TWI459696B - Power factor correction boost converter and frequency switching modulation method thereof - Google Patents

Power factor correction boost converter and frequency switching modulation method thereof Download PDF

Info

Publication number
TWI459696B
TWI459696B TW100110564A TW100110564A TWI459696B TW I459696 B TWI459696 B TW I459696B TW 100110564 A TW100110564 A TW 100110564A TW 100110564 A TW100110564 A TW 100110564A TW I459696 B TWI459696 B TW I459696B
Authority
TW
Taiwan
Prior art keywords
coupled
resistor
power factor
factor correction
frequency
Prior art date
Application number
TW100110564A
Other languages
Chinese (zh)
Other versions
TW201240301A (en
Inventor
Chih Tai Chen
Yu Ho Lin
Original Assignee
Lite On Electronics Guangzhou
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Electronics Guangzhou, Lite On Technology Corp filed Critical Lite On Electronics Guangzhou
Priority to TW100110564A priority Critical patent/TWI459696B/en
Publication of TW201240301A publication Critical patent/TW201240301A/en
Application granted granted Critical
Publication of TWI459696B publication Critical patent/TWI459696B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

功率因數修正升壓轉換器及其切換頻率調變方法Power factor correction boost converter and switching frequency modulation method thereof

本發明是有關於一種功率因數修正器,且特別是有關於一種應用於高效率交換式電源供應器的功率因數修正升壓轉換器(PFC Boost converter)。The present invention relates to a power factor corrector, and more particularly to a power factor modified boost converter (PFC Boost converter) for use in a high efficiency switched power supply.

近年來環保意識的提升,與全球暖化問題,迫使節約能源成為世界各國重要政策之一。美國環境協會(U.S. Environmental Protection Agency,EPA)對於各項資訊電子設備也相對規定高效率的規範以去達到節能的目地,如在PC電源供應器上有80+基本款需求(80%,80%,80%),銅牌(82%,85%,82%)、銀牌(85%,88%,85%)、金牌(87%,90%,87%)認證,所以提高電源轉換器的效率是我們目前必須克服的難題。In recent years, the promotion of environmental awareness and global warming have forced energy conservation to become one of the important policies of all countries in the world. The US Environmental Protection Agency (EPA) has relatively high efficiency specifications for various information electronic devices to achieve energy-saving goals, such as 80+ basic requirements on PC power supplies (80%, 80%). , 80%), Bronze (82%, 85%, 82%), Silver (85%, 88%, 85%), Gold (87%, 90%, 87%) certification, so improving the efficiency of the power converter is The problem we must overcome now.

在電力電子的應用中,交流對直流轉換器(AC to DC converter)的應用非常廣泛,例如家電與電腦皆需要使用交流對直流轉換器來將交流電轉換為直流電使用。基於現有的電腦的電源供應器產業已經朝向高效率與高功因的趨勢發展,所以目前在電力電路的設計上,對於電子設備的功率因數有相當嚴謹的要求。由於在交流對直流轉換器中存在有很多的非線性元件,例如橋式整流濾波器,所以需要使用功因修正器來調整輸出電壓與輸出電流的相位以提高功率因數。其中,功因修正升壓轉換器是最常見的架構之一。In power electronics applications, AC to DC converters are widely used. For example, home appliances and computers need to use AC to DC converters to convert AC power to DC power. The power supply industry based on existing computers has been moving toward a trend of high efficiency and high power. Therefore, in the design of power circuits, there is a fairly stringent requirement for the power factor of electronic devices. Since there are many nonlinear components in the AC-to-DC converter, such as bridge rectifier filters, it is necessary to use a power factor corrector to adjust the phase of the output voltage and the output current to improve the power factor. Among them, the power factor correction boost converter is one of the most common architectures.

一般轉換器採用CCM平均電流模式定頻控制,使得電源供應器不論輸出電壓在任何負載下,切換頻率都是定值。而對於交換式電源供應器的輕載及中載而言,較高的切換頻率不是一個好的操作,因為其會增加功率電晶體的切換損失(switching loss)、驅動損失(driver loss)與磁性元件的鐵損(core loss),影響整體電源供應器的轉換效率。因此,如何降低交換式電源供應器在切換時的功率消耗成為目前電力電子重要的研究方向。The general converter adopts CCM average current mode fixed frequency control, so that the switching frequency of the power supply is constant regardless of the output voltage under any load. For light and medium loads of switched power supplies, higher switching frequencies are not a good operation because they increase the switching loss, driver loss and magnetic properties of the power transistors. The core loss of the component affects the conversion efficiency of the overall power supply. Therefore, how to reduce the power consumption of the switching power supply during switching has become an important research direction of power electronics.

本發明提供一種功率因數修正升壓轉換器,適用於使用功因修正升壓轉換器之電源供應器,其透過一控制單元,致使轉換器的切換頻率為可調變的,可以依據輸出負載調整切換頻率,以降低功率開關的切換損失與磁性元件的固定損失等,進而提升電源轉換器的轉換效率。The invention provides a power factor correction boost converter, which is suitable for using a power factor correction power converter of a boost converter, which is controlled by a control unit, so that the switching frequency of the converter is adjustable, and can be adjusted according to the output load. The switching frequency is used to reduce the switching loss of the power switch and the fixed loss of the magnetic component, thereby improving the conversion efficiency of the power converter.

本發明提出一種功率因數修正升壓轉換器,用以產生電力至一電壓轉換器,此功率因數修正升壓轉換器包括一功率因數修正轉換單元與一控制單元。功率因數修正轉換單元根據一脈波寬度調變信號調整輸出至電壓轉換器的電力。控制單元耦接於功率因數修正轉換單元,根據功率因數修正轉換單元的一輸出負載調整脈波寬度調變信號的頻率。其中,當功率因數修正轉換單元的輸出負載提高時,控制單元提高脈波寬度調變信號的頻率;當功率因數修正轉換單元的輸出負載降低時,控制單元降低該脈波寬度調變信號的頻率。The present invention provides a power factor correction boost converter for generating power to a voltage converter. The power factor correction boost converter includes a power factor correction conversion unit and a control unit. The power factor correction conversion unit adjusts the power output to the voltage converter according to a pulse width modulation signal. The control unit is coupled to the power factor correction conversion unit, and adjusts the frequency of the pulse width modulation signal according to an output load of the power factor correction conversion unit. Wherein, when the output load of the power factor correction conversion unit is increased, the control unit increases the frequency of the pulse width modulation signal; when the output load of the power factor correction conversion unit decreases, the control unit decreases the frequency of the pulse width modulation signal .

在本發明一實施例中,上述控制單元包括電流偵測電路、電壓偵測電路與控制電路。電流偵測電路用以產生對應於功率因數修正轉換單元的一輸出負載電流的一第一偵測信號。電壓偵測電路用以產生對應於功率因數修正轉換單元的一輸出負載電壓的一第二偵測信號。控制電路耦接於電流偵側電路與電壓偵測電路,根據第一偵測信號/第二偵測信號調整脈波調變信號的頻率。其中,當功率因數修正轉換單元的負載電流小於一第一預設值或功率因數修正轉換單元的該輸出負載電壓小於一第二預設值時,控制電路降低脈波寬度調變信號的頻率以降低功率因數修正轉換器的切換損耗。反之,當功率因數修正轉換單元的輸出負載電流大於一第一預設值或功率因數修正轉換單元的輸出負載電壓大於一第二預設值時,控制電路會提高脈波寬度調變信號的頻率。In an embodiment of the invention, the control unit includes a current detecting circuit, a voltage detecting circuit, and a control circuit. The current detecting circuit is configured to generate a first detection signal corresponding to an output load current of the power factor correction conversion unit. The voltage detecting circuit is configured to generate a second detection signal corresponding to an output load voltage of the power factor correction conversion unit. The control circuit is coupled to the current detection circuit and the voltage detection circuit, and adjusts the frequency of the pulse modulation signal according to the first detection signal/second detection signal. Wherein, when the load current of the power factor correction conversion unit is less than a first preset value or the output load voltage of the power factor correction conversion unit is less than a second preset value, the control circuit reduces the frequency of the pulse width modulation signal to Reduce the switching loss of the power factor correction converter. On the contrary, when the output load current of the power factor correction conversion unit is greater than a first preset value or the output load voltage of the power factor correction conversion unit is greater than a second preset value, the control circuit increases the frequency of the pulse width modulation signal. .

從另一個角度來看,本發明另提出一種功率因數修正升壓轉換器的切換頻率調變方法,其中功率因數修正升壓轉換器根據一脈波寬度調變信號調整輸出至一電壓轉換器的電力,上述頻率調變方法包括下列步驟:偵測功率因數修正升壓轉換器的一輸出負載;偵測輸出負載的變化,當功率因數修正升壓轉換器的輸出負載提高時,提高脈波寬度調變信號的頻率;當功率因數修正轉換單元的該輸出負載降低時,降低脈波寬度調變信號的頻率。From another point of view, the present invention further provides a switching frequency modulation method for a power factor correction boost converter, wherein the power factor correction boost converter adjusts the output to a voltage converter according to a pulse width modulation signal. The power frequency modulation method includes the following steps: detecting an output load of the power factor correction boost converter; detecting a change of the output load, and increasing the pulse width when the output load of the power factor correction boost converter is increased. The frequency of the modulated signal; when the output load of the power factor correction conversion unit decreases, the frequency of the pulse width modulation signal is reduced.

綜合上述,本發明所提出的功率因數修正升壓轉換器,可以依據輸出負載來調整切換頻率。當負載低時,控制器主動降低切換頻率以降低功率因數修正升壓轉換器的切換損失。尤其在中載與輕載下,本發明會自動操作在較低的切換頻率下以降低功率損耗。In summary, the power factor correction boost converter proposed by the present invention can adjust the switching frequency according to the output load. When the load is low, the controller actively reduces the switching frequency to reduce the switching loss of the power factor correction boost converter. Especially at medium and light loads, the present invention automatically operates at lower switching frequencies to reduce power loss.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

在下文中,將藉由圖式說明本發明之實施例來詳細描述本發明,而圖式中的相同參考數字可用以表示類似的元件。In the following, the invention will be described in detail by the embodiments of the invention, and the same reference numerals are used in the drawings.

(第一實施例)(First Embodiment)

請參照圖1A,圖1A繪示本發明第一實施例的功率因數修正升壓轉換器的功能方塊圖。功率因數修正升壓轉換器100可以產生電力至後端的電壓轉換器150,然後經由電壓轉換器150轉換為直流電壓以提供給系統或電子設備使用。功率因數修正升壓轉換器100包控制單元101與功率因數修正轉換單元140,其中該功率因數修正轉換單元140可以例如是CCM功因修正轉換器。控制單元101尚包括控制電路110、電流偵測電路120與電壓偵測電路130。電流偵測電路120係用以產生對應於功率因數修正轉換單元140的輸出負載電流的第一偵測信號DS1,而電壓偵測電路130係用以產生對應於功率因數修正轉換單元140的輸出負載電壓的第二偵測信號DS2。Please refer to FIG. 1A. FIG. 1A is a functional block diagram of a power factor correction boost converter according to a first embodiment of the present invention. The power factor modified boost converter 100 can generate power to the back end voltage converter 150 and then convert it to a DC voltage via the voltage converter 150 for use by the system or electronic device. The power factor correction boost converter 100 includes a control unit 101 and a power factor correction conversion unit 140, wherein the power factor correction conversion unit 140 may be, for example, a CCM power factor correction converter. The control unit 101 further includes a control circuit 110, a current detecting circuit 120, and a voltage detecting circuit 130. The current detecting circuit 120 is configured to generate a first detection signal DS1 corresponding to the output load current of the power factor correction conversion unit 140, and the voltage detecting circuit 130 is configured to generate an output load corresponding to the power factor correction conversion unit 140. The second detection signal DS2 of the voltage.

控制電路110會根據上述第一偵測信號DS1與第二偵測信號DS2至少其中之一調整脈波寬度調變信號PWM的頻率。也就是說,控制電路110可以根據第一偵測信號DS1或第二偵測信號DS2來調整脈波寬度調變信號PWM的頻率。當功率因數修正轉換單元140的輸出負載提高時,控制單元101會提高脈波寬度調變信號PWM的頻率;當功率因數修正轉換單元140的輸出負載降低時,控制單元101會降低脈波寬度調變信號PWM的頻率,以降低功率因數修正轉換單元140的切換損失。The control circuit 110 adjusts the frequency of the pulse width modulation signal PWM according to at least one of the first detection signal DS1 and the second detection signal DS2. That is, the control circuit 110 can adjust the frequency of the pulse width modulation signal PWM according to the first detection signal DS1 or the second detection signal DS2. When the output load of the power factor correction conversion unit 140 is increased, the control unit 101 increases the frequency of the pulse width modulation signal PWM; when the output load of the power factor correction conversion unit 140 decreases, the control unit 101 decreases the pulse width modulation. The frequency of the signal PWM is varied to reduce the switching loss of the power factor correction conversion unit 140.

功率因數修正轉換單元140的負載變化可以經由輸出負載電壓或輸出負載電流來判斷,其中功率因數修正轉換單元140的輸出負載可用輸出負載電壓與輸出負載電流的乘積表示,即輸出功率。在本實施例中,當功率因數修正轉換單元140的輸出負載電流小於一第一預設值或功率因數修正轉換單元140的輸出負載電壓小於一第二預設值時,控制電路110降低該脈波寬度調變信號的頻率以降低該功率因數轉換器的切換損耗。反之,當功率因數修正轉換單元140的輸出負載電流大於一第一預設值或功率因數修正轉換單元140的輸出負載電壓大於一第二預設值時,控制電路110會提高脈波寬度調變信號的頻率。另外,控制電路110也可以採用漸進式的方式調整功率因數修正轉換單元140的切換頻率,讓脈波寬度調變信號PWM的頻率隨著功率因數修正轉換單元140的負載而變化。當負載增加時,提高脈波寬度調變信號PWM的頻率,當負載下降時,降低脈波寬度調變信號PWM的頻率。控制電路110調整脈波寬度調變信號PWM的方式可以依照設計需求與電路架構而變,本實施例並不限制於上述說明。The load variation of the power factor correction conversion unit 140 can be determined via an output load voltage or an output load current, wherein the output load of the power factor correction conversion unit 140 can be expressed as a product of the output load voltage and the output load current, that is, the output power. In this embodiment, when the output load current of the power factor correction conversion unit 140 is less than a first preset value or the output load voltage of the power factor correction conversion unit 140 is less than a second preset value, the control circuit 110 lowers the pulse. The wave width modulates the frequency of the signal to reduce the switching loss of the power factor converter. On the contrary, when the output load current of the power factor correction conversion unit 140 is greater than a first preset value or the output load voltage of the power factor correction conversion unit 140 is greater than a second preset value, the control circuit 110 increases the pulse width modulation. The frequency of the signal. In addition, the control circuit 110 may also adjust the switching frequency of the power factor correction conversion unit 140 in a progressive manner such that the frequency of the pulse width modulation signal PWM changes with the load of the power factor correction conversion unit 140. When the load increases, the frequency of the pulse width modulation signal PWM is increased, and when the load is decreased, the frequency of the pulse width modulation signal PWM is decreased. The manner in which the control circuit 110 adjusts the pulse width modulation signal PWM may vary according to design requirements and circuit architecture. This embodiment is not limited to the above description.

電流偵測電路120可以經由後端的電壓轉換器150的電流來偵測功率因數修正轉換單元140的輸出負載電流(以實線表示)或是直接偵測功率因數修正轉換單元140的輸出電流(以虛線表示)來產生第一偵測信號DS1。同理,電壓偵測電路130可以經由控制電路110所產生的對應於功率因數修正轉換單元140的輸出電壓的VEAO(以實線表示)信號來產生第二偵測信號DS2或是直接偵測功率因數修正轉換單元140的輸出電壓(以虛線表示)來產生第二偵測信號DS2。由於電壓偵測與電流偵測的電路和方式有多種實施方式,因此本實施例並不限制電流偵測電路120與電壓偵測電路130的電路架構與耦接方式,只要可以偵測到功率因數修正轉換單元140的輸出負載電壓/輸出負載電流即可。在常見的PWM控制器中,例如Champion的CM6802,VEAO信號為誤差放大器的輸出電壓,與功率因數修正轉換單元140的輸出電壓相關。在CM6802的規格書中,VEAO是由Pin 16輸出,其表示(PFC transconductance voltage amplifier output)。The current detecting circuit 120 can detect the output load current of the power factor correction conversion unit 140 (indicated by a solid line) or directly detect the output current of the power factor correction conversion unit 140 via the current of the voltage converter 150 at the rear end ( The dotted line indicates) to generate the first detection signal DS1. Similarly, the voltage detecting circuit 130 can generate the second detecting signal DS2 or directly detect the power via the VEAO (shown by the solid line) signal corresponding to the output voltage of the power factor correction converting unit 140 generated by the control circuit 110. The output voltage of the factor correction conversion unit 140 (indicated by a broken line) is used to generate the second detection signal DS2. Since the circuit and the method of the voltage detection and the current detection have various implementation manners, the embodiment does not limit the circuit architecture and the coupling manner of the current detection circuit 120 and the voltage detection circuit 130, as long as the power factor can be detected. The output load voltage/output load current of the conversion unit 140 may be corrected. In a typical PWM controller, such as Champion's CM6802, the VEAO signal is the output voltage of the error amplifier, which is related to the output voltage of the power factor correction conversion unit 140. In the specification of CM6802, VEAO is output by Pin 16, which represents (PFC transconductance voltage amplifier output).

功率因數修正轉換單元140會根據控制電路110所產生的脈波寬度調變信號PWM控制功率開關(未繪示)的切換,以調整輸出至該電壓轉換器的電力。在本實施例中,功率因數修正轉換單元140例如是升壓型功率因數修正轉換器,其主要由橋式整流器與升壓電路組成。請參照圖1B,其繪示本發明第一實施例的升壓型功率因數修正轉換器的電路示意圖。功率因數修正轉換單元140主要由橋式整流器142、電感L1、電晶體Q1、二極體D1與輸出電容C1構成。橋式整流器142對所接收的交流電VAC進行整流。電感L1、電晶體Q1、二極體D1與輸出電容C1構成升壓電路,會根據脈波寬度調變信號PWM的有效週期(duty cycle)產生不同的輸出電壓OUT。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知功率因數修正轉換單元140的實施方式,在此不加贅述。上述電壓轉換單元150為DC/DC轉換器,例如為PWM轉換器或諧振式電力轉換器(resonant converter)。The power factor correction conversion unit 140 controls the switching of the power switch (not shown) according to the pulse width modulation signal generated by the control circuit 110 to adjust the power output to the voltage converter. In the present embodiment, the power factor correction conversion unit 140 is, for example, a boost type power factor correction converter, which is mainly composed of a bridge rectifier and a booster circuit. Referring to FIG. 1B, a circuit diagram of a boost type power factor correction converter according to a first embodiment of the present invention is shown. The power factor correction conversion unit 140 is mainly composed of a bridge rectifier 142, an inductor L1, a transistor Q1, a diode D1, and an output capacitor C1. The bridge rectifier 142 rectifies the received alternating current VAC. The inductor L1, the transistor Q1, the diode D1, and the output capacitor C1 constitute a booster circuit, and generate different output voltages OUT according to the duty cycle of the pulse width modulation signal PWM. After the description of the above embodiments, those skilled in the art should be able to infer the implementation of the power factor correction conversion unit 140, and no further details are provided herein. The voltage conversion unit 150 is a DC/DC converter, such as a PWM converter or a resonant converter.

接下來,說明電流偵測電路120與電壓偵測電路130的電路圖。請參照圖2,圖2繪示本發明第一實施例的電流偵測電路120的電路示意圖。電流偵測電路120包括電阻R21~R28、比較器COM21~COM22、電容C21~C23與可程式並聯穩壓器211。電阻R21用來感測電壓轉換器150中變壓器的一次側電流。就電路結構而言,電阻R21例如耦接於電壓轉換器150中,變壓器的一次側連接的開關(未繪示)與接地端GND之間。一般而言,電壓轉換器150中會具有變壓器與功率電晶體(開關),電阻R21可以耦接於該功率電晶體的一端以擷取流經由電壓轉換器150的變壓器一次側的電流IS(IS電流流經電阻R21轉換放大成所需信號),此電流與功率因數修正轉換單元140的輸出負載電流相關。電阻R21主要是用來感測功率因數修正轉換單元140的輸出負載電流,在不同的電路架構中,電阻R21可以依照設計需求耦接於不同的端點擷取負載的電流,本實施例並不限制於圖2所示。Next, a circuit diagram of the current detecting circuit 120 and the voltage detecting circuit 130 will be described. Please refer to FIG. 2. FIG. 2 is a schematic circuit diagram of the current detecting circuit 120 according to the first embodiment of the present invention. The current detecting circuit 120 includes resistors R21 to R28, comparators COM21 to COM22, capacitors C21 to C23, and a programmable shunt regulator 211. Resistor R21 is used to sense the primary side current of the transformer in voltage converter 150. In terms of circuit structure, the resistor R21 is coupled to the voltage converter 150, for example, between a switch (not shown) connected to the primary side of the transformer and the ground GND. In general, the voltage converter 150 has a transformer and a power transistor (switch). The resistor R21 can be coupled to one end of the power transistor to extract the current IS (IS) of the transformer on the primary side of the transformer. The current flows through the resistor R21 to be amplified to a desired signal) which is related to the output load current of the power factor correction conversion unit 140. The resistor R21 is mainly used to sense the output load current of the power factor correction conversion unit 140. In different circuit architectures, the resistor R21 can be coupled to different terminals to draw the current of the load according to design requirements. This embodiment does not Limited to Figure 2.

比較器COM21的正輸入端經由電阻R22耦接於電阻R21與開關的接點,其負輸入端經由電阻R23耦接於接地端GND。電阻R24耦接於比較器COM21的輸出端與比較器COM21的負輸入端之間。電阻R25的一端耦接於比較器COM21的輸出端,電阻R25的另一端耦接於比較器COM22的正輸入端。比較器COM22的輸出端用以輸出第一偵測信號DS1。電阻R26耦接於比較器COM22的負輸入端與電容C21之間,電容C21的另一端耦接於接地端GND。電阻R27耦接於比較器COM22的輸出端與比較器COM22的正輸入端之間。電阻R28耦接於一工作電壓VCC與可程式並聯穩壓器211的陰極之間。可程式並聯穩壓器211的陽極耦接接地端GND,可程式並聯穩壓器211的參考端耦接於可程式並聯穩壓器的陰極。電阻R26與電容C21的接點耦接於可程式並聯穩壓器211的陰極。電容C22耦接於比較器COM21的正輸入端與接地端GND之間。電容C23耦接於比較器COM21的正輸入端與負輸入端之間。可程式並聯穩壓器211例如為德州儀器(Texas Instruments,TI)所出產的TL431穩壓器(voltage regulator),其元件說明請參照其元件說明書(data sheet),在此不加贅述。The positive input terminal of the comparator COM21 is coupled to the contact of the resistor R21 and the switch via a resistor R22, and the negative input terminal thereof is coupled to the ground GND via a resistor R23. The resistor R24 is coupled between the output of the comparator COM21 and the negative input of the comparator COM21. One end of the resistor R25 is coupled to the output end of the comparator COM21, and the other end of the resistor R25 is coupled to the positive input terminal of the comparator COM22. The output of the comparator COM22 is used to output the first detection signal DS1. The resistor R26 is coupled between the negative input terminal of the comparator COM22 and the capacitor C21. The other end of the capacitor C21 is coupled to the ground GND. The resistor R27 is coupled between the output of the comparator COM22 and the positive input of the comparator COM22. The resistor R28 is coupled between an operating voltage VCC and a cathode of the programmable shunt regulator 211. The anode of the programmable shunt regulator 211 is coupled to the ground GND, and the reference end of the programmable shunt regulator 211 is coupled to the cathode of the programmable shunt regulator. The junction of the resistor R26 and the capacitor C21 is coupled to the cathode of the programmable shunt regulator 211. The capacitor C22 is coupled between the positive input terminal of the comparator COM21 and the ground GND. The capacitor C23 is coupled between the positive input terminal and the negative input terminal of the comparator COM21. The programmable shunt regulator 211 is, for example, a TL431 voltage regulator manufactured by Texas Instruments (TI). For the component description, please refer to the data sheet, and no further description is provided here.

請參照圖3,圖3繪示本發明第一實施例的電壓偵測電路130的電路示意圖。電壓偵測電路130包括電阻R31~R35、電容C31~C33、比較器COM31~COM32與可程式並聯穩壓器311。電阻R31的一端耦接於對應於功率因數修正轉換單元140的輸出電壓的VEAO(電壓誤差放大器輸出電壓,VEAO正比於輸出負載)。一些控制器(參考圖4)會將功率因數修正轉換器的輸出電壓作為回授電壓使用,並且依據回授電壓產生VEAO。電壓偵測電路130便可利用此VEAO來偵測功率因數修正轉換單元140的輸出負載電壓。值得注意的是,電壓偵測電路130也可以依照電路架構,經由其他端點取得對應於功率因數修正轉換單元140的輸出負載電壓的VEAO。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知其實施方式,在此不加贅述。Please refer to FIG. 3. FIG. 3 is a schematic circuit diagram of the voltage detecting circuit 130 according to the first embodiment of the present invention. The voltage detecting circuit 130 includes resistors R31 to R35, capacitors C31 to C33, comparators COM31 to COM32, and a programmable shunt regulator 311. One end of the resistor R31 is coupled to a VEAO (voltage error amplifier output voltage, VEAO is proportional to the output load) corresponding to the output voltage of the power factor correction conversion unit 140. Some controllers (refer to Figure 4) use the output voltage of the power factor correction converter as a feedback voltage and generate VEAO based on the feedback voltage. The voltage detecting circuit 130 can use the VEAO to detect the output load voltage of the power factor correction conversion unit 140. It should be noted that the voltage detecting circuit 130 can also obtain the VEAO corresponding to the output load voltage of the power factor correction converting unit 140 via other endpoints according to the circuit architecture. After the description of the above embodiments, those skilled in the art should be able to deduce the embodiments thereof, and no further details are provided herein.

比較器COM31的正輸入端耦接於電阻R31的另一端,其負輸入端耦接於比較器COM31的輸出端。電阻R32一端耦接於比較器COM31的輸出端,另一端耦接於比較器COM32的正輸入端。比較器COM32的正輸入端經由電阻R33耦接於比較器COM32的輸出端。電阻R34耦接比較器COM32的負輸入端與電容C31之間。電容C31的另一端耦接於接地端GND。電阻R35耦接於一工作電壓VCC與可程式並聯穩壓器311的陰極之間。可程式並聯穩壓器311的陽極耦接於接地端GND。可程式並聯穩壓器311的參考端耦接於可程式並聯穩壓器311的陰極,其中電阻R34與電容C31的接點耦接於可程式並聯穩壓器311的陰極。電容C32耦接比較器COM31的正輸入端與負輸入端之間。電容C33耦接於比較器COM32的正輸入端與接地端GND之間。The positive input terminal of the comparator COM31 is coupled to the other end of the resistor R31, and the negative input terminal thereof is coupled to the output terminal of the comparator COM31. One end of the resistor R32 is coupled to the output end of the comparator COM31, and the other end is coupled to the positive input terminal of the comparator COM32. The positive input terminal of the comparator COM32 is coupled to the output of the comparator COM32 via a resistor R33. The resistor R34 is coupled between the negative input terminal of the comparator COM32 and the capacitor C31. The other end of the capacitor C31 is coupled to the ground GND. The resistor R35 is coupled between an operating voltage VCC and a cathode of the programmable shunt regulator 311. The anode of the programmable shunt regulator 311 is coupled to the ground GND. The reference end of the programmable shunt regulator 311 is coupled to the cathode of the programmable shunt regulator 311, wherein the junction of the resistor R34 and the capacitor C31 is coupled to the cathode of the programmable shunt regulator 311. The capacitor C32 is coupled between the positive input terminal and the negative input terminal of the comparator COM31. The capacitor C33 is coupled between the positive input terminal of the comparator COM32 and the ground GND.

另外,控制電路110的內部結構會依照所使用的控制IC不同而有不同的電路架構,控制IC例如是意法半導體(STMicroelectronics,ST)公司的高電壓諧振控制晶片(例如型號L6599)或是Campion的CM6802或CM6502等控制IC實現,本實施例不限制所使用的控制IC型號。本技術領域具有通常知識者應可由上述說明中推知適合的控制IC與其周邊電路,在此不加累述贅述。而本實施例中的控制IC是以CM6802或CM6502為例說明,請參照圖4,圖4繪示本發明第一實施例的控制電路110的主要內部電路示意圖。控制電路110主要包括第一頻率控制電路410、第二頻率控制電路420與控制器430。其中,控制器430的周邊電路可以參考IC的元件說明書(data sheet),圖4中並未繪示。控制器430具有接腳P1~P3,其中接腳P1輸出對應於功率因數修正轉換單元140的輸出負載電壓的VEAO(電壓誤差放大器輸出電壓);接腳P2可以輸出固定的參考電壓VREF;接腳P3為頻率設定接腳。控制器430會根據頻率設定接腳P3所耦接的阻抗值調整脈波寬度調變信號PWM的頻率。接腳P1例如是Champion的CM6802控制器中的接腳16,接腳P2例如是CM6802控制器中的接腳14,接腳P3例如是CM6802控制器中的接腳7或8。In addition, the internal structure of the control circuit 110 may have different circuit architectures depending on the control IC used. The control IC is, for example, a high voltage resonant control chip of STMicroelectronics (ST) (for example, model L6599) or Campion. The implementation of the control IC such as CM6802 or CM6502 does not limit the type of control IC used in this embodiment. Those skilled in the art should be able to infer from the above description that a suitable control IC and its peripheral circuits are not described herein. The control IC in this embodiment is exemplified by CM6802 or CM6502. Please refer to FIG. 4. FIG. 4 is a schematic diagram showing the main internal circuit of the control circuit 110 according to the first embodiment of the present invention. The control circuit 110 mainly includes a first frequency control circuit 410, a second frequency control circuit 420, and a controller 430. The peripheral circuit of the controller 430 can refer to the data sheet of the IC, which is not shown in FIG. 4 . The controller 430 has pins P1 P P3, wherein the pin P1 outputs a VEAO (voltage error amplifier output voltage) corresponding to the output load voltage of the power factor correction conversion unit 140; the pin P2 can output a fixed reference voltage VREF; P3 is the frequency setting pin. The controller 430 adjusts the frequency of the pulse width modulation signal PWM according to the impedance value coupled to the frequency setting pin P3. The pin P1 is, for example, a pin 16 in Champion's CM6802 controller. The pin P2 is, for example, a pin 14 in the CM6802 controller, and the pin P3 is, for example, a pin 7 or 8 in the CM6802 controller.

電阻RT耦接於控制器430的接腳P2與接腳P3之間,而電容CT耦接於控制器430的接腳P3與接地端GND之間。控制器430所輸出的脈波寬度調變信號PWM的頻率係隨電阻RT與電容CT改變。第一頻率控制電路410耦接於電阻RT的兩端(電阻RT的第一端T1與電阻RT的第二端T2),即控制器430的接腳P2、P3。第二頻率控制電路420也耦接於電阻RT的兩端T1、T2。第一頻率控制電路410會根據第一偵測信號DS1(表示功率因數修正轉換單元140的輸出負載電流)調整電阻RT兩端的等效電阻。在本實施例中,第一頻率控制電路410會選擇性並聯另一個電阻至電阻RT的兩端以改變接腳P3所接收到的阻抗值,進而調整脈波寬度調變信號PWM的頻率。同樣的,第二頻率控制電路420也會根據第二偵測信號DS2(表示功率因數修正轉換單元140的輸出負載電壓)選擇性並聯另一電阻至電阻RT的兩端以調整脈波寬度調變信號PWM的頻率。The resistor RT is coupled between the pin P2 of the controller 430 and the pin P3, and the capacitor CT is coupled between the pin P3 of the controller 430 and the ground GND. The frequency of the pulse width modulation signal PWM output by the controller 430 changes with the resistance RT and the capacitance CT. The first frequency control circuit 410 is coupled to both ends of the resistor RT (the first terminal T1 of the resistor RT and the second terminal T2 of the resistor RT), that is, the pins P2 and P3 of the controller 430. The second frequency control circuit 420 is also coupled to both ends T1 and T2 of the resistor RT. The first frequency control circuit 410 adjusts the equivalent resistance across the resistor RT according to the first detection signal DS1 (representing the output load current of the power factor correction conversion unit 140). In this embodiment, the first frequency control circuit 410 selectively parallels another resistor to both ends of the resistor RT to change the impedance value received by the pin P3, thereby adjusting the frequency of the pulse width modulation signal PWM. Similarly, the second frequency control circuit 420 selectively parallels another resistor to both ends of the resistor RT according to the second detection signal DS2 (representing the output load voltage of the power factor correction conversion unit 140) to adjust the pulse width modulation. The frequency of the signal PWM.

請參照圖5,圖5繪示本發明第一實施例的第一頻率控制電路410的電路示意圖。第一頻率控制電路410包括NMOS電晶體Q51、Q55、PNP電晶體Q52、NPN電晶體Q53~Q54、電阻R51~R59與電容C51。NMOS電晶體Q51的閘極耦接於第一偵測信號DS1,其源極耦接於接地端GND。電阻R51耦接於NMOS電晶體Q51的閘極與接地端GND之間。電容C51耦接於NMOS電晶體Q51的閘極與接地端GND之間。PNP電晶體Q52的射極耦接於一工作電壓VCC。電阻R52耦接於PNP電晶體Q52的射極與PNP電晶體Q52的基極之間。電阻R53耦接於PNP電晶體Q52的基極與NMOS電晶體Q51的汲極之間。電阻R54的一端耦接於PNP電晶體Q52的集極。電阻R55耦接於電阻R54的另一端與接地端GND之間。Please refer to FIG. 5. FIG. 5 is a schematic circuit diagram of a first frequency control circuit 410 according to the first embodiment of the present invention. The first frequency control circuit 410 includes NMOS transistors Q51, Q55, PNP transistor Q52, NPN transistors Q53 to Q54, resistors R51 to R59, and a capacitor C51. The gate of the NMOS transistor Q51 is coupled to the first detection signal DS1, and the source thereof is coupled to the ground GND. The resistor R51 is coupled between the gate of the NMOS transistor Q51 and the ground GND. The capacitor C51 is coupled between the gate of the NMOS transistor Q51 and the ground GND. The emitter of the PNP transistor Q52 is coupled to an operating voltage VCC. The resistor R52 is coupled between the emitter of the PNP transistor Q52 and the base of the PNP transistor Q52. The resistor R53 is coupled between the base of the PNP transistor Q52 and the drain of the NMOS transistor Q51. One end of the resistor R54 is coupled to the collector of the PNP transistor Q52. The resistor R55 is coupled between the other end of the resistor R54 and the ground GND.

再者,電阻R56的一端耦接於PNP電晶體Q52的射極,另一端耦接於NPN電晶體Q53的集極。NPN電晶體Q53的基極耦接於電阻R54與電阻R55的接點,其射極耦接於接地端GND。電阻R57耦接於NPN電晶體Q53的集極與接地端GND之間。NPN電晶體Q54的基極耦接於NPN電晶體Q53的集極,其射極耦接於接地端GND。電阻R58耦接於PNP電晶體Q52的集極與NPN電晶體Q54的集極之間。NMOS電晶體Q55的閘極耦接於PNP電晶體Q52的集極,其源極耦接於控制器430的頻率設定接腳(即P3)。電阻R59耦接於控制器430的接腳P2與NMOS電晶體Q55的汲極之間。Furthermore, one end of the resistor R56 is coupled to the emitter of the PNP transistor Q52, and the other end is coupled to the collector of the NPN transistor Q53. The base of the NPN transistor Q53 is coupled to the junction of the resistor R54 and the resistor R55, and the emitter is coupled to the ground GND. The resistor R57 is coupled between the collector of the NPN transistor Q53 and the ground GND. The base of the NPN transistor Q54 is coupled to the collector of the NPN transistor Q53, and the emitter is coupled to the ground GND. The resistor R58 is coupled between the collector of the PNP transistor Q52 and the collector of the NPN transistor Q54. The gate of the NMOS transistor Q55 is coupled to the collector of the PNP transistor Q52, and the source thereof is coupled to the frequency setting pin of the controller 430 (ie, P3). The resistor R59 is coupled between the pin P2 of the controller 430 and the drain of the NMOS transistor Q55.

電阻R59與NMOS電晶體Q55耦接於電阻RT的兩端T1、T2。當第一偵測信號DS1表示輸出負載電流大於第一預設值時,NMOS電晶體Q55會導通,電阻R59與電阻RT並聯會使其兩端T1、T2的等效阻抗降低。控制器430會據此改變切換頻率設定點以提高脈波寬度調變信號的PWM的頻率。反之,當第一偵測信號DS1表示輸出負載電流小於該第一預設值時,NMOS電晶體Q55會關閉以提高電阻RT兩端的等效電阻值。控制器430會據此降低脈波寬度調變信號的PWM的頻率。The resistor R59 and the NMOS transistor Q55 are coupled to the two ends T1 and T2 of the resistor RT. When the first detection signal DS1 indicates that the output load current is greater than the first preset value, the NMOS transistor Q55 is turned on, and the parallel connection of the resistor R59 and the resistor RT reduces the equivalent impedance of the two ends T1 and T2. The controller 430 will change the switching frequency set point accordingly to increase the frequency of the PWM of the pulse width modulation signal. On the contrary, when the first detection signal DS1 indicates that the output load current is less than the first preset value, the NMOS transistor Q55 is turned off to increase the equivalent resistance value across the resistor RT. The controller 430 will thereby reduce the frequency of the PWM of the pulse width modulation signal.

請參照圖6,圖6繪示本發明第一實施例的第二頻率控制電路420的電路示意圖。第二頻率控制電路420包括輸入電阻R60、NMOS電晶體Q61、Q65、PNP電晶體Q62、NPN電晶體Q63~Q64、電阻R61~R69與電容C61。第二頻率控制電路420與第一頻率控制電路410之間主要的差異在於輸入電阻R60,其餘電路架構相似,在此不加贅述。輸入電阻R60耦接於第二偵測信號DS2與NMOS電晶體Q61的閘極之間,用以傳遞第二偵測信號DS2。電阻R69與NMOS電晶體Q65耦接於電阻RT的兩端T1、T2。當第二偵測信號DS2表示輸出負載電壓大於第二預設值時,NMOS電晶體Q65會導通,電阻R69與電阻RT並聯會使其兩端T1、T2的等效阻抗降低。控制器430會據此改變切換頻率設定點以提高脈波寬度調變信號的PWM的頻率。反之,當第二偵測信號DS2表示輸出負載電壓小於該第二預設值時,NMOS電晶體Q65會關閉以提高電阻RT兩端的等效電阻值。控制器430會據此降低脈波寬度調變信號的PWM的頻率。Please refer to FIG. 6. FIG. 6 is a schematic circuit diagram of a second frequency control circuit 420 according to the first embodiment of the present invention. The second frequency control circuit 420 includes an input resistor R60, NMOS transistors Q61, Q65, PNP transistor Q62, NPN transistors Q63-Q64, resistors R61-R69, and capacitor C61. The main difference between the second frequency control circuit 420 and the first frequency control circuit 410 is the input resistance R60, and the remaining circuit architectures are similar, and are not described herein. The input resistor R60 is coupled between the second detection signal DS2 and the gate of the NMOS transistor Q61 for transmitting the second detection signal DS2. The resistor R69 and the NMOS transistor Q65 are coupled to the two ends T1 and T2 of the resistor RT. When the second detection signal DS2 indicates that the output load voltage is greater than the second predetermined value, the NMOS transistor Q65 is turned on, and the parallel connection of the resistor R69 and the resistor RT reduces the equivalent impedance of the two ends T1 and T2. The controller 430 will change the switching frequency set point accordingly to increase the frequency of the PWM of the pulse width modulation signal. On the contrary, when the second detection signal DS2 indicates that the output load voltage is less than the second preset value, the NMOS transistor Q65 is turned off to increase the equivalent resistance value across the resistor RT. The controller 430 will thereby reduce the frequency of the PWM of the pulse width modulation signal.

第一頻率控制電路410與第二頻率控制電路420的主要功用在於根據輸出負載電流與輸出負載電壓調整控制器430的頻率設定接腳P3所連接的阻抗值。兩電路的實施方式並不限制於圖5與圖6,本技術領域具有通常知識者應可由上述第一實施例的說明中推知其他實施方式,在此不加贅述。The main function of the first frequency control circuit 410 and the second frequency control circuit 420 is to adjust the impedance value connected to the frequency setting pin P3 of the output load voltage adjustment controller 430 according to the output load current. The implementation of the two circuits is not limited to FIG. 5 and FIG. 6. Those skilled in the art should be able to infer other embodiments from the description of the first embodiment, and no further details are provided herein.

請參照圖7,圖7繪示本發明第一實施例的功率因數修正升壓轉換器100的整體電路示意圖。功率因數修正升壓轉換器100包括電流偵測電路120、電壓偵測電路130、功率因數修正轉換單元140、電壓轉換器150、控制器430、第一頻率設定電路410與第二頻率設定電路420的電路實施細節與其連接關係。個別電路的細節可由上述圖1~圖6的說明中推知,在此不加贅述。在圖7中,功率因數修正升壓轉換器100可以根據輸出負載電壓/輸出負載電流產生兩段式的切換頻率調整。當輸出負載在一預定值以下時,維持固定的切換頻率;當輸出負載超過預定值時,再將切換頻率提高至另一個頻率點。在較低負載下,由於切換頻率較低,使得整體損耗降低,以提升效率。藉此,改善功率因數修正升壓轉換器100在中、輕載下的功率損失。Please refer to FIG. 7. FIG. 7 is a schematic overall circuit diagram of the power factor correction boost converter 100 according to the first embodiment of the present invention. The power factor correction boost converter 100 includes a current detecting circuit 120, a voltage detecting circuit 130, a power factor correction converting unit 140, a voltage converter 150, a controller 430, a first frequency setting circuit 410, and a second frequency setting circuit 420. The circuit implementation details and its connection relationship. The details of the individual circuits can be inferred from the above description of FIGS. 1 to 6 and will not be described herein. In FIG. 7, the power factor correction boost converter 100 can generate a two-stage switching frequency adjustment based on the output load voltage/output load current. When the output load is below a predetermined value, a fixed switching frequency is maintained; when the output load exceeds a predetermined value, the switching frequency is increased to another frequency point. At lower loads, the overall loss is reduced due to the lower switching frequency to increase efficiency. Thereby, the power loss of the power factor correction boost converter 100 at medium and light loads is improved.

另外,第一頻率控制電路410與第二頻率控制電路420可以利用另一種方式來調整控制器430的頻率設定接腳P3所連接的阻抗值。舉例來說,電阻RT可以採用可變電阻來實現,而第一頻率控制電路410與第二頻率控制電路420則可以分別根據功率因數修正轉換單元140的輸出負載電流與輸出負載電壓來調整電阻RT的電阻值。這樣的電路架構可以讓脈波寬度調變信號PWM具有多段式(線性式)的頻率變化以符合不同輸出負載的需求。同理,電阻R59、R69也可以採用可變電阻實現,而第一頻率控制電路410與第二頻率控制電路420不只用來控制是否並聯電阻R59、R69至電阻RT上,更可以控制電阻R59、R69的電阻值。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知其實施方式,在此不加贅述。In addition, the first frequency control circuit 410 and the second frequency control circuit 420 can adjust the impedance value connected to the frequency setting pin P3 of the controller 430 by another manner. For example, the resistor RT can be implemented by using a variable resistor, and the first frequency control circuit 410 and the second frequency control circuit 420 can adjust the resistance RT according to the output load current and the output load voltage of the power factor correction conversion unit 140, respectively. The resistance value. Such a circuit architecture allows the pulse width modulated signal PWM to have a multi-segment (linear) frequency variation to meet the needs of different output loads. Similarly, the resistors R59 and R69 can also be implemented by using a variable resistor, and the first frequency control circuit 410 and the second frequency control circuit 420 are not only used to control whether the resistors R59 and R69 are connected in parallel to the resistor RT, and the resistor R59 can be controlled. The resistance value of R69. After the description of the above embodiments, those skilled in the art should be able to deduce the embodiments thereof, and no further details are provided herein.

(第二實施例)(Second embodiment)

產生脈波寬度調變信號PWM的控制器有很多種型號,不同類型的控制器可能具有不同的頻率調變方式。圖8繪示本發明第二實施例的控制電路110的主要內部電路示意圖。在圖8中,控制器830的接腳P3為頻率設定接腳,其接腳P1可以輸出對應於功率因數修正轉換單元140的輸出負載電壓的VEAO。電阻RT耦接於控制器830的接腳P3與接地端GND之間,電阻RT的兩端以T1、T2表示。控制器830會根據接腳P3所耦接的阻抗值調整脈波寬度調變信號PWM的頻率。值得注意的是,本發明不限制控制器的類型,其周邊電路可以依照設計需求與IC規格設定。There are many types of controllers that generate the pulse width modulation signal PWM. Different types of controllers may have different frequency modulation modes. FIG. 8 is a schematic diagram showing the main internal circuit of the control circuit 110 according to the second embodiment of the present invention. In FIG. 8, the pin P3 of the controller 830 is a frequency setting pin, and the pin P1 thereof can output a VEAO corresponding to the output load voltage of the power factor correction conversion unit 140. The resistor RT is coupled between the pin P3 of the controller 830 and the ground GND. Both ends of the resistor RT are represented by T1 and T2. The controller 830 adjusts the frequency of the pulse width modulation signal PWM according to the impedance value coupled to the pin P3. It should be noted that the present invention does not limit the type of controller, and its peripheral circuits can be set according to design requirements and IC specifications.

第一頻率控制電路810與第二頻率控制電路820分別耦接於電阻RT的兩端,並且分別根據第一偵測信號DS1與第二偵測信號DS2調整電阻RT兩端的等效阻抗。在本實施例中,第一頻率控制電路810與第二頻率控制電路820是利用電阻並聯的方式來調整電阻RT兩端的等效阻抗。當功率因數修正轉換單元140的輸出負載電流超過第一預設值時,第一頻率控制電路810會並聯一個電阻至電阻RT的兩端T1、T2而降低等效阻抗,控制器830會據此改變切換頻率設定點以提高脈波寬度調變信號PWM的頻率。當功率因數修正轉換單元140的輸出負載電壓超過第二預設值時,第二頻率控制電路820會並聯一個電阻至電阻RT的兩端T1、T2而降低等效阻抗,控制器830會據此改變切換頻率設定點以提高脈波寬度調變信號PWM的頻率。The first frequency control circuit 810 and the second frequency control circuit 820 are respectively coupled to the two ends of the resistor RT, and adjust the equivalent impedance across the resistor RT according to the first detection signal DS1 and the second detection signal DS2, respectively. In this embodiment, the first frequency control circuit 810 and the second frequency control circuit 820 adjust the equivalent impedance across the resistor RT by using a parallel connection of resistors. When the output load current of the power factor correction conversion unit 140 exceeds the first preset value, the first frequency control circuit 810 parallels a resistor to both ends T1 and T2 of the resistor RT to reduce the equivalent impedance, and the controller 830 accordingly The switching frequency set point is changed to increase the frequency of the pulse width modulation signal PWM. When the output load voltage of the power factor correction conversion unit 140 exceeds the second preset value, the second frequency control circuit 820 parallels a resistor to both ends T1 and T2 of the resistor RT to reduce the equivalent impedance, and the controller 830 accordingly The switching frequency set point is changed to increase the frequency of the pulse width modulation signal PWM.

請參照圖9,圖9繪示本發明第二實施例中的第一頻率控制電路810的電路示意圖。第一頻率控制電路810包括NMOS電晶體Q91、Q93、PNP電晶體Q92、電阻R91~R95與電容C91~C92。NMOS電晶體Q91的閘極耦接於第一偵測信號DS1,其源極耦接於接地端GND。電阻R91耦接於NMOS電晶體Q91的閘極與接地端GND之間。電容C91耦接於NMOS電晶體Q91的閘極與接地端GND之間。PNP電晶體Q92的射極耦接於工作電壓VCC。電阻R92耦接於PNP電晶體Q92的射極與PNP電晶體Q92的基極之間。電阻R93耦接於PNP電晶體Q92的基極與NMOS電晶體Q91的汲極之間。電容C92耦接於PNP電晶體Q92的集極與接地端GND之間。電阻R94耦接於PNP電晶體Q92的集極與接地端GND之間。NMOS電晶體Q93的閘極耦接於PNP電晶體Q92的集極,其源極耦接於電阻RT的T2端(請參照圖8,電阻RT的T2端也耦接於接地端GND)。電阻R95耦接於NMOS電晶體Q93的汲極與控制器830的頻率設定接腳(接腳P3)之間。Please refer to FIG. 9. FIG. 9 is a schematic circuit diagram of a first frequency control circuit 810 in a second embodiment of the present invention. The first frequency control circuit 810 includes NMOS transistors Q91, Q93, PNP transistor Q92, resistors R91-R95, and capacitors C91-C92. The gate of the NMOS transistor Q91 is coupled to the first detection signal DS1, and the source thereof is coupled to the ground GND. The resistor R91 is coupled between the gate of the NMOS transistor Q91 and the ground GND. The capacitor C91 is coupled between the gate of the NMOS transistor Q91 and the ground GND. The emitter of the PNP transistor Q92 is coupled to the operating voltage VCC. The resistor R92 is coupled between the emitter of the PNP transistor Q92 and the base of the PNP transistor Q92. The resistor R93 is coupled between the base of the PNP transistor Q92 and the drain of the NMOS transistor Q91. The capacitor C92 is coupled between the collector of the PNP transistor Q92 and the ground GND. The resistor R94 is coupled between the collector of the PNP transistor Q92 and the ground GND. The gate of the NMOS transistor Q93 is coupled to the collector of the PNP transistor Q92, and the source thereof is coupled to the T2 terminal of the resistor RT (refer to FIG. 8, the T2 terminal of the resistor RT is also coupled to the ground GND). The resistor R95 is coupled between the drain of the NMOS transistor Q93 and the frequency setting pin (pin P3) of the controller 830.

當第一偵測信號DS1表示輸出負載電流大於第一預設值時,第一頻率控制電路810會導通NMOS電晶體Q93,讓電阻R95並聯至電阻RT的兩端T1、T2而降低等效阻抗,控制器830會據此改變切換頻率設定點以提高所輸出的脈波寬度調變信號PWM的頻率。When the first detection signal DS1 indicates that the output load current is greater than the first preset value, the first frequency control circuit 810 turns on the NMOS transistor Q93, and the resistor R95 is connected in parallel to the two ends T1 and T2 of the resistor RT to reduce the equivalent impedance. The controller 830 changes the switching frequency set point accordingly to increase the frequency of the output pulse width modulation signal PWM.

請參照圖10。圖10繪示本發明第二實施例的第二頻率控制電路820的電路示意圖。第二頻率控制電路820包括輸入電阻R00、NMOS電晶體Q01、Q03、PNP電晶體Q02、電阻R01~R05與電容C01~C02。第二頻率控制電路820與第一頻率控制電路810之間主要的差異在於輸入電阻R00,其餘電路架構相似,在此不加贅述。輸入電阻R00耦接於NMOS電晶體Q01的閘極與第二偵測信號DS2之間,用以傳遞第二偵測信號DS2。同樣的,當第二偵測信號DS2表示輸出負載電壓大於第二預設值時,第二頻率控制電路820會導通NMOS電晶體Q03,讓電阻R05並聯至電阻RT的兩端T1、T2而降低等效阻抗,控制器830會據此改變切換頻率設定點以提高所輸出的脈波寬度調變信號PWM的頻率。Please refer to Figure 10. FIG. 10 is a circuit diagram of a second frequency control circuit 820 according to a second embodiment of the present invention. The second frequency control circuit 820 includes an input resistor R00, an NMOS transistor Q01, a Q03, a PNP transistor Q02, resistors R01 to R05, and capacitors C01 to C02. The main difference between the second frequency control circuit 820 and the first frequency control circuit 810 is the input resistance R00, and the remaining circuit architectures are similar, and are not described herein. The input resistor R00 is coupled between the gate of the NMOS transistor Q01 and the second detection signal DS2 for transmitting the second detection signal DS2. Similarly, when the second detection signal DS2 indicates that the output load voltage is greater than the second preset value, the second frequency control circuit 820 turns on the NMOS transistor Q03, and the resistor R05 is connected in parallel to the two ends T1 and T2 of the resistor RT to be lowered. The equivalent impedance, the controller 830 will change the switching frequency set point accordingly to increase the frequency of the output pulse width modulation signal PWM.

請參照圖11,圖11繪示本發明第二實施例的功率因數修正升壓轉換器100的整體電路示意圖。功率因數修正升壓轉換器100包括電流偵測電路120、電壓偵測電路130、功率因數修正轉換單元140、電壓轉換器150、控制器830、第一頻率設定電路810與第二頻率設定電路820的電路實施細節與其連接關係。個別電路的細節可由上述圖1~3和圖8~10的說明中推知,在此不加贅述。Please refer to FIG. 11. FIG. 11 is a schematic overall circuit diagram of a power factor correction boost converter 100 according to a second embodiment of the present invention. The power factor correction boost converter 100 includes a current detecting circuit 120, a voltage detecting circuit 130, a power factor correction converting unit 140, a voltage converter 150, a controller 830, a first frequency setting circuit 810, and a second frequency setting circuit 820. The circuit implementation details and its connection relationship. The details of the individual circuits can be inferred from the descriptions of FIGS. 1 to 3 and FIGS. 8 to 10 described above, and are not described herein.

由上述第一實施例與第二實施例,本發明可以歸納出一種功率因數修正升壓轉換器的切換頻率調變方法,請參照圖12,其繪示本發明一實施例的功率因數修正升壓轉換器的切換頻率調變方法的流程圖。功率因數修正升壓轉換器會根據脈波寬度調變信號調整輸出至電壓轉換器的電力。同時,功率因數修正升壓轉換器會偵測功率因數修正升壓轉換器的輸出負載(步驟S110),並且根據輸出負載的變化調整脈波寬度調變信號的頻率。當偵測到功率因數修正升壓轉換器的輸出負載提高時,提高脈波寬度調變信號的頻率(步驟S120、S140);當偵測到功率因數修正升壓轉換器的輸出負載降低時,降低脈波寬度調變信號的頻率(步驟S120、S130)。輸出負載的判斷可由功率因數修正升壓轉換器的輸出負載電流與輸出負載電壓決定,因此脈波寬度調變信號的頻率會依據功率因數修正升壓轉換器的輸出負載電流與輸出負載電壓調整。本切換頻率調變方法的其餘實施細節可以參照上述第一實施例與第二實施例的說明,在此不加贅述。According to the first embodiment and the second embodiment, the present invention can be summarized as a switching frequency modulation method of a power factor correction boost converter. Referring to FIG. 12, a power factor correction boost according to an embodiment of the present invention is illustrated. Flowchart of a switching frequency modulation method of a voltage converter. The power factor correction boost converter adjusts the power output to the voltage converter based on the pulse width modulation signal. At the same time, the power factor correction boost converter detects the output load of the power factor correction boost converter (step S110), and adjusts the frequency of the pulse width modulation signal according to the change of the output load. When detecting that the output load of the power factor correction boost converter is increased, increasing the frequency of the pulse width modulation signal (steps S120, S140); when detecting that the output load of the power factor correction boost converter is decreased, The frequency of the pulse width modulation signal is lowered (steps S120, S130). The determination of the output load can be determined by the output load current of the power factor correction boost converter and the output load voltage. Therefore, the frequency of the pulse width modulation signal is adjusted according to the power factor correction output load current of the boost converter and the output load voltage. For the remaining implementation details of the switching frequency modulation method, reference may be made to the descriptions of the first embodiment and the second embodiment, and no further details are provided herein.

接下來,請參照圖13,其繪示使用本發明一實施例的功率因數修正升壓轉換器與傳統功率因數修正升壓轉換器的效率數據比較圖。測試條件的交流輸入電源為100V,頻率60HZ。在未使用本發明的切換頻率調變技術的情況下,傳統的功率因數修正升壓轉換器的切換頻率(Fs)為66KHz,在20%負載(輕載)下,其輸入功率(Pin)為72.05W(瓦特);在50%負載(中載)下,其輸入功率為176.7W。使用本發明的技術進行切換頻率調整後,在20%負載下,其輸入功率為71.15W,本發明可改善的切換損失為0.9W,可改善的轉換效率為1.1%。在50%負載下,其輸入功率為175.8W,本發明可改善的切換損失為0.9W,可改善的轉換效率為0.45%。由圖13可知,本發明的功率因數修正升壓轉換器實際上具有改善輸入功率的效果。Next, please refer to FIG. 13, which illustrates a comparison of efficiency data of a power factor correction boost converter and a conventional power factor correction boost converter using an embodiment of the present invention. The AC input power of the test conditions is 100V and the frequency is 60HZ. In the case where the switching frequency modulation technique of the present invention is not used, the switching frequency (Fs) of the conventional power factor correction boost converter is 66 kHz, and at 20% load (light load), the input power (Pin) is 72.05W (watt); at 50% load (middle load), the input power is 176.7W. After switching frequency adjustment using the technique of the present invention, the input power is 71.15 W at 20% load, and the improved switching loss of the present invention is 0.9 W, and the improved conversion efficiency is 1.1%. At 50% load, the input power is 175.8W, the improved switching loss of the present invention is 0.9W, and the improved conversion efficiency is 0.45%. As can be seen from Fig. 13, the power factor correction boost converter of the present invention actually has an effect of improving input power.

上述NMOS電晶體表示N通道金氧半場效電晶體(N channel metal-oxide-semiconductor field-effect transistor);NPN電晶體表示NPN雙極接面電晶體(NPN bipolar junction transistor);PNP電晶體表示PNP雙極接面電晶體(PNP bipolar junction transistor)。控制電路110可以使用不同的控制器(控制晶片)實現,其周邊電路依照不同控制器而有不同的設計並不限制於上述實施例中。本技術領域具有通常知識者應可經由元件說明書得知不同的周邊電路架構,在此不加贅述。The NMOS transistor represents a N channel metal-oxide-semiconductor field-effect transistor; the NPN transistor represents an NPN bipolar junction transistor; and the PNP transistor represents a PNP PNP bipolar junction transistor. The control circuit 110 can be implemented using different controllers (control wafers) whose peripheral circuits are differently designed according to different controllers and are not limited to the above embodiments. Those skilled in the art should be able to know different peripheral circuit architectures through component specifications, and no further details are provided herein.

此外,值得注意的是,上述元件之間的耦接關係包括直接或間接的電性連接,只要可以達到所需的電信號傳遞功能即可,本發明並不受限。上述實施例中的技術手段可以合併或單獨使用,其元件可依照其功能與設計需求增加、去除、調整或替換,本發明並不受限。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知其實施方式,在此不加贅述。In addition, it is to be noted that the coupling relationship between the above elements includes a direct or indirect electrical connection as long as the desired electrical signal transfer function can be achieved, and the invention is not limited. The technical means in the above embodiments may be combined or used alone, and the components may be added, removed, adjusted or replaced according to their functions and design requirements, and the invention is not limited. After the description of the above embodiments, those skilled in the art should be able to deduce the embodiments thereof, and no further details are provided herein.

綜上所述,本發明的功率因數修正升壓轉換器透過一控制單元,致使轉換器的切換頻率為可調變的,可以依據負載的大小來調整切換頻率,藉此可以減少在輕、中載(例如20%負載或50%負載)時的切換損失。以320W的電源供應器為例,本發明約可減少0.9W的切換損失,對於整體效率的提升大有幫助。In summary, the power factor correction boost converter of the present invention passes through a control unit, so that the switching frequency of the converter is adjustable, and the switching frequency can be adjusted according to the size of the load, thereby reducing the lightness and the medium. Switching losses when carrying (eg 20% load or 50% load). Taking a 320 W power supply as an example, the present invention can reduce the switching loss by about 0.9 W, which is helpful for improving the overall efficiency.

雖然本發明之較佳實施例已揭露如上,然本發明並不受限於上述實施例,任何所屬技術領域中具有通常知識者,在不脫離本發明所揭露之範圍內,當可作些許之更動與調整,因此本發明之保護範圍應當以後附之申請專利範圍所界定者為準。Although the preferred embodiments of the present invention have been disclosed as above, the present invention is not limited to the above-described embodiments, and any one of ordinary skill in the art can make some modifications without departing from the scope of the present invention. The scope of protection of the present invention should be determined by the scope of the appended claims.

100...功率因數修正升壓轉換器100. . . Power factor correction boost converter

101...控制單元101. . . control unit

110...控制電路110. . . Control circuit

120...電流偵測電路120. . . Current detection circuit

130...電壓偵測電路130. . . Voltage detection circuit

140...功率因數修正轉換單元140. . . Power factor correction conversion unit

142...橋式整流器142. . . Bridge rectifier

150...電壓轉換器150. . . Voltage converter

211、311...可程式並聯穩壓器211, 311. . . Programmable shunt regulator

410、810...第一頻率控制電路410, 810. . . First frequency control circuit

420、820...第二頻率控制電路420, 820. . . Second frequency control circuit

430、830...控制器430, 830. . . Controller

R01~R05、R21~R28...電阻R01~R05, R21~R28. . . resistance

R31~R35、R51~R59...電阻R31~R35, R51~R59. . . resistance

R61~R69、R91~R95、RT...電阻R61~R69, R91~R95, RT. . . resistance

R60、R00...輸入電阻R60, R00. . . Input resistance

COM21~COM22、COM31~COM32...比較器COM21~COM22, COM31~COM32. . . Comparators

CO1~C02、C21~C23、C31~C33...電容CO1~C02, C21~C23, C31~C33. . . capacitance

C1、C51、C61、C91~C92...電容C1, C51, C61, C91~C92. . . capacitance

VEAO...電壓誤差放大器輸出電壓VEAO. . . Voltage error amplifier output voltage

DS1...第一偵測信號DS1. . . First detection signal

DS2...第二偵測信號DS2. . . Second detection signal

D1...二極體D1. . . Dipole

L1...電感L1. . . inductance

GND...接地端GND. . . Ground terminal

P1~P3...接腳P1~P3. . . Pin

VREF...參考電壓VREF. . . Reference voltage

T1、T2...電阻RT的兩端T1, T2. . . Both ends of the resistor RT

VCC...工作電壓VCC. . . Operating Voltage

Q1、Q01、Q03、Q51、Q55、Q65、Q61...NMOS電晶體Q1, Q01, Q03, Q51, Q55, Q65, Q61. . . NMOS transistor

Q02、Q52、Q62、Q92...PNP電晶體Q02, Q52, Q62, Q92. . . PNP transistor

Q53~Q54‧‧‧NPN電晶體Q53~Q54‧‧‧NPN transistor

Q63~Q64‧‧‧NPN電晶體Q63~Q64‧‧‧NPN transistor

Q91、Q93‧‧‧NMOS電晶體Q91, Q93‧‧‧ NMOS transistor

S110~S140‧‧‧流程圖步驟S110~S140‧‧‧ Flowchart steps

圖1A繪示本發明第一實施例的功率因數修正升壓轉換器的功能方塊圖。1A is a functional block diagram of a power factor correction boost converter of a first embodiment of the present invention.

圖1B繪示本發明第一實施例的升壓型功率因數修正轉換器的電路示意圖。FIG. 1B is a circuit diagram of a boost type power factor correction converter according to a first embodiment of the present invention.

圖2繪示本發明第一實施例的電流偵測電路120的電路示意圖。2 is a circuit diagram of the current detecting circuit 120 of the first embodiment of the present invention.

圖3繪示本發明第一實施例的電壓偵測電路130的電路示意圖。FIG. 3 is a schematic circuit diagram of a voltage detecting circuit 130 according to the first embodiment of the present invention.

圖4繪示本發明第一實施例的控制電路110的主要內部電路示意圖。FIG. 4 is a schematic diagram showing the main internal circuit of the control circuit 110 of the first embodiment of the present invention.

圖5繪示本發明第一實施例的第一頻率控制電路410的電路示意圖。FIG. 5 is a schematic circuit diagram of a first frequency control circuit 410 according to the first embodiment of the present invention.

圖6繪示本發明第一實施例的第二頻率控制電路420的電路示意圖。FIG. 6 is a circuit diagram of a second frequency control circuit 420 according to the first embodiment of the present invention.

圖7繪示本發明第一實施例的功率因數修正升壓轉換器100的整體電路示意圖7 is a schematic overall circuit diagram of a power factor correction boost converter 100 according to a first embodiment of the present invention.

圖8繪示本發明第二實施例的控制電路110的主要內部電路示意圖。FIG. 8 is a schematic diagram showing the main internal circuit of the control circuit 110 according to the second embodiment of the present invention.

圖9繪示本發明第二實施例中的第一頻率控制電路810的電路示意圖。FIG. 9 is a circuit diagram of a first frequency control circuit 810 in a second embodiment of the present invention.

圖10繪示本發明第二實施例的第二頻率控制電路820的電路示意圖。FIG. 10 is a circuit diagram of a second frequency control circuit 820 according to a second embodiment of the present invention.

圖11繪示本發明第二實施例的功率因數修正升壓轉換器100的整體電路示意圖。FIG. 11 is a schematic overall circuit diagram of a power factor correction boost converter 100 according to a second embodiment of the present invention.

圖12繪示本發明一實施例的功率因數修正升壓轉換器的切換頻率調變方法的流程圖。FIG. 12 is a flow chart showing a method for switching frequency modulation of a power factor correction boost converter according to an embodiment of the invention.

圖13繪示使用本發明一實施例的功率因數修正升壓轉換器與傳統功率因數修正升壓轉換器的效率數據比較圖。13 is a graph comparing efficiency data of a power factor modified boost converter and a conventional power factor modified boost converter using an embodiment of the present invention.

100...功率因數修正升壓轉換器100. . . Power factor correction boost converter

101...控制單元101. . . control unit

110...控制電路110. . . Control circuit

120...電流偵測電路120. . . Current detection circuit

130...電壓偵測電路130. . . Voltage detection circuit

140...功率因數修正轉換單元140. . . Power factor correction conversion unit

150...電壓轉換器150. . . Voltage converter

VEAO...電壓誤差放大器輸出電壓VEAO. . . Voltage error amplifier output voltage

DS1...第一偵測信號DS1. . . First detection signal

DS2...第二偵測信號DS2. . . Second detection signal

Claims (15)

一種功率因數修正升壓轉換器,用以產生電力至一電壓轉換器,該功率因數修正升壓轉換器包括:一功率因數修正轉換單元,根據一脈波寬度調變信號調整輸出至該電壓轉換器的電力;以及一控制單元,耦接於該功率因數修正轉換單元,根據該功率因數修正轉換單元的至少一輸出負載電流及/或一輸出負載電壓調整該脈波寬度調變信號的頻率,且該控制單元包括:一電流偵測電路,用以產生對應於該功率因數修正轉換單元的該輸出負載電流的一第一偵測信號;一電壓偵測電路,用以產生對應於該功率因數修正轉換單元的該輸出負載電壓的一第二偵測信號;以及一控制電路,耦接於該電流偵側電路與該電壓偵測電路,根據該第一偵測信號與該第二偵測信號至少其中之一調整該脈波調變信號的頻率;其中,當該功率因數修正轉換單元的至少一該輸出負載電流及/或該輸出負載電壓提高時,該控制單元提高該脈波寬度調變信號的頻率;當該功率因數修正轉換單元的至少一該輸出負載電流及/或該輸出負載電壓降低時,該控制單元降低該脈波寬度調變信號的頻率。 A power factor correction boost converter for generating power to a voltage converter, the power factor correction boost converter comprising: a power factor correction conversion unit that adjusts an output to the voltage conversion according to a pulse width modulation signal And a control unit coupled to the power factor correction conversion unit, and adjusting the frequency of the pulse width modulation signal according to the power factor correction conversion unit at least one output load current and/or an output load voltage, And the control unit includes: a current detecting circuit for generating a first detecting signal corresponding to the output load current of the power factor correction converting unit; and a voltage detecting circuit for generating the power factor corresponding to the power factor Correcting a second detection signal of the output load voltage of the conversion unit; and a control circuit coupled to the current detection circuit and the voltage detection circuit, according to the first detection signal and the second detection signal At least one of the frequencies of the pulse modulation signal is adjusted; wherein at least one of the output loads of the power factor correction conversion unit When the current and/or the output load voltage is increased, the control unit increases the frequency of the pulse width modulation signal; when at least one of the output load current of the power factor correction conversion unit and/or the output load voltage decreases, The control unit reduces the frequency of the pulse width modulation signal. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中當該功率因數修正轉換單元的該輸出負載電流小於一第一預設值或該功率因數修正轉換單元的該輸出負載電壓小於一第二預設值時,該控制電路降低該脈波寬度調變信號的頻率。 The power factor correction boost converter of claim 1, wherein the output load current of the power factor correction conversion unit is less than a first preset value or the output load voltage of the power factor correction conversion unit When less than a second predetermined value, the control circuit reduces the frequency of the pulse width modulation signal. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中當該功率因數修正轉換單元的該輸出負載電流大於一第一預設值或該功率因數修正轉換單元的該輸出負載電壓大於一第二預設值時,該控制電路提高該脈波寬度調變信號的頻率。 The power factor correction boost converter according to claim 1, wherein the output load current of the power factor correction conversion unit is greater than a first preset value or the output load voltage of the power factor correction conversion unit When it is greater than a second preset value, the control circuit increases the frequency of the pulse width modulation signal. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中該電流偵測電路包括:一第一電阻,耦接於該電壓轉換器,用以感測該電壓轉換器中的變壓器的一次側電流;一第一比較器,其正輸入端經由一第二電阻耦接於該第一電阻與該電壓轉換器的接點,其負輸入端經由一第三電阻耦接於該接地端;一第四電阻,耦接於該第一比較器的輸出端與該第一比較器的負輸入端之間;一第五電阻,其一端耦接於該第一比較器的輸出端;一第二比較器,其正輸入端耦接於該第五電阻的另一端,其輸出端用以輸出該第一偵測信號;一第六電阻,耦接於該第二比較器的負輸入端與一第一電容之間,該第一電容的另一端耦接於該接地端;一第七電阻,耦接於該第二比較器的輸出端與該第二比較器的正輸入端之間;一第八電阻,耦接於一工作電壓與一可程式並聯穩壓器的陰極之間,該可程式並聯穩壓器的陽極耦接該接地端,該可程式並聯穩壓器的參考端耦接於該可程式並聯穩壓器的陰極,其中該第六電阻與該第一電容的接點耦接於該可程式並聯穩壓 器的陰極;一第二電容,耦接於該第一比較器的正輸入端與該接地端之間;以及一第三電容,耦接於該第一比較器的正輸入端與負輸入端之間。 The power factor correction boost converter of claim 1, wherein the current detecting circuit comprises: a first resistor coupled to the voltage converter for sensing a transformer in the voltage converter a primary current, a positive input coupled to the junction of the first resistor and the voltage converter via a second resistor, the negative input coupled to the ground via a third resistor a fourth resistor coupled between the output of the first comparator and the negative input of the first comparator; a fifth resistor having one end coupled to the output of the first comparator; a second comparator having a positive input coupled to the other end of the fifth resistor, an output terminal for outputting the first detection signal, and a sixth resistor coupled to the negative input of the second comparator Between the terminal and the first capacitor, the other end of the first capacitor is coupled to the ground; a seventh resistor is coupled to the output of the second comparator and the positive input of the second comparator An eighth resistor coupled to an operating voltage and a programmable shunt regulator Between the cathodes of the device, the anode of the programmable shunt regulator is coupled to the ground, and the reference end of the programmable shunt regulator is coupled to the cathode of the programmable shunt regulator, wherein the sixth resistor is The contact of the first capacitor is coupled to the programmable parallel regulator a second capacitor coupled between the positive input terminal of the first comparator and the ground terminal; and a third capacitor coupled to the positive input terminal and the negative input terminal of the first comparator between. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中該電壓偵測電路包括:一第一電阻,其一端耦接於該控制電路;一第一比較器,其正輸入端耦接於該第一電阻的另一端,其負輸入端耦接於該第一比較器的輸出端;一第二電阻,耦接於該第一比較器的輸出端;一第二比較器,其正輸入端耦接於該第二電阻的另一端,其正輸入端經由一第三電阻耦接於該第二比較器的輸出端,其輸出端用以輸出該第二偵測信號;一第四電阻,耦接該第二比較器的負輸入端與一第一電容之間,該第一電容的另一端耦接於該接地端;一第五電阻,耦接於一工作電壓與一可程式並聯穩壓器的陰極之間,該可程式並聯穩壓器的陽極耦接該接地端,該可程式並聯穩壓器的參考端耦接於該可程式並聯穩壓器的陰極,其中該第四電阻與該第一電容的接點耦接於該可程式並聯穩壓器的陰極;一第二電容,耦接於該第一比較器的正輸入端與該第一比較器的負輸入端之間;以及一第三電容,耦接於該第一比較器的正輸入端與該接地端之間。 The power factor correction boost converter according to claim 1, wherein the voltage detecting circuit comprises: a first resistor, one end of which is coupled to the control circuit; and a first comparator whose positive input terminal The other end of the first resistor is coupled to the output of the first comparator; a second resistor coupled to the output of the first comparator; a second comparator The positive input end is coupled to the other end of the second resistor, the positive input end is coupled to the output end of the second comparator via a third resistor, and the output end is configured to output the second detection signal; The fourth resistor is coupled between the negative input terminal of the second comparator and a first capacitor, and the other end of the first capacitor is coupled to the ground terminal; a fifth resistor coupled to an operating voltage and a Between the cathodes of the programmable shunt regulator, the anode of the programmable shunt regulator is coupled to the ground, and the reference end of the programmable shunt regulator is coupled to the cathode of the programmable shunt regulator, wherein The fourth resistor is coupled to the first capacitor and coupled to the programmable parallel a cathode of the voltage regulator; a second capacitor coupled between the positive input terminal of the first comparator and the negative input terminal of the first comparator; and a third capacitor coupled to the first comparator Between the positive input terminal and the ground terminal. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中該控制電路包括:一控制器,具有一頻率設定接腳,用以調整該脈波寬度調變信號的頻率;一電阻,其第一端耦接於一參考電壓,其第二端耦接於該頻率設定接腳;一電容,耦接於該頻率設定接腳與一接地端之間;一第一頻率控制電路,耦接於該電阻的兩端與該電流偵測電路,根據該第一偵測信號調整該頻率設定接腳所接收到的阻抗值;以及一第二頻率控制電路,耦接於該電阻的兩端與該電壓偵測電路,根據該第二偵測信號調整該頻率設定接腳所接收到的阻抗值;其中,該控制器根據該頻率設定接腳所接收到的阻抗值調整該脈波寬度調變信號的頻率。 The power factor correction boost converter according to claim 1, wherein the control circuit comprises: a controller having a frequency setting pin for adjusting a frequency of the pulse width modulation signal; The first end is coupled to a reference voltage, and the second end is coupled to the frequency setting pin; a capacitor is coupled between the frequency setting pin and a ground; a first frequency control circuit, The current detecting circuit is coupled to the two ends of the resistor and the current detecting circuit, and the impedance value received by the frequency setting pin is adjusted according to the first detecting signal; and a second frequency control circuit coupled to the two resistors And the voltage detecting circuit adjusts the impedance value received by the frequency setting pin according to the second detecting signal; wherein the controller adjusts the pulse width according to the impedance value received by the frequency setting pin The frequency of the modulated signal. 如申請專利範圍第6項所述的功率因數修正升壓轉換器,其中該第一頻率控制電路包括:一第一NMOS電晶體,其閘極耦接於該第一偵測信號,其源極耦接於一接地端;一第一電阻,耦接於該第一NMOS電晶體的閘極與該接地端之間;一第一電容,耦接於該第一NMOS電晶體的閘極與該接地端之間;一PNP電晶體,其射極耦接於一工作電壓;一第二電阻,耦接於該PNP電晶體的射極與該PNP電晶 體的基極之間;一第三電阻,耦接於該PNP電晶體的基極與該第一NMOS電晶體的汲極之間;一第四電阻,其一端耦接於該PNP電晶體的集極;一第五電阻,耦接於該第四電阻的另一端與該接地端之間;一第六電阻,其一端耦接於該PNP電晶體的射極;一第一NPN電晶體,其集極耦接於該第六電阻的另一端,其基極耦接於該第四電阻與該第五電阻的接點,其射極耦接於該接地端;一第七電阻,耦接於該第一NPN電晶體的集極與該接地端之間;一第二NPN電晶體,其基極耦接於該第一NPN電晶體的集極,其射極耦接於該接地端;一第八電阻,耦接於該PNP電晶體的集極與該第二NPN電晶體的集極之間;一第二NMOS電晶體,其閘極耦接於該PNP電晶體的集極,其源極耦接於該電阻的第二端;以及一第九電阻,耦接該電阻的第一端與該第二NMOS電晶體的汲極之間。 The power factor correction boost converter of claim 6, wherein the first frequency control circuit comprises: a first NMOS transistor, the gate of which is coupled to the first detection signal, and a source thereof The first resistor is coupled between the gate of the first NMOS transistor and the ground; a first capacitor coupled to the gate of the first NMOS transistor and the gate Between the grounding ends; a PNP transistor having an emitter coupled to an operating voltage; a second resistor coupled to the emitter of the PNP transistor and the PNP transistor Between the bases of the body; a third resistor coupled between the base of the PNP transistor and the drain of the first NMOS transistor; a fourth resistor coupled to the PNP transistor at one end a fifth resistor coupled between the other end of the fourth resistor and the ground; a sixth resistor having one end coupled to the emitter of the PNP transistor; a first NPN transistor, The collector is coupled to the other end of the sixth resistor, the base is coupled to the junction of the fourth resistor and the fifth resistor, and the emitter is coupled to the ground; a seventh resistor is coupled Between the collector of the first NPN transistor and the ground; a second NPN transistor having a base coupled to the collector of the first NPN transistor, the emitter of which is coupled to the ground; An eighth resistor coupled between the collector of the PNP transistor and the collector of the second NPN transistor; a second NMOS transistor having a gate coupled to the collector of the PNP transistor, The source is coupled to the second end of the resistor; and a ninth resistor coupled between the first end of the resistor and the drain of the second NMOS transistor. 如申請專利範圍第6項所述的功率因數修正升壓轉換器,其中該第二頻率控制電路包括:一輸入電阻,其一端耦接於該第二偵測信號;一第一NMOS電晶體,其閘極耦接於該輸入電阻的另一端,其源極耦接於一接地端; 一第一電阻,耦接於該第一NMOS電晶體的閘極與該接地端之間;一第一電容,耦接於該第一NMOS電晶體的閘極與該接地端之間;一PNP電晶體,其射極耦接於一工作電壓;一第二電阻,耦接於該PNP電晶體的射極與該PNP電晶體的基極之間;一第三電阻,耦接於該PNP電晶體的基極與該第一NMOS電晶體的汲極之間;一第四電阻,其一端耦接於該PNP電晶體的集極;一第五電阻,耦接於該第四電阻的另一端與該接地端之間;一第六電阻,其一端耦接於該PNP電晶體的射極;一第一NPN電晶體,其集極耦接於該第六電阻的另一端,其基極耦接於該第四電阻與該第五電阻的接點,其射極耦接於該接地端;一第七電阻,耦接於該第一NPN電晶體的集極與該接地端之間;一第二NPN電晶體,其基極耦接於該第一NPN電晶體的集極,其射極耦接於該接地端;一第八電阻,耦接於該PNP電晶體的集極與該第二NPN電晶體的集極之間;一第二NMOS電晶體,其閘極耦接於該PNP電晶體的集極,其源極耦接於該電阻的第二端;以及一第九電阻,耦接該電阻的第一端與該第二NMOS電晶 體的汲極之間。 The power factor correction boost converter of claim 6, wherein the second frequency control circuit comprises: an input resistor, one end of which is coupled to the second detection signal; a first NMOS transistor, The gate is coupled to the other end of the input resistor, and the source thereof is coupled to a ground end; a first resistor coupled between the gate of the first NMOS transistor and the ground; a first capacitor coupled between the gate of the first NMOS transistor and the ground; a transistor, the emitter of which is coupled to the operating voltage; a second resistor coupled between the emitter of the PNP transistor and the base of the PNP transistor; and a third resistor coupled to the PNP Between the base of the crystal and the drain of the first NMOS transistor; a fourth resistor having one end coupled to the collector of the PNP transistor; and a fifth resistor coupled to the other end of the fourth resistor a sixth resistor, one end of which is coupled to the emitter of the PNP transistor; a first NPN transistor whose collector is coupled to the other end of the sixth resistor, the base coupling Connected to the junction of the fourth resistor and the fifth resistor, the emitter is coupled to the ground; a seventh resistor is coupled between the collector of the first NPN transistor and the ground; a second NPN transistor having a base coupled to the collector of the first NPN transistor and an emitter coupled to the ground; an eighth resistor coupled to the PNP transistor Between the collector and the collector of the second NPN transistor; a second NMOS transistor having a gate coupled to the collector of the PNP transistor, the source of which is coupled to the second end of the resistor; And a ninth resistor coupled to the first end of the resistor and the second NMOS transistor Between the bungee of the body. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中該控制電路包括:一控制器,具有一頻率設定接腳,用以調整該脈波寬度調變信號的頻率;一電阻,其第一端耦接於該頻率設定接腳,其第二端耦接於一接地端;以及一第一頻率控制電路,耦接於該電阻的兩端與該電流偵測電路,根據該第一偵測信號調整該頻率設定接腳所接收到的阻抗值;以及一第二頻率控制電路,耦接於該電阻的兩端與該電壓偵測電路,根據該第二偵測信號調整該頻率設定接腳所接收到的阻抗值;其中,該控制器根據該頻率設定接腳所接收到的阻抗值調整該脈波寬度調變信號的頻率。 The power factor correction boost converter according to claim 1, wherein the control circuit comprises: a controller having a frequency setting pin for adjusting a frequency of the pulse width modulation signal; The first end is coupled to the frequency setting pin, the second end is coupled to a ground end, and a first frequency control circuit is coupled to the two ends of the resistor and the current detecting circuit, according to the The first detection signal adjusts the impedance value received by the frequency setting pin; and a second frequency control circuit is coupled to both ends of the resistor and the voltage detecting circuit, and the second detecting signal is adjusted according to the second detecting signal The frequency setting pin receives the impedance value; wherein the controller adjusts the frequency of the pulse width modulation signal according to the impedance value received by the frequency setting pin. 申請專利範圍第9項所述的功率因數修正升壓轉換器,其中該第一頻率控制電路包括:一第一NMOS電晶體,其閘極耦接於該第一偵測信號,其源極耦接於一接地端;一第一電阻,耦接於該第一NMOS電晶體的閘極與該接地端之間;一第一電容,耦接於該第一NMOS電晶體的閘極與該接地端之間;一PNP電晶體,其射極耦接於一工作電壓;一第二電阻,耦接於該PNP電晶體的射極與該PNP電晶 體的基極之間;一第三電阻,耦接於該PNP電晶體的基極與該第一NMOS電晶體的汲極之間;一第二電容,耦接於該PNP電晶體的集極與該接地端之間;一第四電阻,耦接於該PNP電晶體的集極與該接地端之間;一第二NMOS電晶體,其閘極耦接於該PNP電晶體的集極,其源極耦接於該電阻的第二端;以及一第五電阻,耦接於第二NMOS電晶體的汲極與該電阻的第一端之間。 The power factor correction boost converter of claim 9, wherein the first frequency control circuit comprises: a first NMOS transistor, the gate is coupled to the first detection signal, and the source is coupled Connected to a ground terminal; a first resistor coupled between the gate of the first NMOS transistor and the ground; a first capacitor coupled to the gate of the first NMOS transistor and the ground Between the terminals; a PNP transistor having an emitter coupled to an operating voltage; a second resistor coupled to the emitter of the PNP transistor and the PNP transistor Between the bases of the body; a third resistor coupled between the base of the PNP transistor and the drain of the first NMOS transistor; and a second capacitor coupled to the collector of the PNP transistor And a fourth resistor coupled between the collector of the PNP transistor and the ground; a second NMOS transistor having a gate coupled to the collector of the PNP transistor, The source is coupled to the second end of the resistor; and a fifth resistor coupled between the drain of the second NMOS transistor and the first end of the resistor. 申請專利範圍第9項所述的功率因數修正升壓轉換器,其中該第二頻率控制電路包括:一輸入電阻,其一端耦接於該第二偵測信號;一第一NMOS電晶體,其閘極耦接於該輸入電阻的另一端,其源極耦接於一接地端;一第一電阻,耦接於該第一NMOS電晶體的閘極與該接地端之間;一第一電容,耦接於該第一NMOS電晶體的閘極與該接地端之間;一PNP電晶體,其射極耦接於一工作電壓;一第二電阻,耦接於該PNP電晶體的射極與該PNP電晶體的基極之間;一第三電阻,耦接於該PNP電晶體的基極與該第一NMOS電晶體的汲極之間; 一第二電容,耦接於該PNP電晶體的集極與該接地端之間;一第四電阻,耦接於該PNP電晶體的集極與該接地端之間;一第二NMOS電晶體,其閘極耦接於該PNP電晶體的集極,其源極耦接於該電阻的第二端;以及一第五電阻,耦接於第二NMOS電晶體的汲極與該電阻的第一端之間。 The power factor correction boost converter of claim 9, wherein the second frequency control circuit comprises: an input resistor, one end of which is coupled to the second detection signal; a first NMOS transistor, The gate is coupled to the other end of the input resistor, the source of which is coupled to a ground; a first resistor coupled between the gate of the first NMOS transistor and the ground; a first capacitor Between the gate of the first NMOS transistor and the ground; a PNP transistor having an emitter coupled to an operating voltage; and a second resistor coupled to the emitter of the PNP transistor Between the base of the PNP transistor and a base of the PNP transistor; and a third resistor coupled between the base of the PNP transistor and the drain of the first NMOS transistor; a second capacitor coupled between the collector of the PNP transistor and the ground; a fourth resistor coupled between the collector of the PNP transistor and the ground; a second NMOS transistor The gate is coupled to the collector of the PNP transistor, the source is coupled to the second end of the resistor, and the fifth resistor is coupled to the drain of the second NMOS transistor and the resistor Between one end. 如申請專利範圍第1項所述的功率因數修正升壓轉換器,其中該功率因數修正轉換單元為一升壓型功率因數修正轉換器。 The power factor correction boost converter of claim 1, wherein the power factor correction conversion unit is a boost type power factor correction converter. 一種功率因數修正升壓轉換器的切換頻率調變方法,其中該功率因數修正升壓轉換器根據一脈波寬度調變信號調整輸出至一電壓轉換器的電力,該切換頻率調變方法包括:偵測該功率因數修正升壓轉換器的一輸出負載;以及偵測該輸出負載的變化;其中,當該功率因數修正升壓轉換器的該輸出負載提高時,提高該脈波寬度調變信號的頻率;當該功率因數修正升壓轉換器的該功率因數修正轉換單元的該輸出負載降低時,降低該脈波寬度調變信號的頻率;其中,偵測該輸出負載的步驟更包括偵測至少一輸出負載電流及/或一輸出負載電壓;其中,該功率因數修正升壓轉換器的該輸出負載對應於該功率因數修正升壓轉換器的該輸出負載電壓與該輸出負載電流,該脈波寬度調變信號的頻率係根據該輸出負載電壓與該輸 出負載電流至少其中之一進行調整。 A switching frequency modulation method for a power factor correction boost converter, wherein the power factor correction boost converter adjusts power output to a voltage converter according to a pulse width modulation signal, the switching frequency modulation method comprising: Detecting an output load of the power factor correction boost converter; and detecting a change in the output load; wherein, when the output load of the power factor correction boost converter is increased, increasing the pulse width modulation signal The frequency of the pulse width modulation signal is reduced when the output load of the power factor correction conversion unit of the power factor correction boost converter is decreased; wherein the step of detecting the output load further comprises detecting At least one output load current and/or an output load voltage; wherein the output load of the power factor correction boost converter corresponds to the output load voltage of the power factor correction boost converter and the output load current, the pulse The frequency of the wave width modulation signal is based on the output load voltage and the input At least one of the load currents is adjusted. 如申請專利範圍第13項所述的功率因數修正升壓轉換器的切換頻率調變方法,其中當該功率因數修正轉換單元的該輸出負載電流小於一第一預設值或該功率因數修正轉換單元的該輸出負載電壓小於一第二預設值時,降低該脈波寬度調變信號的頻率。 The switching frequency modulation method of the power factor correction boost converter according to claim 13, wherein when the output load current of the power factor correction conversion unit is less than a first preset value or the power factor correction conversion When the output load voltage of the unit is less than a second preset value, the frequency of the pulse width modulation signal is decreased. 如申請專利範圍第13項所述的功率因數修正升壓轉換器的切換頻率調變方法,其中當該功率因數修正轉換單元的該輸出負載電流大於一第一預設值或該功率因數修正轉換單元的該輸出負載電壓大於一第二預設值時,提高該脈波寬度調變信號的頻率。The switching frequency modulation method of the power factor correction boost converter according to claim 13 , wherein the output load current of the power factor correction conversion unit is greater than a first preset value or the power factor correction conversion When the output load voltage of the unit is greater than a second preset value, the frequency of the pulse width modulation signal is increased.
TW100110564A 2011-03-28 2011-03-28 Power factor correction boost converter and frequency switching modulation method thereof TWI459696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100110564A TWI459696B (en) 2011-03-28 2011-03-28 Power factor correction boost converter and frequency switching modulation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100110564A TWI459696B (en) 2011-03-28 2011-03-28 Power factor correction boost converter and frequency switching modulation method thereof

Publications (2)

Publication Number Publication Date
TW201240301A TW201240301A (en) 2012-10-01
TWI459696B true TWI459696B (en) 2014-11-01

Family

ID=47599760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100110564A TWI459696B (en) 2011-03-28 2011-03-28 Power factor correction boost converter and frequency switching modulation method thereof

Country Status (1)

Country Link
TW (1) TWI459696B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10732658B1 (en) 2019-09-27 2020-08-04 Sea Sonic Electronics Co., Ltd. Correction control module for power factor correction circuit
TWI709839B (en) * 2019-09-09 2020-11-11 海韻電子工業股份有限公司 Correction control module of power factor correction circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493849B (en) * 2013-09-06 2015-07-21 Leadtrend Tech Corp Power supplies and control methods capable of improving power factor during light load
TWI508423B (en) * 2013-09-06 2015-11-11 Richtek Technology Corp Power conversion device
TWI548187B (en) * 2015-01-23 2016-09-01 Dynamic drive capability adjustment of the power control device
TWI645659B (en) * 2018-01-05 2018-12-21 首利實業股份有限公司 LLC resonant converter efficiency improvement method and structure thereof
TWI725807B (en) * 2020-04-07 2021-04-21 新唐科技股份有限公司 Control system of voltage regulation and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709839B (en) * 2019-09-09 2020-11-11 海韻電子工業股份有限公司 Correction control module of power factor correction circuit
US10732658B1 (en) 2019-09-27 2020-08-04 Sea Sonic Electronics Co., Ltd. Correction control module for power factor correction circuit

Also Published As

Publication number Publication date
TW201240301A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
TWI459696B (en) Power factor correction boost converter and frequency switching modulation method thereof
CN102710157B (en) Power factor correction boost converter
US9136699B2 (en) Dynamic damper and lighting driving circuit comprising the dynamic damper
TWI688195B (en) Power supply device
US20110279044A1 (en) High efficiency power drive device enabling serial connection of light emitting diode lamps thereto
US9166483B2 (en) Single stage AC-DC power converter with flyback PFC and improved THD
CN110661438B (en) Power conversion device with low power consumption and low cost
US8957600B1 (en) Two-stage led driver with buck PFC and improved THD
TW201728064A (en) Power supply and method of supplying power for converting an external AC power source into an output power source with appropriate voltage and power
CN113972848B (en) Boost converter with high power factor
KR20150003042A (en) Apparatus for power converter reducing the standby power consumption
TWI692185B (en) Boost converter
JP2014068520A (en) Controller with partial resonance mode and current continuous mode, and method of operating the same
KR101274212B1 (en) Power Factor Correction Circuit
JP4362166B2 (en) Power supply
US8693219B2 (en) Power factor improvement circuit with phase adjustment and current gain reduction
TWI698075B (en) Power supply device
TWI404318B (en) Resonant power converting circuit
TW201737605A (en) Power conversion device and method for correcting awaking voltage thereof
RU2730176C2 (en) Pulse converter circuit
TW202013873A (en) Power supply circuit with improved power factor
WO2007010718A1 (en) Self-excited inverter driving circuit
TWI671984B (en) Power supply device
TWI698076B (en) Power supply circuit capable of reducing light-load power comsumption
JP2012135080A (en) Power factor improvement circuit