參考值以及一占空比數值,依據兩者比較的結果相應地產生一可變參考電壓,並用以比較可變參考電壓以及反饋電壓,且依據其比較的結果調整占空比數值。 One embodiment of the present invention relates to a current transformer including a power module, a feedback module, and a control module. The power module is configured to convert an input voltage into an output voltage. The feedback module is electrically connected to the power module to generate a feedback voltage corresponding to the output voltage. The control module is electrically connected to the power module and the feedback module, and the control module is configured to compare a duty cycle reference value and a duty cycle value, and accordingly generate a variable reference voltage according to the comparison result of the two, and use The variable reference voltage and the feedback voltage are compared, and the duty cycle value is adjusted according to the result of the comparison.

在本發明一實施例中,當輸入電壓變化時,控制模組調整可變參考電壓並相應地調整占空比數值,且產生對應於經調整之占空比數值之驅動控制信號以控制功率模組。 In an embodiment of the invention, when the input voltage changes, the control module adjusts the variable reference voltage and adjusts the duty cycle value accordingly, and generates a drive control signal corresponding to the adjusted duty cycle value to control the power mode. group.

在本發明再一實施例中,控制模組更包含第一比較電路以及第一運算電路。第一比較電路用以比較占空比參考值以及占空比數值,以產生占空比差值。第一運算電路與第一比較電路電性連接,用以對占空比差值進行運算以產 生並調整可變參考電壓。 In still another embodiment of the present invention, the control module further includes a first comparison circuit and a first operation circuit. The first comparison circuit is configured to compare the duty cycle reference value with the duty cycle value to generate a duty cycle difference. The first operational circuit is electrically connected to the first comparison circuit for calculating the duty ratio difference Generate and adjust the variable reference voltage.

在本發明另一實施例中,控制模組更包含第二比較電路、第二運算電路以及驅動信號產生電路。第二比較電路與第一運算電路以及反饋模組電性連接,用以比較可變參考電壓以及反饋電壓,以產生誤差電壓。第二運算電路與第二比較電路電性連接,用以對誤差電壓進行運算以產生並調整占空比數值。驅動信號產生電路與第二運算電路以及功率模組電性連接,用以接收第二運算電路所產生之經調整之占空比數值,並產生相應於經調整之占空比數值之驅動控制信號。 In another embodiment of the present invention, the control module further includes a second comparison circuit, a second operation circuit, and a drive signal generation circuit. The second comparison circuit is electrically connected to the first operation circuit and the feedback module for comparing the variable reference voltage and the feedback voltage to generate an error voltage. The second operational circuit is electrically coupled to the second comparison circuit for calculating the error voltage to generate and adjust the duty cycle value. The driving signal generating circuit is electrically connected to the second computing circuit and the power module for receiving the adjusted duty cycle value generated by the second computing circuit and generating a driving control signal corresponding to the adjusted duty cycle value .

在本發明次一實施例中,第一比較電路係電性連接第二運算電路,並用以接收第二運算電路所產生之經調整之占空比數值。 In a second embodiment of the present invention, the first comparison circuit is electrically connected to the second operation circuit and configured to receive the adjusted duty cycle value generated by the second operation circuit.

在本發明又一實施例中,第一比較電路係電性連接驅動信號產生電路,並用以自驅動信號產生電路中擷取占空比數值。 In still another embodiment of the present invention, the first comparison circuit is electrically connected to the driving signal generating circuit and is used to extract the duty ratio value from the driving signal generating circuit.

在本發明再一實施例中,控制功率模組之驅動控制信號係由控制模組輸出後反饋回控制模組,且第一比較電路用以接收反饋之驅動控制信號,以自驅動控制信號中擷取相應之占空比數值。 In still another embodiment of the present invention, the driving control signal of the control power module is outputted by the control module and fed back to the control module, and the first comparison circuit is configured to receive the feedback driving control signal to self-drive the control signal. Draw the corresponding duty cycle value.

在本發明另一實施例中,當輸入電壓升高時,可變參考電壓逐漸增加,且控制模組調整占空比數值逐漸增加。 In another embodiment of the invention, as the input voltage increases, the variable reference voltage gradually increases, and the control module adjusts the duty cycle value to gradually increase.

本發明內容之另一實施方式係關於一種電壓供應系統,其包含高壓母線、低壓母線、變流器以及複數個供應電壓產生電路。變流器電性連接於高壓母線與低壓母線之 間,其中變流器至少包含控制模組,控制模組用以比較一占空比參考值以及一占空比數值,並依據占空比參考值與占空比數值比較的結果產生並調整一可變參考電壓,再依據可變參考電壓與一反饋電壓比較的結果調整占空比數值,且產生對應於經調整之占空比數值之驅動控制信號,以調整變流器之輸出電壓。複數個供應電壓產生電路彼此並聯,電性連接於低壓母線,並各自用以將變流器之輸出電壓轉換為供應電壓予負載。 Another embodiment of the present disclosure is directed to a voltage supply system including a high voltage bus, a low voltage bus, a current transformer, and a plurality of supply voltage generating circuits. The converter is electrically connected to the high voltage bus and the low voltage bus The converter includes at least a control module, and the control module compares a duty cycle reference value and a duty cycle value, and generates and adjusts a result according to the comparison between the duty cycle reference value and the duty cycle value. The variable reference voltage is adjusted according to the result of comparing the variable reference voltage with a feedback voltage, and a driving control signal corresponding to the adjusted duty ratio value is generated to adjust the output voltage of the converter. A plurality of supply voltage generating circuits are connected in parallel with each other, electrically connected to the low voltage bus, and each is used to convert the output voltage of the converter into a supply voltage to the load.

在本發明一實施例中,變流器之控制模組更包含第一比較電路以及第一運算電路。第一比較電路用以比較占空比參考值以及占空比數值,以產生占空比差值。第一運算電路與該第一比較電路電性連接,用以對占空比差值進行運算以產生並調整可變參考電壓。 In an embodiment of the invention, the control module of the converter further includes a first comparison circuit and a first operation circuit. The first comparison circuit is configured to compare the duty cycle reference value with the duty cycle value to generate a duty cycle difference. The first operational circuit is electrically coupled to the first comparison circuit for calculating a duty cycle difference to generate and adjust a variable reference voltage.

在本發明另一實施例中,變流器之控制模組更包含第二比較電路、第二運算電路以及驅動信號產生電路。第二比較電路與第一運算電路電性連接,用以比較可變參考電壓以及反饋電壓,以產生誤差電壓。第二運算電路與第二比較電路電性連接,用以對誤差電壓進行運算以產生並調整占空比數值。驅動信號產生電路與第二運算電路電性連接,用以接收第二運算電路所產生之經調整之占空比數值,並產生相應於經調整之占空比數值之驅動控制信號。 In another embodiment of the present invention, the control module of the converter further includes a second comparison circuit, a second operation circuit, and a drive signal generation circuit. The second comparison circuit is electrically connected to the first operational circuit for comparing the variable reference voltage and the feedback voltage to generate an error voltage. The second operational circuit is electrically coupled to the second comparison circuit for calculating the error voltage to generate and adjust the duty cycle value. The driving signal generating circuit is electrically connected to the second computing circuit for receiving the adjusted duty cycle value generated by the second computing circuit and generating a driving control signal corresponding to the adjusted duty cycle value.

在本發明次一實施例中,第一比較電路係電性連接第二運算電路,並用以接收第二運算電路所產生之經調整之占空比數值。 In a second embodiment of the present invention, the first comparison circuit is electrically connected to the second operation circuit and configured to receive the adjusted duty cycle value generated by the second operation circuit.

在本發明又一實施例中,第一比較電路係電性連接驅 動信號產生電路,並用以自驅動信號產生電路中擷取占空比數值。 In still another embodiment of the present invention, the first comparison circuit is electrically connected The signal generating circuit is configured to draw the duty cycle value from the driving signal generating circuit.

在本發明再一實施例中,驅動控制信號係由控制模組輸出後反饋回控制模組,且第一比較電路用以接收反饋之驅動控制信號,以自驅動控制信號中擷取相應之占空比數值。 In still another embodiment of the present invention, the driving control signal is outputted by the control module and fed back to the control module, and the first comparison circuit is configured to receive the feedback driving control signal, and take corresponding signals from the self-driving control signal. Empty ratio value.

在本發明另一實施例中,當變流器之一輸入電壓變化時,控制模組調整可變參考電壓,而當輸入電壓升高時,可變參考電壓逐漸增加,控制模組調整占空比數值逐漸增加,且依據驅動控制信號調整之輸出電壓逐漸增加。 In another embodiment of the present invention, when one of the input voltages of the converter changes, the control module adjusts the variable reference voltage, and when the input voltage increases, the variable reference voltage gradually increases, and the control module adjusts the duty. The ratio value is gradually increased, and the output voltage adjusted according to the drive control signal is gradually increased.

本發明內容之又一實施方式係關於一種電壓調整方法,其包含:比較一占空比數值和一占空比參考值;依據占空比參考值與占空比數值比較的結果相應地產生一可變參考電壓;比較可變參考電壓和一反饋電壓;以及依據可變參考電壓與反饋電壓比較的結果調整占空比數值,並產生對應於經調整之占空比數值之一驅動控制信號,藉由驅動控制信號將輸入電壓轉換為經調整之一輸出電壓。 Yet another embodiment of the present disclosure is directed to a voltage adjustment method including: comparing a duty cycle value with a duty cycle reference value; and generating a result corresponding to the duty cycle reference value and the duty cycle value comparison result a variable reference voltage; comparing the variable reference voltage with a feedback voltage; and adjusting the duty cycle value according to a result of comparing the variable reference voltage with the feedback voltage, and generating a driving control signal corresponding to one of the adjusted duty cycle values, The input voltage is converted to one of the adjusted output voltages by driving a control signal.

在本發明另一實施例中,占空比數值係由一運算電路所產生及調整。 In another embodiment of the invention, the duty cycle value is generated and adjusted by an arithmetic circuit.

在本發明次一實施例中,驅動控制信號係由一驅動信號產生電路所產生,且與占空比參考值比較之占空比數值係擷取自驅動信號產生電路。 In a second embodiment of the invention, the drive control signal is generated by a drive signal generating circuit, and the duty cycle value compared to the duty cycle reference value is taken from the drive signal generating circuit.

在本發明又一實施例中,與占空比參考值比較之占空比數值係擷取自驅動控制信號。 In yet another embodiment of the invention, the duty cycle value compared to the duty cycle reference value is derived from the drive control signal.

在本發明再一實施例中,前述電壓調整方法更包含當 輸入電壓變化時,調整可變參考電壓,其中當輸入電壓升高時,可變參考電壓逐漸增加,且占空比數值經調整而逐漸增加。 In still another embodiment of the present invention, the foregoing voltage adjustment method further includes When the input voltage changes, the variable reference voltage is adjusted, wherein as the input voltage rises, the variable reference voltage gradually increases, and the duty ratio value is gradually increased as it is adjusted.

根據本發明之技術內容,應用前述本發明之實施例,可在不增加輸出電感的體積下,提升變流器之工作效率,順利增加功率密度。 According to the technical content of the present invention, by applying the foregoing embodiments of the present invention, the working efficiency of the converter can be improved without increasing the volume of the output inductor, and the power density can be smoothly increased.

下文係舉實施例配合所附圖式作詳細說明,但所提供之實施例並非用以限制本發明所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。 The embodiments are described in detail below with reference to the accompanying drawings, but the embodiments are not intended to limit the scope of the invention, and the description of the structure operation is not intended to limit the order of execution, any component recombination The structure, which produces equal devices, is within the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn to the original dimensions.

關於本文中所使用之『耦接』或『連接』,均可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,亦可指二或多個元件相互操作或動作。 "Coupling" or "connecting" as used herein may mean that two or more elements are in direct physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, or two or more The components operate or act on each other.

第1圖係依照本發明一實施例所繪示之一種電壓供應系統的電路示意圖。電壓供應系統100包含高壓母線(High Voltage Bus)110、變流器120、低壓母線(Low Voltage Bus)130以及複數個供應電壓產生電路140。變流器120電性連接於高壓母線110與低壓母線130之間,用以透過高壓母線110接收一輸入電壓Vin,並將輸入電壓Vin轉換為一輸出電壓Vout經由低壓母線130傳送。前述供應電壓產生電路140彼此並聯電性連接於低壓母線130,各自用以將變流器120之輸出電壓Vout轉換為一供應電壓提供給相應的 負載150。 1 is a circuit diagram of a voltage supply system according to an embodiment of the invention. The voltage supply system 100 includes a high voltage bus 110, a converter 120, a low voltage bus 130, and a plurality of supply voltage generating circuits 140. The converter 120 is electrically connected between the high voltage bus 110 and the low voltage bus 130 for receiving an input voltage Vin through the high voltage bus 110 and converting the input voltage Vin into an output voltage Vout via the low voltage bus 130. The supply voltage generating circuit 140 is electrically connected to the low voltage bus line 130 in parallel with each other, and is configured to convert the output voltage Vout of the converter 120 into a supply voltage to provide corresponding Load 150.

第2圖係依照本發明實施例所繪示之一種變流器的電路示意圖。第2圖所示之變流器200可應用於第1圖所示之電壓供應系統100中,但不以此為限。如第2圖所示,變流器200至少包含功率模組220、反饋模組240以及控制模組260a。功率模組220用以將輸入電壓Vin轉換為輸出電壓Vout。反饋模組240與功率模組220電性連接,並用以產生與輸出電壓Vout相對應之反饋電壓Vf。控制模組260a與反饋模組240、功率模組220電性連接,並用以比較一占空比(duty ratio)參考值Dref以及一占空比數值Dc,依據占空比參考值Dref與占空比數值Dc比較的結果相應地產生一可變參考電壓Vref,並用以比較可變參考電壓Vref以及反饋電壓Vf,且依據可變參考電壓Vref與反饋電壓Vf比較的結果調整占空比數值Dc。實作上,占空比參考值Dref可依據實際需求固定為一定數值或比例(如:50%)。 FIG. 2 is a schematic circuit diagram of a converter according to an embodiment of the invention. The converter 200 shown in FIG. 2 can be applied to the voltage supply system 100 shown in FIG. 1, but is not limited thereto. As shown in FIG. 2, the converter 200 includes at least a power module 220, a feedback module 240, and a control module 260a. The power module 220 is configured to convert the input voltage Vin into an output voltage Vout. The feedback module 240 is electrically connected to the power module 220 and configured to generate a feedback voltage Vf corresponding to the output voltage Vout. The control module 260a is electrically connected to the feedback module 240 and the power module 220, and is used for comparing a duty ratio reference value Dref and a duty ratio value Dc according to the duty ratio reference value Dref and duty. The result of the comparison with the value Dc correspondingly generates a variable reference voltage Vref for comparing the variable reference voltage Vref with the feedback voltage Vf, and adjusting the duty value Dc according to the result of comparing the variable reference voltage Vref with the feedback voltage Vf. In practice, the duty cycle reference value Dref can be fixed to a certain value or ratio (eg, 50%) according to actual needs.

需注意的是,本文中的占空比參考值Dref以及占空比數值Dc,可以指實際的數值,也可以泛指數值所對應的信號。換言之,控制模組260a可用以接收占空比參考值Dref以及占空比數值Dc兩者所對應的信號,並對兩者所對應的信號進行比較處理。 It should be noted that the duty cycle reference value Dref and the duty cycle value Dc herein may refer to actual values, and may also be signals corresponding to the general exponential value. In other words, the control module 260a can be configured to receive signals corresponding to both the duty ratio reference value Dref and the duty ratio value Dc, and compare the signals corresponding to the two.

在一實施例中,當輸入電壓Vin變化時,控制模組260a調整可變參考電壓Vref並相應地調整占空比數值Dc,且控制模組260a產生對應於經過調整的占空比數值Dc的驅動控制信號Sc,藉以控制功率模組220對輸入電壓Vin進 行轉換的操作,進而調整變流器200的輸出電壓Vout。 In one embodiment, when the input voltage Vin changes, the control module 260a adjusts the variable reference voltage Vref and adjusts the duty value Dc accordingly, and the control module 260a generates a duty ratio value Dc corresponding to the adjusted duty ratio. Driving the control signal Sc to control the power module 220 to input the input voltage Vin The operation of the line conversion further adjusts the output voltage Vout of the converter 200.

於實作上,上述控制模組260a或下述控制模組(如第4圖中之控制模組260b,或第5圖中之控制模組260c),均可各自透過數位控制器(或控制芯片)或模擬控制器(或控制芯片)來實現。 In practice, the control module 260a or the following control module (such as the control module 260b in FIG. 4 or the control module 260c in FIG. 5) can each pass through a digital controller (or control) Chip) or analog controller (or control chip) to achieve.

結構上,功率模組220可包含第一開關元件S1、第二開關元件S2、第一分壓電容C1、第二分壓電容C2、第一整流開關SR1、第二整流開關SR2、濾波電感L1以及濾波電容Co。第一開關元件S1、第二開關元件S2分別與第一分壓電容C1、第二分壓電容C2電性並聯,且受控制模組260a所輸出的驅動控制信號Sc控制,各自進行導通(或開啟)或截止(或關閉)。第一分壓電容C1與第二分壓電容C2串聯,對輸入電壓Vin進行分壓,以提供相應電壓至變壓器Tr的初級繞組。第一整流開關SR1與第二整流開關SR2連接變壓器Tr之次級繞組,用以進行同步整流。濾波電感L1、濾波電容Co與第一整流開關SR1串聯,用以進行濾波。 Structurally, the power module 220 can include a first switching element S1, a second switching element S2, a first voltage dividing capacitor C1, a second voltage dividing capacitor C2, a first rectifier switch SR1, a second rectifier switch SR2, and a filter inductor L1. And the filter capacitor Co. The first switching element S1 and the second switching element S2 are electrically connected in parallel with the first voltage dividing capacitor C1 and the second voltage dividing capacitor C2, respectively, and are controlled by the driving control signal Sc outputted by the control module 260a, and each is turned on (or Turn on) or cut off (or turn off). The first voltage dividing capacitor C1 is connected in series with the second voltage dividing capacitor C2 to divide the input voltage Vin to provide a corresponding voltage to the primary winding of the transformer Tr. The first rectifying switch SR1 and the second rectifying switch SR2 are connected to the secondary winding of the transformer Tr for synchronous rectification. The filter inductor L1 and the filter capacitor Co are connected in series with the first rectifier switch SR1 for filtering.

其次,反饋模組240可至少包含第一阻抗Z1與第二阻抗Z2,其用以對輸出電壓Vout進行分壓,藉此產生與輸出電壓Vout相對應之反饋電壓Vf。 Secondly, the feedback module 240 can include at least a first impedance Z1 and a second impedance Z2 for dividing the output voltage Vout, thereby generating a feedback voltage Vf corresponding to the output voltage Vout.

在另一實施例中,反饋模組240也可用以對相應輸出電壓Vout之輸出電流進行分流,藉此產生與輸出電流相對應之反饋電流信號。而控制模組260a便可在比較反饋電流信號與一可變參考電流信號(在此,可變參考電流信號可由比較占空比參考值以及占空比數值後相應產生)後,依據反 饋電流信號與可變參考電流信號比較的結果調整占空比數值。換言之,前述反饋模組240所產生的反饋信號可以是反饋電壓信號,也可以是反饋電流信號,且控制模組260a的功能與操作可相應於反饋電壓信號或是反饋電流信號作適當調整。 In another embodiment, the feedback module 240 can also be used to shunt the output current of the corresponding output voltage Vout, thereby generating a feedback current signal corresponding to the output current. The control module 260a can compare the feedback current signal with a variable reference current signal (here, the variable reference current signal can be generated by comparing the duty cycle reference value and the duty cycle value), and then The result of the comparison of the feed current signal with the variable reference current signal adjusts the duty cycle value. In other words, the feedback signal generated by the feedback module 240 may be a feedback voltage signal or a feedback current signal, and the function and operation of the control module 260a may be appropriately adjusted corresponding to the feedback voltage signal or the feedback current signal.

此外,控制模組260a至少包含第一比較電路262、第一運算電路264、第二比較電路266、第二運算電路268以及驅動信號產生電路270。第一比較電路262用以比較占空比參考值Dref以及占空比數值Dc,以產生占空比差值Derr。第一運算電路264與第一比較電路262電性連接,用以對占空比差值Derr進行運算,以產生並調整可變參考電壓Vref。第二比較電路266與第一運算電路264及反饋模組240電性連接,用以比較可變參考電壓Vref以及反饋模組240所產生之反饋電壓Vf,以產生誤差電壓Verr。第二運算電路268與第二比較電路266電性連接,用以對誤差電壓Verr進行運算以產生並調整占空比數值Dc。驅動信號產生電路270與第二運算電路268以及功率模組220電性連接,用以接收第二運算電路268所產生之占空比數值Dc,並產生相應於經過調整之占空比數值Dc之驅動控制信號Sc。 Further, the control module 260a includes at least a first comparison circuit 262, a first operation circuit 264, a second comparison circuit 266, a second operation circuit 268, and a drive signal generation circuit 270. The first comparison circuit 262 is configured to compare the duty ratio reference value Dref and the duty ratio value Dc to generate a duty ratio difference value Derr. The first operation circuit 264 is electrically connected to the first comparison circuit 262 for calculating the duty ratio difference Derr to generate and adjust the variable reference voltage Vref. The second comparison circuit 266 is electrically connected to the first operation circuit 264 and the feedback module 240 for comparing the variable reference voltage Vref and the feedback voltage Vf generated by the feedback module 240 to generate the error voltage Verr. The second operation circuit 268 is electrically connected to the second comparison circuit 266 for calculating the error voltage Verr to generate and adjust the duty value Dc. The driving signal generating circuit 270 is electrically connected to the second computing circuit 268 and the power module 220 for receiving the duty value Dc generated by the second operating circuit 268 and generating a duty ratio value Dc corresponding to the adjusted duty. Drive control signal Sc.

在本實施例中,第一比較電路262電性連接第二運算電路268,用以接收第二運算電路268所產生之占空比數值Dc,而占空比數值Dc由第二運算電路268所產生及調整,且經調整後的占空比數值Dc進一步反饋至第一比較電路262,以供與占空比參考值Dref進行比較。 In this embodiment, the first comparison circuit 262 is electrically connected to the second operation circuit 268 for receiving the duty value Dc generated by the second operation circuit 268, and the duty value Dc is used by the second operation circuit 268. Generated and adjusted, and the adjusted duty cycle value Dc is further fed back to the first comparison circuit 262 for comparison with the duty cycle reference value Dref.

第3圖係依照本發明實施例繪示輸入電壓、可變參考電壓、占空比數值對應的信號以及輸出電壓的相應變化示意圖。同時參照第2圖和第3圖。當輸入電壓Vin於時間t1升高或轉態為較高位準時,由於可變參考電壓Vref無法瞬間相應地立即改變,故控制模組260a會先相應調整占空比數值Dc減少(例如:調整占空比數值Dc至小於占空比參考值Dref),使得輸出電壓Vout不立即改變,而是於占空比數值Dc後續逐漸增加時,輸出電壓Vout及其對應的反饋電壓Vf再隨著可變參考電壓Vref變化。 FIG. 3 is a schematic diagram showing corresponding changes of an input voltage, a variable reference voltage, a duty cycle value, and an output voltage according to an embodiment of the invention. Refer to Figures 2 and 3 simultaneously. When the input voltage Vin rises or shifts to a higher level at time t1, since the variable reference voltage Vref cannot be immediately changed correspondingly, the control module 260a first adjusts the duty ratio value Dc accordingly (for example: adjustment accounted for The null ratio value Dc is less than the duty ratio reference value Dref), so that the output voltage Vout does not change immediately, but the output voltage Vout and its corresponding feedback voltage Vf are changed again as the duty ratio value Dc is gradually increased. The reference voltage Vref varies.

接著,於時間t1至t2期間,由於占空比數值Dc小於占空比參考值Dref,因此在被反饋的占空比數值Dc經比較、運算處理後,第一運算電路264會依據比較及運算結果調整可變參考電壓Vref漸漸上升,直至可變參考電壓Vref等同於反饋電壓Vf(即於時間t2),而同時在逐漸增加的可變參考電壓Vref經比較、運算處理後,第二運算電路268亦會依據比較及運算結果調整占空比數值Dc,使得占空比數值Dc逐漸增加,直至占空比數值Dc等同於占空比參考值Dref(即於時間t2)。 Then, during the period from time t1 to time t2, since the duty ratio value Dc is smaller than the duty ratio reference value Dref, after the feedback duty value Dc is compared and processed, the first operation circuit 264 performs comparison and operation. As a result, the variable reference voltage Vref is gradually increased until the variable reference voltage Vref is equal to the feedback voltage Vf (ie, at time t2), and at the same time, after the gradually increasing variable reference voltage Vref is compared and processed, the second operational circuit 268 will also adjust the duty value Dc according to the comparison and operation result, so that the duty value Dc is gradually increased until the duty value Dc is equal to the duty reference value Dref (ie, at time t2).

此外,驅動信號產生電路270會依據時間t1至t2期間內變化的占空比數值Dc,產生相應的驅動控制信號Sc,使得功率模組220依據驅動控制信號Sc調整轉換後的輸出電壓Vout,且調整後之輸出電壓Vout也於時間t2上升至一穩定值,進而讓變流器200進入新的穩態。 In addition, the driving signal generating circuit 270 generates a corresponding driving control signal Sc according to the duty value Dc that changes during the period t1 to t2, so that the power module 220 adjusts the converted output voltage Vout according to the driving control signal Sc, and The adjusted output voltage Vout also rises to a stable value at time t2, which in turn causes the converter 200 to enter a new steady state.

相較於習知技術而言,前述實施例中藉由調整占空比數值Dc,並進而改變參考電壓Vref的操作方式,可於輸 入電壓Vin改變時,使變流器200的輸出電壓Vout不立即改變,而是隨著參考電壓Vref變化。如此一來,變流器200於輸入電壓Vin改變時仍可逐漸對輸出電壓Vout作調整,藉此減少輸出電感所承受的伏秒值(V×t),使輸出電感不受限於必須具有較大尺寸的磁芯或更多的繞組匝數,而功率模組220的功率密度可因此增加,變流器的效率可進而提升。 Compared with the prior art, in the foregoing embodiment, the operation mode of adjusting the duty ratio value Dc and further changing the reference voltage Vref can be lost. When the input voltage Vin changes, the output voltage Vout of the converter 200 is not changed immediately, but varies with the reference voltage Vref. In this way, the converter 200 can gradually adjust the output voltage Vout when the input voltage Vin changes, thereby reducing the volt-second value (V×t) that the output inductor is subjected to, so that the output inductor is not limited to have to have The larger the number of cores or more winding turns, the power density of the power module 220 can be increased, and the efficiency of the converter can be further increased.

第4圖係依照本發明另一實施例所繪示之變流器的電路示意圖。相較於第2圖而言,在本實施例中,控制模組260b中之第一比較電路262電性連接驅動信號產生電路270,並用以自驅動信號產生電路270中擷取占空比數值Dc,比較擷取自驅動信號產生電路270中之占空比數值Dc以及占空比參考值Dref。 4 is a circuit diagram of a converter according to another embodiment of the present invention. In the present embodiment, the first comparison circuit 262 of the control module 260b is electrically connected to the driving signal generating circuit 270, and is used to extract the duty ratio value from the driving signal generating circuit 270. Dc compares the duty ratio value Dc and the duty ratio reference value Dref in the drive signal generating circuit 270.

控制模組260b與功率模組220、反饋模組240的連接及操作關係均與前述類似,故於此不再贅述。此外,控制模組260b中元件的連接及操作關係亦與第2圖所示的實施例類似,故於此亦不再贅述。 The connection and operation relationship between the control module 260b and the power module 220 and the feedback module 240 are similar to the foregoing, and thus will not be described again. In addition, the connection and operation relationship of the components in the control module 260b are similar to those of the embodiment shown in FIG. 2, and thus will not be described herein.

第5圖係依照本發明又一實施例所繪示之變流器的電路示意圖。相較於第2圖而言,在本實施例中,控制模組260c中之第一比較電路262用以接收由控制模組260c輸出後反饋回控制模組260c的驅動控制信號Sc,且比較擷取自驅動控制信號Sc中之占空比數值Dc以及占空比參考值Dref。 Figure 5 is a circuit diagram of a converter according to another embodiment of the present invention. Compared with FIG. 2, in the embodiment, the first comparison circuit 262 of the control module 260c is configured to receive the drive control signal Sc that is output back to the control module 260c by the control module 260c, and compares The duty ratio value Dc and the duty ratio reference value Dref in the self-driving control signal Sc are extracted.

控制模組260c與功率模組220、反饋模組240的連接及操作關係均與前述類似,故於此不再贅述。此外,控制 模組260c中元件的連接及操作關係亦與第2圖所示之實施例類似,故於此亦不再贅述。 The connection and operation relationship between the control module 260c and the power module 220 and the feedback module 240 are similar to those described above, and thus will not be described herein. In addition, control The connection and operation relationship of the components in the module 260c are similar to those of the embodiment shown in FIG. 2, and thus will not be described herein.

第6圖係依照本發明一實施例所繪示之一種電壓調整方法的流程圖。為了清楚及方便說明起見,下述實施例的說明請同時參照第2圖和第6圖。首先,比較一占空比數值Dc和占空比參考值Dref(步驟602),接著依據占空比數值Dc和占空比參考值Dref之比較結果相應產生可變參考電壓Vref(步驟604)。接著,比較可變參考電壓Vref與反饋電壓Vf(步驟606),並依據可變參考電壓Vref與反饋電壓Vf之比較結果調整占空比數值Dc直至占空比數值Dc等同於占空比參考值Dref(步驟608)。最後,功率模組220依據對應於此占空比數值Dc之驅動控制信號Sc將輸入電壓Vin轉換為經調整後之輸出電壓Vout(步驟610)。 FIG. 6 is a flow chart of a voltage adjustment method according to an embodiment of the invention. For the sake of clarity and convenience of explanation, please refer to Figs. 2 and 6 simultaneously for the description of the following embodiments. First, a duty ratio value Dc and a duty ratio reference value Dref are compared (step 602), and then a variable reference voltage Vref is generated correspondingly according to a comparison result of the duty ratio value Dc and the duty ratio reference value Dref (step 604). Next, the variable reference voltage Vref is compared with the feedback voltage Vf (step 606), and the duty value Dc is adjusted according to the comparison result of the variable reference voltage Vref and the feedback voltage Vf until the duty ratio value Dc is equal to the duty ratio reference value. Dref (step 608). Finally, the power module 220 converts the input voltage Vin into the adjusted output voltage Vout according to the drive control signal Sc corresponding to the duty value Dc (step 610).

在一實施例中,上述之電壓調整方法中之占空比數值Dc可為第二運算電路268所產生及調整。 In an embodiment, the duty value Dc in the voltage adjustment method described above may be generated and adjusted by the second operation circuit 268.

在一實施例中,前述電壓調整方法更可包含當輸入電壓Vin變化時,調整可變參考電壓Vref。當輸入電壓Vin升高時,可變參考電壓Vref逐漸增加,占空比數值Dc也經調整而逐漸增加。 In an embodiment, the foregoing voltage adjustment method may further include adjusting the variable reference voltage Vref when the input voltage Vin changes. When the input voltage Vin rises, the variable reference voltage Vref gradually increases, and the duty ratio value Dc is also gradually increased by adjustment.

在另一實施例中,此電壓調整方法中之占空比數值Dc可擷取自驅動信號產生電路270,當輸入電壓Vin升高時,可變參考電壓Vref逐漸增加,占空比數值Dc也經調整而逐漸增加。 In another embodiment, the duty ratio value Dc in the voltage adjustment method can be extracted from the driving signal generating circuit 270. When the input voltage Vin rises, the variable reference voltage Vref gradually increases, and the duty ratio value Dc also increases. It gradually increases as it adjusts.

在又一實施例中,此電壓調整方法中之占空比數值Dc擷取自驅動控制信號Sc,驅動控制信號Sc由如第5圖之 控制模組260c輸出後反饋回控制模組260c且為第一比較電路262所接收,當輸入電壓Vin升高時,可變參考電壓Vref逐漸增加,占空比數值Dc也經調整而逐漸增加。 In still another embodiment, the duty ratio value Dc in the voltage adjustment method is extracted from the driving control signal Sc, and the driving control signal Sc is as shown in FIG. The control module 260c outputs the back feedback control module 260c and is received by the first comparison circuit 262. When the input voltage Vin rises, the variable reference voltage Vref gradually increases, and the duty value Dc is also gradually increased by adjustment.

在本實施例中所提及的步驟,除特別敘明其順序者外,均可依實際情況調整其先後順序,第6圖所示之流程圖僅為一實施例,並非用以限定本發明。 The steps mentioned in this embodiment can be adjusted according to the actual situation except for the specific order, and the flowchart shown in FIG. 6 is only an embodiment, and is not intended to limit the present invention. .

由上述本發明之實施例可知,應用上述本發明之實施例,可於輸入電壓改變時逐漸對輸出電壓作調整,藉此減少輸出電感所承受的伏秒值(V×t),使輸出電感不受限於必須具有較大尺寸的磁芯或更多的繞組匝數,毋須為避免輸出電感的磁芯飽和而增加其體積,而功率模組220的功率密度亦可因此增加,變流器的效率可進而提升。 According to the embodiment of the present invention, the embodiment of the present invention can be used to gradually adjust the output voltage when the input voltage changes, thereby reducing the volt-second value (V×t) that the output inductor is subjected to, so that the output inductor It is not limited to a core having a larger size or more winding turns, and it is not necessary to increase the volume of the core of the output inductor to avoid saturation of the core of the output inductor, and the power density of the power module 220 can also be increased. The efficiency can be further improved.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧電壓供應系統 100‧‧‧Voltage supply system

110‧‧‧高壓母線 110‧‧‧High voltage busbar

120、200‧‧‧變流器 120, 200‧‧ ‧ converter

130‧‧‧低壓母線 130‧‧‧ Low voltage busbar

140‧‧‧供應電壓產生電路 140‧‧‧Supply voltage generation circuit

150‧‧‧負載 150‧‧‧load

220‧‧‧功率模組 220‧‧‧Power Module

240‧‧‧反饋模組 240‧‧‧ Feedback Module

260a、260b、260c‧‧‧控制模組 260a, 260b, 260c‧‧‧ control module

262‧‧‧第一比較電路 262‧‧‧First comparison circuit

264‧‧‧第一運算電路 264‧‧‧First operational circuit

266‧‧‧第二比較電路 266‧‧‧Second comparison circuit

268‧‧‧第二運算電路 268‧‧‧second arithmetic circuit

270‧‧‧驅動信號產生電路 270‧‧‧Drive signal generation circuit

602、604、606、608、610‧‧‧步驟 602, 604, 606, 608, 610‧‧ steps

第1圖係依照本發明一實施例所繪示之一種電壓供應系統的電路示意圖。 1 is a circuit diagram of a voltage supply system according to an embodiment of the invention.

第2圖係依照本發明一實施例所繪示之一種變流器的電路示意圖。 FIG. 2 is a schematic circuit diagram of a converter according to an embodiment of the invention.

第3圖係依照本發明實施例繪示輸入電壓、可變參考電壓、占空比數值對應的信號以及輸出電壓的相應變化示意圖。 FIG. 3 is a schematic diagram showing corresponding changes of an input voltage, a variable reference voltage, a duty cycle value, and an output voltage according to an embodiment of the invention.

第4圖係依照本發明另一實施例所繪示之一種變流器的電路示意圖。 FIG. 4 is a schematic circuit diagram of a converter according to another embodiment of the invention.

第5圖係依照本發明又一實施例所繪示之一種變流器的電路示意圖。 FIG. 5 is a schematic circuit diagram of a converter according to another embodiment of the invention.

第6圖係依照本發明一實施例所繪示之一種電壓調整方法的流程圖。 FIG. 6 is a flow chart of a voltage adjustment method according to an embodiment of the invention.

200‧‧‧變流器 200‧‧‧ converter

220‧‧‧功率模組 220‧‧‧Power Module

240‧‧‧反饋模組 240‧‧‧ Feedback Module

260a‧‧‧控制模組 260a‧‧‧Control Module

262‧‧‧第一比較電路 262‧‧‧First comparison circuit

264‧‧‧第一運算電路 264‧‧‧First operational circuit

266‧‧‧第二比較電路 266‧‧‧Second comparison circuit

268‧‧‧第二運算電路 268‧‧‧second arithmetic circuit

270‧‧‧驅動信號產生電路 270‧‧‧Drive signal generation circuit

Claims (20)

一種變流器,該變流器至少包含:一功率模組,用以將一輸入電壓轉換為一輸出電壓;一反饋模組,與該功率模組電性連接,用以產生與該輸出電壓相對應之一反饋電壓;以及一控制模組,與該功率模組及該反饋模組電性連接,其中該控制模組用以比較一占空比參考值以及一占空比數值,依據該占空比參考值與該占空比數值比較的結果相應地產生一可變參考電壓,並用以比較該可變參考電壓以及該反饋電壓,且依據該可變參考電壓與該反饋電壓比較的結果調整該占空比數值。 A converter includes at least: a power module for converting an input voltage into an output voltage; a feedback module electrically coupled to the power module for generating the output voltage Corresponding to a feedback voltage; and a control module electrically connected to the power module and the feedback module, wherein the control module is configured to compare a duty cycle reference value and a duty cycle value, according to the The result of comparing the duty cycle reference value with the duty cycle value correspondingly generates a variable reference voltage for comparing the variable reference voltage and the feedback voltage, and comparing the variable reference voltage with the feedback voltage according to the result Adjust the duty cycle value. 如請求項1所述之變流器,其中當該輸入電壓變化時,該控制模組調整該可變參考電壓並相應地調整該占空比數值,且該控制模組產生對應於經調整之該占空比數值之一驅動控制信號以控制該功率模組。 The converter of claim 1, wherein the control module adjusts the variable reference voltage and adjusts the duty cycle value correspondingly when the input voltage changes, and the control module generates a corresponding adjustment One of the duty cycle values drives a control signal to control the power module. 如請求項1所述之變流器,其中該控制模組更包含:一第一比較電路,用以比較該占空比參考值以及該占空比數值,以產生一占空比差值;以及一第一運算電路,與該第一比較電路電性連接,用以對該占空比差值進行運算以產生並調整該可變參考電壓。 The converter of claim 1, wherein the control module further comprises: a first comparison circuit for comparing the duty reference value and the duty value to generate a duty ratio difference; And a first operational circuit electrically coupled to the first comparison circuit for calculating the duty cycle difference to generate and adjust the variable reference voltage. 如請求項3所述之變流器,其中該控制模組更包含: 一第二比較電路,與該第一運算電路以及該反饋模組電性連接,用以比較該可變參考電壓以及該反饋電壓,以產生一誤差電壓;一第二運算電路,與該第二比較電路電性連接,用以對該誤差電壓進行運算以產生並調整該占空比數值;以及一驅動信號產生電路,與該第二運算電路以及該功率模組電性連接,用以接收該第二運算電路所產生之經調整之該占空比數值,並產生相應於經調整之該占空比數值之該驅動控制信號。 The converter of claim 3, wherein the control module further comprises: a second comparison circuit electrically coupled to the first operational circuit and the feedback module for comparing the variable reference voltage and the feedback voltage to generate an error voltage; a second operational circuit, and the second Comparing a circuit electrical connection for calculating the error voltage to generate and adjust the duty cycle value; and a driving signal generating circuit electrically connected to the second computing circuit and the power module for receiving the The adjusted duty cycle value generated by the second operational circuit produces the drive control signal corresponding to the adjusted duty cycle value. 如請求項4所述之變流器,其中該第一比較電路係電性連接該第二運算電路,並用以接收該第二運算電路所產生之經調整之該占空比數值。 The converter of claim 4, wherein the first comparison circuit is electrically connected to the second operation circuit and configured to receive the adjusted duty cycle value generated by the second operation circuit. 如請求項4所述之變流器,其中該第一比較電路係電性連接該驅動信號產生電路,並用以自該驅動信號產生電路中擷取該占空比數值。 The converter of claim 4, wherein the first comparison circuit is electrically coupled to the drive signal generating circuit and configured to extract the duty cycle value from the drive signal generating circuit. 如請求項4所述之變流器,其中控制該功率模組之該驅動控制信號係由該控制模組輸出後反饋回該控制模組,且該第一比較電路用以接收反饋之該驅動控制信號,以自該驅動控制信號中擷取相應之該占空比數值。 The converter of claim 4, wherein the driving control signal for controlling the power module is outputted by the control module and fed back to the control module, and the first comparison circuit is configured to receive the feedback of the driving And a control signal for extracting the corresponding duty cycle value from the drive control signal. 如請求項1所述之變流器,其中當該輸入電壓升高時,該可變參考電壓逐漸增加,且該控制模組調整該占空 比數值逐漸增加。 The converter of claim 1, wherein the variable reference voltage is gradually increased when the input voltage is raised, and the control module adjusts the duty The ratio is gradually increasing. 一種電壓供應系統,該電壓供應系統至少包含:一高壓母線;一低壓母線;一變流器,電性連接於該高壓母線與該低壓母線之間,其中該變流器至少包含一控制模組,該控制模組用以比較一占空比參考值以及一占空比數值,並依據該占空比參考值與該占空比數值比較的結果產生並調整一可變參考電壓,再依據該可變參考電壓與一反饋電壓比較的結果調整該占空比數值,且產生對應於經調整之該占空比數值之一驅動控制信號,以調整該變流器之一輸出電壓;以及複數個供應電壓產生電路,彼此並聯電性連接於該低壓母線,並各自用以將該變流器之該輸出電壓轉換為一供應電壓予一負載。 A voltage supply system, the voltage supply system comprising: at least one high voltage bus; a low voltage bus; a converter electrically connected between the high voltage bus and the low voltage bus, wherein the converter comprises at least one control module The control module is configured to compare a duty cycle reference value and a duty cycle value, and generate and adjust a variable reference voltage according to the result of comparing the duty cycle reference value with the duty cycle value, and then according to the Comparing the variable reference voltage with a feedback voltage to adjust the duty cycle value, and generating a drive control signal corresponding to one of the adjusted duty cycle values to adjust an output voltage of the converter; and a plurality of The supply voltage generating circuits are electrically connected in parallel to each other to the low voltage bus, and are each configured to convert the output voltage of the converter into a supply voltage to a load. 如請求項9所述之電壓供應系統,其中該變流器之該控制模組更包含:一第一比較電路,用以比較該占空比參考值以及該占空比數值,以產生一占空比差值;以及一第一運算電路,與該第一比較電路電性連接,用以對該占空比差值進行運算以產生並調整該可變參考電壓。 The voltage supply system of claim 9, wherein the control module of the converter further comprises: a first comparison circuit for comparing the duty cycle reference value and the duty cycle value to generate a share And a first operational circuit electrically coupled to the first comparison circuit for calculating the duty cycle difference to generate and adjust the variable reference voltage. 如請求項10所述之電壓供應系統,其中該變流器 之該控制模組更包含:一第二比較電路,與該第一運算電路電性連接,用以比較該可變參考電壓以及該反饋電壓,以產生一誤差電壓;一第二運算電路,與該第二比較電路電性連接,用以對該誤差電壓進行運算以產生並調整該占空比數值;以及一驅動信號產生電路,與該第二運算電路電性連接,用以接收該第二運算電路所產生之經調整之該占空比數值,並產生相應於經調整之該占空比數值之該驅動控制信號。 The voltage supply system of claim 10, wherein the converter The control module further includes: a second comparison circuit electrically coupled to the first operational circuit for comparing the variable reference voltage and the feedback voltage to generate an error voltage; a second operational circuit, The second comparison circuit is electrically connected to calculate the error voltage to generate and adjust the duty cycle value, and a driving signal generating circuit electrically connected to the second computing circuit for receiving the second The adjusted duty cycle value produced by the operational circuit and the drive control signal corresponding to the adjusted duty cycle value. 如請求項11所述之電壓供應系統,其中該第一比較電路係電性連接該第二運算電路,並用以接收該第二運算電路所產生之經調整之該占空比數值。 The voltage supply system of claim 11, wherein the first comparison circuit is electrically connected to the second operation circuit and configured to receive the adjusted duty value generated by the second operation circuit. 如請求項11所述之電壓供應系統,其中該第一比較電路係電性連接該驅動信號產生電路,並用以自該驅動信號產生電路中擷取該占空比數值。 The voltage supply system of claim 11, wherein the first comparison circuit is electrically connected to the drive signal generating circuit and configured to extract the duty cycle value from the drive signal generating circuit. 如請求項11所述之電壓供應系統,其中該驅動控制信號係由該控制模組輸出後反饋回該控制模組,且該第一比較電路用以接收反饋之該驅動控制信號,以自該驅動控制信號中擷取相應之該占空比數值。 The voltage supply system of claim 11, wherein the driving control signal is outputted by the control module and fed back to the control module, and the first comparison circuit is configured to receive the feedback of the driving control signal. The corresponding duty cycle value is extracted from the drive control signal. 如請求項11所述之電壓供應系統,其中當該變流器之一輸入電壓變化時,該控制模組調整該可變參考電 壓,而當該輸入電壓升高時,該可變參考電壓逐漸增加,該控制模組調整該占空比數值逐漸增加,且依據該驅動控制信號調整之該輸出電壓逐漸增加。 The voltage supply system of claim 11, wherein the control module adjusts the variable reference power when an input voltage of the converter changes When the input voltage is increased, the variable reference voltage is gradually increased, and the control module adjusts the duty ratio to gradually increase, and the output voltage adjusted according to the driving control signal is gradually increased. 一種電壓調整方法,該電壓調整方法包含:比較一占空比數值和一占空比參考值;依據該占空比參考值與該占空比數值比較的結果相應地產生一可變參考電壓;比較該可變參考電壓和一反饋電壓;以及依據該可變參考電壓與該反饋電壓比較的結果調整該占空比數值,並產生對應於經調整之該占空比數值之一驅動控制信號,藉由對應於占空比數值之驅動控制信號將一輸入電壓轉換為經調整之一輸出電壓。 A voltage adjustment method includes: comparing a duty cycle value and a duty cycle reference value; and generating a variable reference voltage according to a result of comparing the duty cycle reference value with the duty cycle value; Comparing the variable reference voltage and a feedback voltage; and adjusting the duty cycle value according to a result of comparing the variable reference voltage with the feedback voltage, and generating a driving control signal corresponding to one of the adjusted duty cycle values, An input voltage is converted to an adjusted one of the output voltages by a drive control signal corresponding to the duty cycle value. 如請求項16所述之電壓調整方法,其中該占空比數值係由一運算電路所產生及調整。 The voltage adjustment method of claim 16, wherein the duty cycle value is generated and adjusted by an arithmetic circuit. 如請求項16所述之電壓調整方法,其中該驅動控制信號係由一驅動信號產生電路所產生,且與該占空比參考值比較之該占空比數值係擷取自該驅動信號產生電路。 The voltage adjustment method of claim 16, wherein the driving control signal is generated by a driving signal generating circuit, and the duty ratio value compared with the duty reference value is extracted from the driving signal generating circuit . 如請求項16所述之電壓調整方法,其中與該占空比參考值比較之該占空比數值係擷取自該驅動控制信號。 The voltage adjustment method of claim 16, wherein the duty cycle value compared to the duty cycle reference value is derived from the drive control signal. 如請求項16所述之電壓調整方法,更包含:當一輸入電壓變化時,調整該可變參考電壓;其中當該輸入電壓升高時,該可變參考電壓逐漸增加,且該占空比數值經調整而逐漸增加。 The voltage adjustment method of claim 16, further comprising: adjusting the variable reference voltage when an input voltage changes; wherein the variable reference voltage is gradually increased when the input voltage is raised, and the duty ratio is increased The value is gradually increased as it is adjusted.
TW101142837A 2012-09-21 2012-11-16 Voltage supply system and converter therein, and voltage regulating method TWI460977B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210357145.8A CN103683944B (en) 2012-09-21 2012-09-21 Voltage supply system and current transformer therein and voltage adjusting method

Publications (2)

Publication Number Publication Date
TW201414153A TW201414153A (en) 2014-04-01
TWI460977B true TWI460977B (en) 2014-11-11

Family

ID=50320513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101142837A TWI460977B (en) 2012-09-21 2012-11-16 Voltage supply system and converter therein, and voltage regulating method

Country Status (2)

Country Link
CN (1) CN103683944B (en)
TW (1) TWI460977B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093195B (en) * 2014-07-17 2017-11-17 中国联合网络通信集团有限公司 A kind of method and system for realizing gateway selection
CN105763032B (en) 2014-12-15 2018-07-06 台达电子工业股份有限公司 Electronic device and its control method
DE102015224858A1 (en) * 2015-12-10 2017-06-14 Robert Bosch Gmbh Method and device for controlling a galvanically isolated DC-DC converter
CN107689734B (en) * 2016-08-05 2020-01-31 台达电子企业管理(上海)有限公司 High power conversion system
CN112416040A (en) * 2019-08-21 2021-02-26 北京比特大陆科技有限公司 Parallel power supply voltage adjusting method, device, equipment, system and storage medium
US11923779B2 (en) 2020-11-05 2024-03-05 Astec International Limited Control circuits and methods for regulating output voltages

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277064A (en) * 2007-03-28 2008-10-01 台达电子工业股份有限公司 Insulation type converter and control method
TW201025817A (en) * 2008-12-22 2010-07-01 You-Gang Luo Modulation method and device of reduce duty cycle for a resonant converter
US20110026275A1 (en) * 2009-07-29 2011-02-03 Delta Electronics, Inc. Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same
CN1992493B (en) * 2005-12-30 2011-05-18 艾默生网络能源系统北美公司 Resonance DC/DC converter and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320952A (en) * 2005-08-11 2008-12-10 台达电子工业股份有限公司 Driving device of fan motor
US7884586B2 (en) * 2007-08-09 2011-02-08 Infineon Technologies Controlling a switching regulator mode determined by an ideal duty cycle for maintaining high efficiency for a wide input voltage range
CN101849431B (en) * 2007-11-07 2012-07-04 皇家飞利浦电子股份有限公司 Power supply circuit
US7834608B2 (en) * 2008-11-18 2010-11-16 Texas Instruments Incorporated Feed-forward compensation for a hysteretic switching regulator
CN101877922B (en) * 2009-04-30 2014-11-26 华润矽威科技(上海)有限公司 Non-isolated AC-DC (Alternating Current-Direct Current) LED driver current compensation circuit
CN102480228B (en) * 2010-11-26 2014-08-13 炬力集成电路设计有限公司 Switching power control system and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992493B (en) * 2005-12-30 2011-05-18 艾默生网络能源系统北美公司 Resonance DC/DC converter and control method thereof
CN101277064A (en) * 2007-03-28 2008-10-01 台达电子工业股份有限公司 Insulation type converter and control method
TW201025817A (en) * 2008-12-22 2010-07-01 You-Gang Luo Modulation method and device of reduce duty cycle for a resonant converter
US20110026275A1 (en) * 2009-07-29 2011-02-03 Delta Electronics, Inc. Voltage-regulating circuit with input voltage detecting circuit and parallel voltage-regulating circuit system using the same

Also Published As

Publication number Publication date
CN103683944B (en) 2016-09-14
CN103683944A (en) 2014-03-26
TW201414153A (en) 2014-04-01

Similar Documents

Publication Publication Date Title
TWI460977B (en) Voltage supply system and converter therein, and voltage regulating method
US20190334439A1 (en) Regulated power supply
US7969752B2 (en) Switching power supply device using current sharing transformer
US9225251B2 (en) Duty cycle control method, power supply system and power converter using the same
US9019733B2 (en) Three-phase AC-DC converter circuit and conversion method and control system thereof
US20100054001A1 (en) AC/DC Converter with Power Factor Correction
US8300437B2 (en) Multi-output DC-to-DC conversion apparatus with voltage-stabilizing function
US9385608B1 (en) DC-to-DC converters capable of communicating information between a slave circuit and a master controller, and associated devices and methods
US10250116B2 (en) Control circuit for reducing power loss of LLC resonant converter during light-load or no-load operation
WO2013182249A1 (en) Controlling a switched mode power supply with maximised power efficiency
TW201401753A (en) High-efficiency alternating current-direct current voltage converting circuit
US8737074B2 (en) Modular direct-current power conversion system and direct-current power conversion module thereof
US20150085535A1 (en) LLC single stage power factor correction converter
US7795847B2 (en) Power supply device, in particular for redundant operation with a plurality of further power supply devices connected in parallel on the output side
Tan Intermediate bus architectures: A practical review
JP2020127350A (en) Uninterruptible power supply with dc output
CN102570786B (en) Method for on-chip soft start circuit of switching type DC/DC converter
CN106300985A (en) A kind of current equalizing method controlling input current and circuit
US9413226B1 (en) Power factor correction system
US9960636B2 (en) Power supply system and direct-current converter thereof
TWI545879B (en) Parallel input / parallel output isolated DC / DC converters for wind power generation systems
JP2015226356A (en) Power converter
KR102431876B1 (en) Wireless signal transmitting apparatus and wireless illumination control apparatus using the same
TWI565202B (en) Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same
TW201349722A (en) Power factor correction circuit with multiple output voltages