TWI451499B - Method of fabricating transistors and an transistor structure for improving short channel effect and drain induced barrier lowering - Google Patents
Method of fabricating transistors and an transistor structure for improving short channel effect and drain induced barrier lowering Download PDFInfo
- Publication number
- TWI451499B TWI451499B TW098123710A TW98123710A TWI451499B TW I451499 B TWI451499 B TW I451499B TW 098123710 A TW098123710 A TW 098123710A TW 98123710 A TW98123710 A TW 98123710A TW I451499 B TWI451499 B TW I451499B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- gate
- sidewall
- substrate
- forming
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明有關一種半導體元件及其製作方法與改善方法,特別是有關一種金氧半導體電晶體的製作方法與改善短通道效應及汲極引發能帶降低效應的金氧半導體電晶體結構。The invention relates to a semiconductor device, a manufacturing method thereof and an improvement method, in particular to a method for fabricating a metal oxide semiconductor transistor and a metal oxide semiconductor transistor structure for improving a short channel effect and a drain-inducing band reduction effect.
隨著半導體製程之線寬的不斷縮小,金氧半電晶體(MOSFET)之尺寸亦不斷地朝向微型化發展,然而目前半導體製程之線寬已發展至瓶頸的情況下,如何提升載子遷移率以增加MOS電晶體之速度已成為目前半導體技術領域中之一大課題。As the line width of semiconductor processes continues to shrink, the size of metal oxide semi-transistors (MOSFETs) continues to evolve toward miniaturization. However, how to increase carrier mobility in the current case where the line width of semiconductor processes has developed to the bottleneck Increasing the speed of MOS transistors has become a major issue in the field of semiconductor technology.
在目前已知的技術中,已有使用應變矽(strained silicon)作為基底的MOS電晶體,其利用矽鍺(SiGe)的晶格常數與單晶矽(single crystal Si)不同的特性,使矽鍺磊晶層產生結構上應變而形成應變矽。由於矽鍺層的晶格常數(lattice constant)比矽大,這使得矽的帶結構(band structure)發生改變,而造成載子移動性增加,因此可增加PMOS電晶體的速度。Among the currently known techniques, MOS transistors using strained silicon as a substrate have been used, which utilizes a lattice constant of germanium (SiGe) different from that of single crystal Si to make germanium The bismuth layer is structurally strained to form a strain enthalpy. Since the lattice constant of the tantalum layer is larger than that of the tantalum, this causes a change in the band structure of the tantalum, which causes an increase in carrier mobility, thereby increasing the speed of the PMOS transistor.
另外,亦有使用選擇性磊晶成長方法,於閘極形成之後,在源極/汲極預定區域中嵌入摻雜鍺,形成受壓擠的應變矽膜,以增進PMOS的電洞遷移率。一般而言,在進行選擇性磊晶成長製程時,填入源極/汲極預定區域之鍺化矽雖能增進應變矽PMOS的電洞遷移率,但亦會同時折損NMOS的電子遷移率,進而影響電晶體的效能。因此,在形成PMOS和NMOS的整合製程中,於進行磊晶成長鍺化矽時,通常會使用氮化矽作為遮罩,將NMOS的區域完全覆蓋住,並於鍺化矽磊晶完成之後,再使用熱磷酸將覆蓋NMOS的氮化矽移除。但是在移除氮化矽時,熱磷酸亦會侵蝕位於NMOS源極/汲極預定區域的矽基底表面,使其相對於NMOS的閘極介電層和基底之間的介面向下移,因此,後續在植入NMOS的源極/汲極摻質時,會使得p/n接面較預先設定的深度還深,最後會導致短通道效應和汲極引發的能帶降低(Drain Induced Barrier Lowering,DIBL)效應。In addition, a selective epitaxial growth method is also used. After the gate is formed, a doped germanium is embedded in a predetermined region of the source/drain to form a squeezed strained germanium film to enhance the hole mobility of the PMOS. In general, in the selective epitaxial growth process, the germanium germanium filled in the predetermined region of the source/drain can improve the mobility of the strained PMOS, but at the same time, the electron mobility of the NMOS is also compromised. This in turn affects the performance of the transistor. Therefore, in the integrated process of forming a PMOS and an NMOS, when performing epitaxial growth and deuterium, a tantalum nitride is usually used as a mask to completely cover the NMOS region, and after the epitaxial deposition is completed, The tantalum nitride covering the NMOS is removed using hot phosphoric acid. However, when removing tantalum nitride, the hot phosphoric acid also erodes the surface of the germanium substrate located in the predetermined region of the NMOS source/drain, so that it moves downward relative to the dielectric surface between the gate dielectric layer of the NMOS and the substrate. Subsequent implantation of NMOS source/drain dopants will cause the p/n junction to be deeper than the pre-set depth, which will eventually lead to short channel effects and buck-induced energy band reduction (Drain Induced Barrier Lowering) , DIBL) effect.
因此,仍需要一種金氧半電晶體元件及其製造方法,以改善上述問題。Therefore, there is still a need for a MOS semi-transistor element and a method of manufacturing the same to improve the above problems.
有鑑於此,本發明之主要目的在於提供一種製作金氧半電晶體的方法,以改善習知在移除NMOS上的遮罩時,所造成的介面下移問題。In view of the above, it is a primary object of the present invention to provide a method of fabricating a metal oxide semi-transistor to improve the interface down-shift problem caused by the conventional removal of a mask on an NMOS.
根據本發明之申請專利範圍,係揭露一種金氧半電晶體之製程,該等金氧半電晶體係形成於一基底包含一第一型井和一第二型井上,該製程包含有下列步驟:首先,形成一第一閘極於該第一型井以及一第二閘極於該第二型井,接著,形成一第三側壁子於該第一閘極上,然後,分別形成一磊晶層於該第一閘極之兩側的該基底中,之後,形成一第四側壁子於該第二閘極上,接著,分別形成一矽覆蓋層於該磊晶層之表面和該第四側壁子之兩側的該基底表面,然後,分別形成一第一源極/汲極摻雜區於該第一閘極之兩側的該基底中以及分別形成一第二源極/汲極摻雜區於該第二閘極之兩側的該基底中。根據本發明之申請專利範圍,其中該磊晶層為矽鍺磊晶層。根據本發明之申請專利範圍,在形成該磊晶層時係利用一遮罩層覆蓋該第二型井以及該第二閘極,於形成該磊晶層之後,移除至少部分之該遮罩層。According to the patent application scope of the present invention, a process of a metal oxide semi-electrode crystal formed on a substrate comprising a first type well and a second type well is disclosed, the process comprising the following steps First, a first gate is formed in the first well and a second gate is in the second well, and then a third sidewall is formed on the first gate, and then an epitaxial layer is formed respectively. Layered on the substrate on both sides of the first gate, and then forming a fourth sidewall on the second gate, and then forming a germanium overlay on the surface of the epitaxial layer and the fourth sidewall The surface of the substrate on both sides of the sub-substrate, then forming a first source/drain doped region in the substrate on both sides of the first gate and respectively forming a second source/drain doping The region is in the substrate on both sides of the second gate. According to the patent application of the present invention, the epitaxial layer is a germanium epitaxial layer. According to the patent application of the present invention, when the epitaxial layer is formed, the second well and the second gate are covered by a mask layer, and after the epitaxial layer is formed, at least part of the mask is removed. Floor.
根據本發明之申請專利範圍,另揭露一種改善短通道效應及汲極引發的能帶降低效應的金氧半電晶體結構,該金氧半電晶體結構包含下列結構:一基底包含一P型井、一閘極設於該P型井之該基底上、一側壁子設於該閘極之兩側、一N型源極/汲極摻雜區設於該閘極兩側之該基底內、一矽覆蓋層覆蓋於該N型源極/汲極摻雜區上以及一金屬矽化物設於該矽覆蓋層上。According to the patent application scope of the present invention, there is further disclosed a metal oxide semi-transistor structure for improving a short channel effect and a drain-induced energy band reduction effect, the metal oxide semi-transistor structure comprising the following structure: a substrate comprising a P-type well a gate is disposed on the substrate of the P-type well, a sidewall is disposed on both sides of the gate, and an N-type source/drain-doped region is disposed in the substrate on both sides of the gate, A capping layer overlies the N-type source/drain doped region and a metal halide is disposed over the capping layer.
本發明的特徵在於在完成上述磊晶層之後,同時分別在PMOS和NMOS的閘極二側,也就是PMOS和NMOS的源極/汲極摻雜區上形成一矽覆蓋層,此矽覆蓋層對於NMOS來說,可以填補在移除前述遮罩層時,對NMOS閘極附近的基底表面造成的表面下移部分,維持p/n接面在預先設定的深度,避免NMOS發生短通道效應和汲極引發的能帶降低效應。除此之外,在完成上述磊晶層後,該遮罩層亦可以形成NMOS閘極的側壁子。The present invention is characterized in that after the epitaxial layer is completed, a germanium cap layer is formed on the gate side of the PMOS and NMOS, that is, the source/drain doping regions of the PMOS and the NMOS, respectively. For the NMOS, it is possible to fill the surface down-shifted portion of the substrate surface near the NMOS gate when removing the mask layer, maintain the p/n junction at a predetermined depth, and avoid the short channel effect of the NMOS. The energy band induced by the bungee is reduced. In addition, after the epitaxial layer is completed, the mask layer may also form sidewalls of the NMOS gate.
第1圖至第9圖為本發明製作金氧半電晶體之製程示意圖。如第1圖所示,首先提供一基底10包含一第一型井12和一第二型井14,其中第一型井12可以為N型或P型,而第二型井14則可以相對為P型或N型,於下列實施例中,係以第一型井12為N型井而第二型井14為P型井為例說明,也就是說,於下列實施例中,於第一型井12上最終將會形成一PMOS,而於第二型井14最終將會形成一NMOS。此外,第一型井12和第二型井14之間與所在之外圍之基底10內另環繞一淺溝隔離(STI)15。1 to 9 are schematic views showing the process of fabricating a gold-oxygen semi-electrode according to the present invention. As shown in FIG. 1, a substrate 10 is first provided to include a first well 12 and a second well 14, wherein the first well 12 can be N-type or P-type, and the second well 14 can be relatively For the P type or the N type, in the following embodiments, the first type well 12 is an N type well and the second type well 14 is a P type well as an example, that is, in the following embodiments, A PMOS will eventually form on the well 12 and an NMOS will eventually form in the second well 14. In addition, the first well 12 and the second well 14 are surrounded by a shallow trench isolation (STI) 15 in the substrate 10 at the periphery thereof.
接著,分別形成一第一閘極16於第一型井12之上以及一第二閘極18於第二型井14之上,其中第一閘極16包含有一第一介電層20設於基底10上、一第一導電層22設於第一介電層20上、一第一頂蓋層24位於第一導電層22上以及一第一側壁子26設於第一介電層20、第一導電層22和第一頂蓋層24之側壁。而第二閘極18包含一第二介電層28設於基底10上、一第二導電層30設於第二介電層28上、一第二頂蓋層32以及一第二側壁子34設於第二介電層28、第二導電層30和第二頂蓋層32之側壁。舉例而言,第一介電層20和第二介電層28可為一利用熱氧化或沈積等製程所形成之氧化矽層所構成,或者是介電常數大於4的高介電常數材料層,第一導電層22及第二導電層30可為多晶矽等導電材料,或可為具有特定功函數的金屬材料,而第一頂蓋層24和第二頂蓋層32則可由氮化矽層所組成,並且第一頂蓋層24和第二頂蓋層32可以選擇性的形成。第一側壁子26和第二側壁子34則是為了後續形成源極/汲極延伸區域(source/drain extension)等的低摻雜區,之後,可留存於結構中,或是移除。接著,以第一閘極16為遮罩,分別形成一第一低摻雜區36於第一閘極16之兩側的基底10中。Then, a first gate 16 is formed on the first well 12 and a second gate 18 is formed on the second well 14, wherein the first gate 16 includes a first dielectric layer 20 disposed on the first gate 16 On the substrate 10, a first conductive layer 22 is disposed on the first dielectric layer 20, a first cap layer 24 is disposed on the first conductive layer 22, and a first sidewall 26 is disposed on the first dielectric layer 20. The first conductive layer 22 and the sidewall of the first cap layer 24. The second gate 18 includes a second dielectric layer 28 disposed on the substrate 10, a second conductive layer 30 disposed on the second dielectric layer 28, a second cap layer 32, and a second sidewall 34. The sidewalls of the second dielectric layer 28, the second conductive layer 30, and the second cap layer 32 are disposed. For example, the first dielectric layer 20 and the second dielectric layer 28 may be formed of a ruthenium oxide layer formed by a process such as thermal oxidation or deposition, or a high dielectric constant material layer having a dielectric constant greater than 4. The first conductive layer 22 and the second conductive layer 30 may be a conductive material such as polysilicon or may be a metal material having a specific work function, and the first cap layer 24 and the second cap layer 32 may be a tantalum nitride layer. It is composed, and the first cap layer 24 and the second cap layer 32 can be selectively formed. The first sidewall spacer 26 and the second sidewall spacer 34 are for subsequently forming a low doped region of a source/drain extension or the like, which may then remain in the structure or be removed. Then, the first gate 16 is used as a mask to form a first low doped region 36 in the substrate 10 on both sides of the first gate 16.
之後,如第2圖所示,再形成一第三側壁子38於第一閘極16之側壁,在形成第三側壁子38的同時,亦形成一遮罩層40覆蓋第二型井14以及第二閘極18。其中,形成第三側壁子38和遮罩層40的方式可以為,例如,形成一氮化矽層全面覆蓋第一型井12、第二型井14、第一閘極16和第二閘極18,之後形成一圖案化光阻(圖未示)覆蓋第二型井14和第二閘極18,再利用蝕刻方式去除未受光阻覆蓋之氮化矽層,形成第三側壁子38,最後再移除光阻,而原本位於光阻下的氮化矽層則成為遮罩層40。Thereafter, as shown in FIG. 2, a third sidewall 38 is further formed on the sidewall of the first gate 16, and while the third sidewall 38 is formed, a mask layer 40 is formed to cover the second well 14 and The second gate 18. The third sidewall sub-38 and the mask layer 40 may be formed by, for example, forming a tantalum nitride layer to cover the first well 12, the second well 14, the first gate 16, and the second gate. 18, after which a patterned photoresist (not shown) is formed to cover the second well 14 and the second gate 18, and the tantalum nitride layer not covered by the photoresist is removed by etching to form a third sidewall 38, and finally The photoresist is removed, and the tantalum nitride layer originally under the photoresist becomes the mask layer 40.
接著分別形成一磊晶層42於第一閘極16之兩側的基底10中。根據本發明之較佳實施例,PMOS之磊晶層42可只包含一矽鍺磊晶層44,如第2圖所示;而根據本發明之另一較佳實施例,如第3圖所示,磊晶層42亦可以包含一矽鍺磊晶層44和一單晶矽層46位於矽鍺磊晶層44上。一般而言,矽鍺磊晶層44的形成方式可以利用嵌入式矽鍺(embedded Silicon Germanium,e-SiGe)製程,例如,先藉由遮罩層40、第一閘極16與第三側壁子38的保護,以於第一閘極16兩側的基底10中蝕刻出兩凹槽(圖未示),再於反應室中通入矽源材料氣體和鍺源材料氣體而於此兩凹槽內選擇性形成矽鍺磊晶層44,或者是在矽鍺磊晶層44成長到一預定厚度後,將鍺源材料氣體關閉,便可於矽鍺磊晶層44上再形成單晶矽層46。亦即於本發明中,單晶矽層46可視製程而調整其厚度,亦可以選擇不製作單晶矽層46,甚至矽鍺磊晶層44中的鍺濃度也可依調整而呈一梯度變化。An epitaxial layer 42 is then formed in the substrate 10 on both sides of the first gate 16 respectively. In accordance with a preferred embodiment of the present invention, the PMOS epitaxial layer 42 may comprise only one germanium epitaxial layer 44, as shown in FIG. 2; and in accordance with another preferred embodiment of the present invention, as shown in FIG. The epitaxial layer 42 may also include a germanium epitaxial layer 44 and a single crystal germanium layer 46 on the germanium epitaxial layer 44. In general, the germanium epitaxial layer 44 can be formed by an embedded silicon Germanium (e-SiGe) process, for example, by the mask layer 40, the first gate 16 and the third sidewall. The protection of 38 is to etch two grooves (not shown) in the substrate 10 on both sides of the first gate 16 , and then pass the source material gas and the source material gas into the reaction chamber. Selectively forming the germanium epitaxial layer 44, or after the germanium epitaxial layer 44 is grown to a predetermined thickness, the germanium source material gas is turned off, and a single crystal germanium layer can be formed on the germanium epitaxial layer 44. 46. That is, in the present invention, the single crystal germanium layer 46 can be adjusted in thickness according to the process, and the single crystal germanium layer 46 can be selected, and even the germanium concentration in the germanium epitaxial layer 44 can be changed in a gradient according to the adjustment. .
在完成嵌入式矽鍺(e-SiGe)製程之後,如第4圖所示,以一圖案化光阻(圖未示)覆蓋第一型井12和第一閘極16以及第三側壁子38。接著,蝕刻部分遮罩層40,以形成一第四側壁子48於第二閘極18之側壁,接著將光阻移除。根據本發明之另一較佳實施例,第四側壁子48的製作方式亦可以為,將第三側壁子38和遮罩層40完全移除,接著,如第5圖所示,接著形成一材料層50順應地覆蓋第二型井14、第一型井12、第一閘極16和第二閘極18之後,如第6圖所示,移除部分之材料層50,以分別在第一閘極16和第二閘極18上形成一第七側壁子52和前述之第四側壁子48。上述側壁子的製程,僅是本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。後續製程將接續第4圖進行說明。After completing the embedded germanium (e-SiGe) process, as shown in FIG. 4, the first well 12 and the first gate 16 and the third sidewall 38 are covered by a patterned photoresist (not shown). . Next, a portion of the mask layer 40 is etched to form a fourth sidewall spacer 48 on the sidewall of the second gate 18, and then the photoresist is removed. According to another preferred embodiment of the present invention, the fourth sidewall spacer 48 can be formed by completely removing the third sidewall sub-38 and the mask layer 40, and then, as shown in FIG. 5, forming a After the material layer 50 conformably covers the second well 14, the first well 12, the first gate 16, and the second gate 18, as shown in FIG. 6, the portion of the material layer 50 is removed to be respectively A seventh sidewall 52 and a fourth sidewall 48 are formed on a gate 16 and a second gate 18. The process of the above-mentioned side wall is only a preferred embodiment of the present invention, and all changes and modifications made by the scope of the present invention should be within the scope of the present invention. Subsequent processes will be described in the fourth diagram.
如第7圖所示,分別形成一矽覆蓋層54於第一閘極16兩側之磊晶層42表面和第二閘極18兩側的基底10表面,也可以說矽覆蓋層54形成在第一型井12和第二型井14中預定形成源極/汲極摻雜區的位置。矽覆蓋層54可以為單晶矽,其形成方式舉例而言,可以利用前述形成磊晶層42之方式製作,甚至可以使用和前述形成磊晶層42相同的反應室,再度將矽源材料氣體開啟而形成。根據本發明之一較佳實施例,矽覆蓋層54之厚度為50至150埃。As shown in FIG. 7, a cover layer 54 is formed on the surface of the epitaxial layer 42 on both sides of the first gate 16 and the surface of the substrate 10 on both sides of the second gate 18, and it can be said that the germanium cover layer 54 is formed on the surface. The locations of the source/drain doped regions are predetermined to be formed in the first well 12 and the second well 14. The ruthenium cover layer 54 may be a single crystal ruthenium. The formation of the ruthenium material may be, for example, formed by the above-described method of forming the epitaxial layer 42. Even the same reaction chamber as the epitaxial layer 42 may be used, and the material of the ruthenium source material may be again used. Opened and formed. In accordance with a preferred embodiment of the present invention, the ruthenium cover layer 54 has a thickness of 50 to 150 angstroms.
如第8圖所示利用一圖案化光阻(圖未示)覆蓋第一型井12,並以此光阻、第四側壁子48和第二閘極18為遮罩進行摻雜,分別形成一第二低摻雜區56於第二閘極18之兩側的基底10中。然後,分別形成一第五側壁子58和一第六側壁子60於第三側壁子38和第四側壁子48之側壁,並將第一頂蓋層24和第二頂蓋層32移除,曝露出第一導電層22和第二導電層30。接著,形成一P型之第一源極/汲極摻雜區62於第一閘極16之兩側的基底10中以及形成一N型之第二源極/汲極摻雜區64於第二閘極18之兩側的基底10中,此時,本發明之PMOS 66和NMOS 68業已完成。當然,形成第一源極/汲極摻雜區62和第二源極/汲極摻雜區64的先後順序可依產品製程變換。另外,第一源極/汲極摻雜區62形成的位置係和磊晶層42部分重疊。As shown in FIG. 8, the first well 12 is covered by a patterned photoresist (not shown), and the photoresist, the fourth sidewall 48 and the second gate 18 are doped as masks, respectively. A second low doped region 56 is in the substrate 10 on either side of the second gate 18. Then, a fifth sidewall 58 and a sixth sidewall 60 are formed on the sidewalls of the third sidewall 38 and the fourth sidewall 48, respectively, and the first cap layer 24 and the second cap layer 32 are removed. The first conductive layer 22 and the second conductive layer 30 are exposed. Next, a P-type first source/drain doping region 62 is formed in the substrate 10 on both sides of the first gate 16 and an N-type second source/drain doping region 64 is formed. In the substrate 10 on both sides of the two gates 18, at this time, the PMOS 66 and NMOS 68 of the present invention have been completed. Of course, the order in which the first source/drain doping region 62 and the second source/drain doping region 64 are formed may be changed according to the product process. In addition, the position formed by the first source/drain doping region 62 and the epitaxial layer 42 partially overlap.
如第9圖所示,進行一金屬矽化製程,使曝露之第一導電層22和第二導電層30、矽覆蓋層54至少一部分變成金屬矽化層55。之後可選擇性再整合其他如接觸蝕刻停止層(CESL)、雙應力層(Dual Stress Liner,DSL)等之應變記憶技術(Stress Memorization technology,SMT),以更提升MOS的性能。後續可以進行內部電連結線路的製作,例如形成層間介電層覆蓋PMOS 66和NMOS 68,並且在層間介電層中製作接觸插塞以分別電連接第一閘極16、第二閘極18、第一源極/汲極摻雜區62和第二源極/汲極摻雜區64等,即不多贅言。此外,本發明也可應用於嵌入式SiC製程,以改善NMOS電流驅動。例如,於進行第2圖或第3圖的步驟時,將矽鍺磊晶層以碳化矽磊晶層取代。As shown in FIG. 9, a metal deuteration process is performed to cause at least a portion of the exposed first conductive layer 22, the second conductive layer 30, and the germanium cap layer 54 to become the metal germanium layer 55. Then, other strain memory technologies (SMT) such as contact etch stop layer (CESL) and dual stress layer (DSL) can be selectively integrated to further improve the performance of the MOS. Subsequently, an internal electrical connection line can be fabricated, for example, an interlayer dielectric layer is formed to cover the PMOS 66 and the NMOS 68, and contact plugs are formed in the interlayer dielectric layer to electrically connect the first gate 16 and the second gate 18, respectively. The first source/drain doping region 62 and the second source/drain doping region 64 and the like are not so much. In addition, the present invention is also applicable to an embedded SiC process to improve NMOS current drive. For example, when the steps of FIG. 2 or FIG. 3 are performed, the germanium epitaxial layer is replaced with a tantalum carbide epitaxial layer.
由於上述實施例在形成磊晶層42時,會在第二型井14上形成一遮罩層40,且在完成磊晶層42後,至少一部分的遮罩層40會被移除,故在移除時,會蝕刻到第二閘極18兩側的基底10表面,此將無可避免的使第二閘極18兩側的基底10表面,相對於第二介電層 28和基底10的介面11下降,介面11的位置請參閱第4圖。因此本發明之一特徵即在於部分移除遮罩層40之後,同時在PMOS 66和NMOS 68的閘極兩側,也就是PMOS 66和NMOS 68的源極/汲極摻雜區上分別形成一矽覆蓋層54。請參閱第9圖,此矽覆蓋層54對於NMOS 68來說,可以填補前述NMOS閘極附近的基底表面下移部分,維持p/n接面在一預定深度,避免NMOS發生短通道效應和汲極引發的能帶降低效應,另外,由於基底10的表面下降,因此之後形成在NMOS 68上的部分之矽覆蓋層54會低於介面11。對於PMOS 66來說,矽覆蓋層54主要係用來形成金屬矽化物55。除此之外,在完成上述磊晶層42後,原本用於保護第二型井14和第二閘極18的遮罩層40,亦可以形成NMOS 68之閘極的側壁子。Since the above embodiment forms a mask layer 40 on the second well 14 when the epitaxial layer 42 is formed, at least a portion of the mask layer 40 is removed after the epitaxial layer 42 is completed. When removed, the surface of the substrate 10 on both sides of the second gate 18 is etched, which will inevitably cause the surface of the substrate 10 on both sides of the second gate 18 to be opposite to the second dielectric layer. 28 and the interface 11 of the substrate 10 are lowered, and the position of the interface 11 is shown in Fig. 4. Therefore, one feature of the present invention is that after the mask layer 40 is partially removed, a source/drain doping region of the PMOS 66 and the NMOS 68 is formed on both sides of the gates of the PMOS 66 and the NMOS 68, that is, the source/drain doping regions of the PMOS 66 and the NMOS 68, respectively. Cover layer 54. Referring to FIG. 9, the germanium cap layer 54 can fill the bottom surface of the substrate near the NMOS gate for the NMOS 68 to maintain the p/n junction at a predetermined depth to avoid the short channel effect of the NMOS. The extremely induced energy band reduction effect, in addition, since the surface of the substrate 10 is lowered, the portion of the germanium cap layer 54 which is later formed on the NMOS 68 is lower than the interface 11. For PMOS 66, germanium cap layer 54 is primarily used to form metal germanide 55. In addition, after the epitaxial layer 42 is completed, the mask layer 40 originally used to protect the second well 14 and the second gate 18 may also form a sidewall of the gate of the NMOS 68.
除此之外,本發明亦提供了一種改善短通道效應及汲極引發的能帶降低效應的N型金氧半電晶體結構,第10圖中繪示了根據本發明之較佳實施例之N型金氧半電晶體之側視示意圖。如第10圖所示,本發明之NMOS 168之結構,包含:一基底100包含一P型井114、一閘極118設於P型井114之基底10上、一側壁子150設於閘極118上、一淺摻雜區156設於側壁子150下方之基底100內、一N型源極/汲極摻雜區164設於閘極150兩側之基底100內、一矽覆蓋層154覆蓋於N型源極/汲極摻雜區164上以及一金屬矽化物155設於矽覆蓋層154上。另外,一P型井114所在之外圍之基底100內另環繞一淺溝隔離(STI)115。其中閘極118包含一介電層128設於基底100上和一導電層130設於介電層128上,此外,側壁子150為一複合式側壁子包含一側壁子134、側壁子148、側壁 子160,設於閘極118之側壁。另外,矽覆蓋層154之厚度為50至150埃並且由單晶矽構成。再者,金屬矽化物155之外表面較介電層128和基底100之間的介面提升。In addition, the present invention also provides an N-type oxy-oxygen semi-transistor structure which improves short-channel effect and drain-induced energy band-reducing effect, and FIG. 10 illustrates a preferred embodiment according to the present invention. A side view of a N-type gold oxide semi-electrode. As shown in FIG. 10, the structure of the NMOS 168 of the present invention comprises: a substrate 100 comprising a P-well 114, a gate 118 disposed on the substrate 10 of the P-well 114, and a sidewall 150 disposed at the gate. 118, a shallow doped region 156 is disposed in the substrate 100 below the sidewall sub-150, and an N-type source/drain doping region 164 is disposed in the substrate 100 on both sides of the gate 150, covered by a cover layer 154 A N-type source/drain doping region 164 and a metal telluride 155 are disposed on the germanium cap layer 154. In addition, a shallow trench isolation (STI) 115 surrounds the substrate 100 on the periphery of a P-well 114. The gate 118 includes a dielectric layer 128 disposed on the substrate 100 and a conductive layer 130 disposed on the dielectric layer 128. Further, the sidewall spacer 150 is a composite sidewall including a sidewall 134, a sidewall 148, and a sidewall. The sub-160 is disposed on the sidewall of the gate 118. Further, the ruthenium cover layer 154 has a thickness of 50 to 150 angstroms and is composed of single crystal ruthenium. Furthermore, the outer surface of the metal telluride 155 is elevated compared to the interface between the dielectric layer 128 and the substrate 100.
綜上所述,本發明之一特徵在於NMOS 168的源極/汲極摻雜區164處有一矽覆蓋層154,其可以避免NMOS發生短通道效應和汲極引發的能帶降低效應。In summary, one feature of the present invention is that the source/drain doping region 164 of the NMOS 168 has a germanium cap layer 154 that avoids the short channel effect of the NMOS and the band-reduction effect induced by the drain.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
10、100‧‧‧基底10, 100‧‧‧ base
12‧‧‧第一型井12‧‧‧First Well
14‧‧‧第二型井14‧‧‧Second type well
15、115‧‧‧淺溝隔離15, 115‧‧‧ shallow trench isolation
16‧‧‧第一閘極16‧‧‧First Gate
18‧‧‧第二閘極18‧‧‧second gate
20‧‧‧第一介電層20‧‧‧First dielectric layer
22‧‧‧第一導電層22‧‧‧First conductive layer
24‧‧‧第一頂蓋層24‧‧‧First cover
26‧‧‧第一側壁子26‧‧‧First side wall
28‧‧‧第二介電層28‧‧‧Second dielectric layer
30‧‧‧第二導電層30‧‧‧Second conductive layer
32‧‧‧第二頂蓋層32‧‧‧Second top cover
34‧‧‧第二側壁子34‧‧‧Second side wall
36‧‧‧第一低摻雜區36‧‧‧First low doped area
38‧‧‧第三側壁子38‧‧‧ third side wall
40‧‧‧遮罩層40‧‧‧mask layer
42‧‧‧磊晶層42‧‧‧ epitaxial layer
44‧‧‧矽鍺磊晶層44‧‧‧矽锗 矽锗 layer
46‧‧‧單晶矽層46‧‧‧ Single crystal layer
48‧‧‧第四側壁子48‧‧‧ fourth side wall
50‧‧‧材料層50‧‧‧Material layer
52‧‧‧第七側壁子52‧‧‧ seventh side wall
54‧‧‧矽覆蓋層54‧‧‧矽 overlay
55‧‧‧金屬矽化層55‧‧‧Metalized layer
56‧‧‧第二低摻雜區56‧‧‧Second low doped area
58‧‧‧第五側壁子58‧‧‧ Fifth side wall
60‧‧‧第六側壁子60‧‧‧ sixth side wall
62‧‧‧第一源極/汲極摻雜區62‧‧‧First source/deuterium doped region
64‧‧‧第二源極/汲極摻雜區64‧‧‧Second source/drain-doped region
66‧‧‧PMOS66‧‧‧ PMOS
68、168‧‧‧NMOS68, 168‧‧‧ NMOS
114‧‧‧P型井114‧‧‧P type well
118‧‧‧閘極118‧‧‧ gate
156‧‧‧淺摻雜區156‧‧‧ shallow doped area
128‧‧‧介電層128‧‧‧ dielectric layer
134、148、150、160‧‧‧側壁子134, 148, 150, 160‧‧‧ side wall
154‧‧‧矽覆蓋層154‧‧‧矽 overlay
155‧‧‧金屬矽化物155‧‧‧Metal Telluride
164‧‧‧N型源極/汲極摻雜區164‧‧‧N type source/drain doping area
11‧‧‧介面11‧‧‧ interface
第1圖至第9圖為本發明製作金氧半電晶體之製程示意圖。1 to 9 are schematic views showing the process of fabricating a gold-oxygen semi-electrode according to the present invention.
第10圖中繪示了根據本發明之較佳實施例之金氧半電晶體之側視示意圖。Figure 10 is a side elevational view of a gold oxide semi-electrode in accordance with a preferred embodiment of the present invention.
10‧‧‧基底10‧‧‧Base
12‧‧‧第一型井12‧‧‧First Well
14‧‧‧第二型井14‧‧‧Second type well
15‧‧‧淺溝隔離15‧‧‧Shallow trench isolation
16‧‧‧第一閘極16‧‧‧First Gate
18‧‧‧第二閘極18‧‧‧second gate
20‧‧‧第一介電層20‧‧‧First dielectric layer
22‧‧‧第一導電層22‧‧‧First conductive layer
26‧‧‧第一側壁子26‧‧‧First side wall
28‧‧‧第二介電層28‧‧‧Second dielectric layer
30‧‧‧第二導電層30‧‧‧Second conductive layer
34‧‧‧第二側壁子34‧‧‧Second side wall
36‧‧‧第一低摻雜區36‧‧‧First low doped area
38‧‧‧第三側壁子38‧‧‧ third side wall
42‧‧‧磊晶層42‧‧‧ epitaxial layer
44‧‧‧矽鍺磊晶層44‧‧‧矽锗 矽锗 layer
46‧‧‧單晶矽層46‧‧‧ Single crystal layer
48‧‧‧第四側壁子48‧‧‧ fourth side wall
54‧‧‧矽覆蓋層54‧‧‧矽 overlay
55‧‧‧金屬矽化層55‧‧‧Metalized layer
56‧‧‧第二低摻雜區56‧‧‧Second low doped area
58‧‧‧第五側壁子58‧‧‧ Fifth side wall
60‧‧‧第六側壁子60‧‧‧ sixth side wall
62‧‧‧第一源極/汲極摻雜區62‧‧‧First source/deuterium doped region
64‧‧‧第二源極/汲極摻雜區64‧‧‧Second source/drain-doped region
66‧‧‧PMOS66‧‧‧ PMOS
68‧‧‧NMOS68‧‧‧NMOS
11‧‧‧介面11‧‧‧ interface
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098123710A TWI451499B (en) | 2009-07-14 | 2009-07-14 | Method of fabricating transistors and an transistor structure for improving short channel effect and drain induced barrier lowering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098123710A TWI451499B (en) | 2009-07-14 | 2009-07-14 | Method of fabricating transistors and an transistor structure for improving short channel effect and drain induced barrier lowering |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201103091A TW201103091A (en) | 2011-01-16 |
TWI451499B true TWI451499B (en) | 2014-09-01 |
Family
ID=44837738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098123710A TWI451499B (en) | 2009-07-14 | 2009-07-14 | Method of fabricating transistors and an transistor structure for improving short channel effect and drain induced barrier lowering |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI451499B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200620653A (en) * | 2004-05-05 | 2006-06-16 | Taiwan Semiconductor Mfg Co Ltd | Method of forming a raised source/drain and a semiconductor device employing the same |
-
2009
- 2009-07-14 TW TW098123710A patent/TWI451499B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200620653A (en) * | 2004-05-05 | 2006-06-16 | Taiwan Semiconductor Mfg Co Ltd | Method of forming a raised source/drain and a semiconductor device employing the same |
Non-Patent Citations (1)
Title |
---|
Hong Xiao著,羅正忠、張鼎張譯,"半導體製程技術導論/Introduction to Semiconductor Manufacturing Technology",台灣培生教育出版股份有限公司,93年5月二版六刷 * |
Also Published As
Publication number | Publication date |
---|---|
TW201103091A (en) | 2011-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8441033B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
US20190279980A1 (en) | Semiconductor device, method of manufacturing the same and electronic device including the device | |
US8658507B2 (en) | MOSFET structure and method of fabricating the same using replacement channel layer | |
US7586153B2 (en) | Technique for forming recessed strained drain/source regions in NMOS and PMOS transistors | |
US7208362B2 (en) | Transistor device containing carbon doped silicon in a recess next to MDD to create strain in channel | |
US7968912B2 (en) | Semiconductor device and method for fabricating the same | |
US8802533B1 (en) | Semiconductor device and method of manufacturing the same | |
US8486795B2 (en) | Method of fabricating transistors | |
US7981750B2 (en) | Methods of fabrication of channel-stressed semiconductor devices | |
US9947762B2 (en) | MOS devices with mask layers and methods for forming the same | |
US20090218633A1 (en) | Cmos device comprising an nmos transistor with recessed drain and source areas and a pmos transistor having a silicon/germanium material in the drain and source areas | |
US9349695B2 (en) | Semiconductor integrated device including FinFET device and protecting structure | |
TWI453828B (en) | Stress enhanced transistor and methods for its fabrication | |
US20120068268A1 (en) | Transistor structure and method of fabricating the same | |
US20060131657A1 (en) | Semiconductor integrated circuit device and method for the same | |
TWI385735B (en) | Method for forming a strained channel in a semiconductor device | |
US20110127614A1 (en) | Reducing the series resistance in sophisticated transistors by embedding metal silicide contact regions reliably into highly doped semiconductor material | |
KR20030004144A (en) | Semiconductor device and method for manufacturing the same | |
US7482219B2 (en) | Technique for creating different mechanical strain by a contact etch stop layer stack with an intermediate etch stop layer | |
US8129236B2 (en) | Method for creating tensile strain by applying stress memorization techniques at close proximity to the gate electrode | |
US20080303102A1 (en) | Strained Isolation Regions | |
CN103579314A (en) | Semiconductor device and method for manufacturing the same | |
US20090085075A1 (en) | Method of fabricating mos transistor and mos transistor fabricated thereby | |
CN103762177A (en) | Reduction of proximity effects in field-effect transistors with embedded silicon-germanium source and drain regions | |
CN101964327B (en) | Metal oxide semiconductor transistor structure and fabrication method thereof |