TWI460976B - Flyback power supply with lossless snubber - Google Patents
Flyback power supply with lossless snubber Download PDFInfo
- Publication number
- TWI460976B TWI460976B TW100148734A TW100148734A TWI460976B TW I460976 B TWI460976 B TW I460976B TW 100148734 A TW100148734 A TW 100148734A TW 100148734 A TW100148734 A TW 100148734A TW I460976 B TWI460976 B TW I460976B
- Authority
- TW
- Taiwan
- Prior art keywords
- cushioning
- diode
- lossless
- power supply
- output
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明為有關於一種返馳式電源供應器,特別是指作為輔助電源及具有無損耗緩震電路且便於增加多組電源輸出之具無損耗緩震電路之返馳式電源供應器。The present invention relates to a flyback power supply, and more particularly to a flyback power supply as an auxiliary power supply and a lossless cushioning circuit having a lossless cushioning circuit and facilitating the addition of multiple sets of power output.
近年來,隨著電子科技的普及與蓬勃發展,各種可攜性電子裝置如雨後春筍般的出現。然而,電源供應器做為電子裝置不可或缺的元件卻相當笨重且不易安裝於電路板。因此,在重量、體積及效率方面皆有傑出表現的開關式電源供應器(Switch Mode Power Supplies,SMPS)便成為各家廠商在電源供應器上的首選之一。In recent years, with the popularization and vigorous development of electronic technology, various portable electronic devices have sprung up. However, the power supply is an indispensable component of the electronic device but is rather bulky and difficult to mount on the board. As a result, Switch Mode Power Supplies (SMPS), which excels in weight, size and efficiency, has become one of the top choices for power suppliers.
一般而言,各類轉換器皆可用於實現開關式電源供應器,如:半橋式轉換器(half-bridge converter)、全橋式轉換器(full-bridge converter)、推挽式轉換器(push-pull converter)、返馳式轉換器(flyback converter)或順向式轉換器(forward converter)......等等。而在將電源供應器作為輔助電源時,為了與電源線進行電氣隔離,以及可便於提供多組輸出,返馳式轉換器與順向式轉換器皆比其他轉換器適合應用在輔助電源。不過,由於無論如何安排內部變壓器的繞組結構皆會帶來漏電感,因此,返馳式轉換器會具有轉換效率低落及電壓突波(voltage surge)穿過功率電晶體開關的問題。In general, all types of converters can be used to implement switching power supplies, such as: half-bridge converters, full-bridge converters, push-pull converters ( Push-pull converter), flyback converter or forward converter... and so on. In the case of the power supply as an auxiliary power supply, in order to be electrically isolated from the power line and to facilitate the provision of multiple sets of outputs, both the flyback converter and the forward converter are suitable for use in the auxiliary power supply than other converters. However, since the winding structure of the internal transformer is in any case brought about leakage inductance, the flyback converter has a problem that the conversion efficiency is low and the voltage surge passes through the power transistor switch.
有鑑於此,便有廠商提出利用RC箝位電路來吸收漏電感儲存的能量及抑制尖波(spike),並且利用LC箝位電路提高轉換效率。 不過,以此方式並未考量二極體的逆向恢復(reverse recovery)效應,導致在切換期間產生突波電壓的震盪。另外,亦有人提出以RCD緩震電路來恢復漏電感中的能量來減少開關損耗(或稱為切換損耗),如「第1圖」所示意,「第1圖」為習知具有與開關相互並聯的RCD緩震電路的返馳式轉換器之示意圖,其中RCD緩震電路10與功率電晶體開關20相互並聯,用以將開關損耗轉移至RCD緩震電路10,且由於電路皆為被動元件所組成,故成本較為低廉。不過以「第1圖」的方式仍然會因電阻而造成損耗。In view of this, some manufacturers have proposed to use the RC clamp circuit to absorb the energy stored in the leakage inductance and suppress the spike, and use the LC clamp circuit to improve the conversion efficiency. However, in this way, the reverse recovery effect of the diode is not considered, resulting in oscillation of the surge voltage during the switching. In addition, it has been proposed to reduce the switching loss (or switching loss) by using the RCD cushioning circuit to recover the energy in the leakage inductance. As shown in Figure 1, the first figure is a mutual interaction with the switch. A schematic diagram of a flyback converter of a parallel RCD snubber circuit, wherein the RCD snubber circuit 10 and the power transistor switch 20 are connected in parallel to transfer switching losses to the RCD snubber circuit 10, and since the circuits are passive components The composition is low, so the cost is relatively low. However, the loss of the resistor due to the "Fig. 1" method.
綜上所述,可知先前技術中長期以來一直存在具有開關損耗及轉換效率低落之問題,因此實有必要提出改進的技術手段,來解決此一問題。In summary, it can be seen that the prior art has long had problems of switching loss and low conversion efficiency, so it is necessary to propose an improved technical means to solve this problem.
有鑒於先前技術存在的問題,本發明遂揭露一種具無損耗緩震電路之返馳式電源供應器。In view of the problems of the prior art, the present invention discloses a flyback power supply with a lossless cushioning circuit.
本發明所揭露之具無損耗緩震電路之返馳式電源供應器,其包含:返馳式轉換器、無損耗緩震電路及多個電源輸出端。其中,返馳式轉換器包含主變壓器、功率電晶體開關、第一輸出二極體、第一輸出電容及第一負載,所述主變壓器的一次側之迴路包含輸入電源及功率電晶體開關,以及主變壓器的二次側之迴路包含第一輸出二極體、第一輸出電容及第一負載形成第一電源輸出端。The flyback power supply with the lossless cushioning circuit disclosed in the present invention comprises: a flyback converter, a lossless cushioning circuit and a plurality of power output terminals. The flyback converter includes a main transformer, a power transistor switch, a first output diode, a first output capacitor, and a first load, and a primary side loop of the main transformer includes an input power source and a power transistor switch. And the circuit of the secondary side of the main transformer includes a first output diode, a first output capacitor, and a first load to form a first power output.
接著,無損耗緩震電路用以電性連接所述返馳式轉換器,此無損耗緩震電路包含回復變壓器,且回復變壓器的一次側透過緩震二極體、第一回復二極體及緩震電容電性連接功率電晶體開關,以及回復變壓器的二次側透過多個第二回復二極體及回復電 感電性連接第一電源輸出端,其中所述緩震二極體與緩震電容相互串聯,且相互串聯的緩震二極體與緩震電容並聯功率電晶體開關。Then, the lossless cushioning circuit is electrically connected to the flyback converter, the lossless cushioning circuit includes a return transformer, and the primary side of the return transformer transmits the cushioning diode, the first returning diode, and The cushioning capacitor is electrically connected to the power transistor switch, and the secondary side of the return transformer is transmitted through the plurality of second return diodes and the returning power The first power source output is electrically connected, wherein the cushioning diode and the cushioning capacitor are connected in series, and the cushioning diode and the cushioning capacitor are connected in parallel with each other to connect the power transistor switch.
本發明所揭露之電源供應器如上,與先前技術之間的差異在於本發明是透過回復變壓器、緩震二極體、第一回復二極體、第二回復二極體、回復電感及緩震電容形成無損耗緩震電路,並且將無損耗緩震電路電性連接至返馳式轉換器,以便恢復主變壓器的漏電感之能量,以及減輕由二極體的寄生電容與主變壓器的漏電感所引起的震盪。The power supply disclosed in the present invention is as above, and the difference from the prior art is that the present invention is through a recovery transformer, a cushioning diode, a first returning diode, a second returning diode, a returning inductance, and a cushioning The capacitor forms a lossless snubber circuit, and electrically connects the lossless snubber circuit to the flyback converter to recover the energy of the leakage inductance of the main transformer and reduce the parasitic capacitance of the diode and the leakage inductance of the main transformer The resulting shock.
透過上述的技術手段,本發明可以達成降低開關損耗及提高轉換效率之技術功效。Through the above technical means, the present invention can achieve the technical effect of reducing switching loss and improving conversion efficiency.
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。The embodiments of the present invention will be described in detail below with reference to the drawings and embodiments, so that the application of the technical means to solve the technical problems and achieve the technical effects can be fully understood and implemented.
在說明本發明所揭露之具無損耗緩震電路之返馳式電源供應器之前,先對本發明所自行定義的名詞作說明,本發明所述的回復變壓器、回復二極體及回復電感分別是指耦合輸出能量回復電路的變壓器、以及輸出能量回復電路中的二極體與電感,此輸出能量回復電路能夠恢復主變壓器的漏電感之能量,稍後將配合圖式對其電性連接方式作詳細說明。Before describing the flyback power supply with the lossless cushioning circuit disclosed in the present invention, the nouns defined by the present invention are described. The return transformer, the return diode and the return inductance of the present invention are respectively Refers to the transformer coupled to the output energy recovery circuit, and the diode and inductor in the output energy recovery circuit. The output energy recovery circuit can restore the energy of the leakage inductance of the main transformer, and will later make the electrical connection with the pattern. Detailed description.
以下配合圖式對本發明具無損耗緩震電路之返馳式電源供應器作進一步說明,請同時參閱「第2A圖」及「第2B圖」,「第2A圖」及「第2B圖」為本發明具無損耗緩震電路之返馳式電源供應 器之電路示意圖,其中「第2A圖」為具無損耗緩震電路200之返馳式轉換器100的電路示意,其包含:主變壓器110(T r 1 )、功率電晶體開關120(M 1 )、第一輸出二極體130(D o )、第一輸出電容140(C o )及第一負載150(R 1 )。其主變壓器110的一次側之迴路包含輸入電源160(V i )及功率電晶體開關120,而主變壓器110的二次側之迴路則包含第一輸出二極體130、第一輸出電容140及第一負載150以形成第一電源輸出端170,所述第一輸出電容140(C o )與第一負載150(R 1 )相互並聯。至此,各元件及其組成電路即為習知的不具有無損耗緩震電路200的返馳式轉換器,由於此為習知技術,故在此不再多作說明。The following is a description of the flyback power supply with the lossless cushioning circuit of the present invention. Please refer to "2A" and "2B", "2A" and "2B". The circuit diagram of the flyback power supply with the lossless cushioning circuit of the present invention, wherein "FIG. 2A" is a circuit schematic of the flyback converter 100 with the lossless cushioning circuit 200, comprising: the main transformer 110 ( T r 1 ), power transistor switch 120 ( M 1 ), first output diode 130 ( D o ), first output capacitor 140 ( C o ), and first load 150 ( R 1 ). The primary side of the main transformer 110 includes an input power supply 160 ( V i ) and a power transistor switch 120, and the secondary side of the main transformer 110 includes a first output diode 130, a first output capacitor 140, and The first load 150 forms a first power output 170, and the first output capacitor 140 ( C o ) and the first load 150 ( R 1 ) are connected in parallel with each other. So far, the components and their constituent circuits are conventional flyback converters that do not have the lossless cushioning circuit 200. Since this is a conventional technique, it will not be described here.
接著,在無損耗緩震電路200的部份,其包含:回復變壓器210(T r 2 )、緩震二極體220(D 1 )、第一回復二極體230(D 2 )、緩震電容240(C 1 )、多個第二回復二極體250(D 3 、D 4 )及回復電感260(L o )。所述緩震二極體220(D 1 )與緩震電容240(C 1 )相互串聯,且相互串聯的緩震二極體220(D 1 )與緩震電容240(C 1 )並聯功率電晶體開關120(M 1 ),此功率電晶體開關120(M 1 )內部並聯有飛輪二極體121及等效電容122。此無損耗緩震電路200電性連接於主變壓器110一次側及二次側繞組即形成具無損耗緩震電路200之返馳式轉換器100。特別要說明的是,主變壓器110的一次側具有等效激磁電感111(L m 11 )及等效漏電感112(L K 11 ),而其電性連接方式可視為將主變壓器110的一次側與等效激磁電感111(L m 11 )相互並聯後,再電性連接至所述等效漏電感112(L K 11 )。另外,回復變壓器210的一次側同樣具有等效激磁電感211(L m 21 )及等效漏電感212(L K 21 ),而其電性連接方式可視為 將回復變壓器210的一次側與等效激磁電感211(L m 21 )相互並聯後,再電性連接至所述等效漏電感212(L K 21 )。Next, in the portion of the lossless snubber circuit 200, the recovery transformer 210 ( T r 2 ), the cushioning diode 220 ( D 1 ), the first return diode 230 ( D 2 ), and the cushioning A capacitor 240 ( C 1 ), a plurality of second return diodes 250 ( D 3 , D 4 ), and a return inductor 260 ( L o ). The cushioning diode 220 ( D 1 ) and the cushioning capacitor 240 ( C 1 ) are connected in series with each other, and the cushioning diode 220 ( D 1 ) and the cushioning capacitor 240 ( C 1 ) connected in series are connected in parallel with each other. The crystal switch 120 ( M 1 ) has a flywheel diode 121 and an equivalent capacitor 122 connected in parallel with the power transistor switch 120 ( M 1 ). The lossless snubber circuit 200 is electrically connected to the primary side and the secondary side winding of the main transformer 110 to form a flyback converter 100 having a lossless snubber circuit 200. In particular, the primary side of the main transformer 110 has an equivalent magnetizing inductance 111 ( L m 11 ) and an equivalent leakage inductance 112 ( L K 11 ), and its electrical connection can be regarded as the primary side of the main transformer 110. After being connected in parallel with the equivalent magnetizing inductance 111 ( L m 11 ), it is electrically connected to the equivalent leakage inductance 112 ( L K 11 ). In addition, the primary side of the recovery transformer 210 also has an equivalent excitation inductance 211 ( L m 21 ) and an equivalent leakage inductance 212 ( L K 21 ), and the electrical connection manner can be regarded as the primary side of the return transformer 210 and the equivalent. The magnetizing inductances 211 ( L m 21 ) are connected in parallel to each other and then electrically connected to the equivalent leakage inductance 212 ( L K 21 ).
承上所述,倘若要使具無損耗緩震電路之返馳式轉換器100具有多個輸出,可如「第2B圖」所示意,利用第二輸出二極體271、第二輸出電容272及第二負載273組成第二電源輸出端270,此第二電源輸出端270電性連接至主變壓器110的二次側。特別要說明的是,本發明並未限定第二電源輸出端270的數量,換而言之,可同時存在多個第二電源輸出端270,其每一第二電源輸出端270皆包含第二輸出二極體271及相互並聯的第二輸出電容272與第二負載273用以電性連接主變壓器110的二次側。當具有一個第二電源輸出端270時,本發明具無損耗緩震電路200之返馳式電源供應器即具有兩個電源輸出(即第一電源輸出端170與第二電源輸出端270);當具有二個第二電源輸出端270時,本發明具無損耗緩震電路200之返馳式電源供應器即具有三個電源輸出(即第一電源輸出端170與兩個第二電源輸出端270)並以此類推。在實際實施上,倘若僅具有第一電源輸出端170而無第二電源輸出端270,則為如「第2A圖」所示意之單一輸出的電源供應器。As described above, if the flyback converter 100 having the lossless snubber circuit has a plurality of outputs, the second output diode 271 and the second output capacitor 272 can be utilized as illustrated in FIG. 2B. The second load 273 constitutes a second power output 270, and the second power output 270 is electrically connected to the secondary side of the main transformer 110. In particular, the present invention does not limit the number of second power output ends 270. In other words, a plurality of second power output ends 270 may be present at the same time, and each of the second power output ends 270 includes a second The output diode 271 and the second output capacitor 272 and the second load 273 connected in parallel are electrically connected to the secondary side of the main transformer 110. When there is a second power output 270, the flyback power supply of the present invention having the lossless cushioning circuit 200 has two power output (ie, the first power output 170 and the second power output 270); When there are two second power output ends 270, the flyback power supply of the present invention having the lossless cushioning circuit 200 has three power output outputs (ie, the first power output 170 and the two second power outputs) 270) and so on. In actual implementation, if there is only the first power output terminal 170 and no second power output terminal 270, it is a single output power supply as illustrated in "FIG. 2A".
至於無損耗緩震電路200則包含回復變壓器210,此回復變壓器210的一次側透過緩震二極體220、第一回復二極體230及緩震電容240電性連接功率電晶體開關120,而回復變壓器210的二次側則透過多個第二回復二極體及回復電感電性連接第一電源輸出端170。The lossless snubber circuit 200 includes a return transformer 210. The primary side of the return transformer 210 is electrically connected to the power transistor switch 120 through the snubber diode 220, the first return diode 230, and the snubber capacitor 240. The secondary side of the recovery transformer 210 is electrically connected to the first power output terminal 170 through a plurality of second return diodes and a return inductor.
以下配合「第3圖」以實施例的方式進行如下說明,如「第 3圖」所示意,「第3圖」為本發明具無損耗緩震電路之返馳式五輸出電源供應器之電路示意圖,前面提到,本發明並未限定第二電源輸出端270的數量,以五個輸出為例,即如「第3圖」所示意以第一電源輸出端170搭配四個第二電源輸出端270來實現具無損耗緩震電路之返馳式五輸出電源供應器100a。其中,與第一電源輸出端170相鄰的第二電源輸出端270可基於電路佈線方便而調整成「第3圖」所示意的電路連接方式。The following description will be made in the following manner in conjunction with "3rd figure", such as " 3 is a circuit diagram of a flyback five-output power supply with a lossless cushioning circuit according to the present invention. As mentioned above, the present invention does not limit the number of second power output terminals 270. Taking five outputs as an example, that is, as shown in FIG. 3, the first power output terminal 170 is combined with the four second power output ends 270 to implement a flyback five-output power supply with a lossless cushioning circuit. 100a. The second power output terminal 270 adjacent to the first power output terminal 170 can be adjusted to the circuit connection mode illustrated in FIG. 3 based on the convenience of circuit wiring.
接著,為了方便說明,以「第2A圖」的電路為例,配合「第4A圖」至「第4G圖」對此電路的七個運作模式(模式一至模式七)進行如下說明,並且搭配「第5圖」(即應用本發明的電源供應器於各模式之波形示意圖)對各模式中關鍵元件的電流與電壓之波形變化進行示意。請先參閱「第4A圖」,「第4A圖」為應用本發明的電源供應器於模式一(t 0 t <t 1 )之運作示意圖。當t =t 0 時,功率電晶體開關120(M 1 )打開(turned on),此時主變壓器110(T r 1 )的漏電感電流I LK 11 小於激磁電流I Lm 11 ,主變壓器110(T r 1 )持續經由第一輸出二極體130(D o )轉送能量至第一負載150(R o )。在此時間間隔中,等效漏電感112(L K 11 )的端電壓會升至“(V i +V o /N )”導致電流I LK 11 迅速增加,但此時,電流I Lm 11 卻是線性下降。此外,一旦功率電晶體開關120(M 1 )為導通(ON),緩震電容240(C 1 )端電壓V C 1 會直接加在回復變壓器210(T r 2 )的一次側繞組,使第一回復二極體230(D 2 )及第二回復二極體250(D 3 )順向偏壓,因此儲存在緩震電容240(C 1 )的能量會經由回復電感260(L o )轉送至輸出端。For the sake of convenience, the seven operating modes (Mode 1 to Mode 7) of this circuit are described below with reference to the circuit of "Phase 2A" to "4G". Fig. 5 (i.e., a waveform diagram of the power supply of the present invention in each mode) illustrates the waveform changes of current and voltage of key elements in each mode. Please refer to "4A" first, and "4A" is the power supply to which the present invention is applied in mode one ( t 0 Schematic diagram of the operation of t < t 1 ). When t = t 0 , the power transistor switch 120 ( M 1 ) is turned on, at which time the leakage inductance current I LK 11 of the main transformer 110 ( T r 1 ) is smaller than the excitation current I Lm 11 , the main transformer 110 ( T r 1) continuously through a first output diode 130 (D o) transfer energy to a first load 150 (R o). During this time interval, the terminal voltage of the equivalent leakage inductance 112 ( L K 11 ) rises to "( V i + V o / N )", causing the current I LK 11 to increase rapidly, but at this time, the current I Lm 11 It is linearly falling. In addition, once the power transistor switch 120 ( M 1 ) is turned ON, the voltage of the buffer capacitor 240 ( C 1 ) terminal V C 1 is directly applied to the primary winding of the return transformer 210 ( T r 2 ), so that A return diode 230 ( D 2 ) and a second return diode 250 ( D 3 ) are forward biased, so the energy stored in the cushioning capacitor 240 ( C 1 ) is transferred via the return inductor 260 ( L o ) To the output.
請參閱「第4B圖」,「第4B圖」為應用本發明的電源供應器 於模式二(t 1 t <t 2 )之運作示意圖。在t 1 的時候,當I LK 11 等於I Lm 11 時,第一輸出二極體130(D o )為逆向偏壓。在此時間間隔中,I Lm 11 線性增加且主變壓器110(T r 1 )儲存能量,而緩震電容240(C 1 )保持釋放其能量,此能量將經由第一回復二極體230(D 2 )、回復變壓器210(T r 2 )、第二回復二極體250(D 3 )及回復電感260(L o )至第一負載150(R o )。Please refer to "Fig. 4B", "Fig. 4B" is the power supply to which the present invention is applied in mode 2 ( t 1 Schematic diagram of the operation of t < t 2 ). At t 1 , when I LK 11 is equal to I Lm 11 , the first output diode 130 ( D o ) is reverse biased. During this time interval, I Lm 11 increases linearly and main transformer 110 ( T r 1 ) stores energy, while cushioning capacitor 240 ( C 1 ) keeps releasing its energy, which will pass through first return diode 230 ( D 2 ), the transformer 210 ( T r 2 ), the second return diode 250 ( D 3 ), and the return inductor 260 ( L o ) to the first load 150 ( R o ).
請參閱「第4C圖」,「第4C圖」為應用本發明的電源供應器於模式三(t 2 t <t 3 )之運作示意圖。當儲存在緩震電容240(C 1 )的能量完全地釋放後開始此模式,緩震二極體220(D 1 )及第二回復二極體250(D 4 )將變成順向偏壓而第二回復二極體250(D 3 )為逆向偏壓,在此情況,儲存在回復變壓器210(T r 2 )的磁化能量經由緩震二極體220(D 1 )及第一回復二極體230(D 2 )為飛輪(freewheeling)狀態,而儲存於回復電感260(L o )的能量則經由第二回復二極體250(D 4 )傳送到第一負載150(R o )。在此模式中,主變壓器110(T r 1 )是在能量儲存階段且激磁電流I Lm 11 線性上升。Please refer to "4C" and "4C" for the power supply to which the present invention is applied in mode 3 ( t 2 Schematic diagram of the operation of t < t 3 ). When this mode is started after the energy stored in the cushioning capacitor 240 ( C 1 ) is completely released, the cushioning diode 220 ( D 1 ) and the second returning diode 250 ( D 4 ) will become forward biased. The second return diode 250 ( D 3 ) is reverse biased, in which case the magnetization energy stored in the return transformer 210 ( T r 2 ) passes through the cushioning diode 220 ( D 1 ) and the first return dipole The body 230 ( D 2 ) is in a freewheeling state, and the energy stored in the recovery inductor 260 ( L o ) is transmitted to the first load 150 ( R o ) via the second return diode 250 ( D 4 ). In this mode, the main transformer 110 ( T r 1 ) is in the energy storage phase and the exciting current I Lm 11 rises linearly.
請參閱「第4D圖」,「第4D圖」為應用本發明的電源供應器於模式四(t 3 t <t 4 )之運作示意圖。當t =t 3 時,功率電晶體開關120(M 1 )關閉,此時電感電流I Lm 11 則經由等效電容122(C M 1 )及緩震電容240(C 1 )保持其連續。由於緩震電容240(C 1 )大於等效電容122(C M 1 ),功率電晶體開關120(M 1 )端電壓會平滑地從“0”增加至“(V i +V o /N )”。因此,功率電晶體開關120(M 1 )操作於零電壓轉換(Zero-Voltage Transition,ZVT)。緩震二極體220(D 1 )、第一回復二極體230(D 2 )及第二回復二極體250 (D 4 )持續經由等效激磁電感211(L m21 )及回復電感260(L o )維持在飛輪(freewheeling)狀態。Please refer to "4D", "4D" is the power supply to which the present invention is applied in mode 4 ( t 3 Schematic diagram of the operation of t < t 4 ). When t = t 3 , the power transistor switch 120 ( M 1 ) is turned off, and the inductor current I Lm 11 is kept continuous through the equivalent capacitor 122 ( C M 1 ) and the cushioning capacitor 240 ( C 1 ). Since the cushioning capacitor 240 ( C 1 ) is larger than the equivalent capacitor 122 ( C M 1 ), the voltage of the power transistor switch 120 ( M 1 ) terminal is smoothly increased from “0” to “( V i + V o / N )). ". Therefore, the power transistor switch 120 ( M 1 ) operates in a Zero-Voltage Transition (ZVT). The cushioning diode 220 ( D 1 ), the first returning diode 230 ( D 2 ), and the second returning diode 250 ( D 4 ) continue to pass through the equivalent magnetizing inductance 211 ( L m21 ) and the returning inductance 260 ( L o ) is maintained in the freewheeling state.
請參閱「第4E圖」,「第4E圖」為應用本發明的電源供應器於模式五(t 4 t <t 5 )之運作示意圖。在t 4 時,緩震電容240(C 1 )端電壓達到“(V i +V o /N )”,其使第一輸出二極體130(D o )正向偏壓。因此,儲存在主變壓器110(T r 1 )的能量能夠經由第一輸出二極體130(D o )釋放至第一負載150(R o ),同時電流I Lm 11 也線性下降,同時等效激磁電感211(L m21 )及回復電感260(L o )維持在飛輪狀態。Please refer to "4E" and "4E" for the power supply to which the present invention is applied in mode 5 ( t 4 Schematic diagram of the operation of t < t 5 ). At t 4 , the voltage at the terminal of the cushioning capacitor 240 ( C 1 ) reaches "( V i + V o / N )", which causes the first output diode 130 ( D o ) to be forward biased. Thus, the energy stored in main transformer 110 (T r 1) can be released to a first load 150 (R o) via the first output diode 130 (D o), while the current I Lm 11 also decreases linearly, while equivalent The magnetizing inductance 211 ( L m21 ) and the returning inductance 260 ( L o ) are maintained in the flywheel state.
請參閱「第4F圖」,「第4F圖」為應用本發明的電源供應器於模式六(t 5 t <t 6 )之運作示意圖。當儲存在回復電感260(L o )的能量完全釋放至第一負載150(R o )時此模式六啟動,第二回復二極體250(D 4 )為逆向偏壓,而且此時只有主變壓器110(T r 1 )經由第一輸出二極體130(D o )提供能量至第一負載150(R o )。Please refer to "4F" and "4F" for the power supply to which the present invention is applied in mode 6 ( t 5 Schematic diagram of the operation of t < t 6 ). When the energy stored in the recovery inductor 260 ( L o ) is completely released to the first load 150 ( R o ), the mode 6 is activated, and the second return diode 250 ( D 4 ) is reverse biased, and at this time only the main transformer 110 (T r 1) supplying energy to a first load 150 (R o) via the first output diode 130 (D o).
請參閱「第4G圖」,「第4G圖」為應用本發明電源供應器於模式七(t 6 t <t 7 )之運作示意圖。在t 6 時,儲存在等效激磁電感211(L m21 )的能量重置為“0”且緩震二極體220(D 1 )及第一回復二極體230(D 2 )成為截止(off)。電流I Lm 11 持續釋放能量至第一負載150(R o )而線性下降。當功率電晶體開關120(M 1 )在模式七結束時開啟,將開始一個新的開關週期。Please refer to "4G" and "4G" for applying the power supply of the present invention in mode seven ( t 6 Schematic diagram of the operation of t < t 7 ). At t 6 , the energy stored in the equivalent magnetizing inductance 211 ( L m21 ) is reset to “0” and the cushioning diode 220 ( D 1 ) and the first returning diode 230 ( D 2 ) are turned off ( Off). The current I Lm 11 continues to release energy to the first load 150 ( R o ) and decreases linearly. When the power transistor switch 120 ( M 1 ) is turned on at the end of mode seven, a new switching cycle will begin.
綜上所述,可知本發明與先前技術之間的差異在於透過回復變壓器210、緩震二極體220、第一回復二極體230、第二回復二極體250、回復電感260及緩震電容240形成無損耗緩震電路200,並且將無損耗緩震電路200電性連接至返馳式轉換器,以便恢復 主變壓器110的漏電感之能量,以及減輕由二極體的寄生電容與主變壓器110的漏電感所引起的震盪,藉由此一技術手段可以解決先前技術所存在的問題,進而達成降低開關損耗及提高轉換效率之技術功效。In summary, it can be seen that the difference between the present invention and the prior art is that the recovery transformer 210, the cushioning diode 220, the first returning diode 230, the second returning diode 250, the returning inductance 260, and the cushioning are transmitted. The capacitor 240 forms a lossless snubber circuit 200 and electrically connects the lossless snubber circuit 200 to the flyback converter for recovery The energy of the leakage inductance of the main transformer 110 and the oscillation caused by the parasitic capacitance of the diode and the leakage inductance of the main transformer 110 can solve the problems of the prior art by the technical means, thereby achieving the reduction of the switching loss. And the technical effect of improving conversion efficiency.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。While the present invention has been described above in the foregoing embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of patent protection shall be subject to the definition of the scope of the patent application attached to this specification.
10‧‧‧RCD緩震電路10‧‧‧RCD cushioning circuit
20‧‧‧功率電晶體開關20‧‧‧Power transistor switch
100‧‧‧具無損耗緩震電路之返馳式轉換器100‧‧‧Return-to-speed converter with lossless cushioning circuit
110‧‧‧主變壓器110‧‧‧ main transformer
111‧‧‧等效激磁電感111‧‧‧Equivalent magnetizing inductance
112‧‧‧等效漏電感112‧‧‧Equivalent leakage inductance
120‧‧‧功率電晶體開關120‧‧‧Power transistor switch
121‧‧‧飛輪二極體121‧‧‧Flywheel diode
122‧‧‧等效電容122‧‧‧ equivalent capacitance
130‧‧‧第一輸出二極體130‧‧‧First output diode
140‧‧‧第一輸出電容140‧‧‧First output capacitor
150‧‧‧第一負載150‧‧‧First load
160‧‧‧輸入電源160‧‧‧Input power supply
170‧‧‧第一電源輸出端170‧‧‧First power output
200‧‧‧無損耗緩震電路200‧‧‧ lossless cushioning circuit
210‧‧‧回復變壓器210‧‧‧Restoring transformer
211‧‧‧等效激磁電感211‧‧‧ equivalent magnetizing inductance
212‧‧‧等效漏電感212‧‧‧Equivalent leakage inductance
220‧‧‧緩震二極體220‧‧‧ cushioning diode
230‧‧‧第一回復二極體230‧‧‧First Responsive Diode
240‧‧‧緩震電容240‧‧‧ cushioning capacitor
250‧‧‧第二回復二極體250‧‧‧Secondary return diode
260‧‧‧回復電感260‧‧‧Responsive inductance
270‧‧‧第二電源輸出端270‧‧‧second power output
271‧‧‧第二輸出二極體271‧‧‧Second output diode
272‧‧‧第二輸出電容272‧‧‧second output capacitor
273‧‧‧第二負載273‧‧‧second load
第1圖為習知具有與開關相互並聯的RCD緩震電路的返馳式轉換器之示意圖。FIG. 1 is a schematic diagram of a conventional flyback converter having an RCD snubber circuit in parallel with a switch.
第2A圖及第2B圖為本發明具無損耗緩震電路之返馳式電源供應器之電路示意圖。2A and 2B are circuit diagrams showing a flyback power supply with a lossless cushioning circuit of the present invention.
第3圖為本發明具無損耗緩震電路之返馳式五輸出電源供應器之電路示意圖。FIG. 3 is a schematic circuit diagram of a flyback five-output power supply with a lossless cushioning circuit according to the present invention.
第4A圖為應用本發明的電源供應器於模式一(t 0 t <t 1 )之運作示意圖。Figure 4A is a diagram showing the application of the power supply of the present invention in mode one ( t 0 Schematic diagram of the operation of t < t 1 ).
第4B圖為應用本發明的電源供應器於模式二(t 1 t <t 2 )之運作示意圖。Figure 4B is a diagram showing the application of the power supply of the present invention to mode 2 ( t 1 Schematic diagram of the operation of t < t 2 ).
第4C圖為應用本發明的電源供應器於模式三(t 2 t <t 3 )之運作示意圖。Figure 4C is a diagram showing the application of the power supply of the present invention in mode three ( t 2 Schematic diagram of the operation of t < t 3 ).
第4D圖為應用本發明的電源供應器於模式四(t 3 t <t 4 )之運作示意圖。Figure 4D is a power supply to which the present invention is applied in mode four ( t 3 Schematic diagram of the operation of t < t 4 ).
第4E圖為應用本發明的電源供應器於模式五(t 4 t <t 5 )之 運作示意圖。Figure 4E is a diagram showing the application of the power supply of the present invention in mode 5 ( t 4 Schematic diagram of the operation of t < t 5 ).
第4F圖為應用本發明的電源供應器於模式六(t 5 t <t 6 )之運作示意圖。Figure 4F is a power supply to which the present invention is applied in mode six ( t 5 Schematic diagram of the operation of t < t 6 ).
第4G圖為應用本發明的電源供應器於模式七(t 6 t <t 7 )之運作示意圖。Figure 4G is a diagram showing the application of the power supply of the present invention in mode seven ( t 6 Schematic diagram of the operation of t < t 7 ).
第5圖為應用本發明的電源供應器於各模式之波形示意圖。Fig. 5 is a waveform diagram showing the power supply of the present invention in each mode.
100‧‧‧具無損耗緩震電路之返馳式轉換器100‧‧‧Return-to-speed converter with lossless cushioning circuit
110‧‧‧主變壓器110‧‧‧ main transformer
111‧‧‧等效激磁電感111‧‧‧Equivalent magnetizing inductance
112‧‧‧等效漏電感112‧‧‧Equivalent leakage inductance
120‧‧‧功率電晶體開關120‧‧‧Power transistor switch
121‧‧‧飛輪二極體121‧‧‧Flywheel diode
122‧‧‧等效電容122‧‧‧ equivalent capacitance
130‧‧‧第一輸出二極體130‧‧‧First output diode
140‧‧‧第一輸出電容140‧‧‧First output capacitor
150‧‧‧第一負載150‧‧‧First load
160‧‧‧輸入電源160‧‧‧Input power supply
170‧‧‧第一電源輸出端170‧‧‧First power output
200‧‧‧無損耗緩震電路200‧‧‧ lossless cushioning circuit
210‧‧‧回復變壓器210‧‧‧Restoring transformer
211‧‧‧等效激磁電感211‧‧‧ equivalent magnetizing inductance
212‧‧‧等效漏電感212‧‧‧Equivalent leakage inductance
220‧‧‧緩震二極體220‧‧‧ cushioning diode
230‧‧‧第一回復二極體230‧‧‧First Responsive Diode
240‧‧‧緩震電容240‧‧‧ cushioning capacitor
250‧‧‧第二回復二極體250‧‧‧Secondary return diode
260‧‧‧回復電感260‧‧‧Responsive inductance
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100148734A TWI460976B (en) | 2011-12-27 | 2011-12-27 | Flyback power supply with lossless snubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100148734A TWI460976B (en) | 2011-12-27 | 2011-12-27 | Flyback power supply with lossless snubber |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201328149A TW201328149A (en) | 2013-07-01 |
TWI460976B true TWI460976B (en) | 2014-11-11 |
Family
ID=49225313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100148734A TWI460976B (en) | 2011-12-27 | 2011-12-27 | Flyback power supply with lossless snubber |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI460976B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI690140B (en) * | 2018-07-19 | 2020-04-01 | 幸康電子股份有限公司 | Low loss buffer circuit、rectifier with low loss buffer circuit and converter with low loss buffer circuit |
TWI731675B (en) | 2020-05-11 | 2021-06-21 | 宏碁股份有限公司 | Power supply device for eliminating ringing effect |
CN113938014B (en) * | 2020-07-13 | 2023-07-21 | 宏碁股份有限公司 | Power supply device for eliminating ringing effect |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6115271A (en) * | 1999-10-04 | 2000-09-05 | Mo; Chan Ho Simon | Switching power converters with improved lossless snubber networks |
US7630219B2 (en) * | 2006-01-10 | 2009-12-08 | Samsung Electronics Co., Ltd. | DC to DC converter for decreasing switching loss according to the turn-on/turn-off state of a switch |
-
2011
- 2011-12-27 TW TW100148734A patent/TWI460976B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6115271A (en) * | 1999-10-04 | 2000-09-05 | Mo; Chan Ho Simon | Switching power converters with improved lossless snubber networks |
US7630219B2 (en) * | 2006-01-10 | 2009-12-08 | Samsung Electronics Co., Ltd. | DC to DC converter for decreasing switching loss according to the turn-on/turn-off state of a switch |
Also Published As
Publication number | Publication date |
---|---|
TW201328149A (en) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9419531B2 (en) | Forward-flyback DC-DC converter using resonant LC output circuit | |
US5841268A (en) | Multi-resonant soft switching snubber network for DC-to-DC converter | |
US20090257254A1 (en) | Voltage-clamp power converters | |
JP2004514396A (en) | Voltage clamp device for DC / DC power converter | |
JP2004514398A (en) | Leak energy recovery system and method for flyback converter | |
WO2007095346B1 (en) | Two terminals quasi resonant tank circuit | |
TWI732581B (en) | Conversion device with oscillation reduction control and method of operation of oscillation reduction control the same | |
KR20180004673A (en) | Bidirectional full-bridge converter and control method thereof | |
US20160126853A1 (en) | Partial Time Active Clamp Flyback | |
TW202037053A (en) | Flyback power-converting device with zero-voltage switching and method for flyback converting power with zero-voltage switching | |
TWI460976B (en) | Flyback power supply with lossless snubber | |
TWI389442B (en) | Switching driving circuit for soft switching | |
TW200408191A (en) | Converter with active LC shock absorbing circuit | |
CN108347174B (en) | Boost full-bridge isolated converter and composite active clamping circuit thereof | |
TW556401B (en) | Converter using synchronous rectification circuit and associated with LC snubber apparatus | |
US20130187700A1 (en) | Energy reuse circuit | |
CN103683945B (en) | Forward-based power conversion device | |
KR101910533B1 (en) | Soft-switching full-bridge converter and control method thereof | |
CN202586757U (en) | Non-isolation voltage-reducing type DC-DC converter | |
TW202121813A (en) | Dual mode active clamp flyback converter | |
KR20090066954A (en) | Loseless power factor correction circuit | |
TW201342782A (en) | Power converting device with control switch | |
TWI501527B (en) | High voltage ratio interleaved converter with soft-switching using single auxiliary switch | |
RU2531375C2 (en) | Dc/dc converter | |
CN100369371C (en) | Circuit for suppressing reverse spike voltage of diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |