TWI454315B - Hollow metal sphere with mesoporous structure and method for manufacturing the same - Google Patents

Hollow metal sphere with mesoporous structure and method for manufacturing the same Download PDF

Info

Publication number
TWI454315B
TWI454315B TW100145163A TW100145163A TWI454315B TW I454315 B TWI454315 B TW I454315B TW 100145163 A TW100145163 A TW 100145163A TW 100145163 A TW100145163 A TW 100145163A TW I454315 B TWI454315 B TW I454315B
Authority
TW
Taiwan
Prior art keywords
hollow sphere
metal
mesoporous
production method
stencil
Prior art date
Application number
TW100145163A
Other languages
Chinese (zh)
Other versions
TW201323088A (en
Inventor
Chia Min Yang
Bo Kai Chen
You Wei Hu
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW100145163A priority Critical patent/TWI454315B/en
Priority to US13/489,041 priority patent/US8962075B2/en
Publication of TW201323088A publication Critical patent/TW201323088A/en
Application granted granted Critical
Publication of TWI454315B publication Critical patent/TWI454315B/en

Links

Description

具介孔洞結構之金屬空心圓球及其製作方法Metal hollow sphere with mesoporous structure and manufacturing method thereof

本發明係關於一種具介孔洞結構之金屬空心圓球及其製作方法,尤指一種具有以Ia3d立方對稱排列的介孔洞組成之殼體之金屬空心圓球及其製作方法。The invention relates to a metal hollow sphere with a mesoporous structure and a manufacturing method thereof, in particular to a metal hollow sphere having a shell composed of mesopores arranged symmetrically in Ia3d and a manufacturing method thereof.

金屬奈米結構在與能源相關的光電催化反應、綠色化學相關催化反應中以及奈米生醫檢測等領域,都扮演關鍵的角色,例如應用於燃料電池之鉑系陰陽極電催化劑、應用於各種氧化催化與其他反應之奈米金催化劑、以及應用在許多有機催化反應之鈀催化劑等。Metal nanostructures play a key role in energy-related photoelectrocatalytic reactions, green chemical-related catalytic reactions, and nanomedical tests, such as platinum-based anode-anode electrocatalysts for fuel cells, and are used in various applications. A nano-gold catalyst which oxidizes and catalyzes other reactions, and a palladium catalyst which is used in many organic catalytic reactions.

更具體而言,隨著環保意識逐漸抬頭,可減少環境污染及減少二氧化碳排放之氫燃料電池係逐漸受到市場重視。其中,燃料電池之用途相當廣泛,可應用於大型發電機、火箭能源供應器、機動車輛能源供應器等。此外,因燃料電池逐漸朝向微型化發展,故燃料電池更可應用於可攜式電子產品上,如行動電話、手提電腦、數位相機等。More specifically, as environmental awareness gradually rises, hydrogen fuel cell systems that reduce environmental pollution and reduce carbon dioxide emissions are gaining market attention. Among them, the fuel cell is widely used, and can be applied to a large generator, a rocket energy supply, a motor vehicle energy supply, and the like. In addition, as fuel cells are gradually becoming more and more miniaturized, fuel cells can be applied to portable electronic products such as mobile phones, laptop computers, and digital cameras.

一般而言,當使用金屬奈米催化劑時,因其結構不穩定且傾向形成較大的顆粒,故需將其負載在適當的高表面積載體上以進行反應。然而,若使用載體時,有時會產生載體參與反應或者間接影響金屬催化劑的化學性質等問題。因此,目前有許多研究致力於發展具有穩定結構之金屬奈米結構,以期能發展出無須載體即可進行催化反應之金屬奈米結構。In general, when a metal nanocatalyst is used, since it is unstable in structure and tends to form large particles, it is required to be supported on a suitable high surface area carrier to carry out the reaction. However, when a carrier is used, problems such as the carrier participating in the reaction or indirectly affecting the chemical properties of the metal catalyst may occur. Therefore, many studies are currently devoted to the development of metal nanostructures with stable structures in order to develop metal nanostructures that can undergo catalytic reactions without the need for carriers.

因此,目前亟需發展出一種具介孔洞結構之金屬空心圓球及其製作方法,以期可以簡便的方式製作出具有規則介孔洞結構之金屬空心圓球,以增加金屬空心圓球之反應表面積而提升金屬奈米催化劑之反應效率。Therefore, it is urgent to develop a metal hollow sphere with a mesoporous structure and a manufacturing method thereof, so that a metal hollow sphere having a regular mesoporous structure can be produced in a simple manner to increase the reaction surface area of the metal hollow sphere. Improve the reaction efficiency of the metal nanocatalyst.

本發明之主要目的係在提供一種具介孔洞結構之金屬空心圓球之製作方法,俾能以簡單的製程製作出具有奈米尺寸、粒徑均勻、其殼層厚薄可調、介孔洞孔徑可調之金屬空心圓球。The main object of the present invention is to provide a method for manufacturing a metal hollow sphere having a mesoporous structure, which can be manufactured by a simple process with a nanometer size, a uniform particle size, a thickness of the shell layer, and a mesoporous pore size. Tune the metal hollow ball.

本發明之另一目的係在提供一種具介孔洞結構之金屬空心圓球,其具有貫穿殼體通道且具有規則介孔洞排列,而可提升金屬空心圓球之催化效率。Another object of the present invention is to provide a metal hollow sphere having a mesoporous structure having a through-shell passage and having a regular mesoporous arrangement to enhance the catalytic efficiency of the metal hollow sphere.

為達成上述目的,本發明之具介孔洞結構之金屬空心圓球之製作方法包括下列步驟:(A)提供一具介孔洞結構之空心圓球模版,其中空心圓球模版包括:一第一殼體,係具有複數貫穿第一殼體之通道,第一殼體之材料包括一規則排列介孔洞二氧化矽材料,且介孔洞二氧化矽材料之孔洞排列係具有一立方對稱結構;(B)將空心圓球模版與一金屬前驅物混合;(C)還原金屬前驅物;以及(D)移除空心圓球模版,以得到一具介孔洞結構之金屬空心圓球。To achieve the above object, the method for fabricating a metal hollow sphere having a mesoporous structure of the present invention comprises the following steps: (A) providing a hollow sphere stencil having a mesoporous structure, wherein the hollow sphere stencil comprises: a first shell The body has a plurality of passages through the first casing, the material of the first casing comprises a regularly arranged mesoporous ceria material, and the pore arrangement of the mesoporous ceria material has a cubic symmetrical structure; (B) The hollow sphere stencil is mixed with a metal precursor; (C) the metal precursor is reduced; and (D) the hollow sphere stencil is removed to obtain a metal hollow sphere having a mesoporous structure.

在此,於步驟(B)中,金屬前驅物可透過毛細現象而滲入介孔洞中,再填滿空心圓球模版之空心結構中。藉由調整金屬前驅物與空心圓球模版之混合比例,可使空心圓球模版之空心結構完全填滿金屬前驅物。此外,於步驟(B)中,可直接使用熔融態金屬前驅物。若需要,亦可將金屬前驅物溶於一溶劑中,如丙酮、乙醇等,以形成之金屬前驅物溶液。Here, in the step (B), the metal precursor can penetrate into the mesopores through the capillary phenomenon, and then fill the hollow structure of the hollow sphere template. By adjusting the mixing ratio of the metal precursor to the hollow sphere stencil, the hollow structure of the hollow sphere stencil can be completely filled with the metal precursor. Further, in the step (B), the molten metal precursor can be directly used. If necessary, the metal precursor may also be dissolved in a solvent such as acetone, ethanol or the like to form a metal precursor solution.

經由上述製程,則可製得本發明之具介孔洞結構之金屬空心圓球,包括:一第二殼體,係具有複數貫穿第二殼體之通道,其中第二殼體之材料包括一規則排列介孔洞金屬材料,且介孔洞金屬材料之孔洞排列係具有一立方對稱結構。Through the above process, the metal hollow sphere with the mesoporous structure of the present invention can be obtained, comprising: a second casing having a plurality of passages through the second casing, wherein the material of the second casing comprises a rule The mesoporous metal material is arranged, and the pore arrangement of the mesoporous metal material has a cubic symmetrical structure.

以往所使用之二氧化矽模版,雖具有孔洞結構,但多為塊材且不具有空心結構。因此,當以習知模版製作具有孔洞結構之金屬材料時,常面臨如何將金屬前驅物選擇性填入孔洞中的問題。同時,因金屬前驅物密度常遠小於還原後的金屬,就算金屬前驅物可完全將孔洞填滿,但還原後的金屬亦只能填滿不到一半的孔洞體積。甚至是,即便多次重複填入金屬前驅物再進行還原反應,仍無法製作出完整複製模版孔洞結構之金屬奈米結構。反觀本發明之具介孔洞結構之金屬空心圓球之製作方法,金屬前驅物除了填於殼體孔洞中,更可填入空心圓球模版之空心結構中。因此,除了殼體孔洞中金屬前驅物可還原在模版殼體之孔洞內,填入空心圓球模版之空心結構中之金屬前驅物亦可持續補充填入模版殼體之孔洞中,提升還原後之金屬在殼體孔洞中占有體積。據此,本發明之製作方法可完整複製空心圓球模版結構,而形成具有與空心圓球模版相同結構之金屬空心圓球。The cerium dioxide stencil used in the past has a pore structure, but is mostly a bulk material and does not have a hollow structure. Therefore, when a metal material having a hole structure is fabricated by a conventional stencil, there is often a problem of how to selectively fill a metal precursor into a hole. At the same time, because the metal precursor density is often much smaller than the reduced metal, even if the metal precursor can completely fill the hole, the reduced metal can only fill less than half of the hole volume. Even, even if the metal precursor is repeatedly filled and then subjected to a reduction reaction, it is impossible to produce a metal nanostructure having a complete replica stencil hole structure. In contrast, in the method for manufacturing a metal hollow sphere having a mesoporous structure according to the present invention, the metal precursor can be filled into the hollow structure of the hollow sphere stencil in addition to being filled in the hole of the casing. Therefore, in addition to the metal precursor in the casing hole can be reduced in the hole of the stencil casing, the metal precursor filled in the hollow structure of the hollow ball stencil can also be continuously filled into the hole of the stencil casing to enhance the reduction. The metal occupies a volume in the bore of the housing. Accordingly, the manufacturing method of the present invention can completely replicate the hollow sphere stencil structure and form a metal hollow sphere having the same structure as the hollow sphere stencil.

此外,本發明所製得之金屬空心圓球,其金屬結構係具有奈米尺寸(2.5-5 nm),故形成金屬空心圓球殼體之金屬奈米結構間,具有較大的反應表面積。據此,當使用本發明之金屬空心圓球作為一催化劑時,可提升催化效率。此外,由於一般作為金屬催化劑之材料為貴金屬,往往成本較為昂貴。然而,本發明之金屬空心圓球,因介孔洞結構之孔洞尺寸及殼體厚度均可調整,故可在最低的貴金屬前驅物使用量下,得到最大反應面積,以使催化效率最佳化。In addition, the metal hollow sphere obtained by the invention has a metal structure with a nanometer size (2.5-5 nm), so that a metal nanostructure of a metal hollow spherical shell is formed, which has a large reaction surface area. Accordingly, when the metal hollow sphere of the present invention is used as a catalyst, the catalytic efficiency can be improved. In addition, since the material generally used as a metal catalyst is a precious metal, it is often expensive. However, the metal hollow sphere of the present invention can be adjusted due to the pore size of the mesoporous structure and the thickness of the shell, so that the maximum reaction area can be obtained under the lowest precious metal precursor usage amount to optimize the catalytic efficiency.

於本發明之具介孔洞結構之金屬空心圓球之製作方法中,步驟(A)之該空心圓球模版係由下列步驟所製成:(A1)提供一界面活性劑鹼性水溶液,界面活性劑鹼性水溶液係包括:一陽離子界面活性劑、以及一非離子界面活性劑,其中陽離子界面活性劑係如下式(I)所示,而非離子界面活性劑係如下式(II)所示:In the method for fabricating a metal hollow sphere having a mesoporous structure according to the present invention, the hollow sphere template of the step (A) is prepared by the following steps: (A1) providing an alkaline aqueous solution of a surfactant, interface activity The alkaline aqueous solution comprises: a cationic surfactant, and a nonionic surfactant, wherein the cationic surfactant is represented by the following formula (I), and the nonionic surfactant is represented by the following formula (II):

其中,R1 及R2 係分別為C1 ~C3 烷基,R3 係為C12 ~C22 烷基,R4 係為C12 ~C22 烷基,n係為2至20之整數;以及(A2)添加一二氧化矽前驅物於界面活性劑溶液中,以將二氧化矽前驅物反應成一具規則排列介孔洞結構之空心圓球模版,且二氧化矽前驅物係如下式(III)所示:Wherein R 1 and R 2 are each a C 1 -C 3 alkyl group, R 3 is a C 12 -C 22 alkyl group, R 4 is a C 12 -C 22 alkyl group, and n is an integer of 2 to 20 And (A2) adding a cerium oxide precursor to the surfactant solution to react the cerium oxide precursor into a hollow sphere template having a regular arrangement of mesoporous structures, and the cerium oxide precursor is as follows ( III):

Si(OR5 )4  (III)Si(OR 5 ) 4 (III)

其中,R5 係各自獨立為C1 ~C3 烷基。Wherein, each of R 5 is independently a C 1 -C 3 alkyl group.

藉由上述製程,則可提供一種具有特殊結構之空心圓球模版。其中,藉由使用陽離子界面活性劑及非離子界面活性劑,而可以簡單製程使二氧化矽前驅物自組裝成空心圓球。藉由調整反應溶液各成份的相對量與其他反應條件,則可控制空心圓球之外徑(即,粒徑)及內徑、及殼層厚度。此外,使用上述方法所形成之具規則排列介孔洞結構之空心圓球,介孔洞二氧化矽材料之孔洞排列係具有一立方對稱結構,其為雙連續(bicontinuous)之貫穿殼體之通道。By the above process, a hollow sphere stencil having a special structure can be provided. Among them, by using a cationic surfactant and a nonionic surfactant, the ceria precursor can be self-assembled into a hollow sphere by a simple process. By adjusting the relative amounts of the components of the reaction solution and other reaction conditions, the outer diameter (i.e., particle diameter) and inner diameter of the hollow sphere and the thickness of the shell layer can be controlled. In addition, using the hollow spheres of the mesoporous structure regularly formed by the above method, the pore arrangement of the mesoporous ceria material has a cubic symmetrical structure, which is a bicontinuous passage through the casing.

此外,於本發明之具介孔洞結構之金屬空心圓球之製作方法中,空心圓球模版較佳係具有一疏水性表面。In addition, in the method for fabricating a metal hollow sphere having a mesoporous structure according to the present invention, the hollow sphere stencil preferably has a hydrophobic surface.

於本發明之具介孔洞結構之金屬空心圓球及其製作方法中,較佳為,空心圓球模版之介孔洞二氧化矽材料、及金屬空心圓球之介孔洞金屬材料之孔洞排列之立方對稱結構係為Ia3d。In the metal hollow sphere having the mesoporous structure of the present invention and the manufacturing method thereof, preferably, the mesoporous ceria material of the hollow sphere template and the pore arrangement of the mesoporous metal material of the metal hollow sphere are arranged. The symmetrical structure is Ia3d.

於本發明之步驟(A2)中,二氧化矽前驅物之添加量係介於0.7至1莫耳份。此外,二氧化矽前驅物之反應溫度係為25-50℃。In the step (A2) of the present invention, the amount of the ceria precursor is added in the range of 0.7 to 1 mol. Further, the reaction temperature of the ceria precursor is 25 to 50 °C.

於本發明之式(I)所示之陽離子界面活性劑中,較佳為,R1 及R2 係分別獨立為甲基、乙基、或丙基,且R3 係為C14 ~C20 烷基。更佳為,R1 及R2 係分別獨立為甲基、或乙基,且R3 係為C14 ~C20 烷基。最佳為,陽離子界面活性劑係為N -十六烷基-N,N -二甲基苯基鹵化銨(N -hexadecyl-N,N -dimethylbenzenaminium halide)(式(IV))、N -芐基-N,N -二甲基十六烷基-1-鹵化銨(N -benzyl-N,N -dimethylhexadecan-1-aminium halide)(式(V))、或N,N -二甲基-N -苯乙基十六烷基-1-鹵化銨(N,N -dimethyl-N -phenethylhexadecan-1-aminium halide)(式(VI))所示,其中,此陽離子界面活性劑可為一氯鹽、或一溴鹽:In the cationic surfactant of the formula (I) of the present invention, it is preferred that R 1 and R 2 are each independently methyl, ethyl or propyl, and R 3 is C 14 to C 20 . alkyl. More preferably, R 1 and R 2 are each independently a methyl group or an ethyl group, and R 3 is a C 14 -C 20 alkyl group. Most preferably, is a cationic surfactant-based N - cetyl - N, N - dimethylphenyl ammonium halides (N -hexadecyl- N, N -dimethylbenzenaminium halide ) ( Formula (IV)), N - benzyl yl - N, N - dimethyl hexadecyl ammonium halides -1- (N -benzyl- N, N -dimethylhexadecan- 1-aminium halide) ( formula (V)), or N, N - dimethyl - N ,N- dimethyl- N- phenethylhexadecan-1-aminium halide (formula (VI)), wherein the cationic surfactant can be monochloro Salt, or monobromide salt:

再者,於本發明之式(II)所示之非離子界面活性劑中,較佳為,R4 係為C14 ~C20 烷基,且n係為2至10之整數。更佳為,R4 係為C14 ~C18 之烷基,且n係為2至5之整數。最佳為,R4 係為C16 之烷基,且n係為2至3之整數。Further, in the nonionic surfactant represented by the formula (II) of the present invention, R 4 is preferably a C 14 to C 20 alkyl group, and n is an integer of 2 to 10. More preferably, R 4 is an alkyl group of C 14 to C 18 , and n is an integer of 2 to 5. Most preferably, R 4 is an alkyl group of C 16 and n is an integer of 2 to 3.

於本發明之式(III)所示之二氧化矽前趨物中,R5 可各自獨立為C1 ~C3 烷基。較佳為,每一R5 均相同且為甲基、乙基、或丙基。最佳為,每一R5 均為乙基。在此,二氧化矽前趨物之具體例子可為四甲氧基矽烷(Tetramethoxysilane,TMOS)、四乙氧基矽烷(Tetraethoxysilane,TEOS)、或四丙氧基矽烷(Tetrapropoxysilane,TPOS)。In the cerium oxide precursor represented by the formula (III) of the present invention, R 5 may each independently be a C 1 -C 3 alkyl group. Preferably, each R 5 is the same and is a methyl, ethyl, or propyl group. Most preferably, each R 5 is an ethyl group. Here, a specific example of the cerium oxide precursor may be tetramethoxysilane (TMOS), Tetraethoxysilane (TEOS), or Tetrapropoxysilane (TPOS).

此外,於本發明之步驟(A1)中,界面活性劑鹼性水溶液中係包括:0.065至0.095莫耳份之陽離子界面活性劑、以及0.005至0.035莫耳份之非離子界面活性劑。此外,於步驟(A1)中,界面活性劑溶液之水量可介於300至2000莫耳份。透過調整水量或反應液各成份的相對使用量,可控制空心圓球模版之外徑(即,粒徑)及內徑、及殼層厚度。Further, in the step (A1) of the present invention, the alkaline aqueous solution of the surfactant comprises: 0.065 to 0.095 mol parts of a cationic surfactant, and 0.005 to 0.035 mol parts of a nonionic surfactant. Further, in the step (A1), the amount of the surfactant solution may be from 300 to 2000 moles. By adjusting the amount of water or the relative amount of each component of the reaction liquid, the outer diameter (i.e., particle diameter) and inner diameter, and thickness of the shell of the hollow sphere stencil can be controlled.

再者,本發明之步驟(A1)之界面活性劑鹼性水溶液可更包括:一無機鹼。其中,此無機鹼可為氫氧化鋰(LiOH)、氫氧化鈉(NaOH)、氫氧化鉀(KOH)、氫氧化銣(RbOH)、或氨水(NH4 OH)。較佳為,無機鹼為LiOH、NaOH、KOH、或NH4 OH。更佳為,無機鹼為NaOH。此外,此無機鹼之添加量較佳係介於0.1至0.5莫耳份。更佳為,鹼性催化劑之添加量係介於0.25至0.4莫耳份。Furthermore, the alkaline aqueous solution of the surfactant of the step (A1) of the present invention may further comprise: an inorganic base. The inorganic base may be lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), barium hydroxide (RbOH), or ammonia water (NH 4 OH). Preferably, the inorganic base is LiOH, NaOH, KOH, or NH 4 OH. More preferably, the inorganic base is NaOH. Further, the amount of the inorganic base added is preferably from 0.1 to 0.5 mol parts. More preferably, the basic catalyst is added in an amount of from 0.25 to 0.4 moles.

除了本發明之具介孔洞結構之金屬空心圓球之製作方法中所述之二氧化矽空心圓球模板外,如台灣專利申請第100110568號及美國專利申請第13/204,143號中所述之二氧化矽空心圓球之結構、組成、及製作方法,亦併入本發明以供參考。In addition to the cerium oxide hollow sphere template described in the method for producing a metal hollow sphere having a mesoporous structure of the present invention, as described in Taiwan Patent Application No. 100110568 and US Patent Application No. 13/204,143 The structure, composition, and method of making the yttria hollow sphere are also incorporated herein by reference.

於本發明之具介孔洞結構之金屬空心圓球及其製作方法中,金屬空心圓球之材料可為鉑、金、銀、鈀、鐵、鈷、鎳、或其合金。較佳為,金屬空心圓球之材料為鉑。而金屬前驅物可為鉑、金、銀、鈀、鐵、鈷、鎳的氯酸鹽類或硝酸鹽類,如氯鉑酸(H2 PtCl6 )、硝酸鎳(Ni(NO3 )2 )或其它金屬鹽類。較佳為,金屬前驅物係為氯鉑酸。In the metal hollow sphere having the mesoporous structure of the present invention and the manufacturing method thereof, the material of the metal hollow sphere may be platinum, gold, silver, palladium, iron, cobalt, nickel, or an alloy thereof. Preferably, the material of the metal hollow sphere is platinum. The metal precursor may be a chlorate or a nitrate of platinum, gold, silver, palladium, iron, cobalt or nickel, such as chloroplatinic acid (H 2 PtCl 6 ) or nickel nitrate (Ni(NO 3 ) 2 ). Or other metal salts. Preferably, the metal precursor is chloroplatinic acid.

另一方面,於本發明之具介孔洞結構之金屬空心圓球之製作方法中,於步驟(C)中,可依照金屬前驅物之種類,選擇適當之本技術領域已知之還原技術,還原金屬前驅物。較佳為,於步驟(C)中,係通入氫氣,以還原金屬前驅物。On the other hand, in the method for fabricating a metal hollow sphere having a mesoporous structure according to the present invention, in the step (C), a reduction technique known in the art can be selected according to the type of the metal precursor. Precursor. Preferably, in the step (C), hydrogen gas is introduced to reduce the metal precursor.

此外,於本發明之具介孔洞結構之金屬空心圓球之製作方法中,於步驟(D)中,可選擇本技術領域已知之任何溶解二氧化矽之方法,以移除空心圓球模版。較佳為,於步驟(D)中,係使用氫氟酸(HF)以移除空心圓球模版。Further, in the method of fabricating a metal hollow sphere having a mesoporous structure of the present invention, in the step (D), any method of dissolving cerium oxide known in the art may be selected to remove the hollow sphere stencil. Preferably, in step (D), hydrofluoric acid (HF) is used to remove the hollow sphere stencil.

於本發明之具介孔洞結構之金屬空心圓球及其製作方法中,空心圓球模版之粒徑較佳係為50-300 nm;殼層厚度較佳為5-50 nm。由於本發明所製得之金屬空心圓球,可完整複製空心圓球模版之結構及外形,故金屬空心圓球之粒徑及殼層厚度係與空心圓球模版相同。較佳為,金屬空心圓球之粒徑為50-300 nm,而殼層厚度為5-50 nm。In the metal hollow sphere having a mesoporous structure of the present invention and the manufacturing method thereof, the particle diameter of the hollow sphere stencil is preferably 50-300 nm; and the thickness of the shell layer is preferably 5-50 nm. Due to the metal hollow sphere obtained by the invention, the structure and shape of the hollow sphere template can be completely reproduced, so the particle size and the thickness of the shell of the hollow metal sphere are the same as those of the hollow sphere template. Preferably, the metal hollow sphere has a particle size of 50-300 nm and a shell thickness of 5-50 nm.

實施例Example 製備二氧化矽空心圓球模版Preparation of cerium oxide hollow sphere template

於反應瓶中加入0.7莫耳份之陽離子界面活性劑、及1200莫耳份之去離子水,並於35℃下攪拌至溶解。於本實施例中,陽離子界面活性劑係為N -芐基-N,N -二甲基十六烷基-1-氯化銨(N -benzyl-N,N -dimethylhexadecan-1-aminium chloride)。0.7 moles of cationic surfactant and 1200 moles of deionized water were added to the reaction flask and stirred at 35 ° C until dissolved. In the present embodiment, the cationic surfactant is a line N - benzyl - N, N - dimethyl hexadecyl ammonium chloride -1- (N -benzyl- N, N -dimethylhexadecan- 1-aminium chloride) .

於混合液中,加入0.3莫耳份之非離子界面活性劑,並於35℃下攪拌至溶解。於本實施例中,非離子界面活性劑係為C16 H33 (OC2 H4 )2 OH。To the mixture was added 0.3 mol of a nonionic surfactant and stirred at 35 ° C until dissolved. In this example, the nonionic surfactant is C 16 H 33 (OC 2 H 4 ) 2 OH.

而後,於含有陽離子界面活性劑及非離子界面活性劑之水溶液中,添加0.32莫耳份之無機鹼,並於35℃下攪拌至溶解。於本實施例中,無機鹼係為氫氧化鈉。經由上述步驟,則可製得一界面活性劑鹼性水溶液。Then, 0.32 mol parts of an inorganic base was added to the aqueous solution containing the cationic surfactant and the nonionic surfactant, and stirred at 35 ° C until dissolved. In the present embodiment, the inorganic base is sodium hydroxide. Through the above steps, an alkaline aqueous solution of the surfactant can be obtained.

而後,於此界面活性劑鹼性水溶液中,加入1莫耳份之二氧化矽前驅物,並於35℃下攪拌2至8小時後,再置於70-90℃下熟化1至3天。於本實施例中,二氧化矽前驅物係使用四乙氧基矽烷(TEOS)。Then, a 1 molar portion of the ceria precursor was added to the alkaline aqueous solution of the surfactant, and the mixture was stirred at 35 ° C for 2 to 8 hours, and then aged at 70 to 90 ° C for 1 to 3 days. In this example, the ceria precursor used tetraethoxy decane (TEOS).

最後,將反應溶液過濾及乾燥,則製得本實施例之空心圓球模版。未壓碎之空心圓球模版以穿透式電子顯微鏡(TEM)、及壓碎之空心圓球模版以掃描式電子顯微鏡(SEM)攝影分析顯示,本實施例之空心圓球模版確為空心圓球且粒徑約150 nm,如圖1及圖2所示。Finally, the reaction solution was filtered and dried to obtain a hollow sphere stencil of this example. The unbroken hollow sphere stencil is shown by a scanning electron microscope (SEM) by a transmission electron microscope (TEM) and a crushed hollow sphere stencil. The hollow sphere template of this embodiment is a hollow circle. The spheres have a particle size of about 150 nm, as shown in Figures 1 and 2.

此外,X光繞射(XRD)圖譜之粉末繞射儀訊號證實,本實施例之介孔洞二氧化矽空心圓球模版材料之孔洞排列結構對稱性係為Ia3d,如圖3所示。In addition, the powder diffractometer signal of the X-ray diffraction (XRD) pattern confirmed that the hole arrangement structure symmetry of the mesoporous ceria hollow sphere template material of the present embodiment is Ia3d, as shown in FIG.

製備鉑金屬空心圓球Preparation of platinum metal hollow spheres

將上述所製得二氧化矽空心圓球取1克加入50毫升甲苯(Toluene)以及1毫升六甲基二矽氮(Hexamethyldisilazane)攪拌0.5至1小時,將反應溶液過濾及乾燥,則製得外表面疏水化空心圓球模版。1 gram of the cerium oxide hollow sphere prepared above was added to 50 ml of toluene (Toluene) and 1 ml of hexamethyldisilazane (Hexamethyldisilazane) for 0.5 to 1 hour, and the reaction solution was filtered and dried to prepare an outer layer. The surface is hydrophobized with a hollow sphere template.

將上述所製得外表面疏水化二氧化矽空心圓球模版與一鉑前驅物混合(空心圓球模版:氯鉑酸=0.1 g:0.5834 g)。於本實施例中,鉑前驅物係為固體H2 PtCl6 ‧6H2 O(100%)。在70℃下,固體氯鉑酸形成熔融態,並透過毛細現象,使鉑前驅物溶液滲入空心圓球模版殼體之孔洞中,並完全填滿空心圓球模版之中空結構。The outer surface hydrophobicized ceria hollow sphere template prepared above was mixed with a platinum precursor (hollow sphere template: chloroplatinic acid = 0.1 g: 0.5834 g). In this example, the platinum precursor was solid H 2 PtCl 6 ‧6H 2 O (100%). At 70 ° C, the solid chloroplatinic acid forms a molten state and passes through the capillary phenomenon, so that the platinum precursor solution penetrates into the pores of the hollow sphere stencil shell and completely fills the hollow structure of the hollow sphere stencil.

而後,通入氫氣已還原鉑前驅物。於本實施例中,氫氣下,以每分鐘0.75℃升溫至200℃,持溫3小時後,降溫完成還原。The platinum precursor is then reduced by the introduction of hydrogen. In this example, under hydrogen, the temperature was raised to 200 ° C at 0.75 ° C per minute, and after holding for 3 hours, the reduction was completed by cooling.

最後,再將上述反應物與氫氟酸(8%)混合,透過氫氟酸可溶解二氧化矽空心圓球模版。經乾燥後,則得到本實施例之鉑金屬空心圓球。同時,壓碎之鉑金屬空心圓球以掃描式電子顯微鏡(SEM)、及未壓碎之鉑金屬空心圓球以穿透式電子顯微鏡(TEM)攝影分析顯示(如圖4、圖5所示),本實施例之金屬空心圓球具有一中空結構12,其殼層11確實具有規則排列介孔洞112,其示意圖係如圖6所示。此外,本實施例之金屬空心圓球之粒徑約150 nm。Finally, the above reactants were mixed with hydrofluoric acid (8%), and the hollow spheroidal stencil of cerium oxide was dissolved by hydrofluoric acid. After drying, the platinum metal hollow sphere of this example is obtained. At the same time, the crushed platinum metal hollow spheres were displayed by scanning electron microscopy (SEM) and unbroken platinum metal hollow spheres by transmission electron microscopy (TEM) (see Figure 4 and Figure 5). The metal hollow sphere of the present embodiment has a hollow structure 12, and the shell layer 11 does have a regular arrangement of mesopores 112, the schematic of which is shown in FIG. Further, the metal hollow sphere of the present embodiment has a particle diameter of about 150 nm.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

11...殼層11. . . Shell

112...介孔洞112. . . Mesopores

12...中空結構12. . . Hollow structure

圖1係本發明實施例之空心圓球模版之穿透式電子顯微鏡照片。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a transmission electron micrograph of a hollow sphere stencil of an embodiment of the present invention.

圖2係本發明實施例之壓碎後空心圓球模版之掃描式電子顯微鏡照片。2 is a scanning electron micrograph of a crushed hollow sphere stencil according to an embodiment of the present invention.

圖3係本發明實施例之空心圓球模版之X光繞射圖譜。3 is an X-ray diffraction pattern of a hollow sphere stencil according to an embodiment of the present invention.

圖4係本發明實施例之金屬空心圓球之穿透式電子顯微鏡照片。4 is a transmission electron micrograph of a metal hollow sphere of an embodiment of the present invention.

圖5係本發明實施例之壓碎後金屬空心圓球之掃描式電子顯微鏡照片。Figure 5 is a scanning electron micrograph of a crushed metal hollow sphere in accordance with an embodiment of the present invention.

圖6係本發明實施例之金屬空心圓球之剖面示意圖。Fig. 6 is a schematic cross-sectional view showing a metal hollow sphere according to an embodiment of the present invention.

11...殼層11. . . Shell

112...介孔洞112. . . Mesopores

12...中空結構12. . . Hollow structure

Claims (22)

一種具介孔洞結構之金屬空心圓球之製作方法,包括下列步驟:(A)提供一具介孔洞結構之空心圓球模版,其中該空心圓球模版包括:一第一殼體,係具有複數貫穿該第一殼體之通道,該第一殼體之材料包括一規則排列介孔洞二氧化矽材料,且該介孔洞二氧化矽材料之孔洞排列係具有一立方對稱結構;(B)將該空心圓球模版與一金屬前驅物混合;(C)還原該金屬前驅物;以及(D)移除該空心圓球模版,以得到一具介孔洞結構之金屬空心圓球;其中,該空心圓球模版係具有一疏水性外表面。 A method for manufacturing a metal hollow sphere having a mesoporous structure comprises the following steps: (A) providing a hollow sphere stencil having a mesoporous structure, wherein the hollow sphere stencil comprises: a first shell having a plurality The material of the first casing comprises a regularly arranged mesoporous ceria material, and the pore arrangement of the mesoporous ceria material has a cubic symmetrical structure; (B) The hollow sphere template is mixed with a metal precursor; (C) the metal precursor is reduced; and (D) the hollow sphere template is removed to obtain a metal hollow sphere having a mesoporous structure; wherein the hollow circle The ball stencil has a hydrophobic outer surface. 如申請專利範圍第1項所述之製作方法,其中該立方對稱結構係為Ia3d。 The manufacturing method according to claim 1, wherein the cubic symmetrical structure is Ia3d. 如申請專利範圍第1項所述之製作方法,其中該具介孔洞結構之金屬空心圓球包括:一第二殼體,係具有複數貫穿該第二殼體之通道,該第二殼體之材料包括一規則排列介孔洞金屬材料,且該介孔洞金屬材料之孔洞排列係具有一立方對稱結構。 The manufacturing method of claim 1, wherein the metal hollow sphere having a mesoporous structure comprises: a second housing having a plurality of passages extending through the second housing, the second housing The material comprises a regularly arranged mesoporous metal material, and the pore arrangement of the mesoporous metal material has a cubic symmetrical structure. 如申請專利範圍第3項所述之製作方法,其中該立方對稱結構係為Ia3d。 The manufacturing method according to claim 3, wherein the cubic symmetrical structure is Ia3d. 如申請專利範圍第1項所述之製作方法,其中該步驟(A)之該空心圓球模版係由下列步驟所製成: (A1)提供一界面活性劑鹼性水溶液,該界面活性劑鹼性水溶液係包括:一陽離子界面活性劑、以及一非離子界面活性劑,其中該陽離子界面活性劑係如下式(I)所示,而該非離子界面活性劑係如下式(II)所示:、R4 -(OC2 H4 )n -OH(II);其中,R1 及R2 係分別為C1 ~C3 烷基,R3 係為C12 ~C22 烷基,R4 係為C12 ~C22 烷基,n係為2至20之整數;以及(A2)添加一二氧化矽前驅物於該界面活性劑溶液中,以將該二氧化矽前驅物反應成一具規則排列介孔洞結構之空心圓球模版,且該二氧化矽前驅物係如下式(III)所示:Si(OR5 )4 (III)其中,R5 係各自獨立為C1 ~C3 烷基。The manufacturing method according to claim 1, wherein the hollow sphere template of the step (A) is prepared by the following steps: (A1) providing an alkaline aqueous solution of a surfactant, the surfactant base The aqueous solution comprises: a cationic surfactant, and a nonionic surfactant, wherein the cationic surfactant is represented by the following formula (I), and the nonionic surfactant is represented by the following formula (II): And R 4 -(OC 2 H 4 ) n -OH(II); wherein R 1 and R 2 are each C 1 -C 3 alkyl, R 3 is C 12 -C 22 alkyl, R 4 is a C 12 -C 22 alkyl group, n is an integer from 2 to 20; and (A2) a cerium oxide precursor is added to the surfactant solution to react the cerium oxide precursor into a regular arrangement A hollow sphere stencil of a mesoporous structure, and the cerium oxide precursor is represented by the following formula (III): Si(OR 5 ) 4 (III) wherein each of the R 5 groups is independently a C 1 -C 3 alkyl group. 如申請專利範圍第5項所述之製作方法,其中該界面活性劑鹼性水溶液更包括:一無機鹼。 The preparation method of claim 5, wherein the alkaline aqueous solution of the surfactant further comprises: an inorganic base. 如申請專利範圍第6項所述之製作方法,其中該無機鹼係選自由:LiOH、NaOH、KOH、RbOH、及NH4 OH所組成之群組。The production method according to claim 6, wherein the inorganic base is selected from the group consisting of LiOH, NaOH, KOH, RbOH, and NH 4 OH. 如申請專利範圍第5項所述之製作方法,其中R1 及R2 係分別獨立為甲基、或乙基,且R3 係為C14 ~C20 烷基。The production method according to Item 5, wherein R 1 and R 2 are each independently a methyl group or an ethyl group, and R 3 is a C 14 -C 20 alkyl group. 如申請專利範圍第8項所述之製作方法,其中該陽離子界面活性劑係選自由下式(IV)、式(V)、及式(VI)所組成之群組: 、及 The production method according to claim 8, wherein the cationic surfactant is selected from the group consisting of the following formulas (IV), (V), and (VI): ,and 如申請專利範圍第5項所述之製作方法,其中R4 係為C14 ~C20 烷基,且n係為2至10之整數。The production method according to claim 5, wherein R 4 is a C 14 to C 20 alkyl group, and n is an integer of 2 to 10. 如申請專利範圍第10項所述之製作方法,其中R4 係為C16 烷基,且n係為2至5之整數。The production method according to claim 10, wherein R 4 is a C 16 alkyl group, and n is an integer of 2 to 5. 如申請專利範圍第5項所述之製作方法,其中每一R5 係為甲基、乙基、或丙基。The production method of claim 5, wherein each R 5 is a methyl group, an ethyl group, or a propyl group. 如申請專利範圍第1項所述之製作方法,其中該金屬空心圓球之材料係為鉑、金、銀、鈀、鐵、鈷、鎳或其合金。 The manufacturing method according to claim 1, wherein the material of the metal hollow sphere is platinum, gold, silver, palladium, iron, cobalt, nickel or an alloy thereof. 如申請專利範圍第1項所述之製作方法,其中該金屬前驅物係為鉑、金、銀、鈀、鐵、鈷、鎳金屬鹽類。 The production method according to claim 1, wherein the metal precursor is platinum, gold, silver, palladium, iron, cobalt or nickel metal salts. 如申請專利範圍第1項所述之製作方法,其中於步驟(C)中,係通入氫氣,以還原該金屬前驅物。 The production method according to claim 1, wherein in the step (C), hydrogen gas is introduced to reduce the metal precursor. 如申請專利範圍第1項所述之製作方法,其中於步驟(D)中,係使用氫氟酸(HF)以移除該空心圓球模版。 The production method according to claim 1, wherein in the step (D), hydrofluoric acid (HF) is used to remove the hollow sphere stencil. 如申請專利範圍第1項所述之製作方法,其中該空心圓球模版之粒徑係為50-300nm。 The production method according to claim 1, wherein the hollow sphere template has a particle diameter of 50 to 300 nm. 如申請專利範圍第1項所述之製作方法,其中該金屬空心圓球之粒徑係為50-300nm。 The production method according to claim 1, wherein the metal hollow sphere has a particle diameter of 50 to 300 nm. 一種具介孔洞結構之金屬空心圓球,包括:一第二殼體,係具有複數貫穿該第二殼體之通道,其中該第二殼體之材料包括一規則排列介孔洞金屬材料,且該介孔洞金屬材料之孔洞排列係具有一立方對稱結構。 A metal hollow sphere having a mesoporous structure, comprising: a second casing having a plurality of passages extending through the second casing, wherein the material of the second casing comprises a regularly arranged mesoporous metal material, and the The pore arrangement of the mesoporous metal material has a cubic symmetrical structure. 如申請專利範圍第19項所述之金屬空心圓球,其中該立方對稱結構係為Ia3d。 The metal hollow sphere according to claim 19, wherein the cubic symmetrical structure is Ia3d. 如申請專利範圍第19項所述之金屬空心圓球,其中該金屬空心圓球之材料係為鉑、金、銀、鈀、或其合金。 The metal hollow sphere according to claim 19, wherein the material of the metal hollow sphere is platinum, gold, silver, palladium or an alloy thereof. 如申請專利範圍第19項所述之金屬空心圓球,其中該金屬空心圓球之粒徑係為50-300nm。 The metal hollow sphere according to claim 19, wherein the metal hollow sphere has a particle size of 50-300 nm.
TW100145163A 2011-06-17 2011-12-07 Hollow metal sphere with mesoporous structure and method for manufacturing the same TWI454315B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100145163A TWI454315B (en) 2011-12-07 2011-12-07 Hollow metal sphere with mesoporous structure and method for manufacturing the same
US13/489,041 US8962075B2 (en) 2011-06-17 2012-06-05 Hollow metal sphere with mesoporous structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100145163A TWI454315B (en) 2011-12-07 2011-12-07 Hollow metal sphere with mesoporous structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201323088A TW201323088A (en) 2013-06-16
TWI454315B true TWI454315B (en) 2014-10-01

Family

ID=49032688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100145163A TWI454315B (en) 2011-06-17 2011-12-07 Hollow metal sphere with mesoporous structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI454315B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973590A (en) * 2010-10-21 2011-02-16 北京师范大学 Preparation method for small-size mesoporous metal oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973590A (en) * 2010-10-21 2011-02-16 北京师范大学 Preparation method for small-size mesoporous metal oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
張莉琳,新型態中孔洞二氧化矽奈米結構的合成與調控,國立清華大學化學學系碩士論文,2009年7月 *

Also Published As

Publication number Publication date
TW201323088A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
Zhao et al. Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts
Liu et al. A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications
US8962075B2 (en) Hollow metal sphere with mesoporous structure and method for manufacturing the same
CN108365230A (en) A kind of universality preparation method and application for the air electrode that active site is combined with electrode structure
KR101458068B1 (en) Hollow-structured Pt-Ni alloy nanoparticles, electrocatalyst for fuel cell comprising the same, and the preparation method thereof
He et al. Recent progress on mixed transition metal nanomaterials based on metal–organic frameworks for energy-related applications
CN109306499B (en) A kind of RuP@PNC catalyst of porous hollow and its preparation method and application
Du et al. Alloyed palladium-nickel hollow nanospheres with interatomic charge polarization for improved hydrolytic dehydrogenation of ammonia borane
Yang et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction
CN103949254A (en) Cu@mSiO2 core-shell nano catalyst for preparing hydrogen from ammonia borane and hydrazine borane by hydrolysis and preparation method of catalyst
Jena et al. A facile approach for morphosynthesis of Pd nanoelectrocatalysts
Bao et al. Morphological anisotropy in metal–organic framework micro/nanostructures
CN110433796A (en) The preparation method and application of the stable noble metal nano particles of graphene quantum dot
Xiong et al. Yolk-Shell catalyst: From past to future
Wu et al. Recent advances in metal-organic frameworks derived electrocatalysts for oxygen reduction reaction
Sheng et al. Enriched Fe Doped on Amorphous Shell Enable Crystalline@ Amorphous Core–Shell Nanorod Highly Efficient Electrochemical Water Oxidation
Hunyadi Murph et al. Synthesis, functionalization, characterization, and application of controlled shape nanoparticles in energy production
CN108940287B (en) Ni-based bimetallic nanocapsule catalyst and preparation and application thereof
Si et al. Research progress of yolk–shell structured nanoparticles and their application in catalysis
Yun et al. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation
KR20140065686A (en) Preparation method of carbon-supported palladium-platinum alloy nanoparticles with core-shell structure for the application to fuel cells
Farid et al. Cobalt-pyrazolate-derived N-doped porous carbon with embedded cobalt oxides for enhanced oxygen evolution reaction
Xu et al. Synergetic design of N-doped defect-enriched porous carbon matrix with Co-Co0. 85Se loading for water splitting
TWI454315B (en) Hollow metal sphere with mesoporous structure and method for manufacturing the same
Xue et al. In situ constructing Co/Co-Ox/Co-Nx diverse active sites on hollow porous carbon spheres derived from Co-MOF for efficient bifunctional electrocatalysis in rechargeable Zn-air