TWI450483B - Dc-dc converter and voltage conversion method thereof - Google Patents

Dc-dc converter and voltage conversion method thereof Download PDF

Info

Publication number
TWI450483B
TWI450483B TW100125612A TW100125612A TWI450483B TW I450483 B TWI450483 B TW I450483B TW 100125612 A TW100125612 A TW 100125612A TW 100125612 A TW100125612 A TW 100125612A TW I450483 B TWI450483 B TW I450483B
Authority
TW
Taiwan
Prior art keywords
pulse width
output
signal
coupled
gate
Prior art date
Application number
TW100125612A
Other languages
Chinese (zh)
Other versions
TW201306463A (en
Inventor
Hua Chiang Huang
Original Assignee
Upi Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Upi Semiconductor Corp filed Critical Upi Semiconductor Corp
Priority to TW100125612A priority Critical patent/TWI450483B/en
Publication of TW201306463A publication Critical patent/TW201306463A/en
Application granted granted Critical
Publication of TWI450483B publication Critical patent/TWI450483B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

直流對直流轉換器及其電壓轉換方法DC to DC converter and voltage conversion method thereof

本發明是有關於一種直流對直流轉換器,且特別是有關於一種可調整脈衝寬度調變訊號之脈衝寬度的直流對直流轉換器。The present invention relates to a DC-to-DC converter, and more particularly to a DC-to-DC converter that can adjust the pulse width of a pulse width modulated signal.

眾所周知,直流轉直流轉換器(DC-to-DC converter)可將直流輸入電壓(DC input voltage)轉換為大小相異的直流輸出電壓(DC output voltage)。電腦系統中的中央處理器(CPU)、動態隨機存取記憶體(DRAM)、繪圖晶片(graphic chip)、晶片組(chip set)所使用的操作電壓皆不相同,因此,電腦系統中需要許多直流轉直流轉換器用以將電源供應器提供的直流輸入電壓(例如19V)轉換成為各元件所需的操作電壓。As is known, a DC-to-DC converter converts a DC input voltage into a DC output voltage of a different magnitude. The operating voltages of the central processing unit (CPU), dynamic random access memory (DRAM), graphics chip, and chip set in the computer system are different, so many computer systems are required. The DC to DC converter is used to convert the DC input voltage (eg, 19V) provided by the power supply into the operating voltage required for each component.

在一般的直流轉直流轉換器中,通常利用脈衝寬度調變(PWM)訊號作為驅動訊號。頻率較高的脈衝寬度調變訊可達到較高的功率密度,但是卻會增加轉換功率的耗損。所以此種驅動方式通常只適用於重負載的應用,而在輕負載的應用中較沒有效率,因為大部份的功率係消耗在直流轉直流轉換器中的開關上而非為負載所消耗。因此,長期以來需要一種直流轉直流轉換器,希望能隨著負載的變化而做彈性的調整,不僅在重負載的應用時具有較高轉換效率,在輕負載的應用時亦有良好的轉換效率。In a typical DC-to-DC converter, a pulse width modulation (PWM) signal is usually used as a driving signal. Higher frequency pulse width modulation can achieve higher power density, but it will increase the loss of conversion power. Therefore, this type of driving is usually only suitable for heavy-duty applications, but it is less efficient in light-load applications because most of the power is consumed by switches in the DC-to-DC converter rather than by the load. Therefore, there is a long-felt need for a DC-to-DC converter, which is expected to be elastically adjusted as the load changes, not only in high load applications, but also in conversion efficiency in light load applications. .

本發明提供一種直流對直流轉換器,可使直流對直流轉換器的負載在輕負載時,亦可有良好的轉換效率。The invention provides a DC-to-DC converter, which can make the load of the DC-DC converter have a good conversion efficiency when the load is light.

本發明提出一種直流對直流轉換器,適於提供輸出電壓給負載,直流對直流轉換器包括控制模組以及輸出模組。控制模組接收第一脈衝寬度調變訊號與負載指示訊號,以輸出第二脈衝寬度調變訊號,其中第一脈衝寬度調變訊號具有第一預設脈衝寬度。當負載指示訊號指示負載為重負載時,控制模組將第一脈衝寬度調變訊號作為第二脈衝寬度調變訊號輸出。當負載指示訊號指示負載為輕負載時,控制模組輸出具有第二預設脈衝寬度的第二脈衝寬度調變訊號。輸出模組耦接控制模組,依據第二脈衝寬度調變訊號來提供輸出電壓,其中第二預設脈衝寬度大於第一預設脈衝寬度。The invention provides a DC-to-DC converter suitable for providing an output voltage to a load, and the DC-to-DC converter comprises a control module and an output module. The control module receives the first pulse width modulation signal and the load indication signal to output a second pulse width modulation signal, wherein the first pulse width modulation signal has a first preset pulse width. When the load indication signal indicates that the load is a heavy load, the control module outputs the first pulse width modulation signal as the second pulse width modulation signal. When the load indication signal indicates that the load is a light load, the control module outputs a second pulse width modulation signal having a second preset pulse width. The output module is coupled to the control module, and provides an output voltage according to the second pulse width modulation signal, wherein the second preset pulse width is greater than the first preset pulse width.

在本發明之一實施例中,上述之直流對直流轉換器更包括電流偵測單元,用以偵測輸出模組的負載電流,以提供負載指示訊號。In an embodiment of the invention, the DC-to-DC converter further includes a current detecting unit for detecting a load current of the output module to provide a load indicating signal.

在本發明之一實施例中,上述之控制模組包括第一反閘、第一及閘、第二及閘、固定導通時間單元以及或閘。第一反閘之輸入端接收負載指示訊號。第一及閘之輸入端接收第一脈衝寬度調變訊號與負載指示訊號。第二及閘之輸入端接收第一脈衝寬度調變訊號與第一反閘的輸出訊號。固定導通時間單元耦接第二及閘之輸出端,當第二及閘之輸出訊號出現上升緣時,固定導通時間單元依據第二及閘之輸出訊號輸出一固定導通時間訊號,其中固定導通時間訊號之脈衝寬度等於第二預設脈衝寬度。或閘之輸入端耦接第一及閘之輸出端與導通時間控制單元,依據第一及閘之輸出結果與固定導通時間訊號輸出第二脈衝寬度調變訊號。In an embodiment of the invention, the control module includes a first reverse gate, a first gate, a second gate, a fixed on-time unit, and an OR gate. The input of the first reverse gate receives the load indication signal. The first and the gate inputs receive the first pulse width modulation signal and the load indication signal. The input end of the second AND gate receives the output signal of the first pulse width modulation signal and the first reverse gate. The fixed on-time unit is coupled to the output end of the second gate. When the output signal of the second gate is rising, the fixed on-time unit outputs a fixed on-time signal according to the output signal of the second gate, wherein the fixed on-time is fixed. The pulse width of the signal is equal to the second predetermined pulse width. The input end of the gate is coupled to the output end of the first gate and the on-time control unit, and outputs a second pulse width modulation signal according to the output result of the first gate and the fixed on-time signal.

在本發明之一實施例中,上述之固定導通時間單元包括第二反閘、第三反閘、第四反閘、第三及閘以及第五反閘。第二反閘之輸入端耦接第二及閘的輸出端。第三反閘之輸入端耦接第二反閘的輸出端。第四反閘之輸入端耦接第三反閘的輸出端。第三及閘之輸入端耦接第三反閘的輸出端與第二及閘的輸出端。第五反閘之輸入端耦接第三及閘的輸出端。第五反閘的輸出端耦接或閘的輸入端。In an embodiment of the invention, the fixed on-time unit includes a second reverse gate, a third reverse gate, a fourth reverse gate, a third gate, and a fifth reverse gate. The input end of the second reverse gate is coupled to the output end of the second gate. The input end of the third reverse gate is coupled to the output end of the second reverse gate. The input end of the fourth reverse gate is coupled to the output end of the third reverse gate. The input end of the third and the gate is coupled to the output end of the third reverse gate and the output end of the second gate. The input end of the fifth reverse gate is coupled to the output end of the third gate. The output of the fifth reverse gate is coupled to the input of the gate.

在本發明之一實施例中,上述之固定導通時間單元包括D型正反器、第六反閘、第三電晶體、電流源、電容、第七反閘以及第八反閘。D型正反器之資料輸入端耦接一操作電壓,D型正反器之時脈輸入端耦接第二及閘的輸出端,D型正反器之重置端R耦接第一比較器之輸出端,D型正反器之資料輸出端耦接或閘的輸入端。第六反閘之輸入端耦接D型正反器之資料輸出端。第三電晶體之閘極耦接第六反閘的輸出端,第三電晶體之源極耦接接地電壓。電流源耦接第三電晶體之汲極。電容耦接第三電晶體之汲極。第七反閘之輸入端耦接第三電晶體之汲極。第八反閘之輸入端耦接第七反閘的輸出端,第八反閘的輸出端耦接D型正反器之重置端R。In an embodiment of the invention, the fixed on-time unit includes a D-type flip-flop, a sixth reverse gate, a third transistor, a current source, a capacitor, a seventh reverse gate, and an eighth reverse gate. The data input end of the D-type flip-flop is coupled to an operating voltage, the clock input end of the D-type flip-flop is coupled to the output end of the second gate, and the reset terminal R of the D-type flip-flop is coupled to the first comparison. At the output of the device, the data output end of the D-type flip-flop is coupled to the input of the gate. The input end of the sixth reverse gate is coupled to the data output end of the D-type flip-flop. The gate of the third transistor is coupled to the output of the sixth reverse gate, and the source of the third transistor is coupled to the ground voltage. The current source is coupled to the drain of the third transistor. The capacitor is coupled to the drain of the third transistor. The input end of the seventh reverse gate is coupled to the drain of the third transistor. The input end of the eighth reverse gate is coupled to the output end of the seventh reverse gate, and the output end of the eighth reverse gate is coupled to the reset end R of the D-type flip-flop.

在本發明之一實施例中,上述之直流對直流轉換器,更包括分壓阻抗單元以及脈衝寬度調變訊號產生模組。分壓阻抗單元耦接於直流對直流轉換器的輸出端與接地電壓之間。脈衝寬度調變訊號產生模組耦接電流偵測單元、控制模組與分壓阻抗單元,依據一參考電壓、負載指示訊號與輸出電壓的分壓產生第一脈衝寬度調變訊號。In an embodiment of the invention, the DC-DC converter further includes a voltage dividing impedance unit and a pulse width modulation signal generating module. The voltage dividing impedance unit is coupled between the output of the DC-DC converter and the ground voltage. The pulse width modulation signal generating module is coupled to the current detecting unit, the control module and the voltage dividing impedance unit, and generates a first pulse width modulation signal according to a reference voltage, a load indicating signal and a partial voltage of the output voltage.

在本發明之一實施例中,上述之脈衝寬度調變訊號產生模組包括誤差放大器、補償單元、斜波產生器以及第二比較器。誤差放大器之正、負輸入端分別耦接參考電壓與分壓阻抗單元,根據參考電壓以及輸出電壓之分壓產生一誤差信號。補償單元耦接誤差放大器之輸出端,用以補償誤差信號。斜波產生器耦接電流偵測單元,依據負載指示訊號與一時脈訊號產生一斜波訊號。第二比較器之正、負輸入端分別耦接誤差放大器之輸出端與斜波產生器,依據誤差信號與斜波訊號之比較結果產生第一脈衝寬度調變訊號。In an embodiment of the invention, the pulse width modulation signal generating module includes an error amplifier, a compensation unit, a ramp generator, and a second comparator. The positive and negative input terminals of the error amplifier are respectively coupled to the reference voltage and the voltage dividing impedance unit, and generate an error signal according to the voltage division of the reference voltage and the output voltage. The compensation unit is coupled to the output of the error amplifier for compensating for the error signal. The ramp generator is coupled to the current detecting unit to generate a ramp signal according to the load indicating signal and the one clock signal. The positive and negative input ends of the second comparator are respectively coupled to the output end of the error amplifier and the ramp generator, and the first pulse width modulation signal is generated according to the comparison between the error signal and the ramp signal.

本發明亦提出一種電壓轉換方法,適用於一直流對直流轉換器,直流對直流轉換器適於提供一輸出電壓給一負載,電壓轉換方法包括下列步驟。偵測直流對直流轉換器的一負載電流,以提供負載指示訊號。接收一第一脈衝寬度調變訊號與負載指示訊號,以輸出一第二脈衝寬度調變訊號,其中第一脈衝寬度調變訊號具有一第一預設脈衝寬度。依據該負載指示訊號判斷直流對直流轉換器輸出端之負載為輕負載或重負載。若直流對直流轉換器之輸出端為輕負載,輸出具有一第二預設脈衝寬度的脈衝寬度調變訊號,以切換輸入電壓與接地電壓。若直流對直流轉換器之輸出端為重負載,將該第一脈衝寬度調變訊號作為該第二脈衝寬度調變訊號輸出。依據第二脈衝寬度調變訊號來提供輸出電壓。第二預設脈衝寬度大於第一預設脈衝寬度。The invention also proposes a voltage conversion method suitable for a DC-to-DC converter. The DC-DC converter is adapted to provide an output voltage to a load. The voltage conversion method comprises the following steps. A load current of the DC to DC converter is detected to provide a load indication signal. Receiving a first pulse width modulation signal and a load indication signal to output a second pulse width modulation signal, wherein the first pulse width modulation signal has a first predetermined pulse width. According to the load indication signal, the load of the DC-to-DC converter output is determined to be light load or heavy load. If the output of the DC-to-DC converter is lightly loaded, a pulse width modulation signal having a second predetermined pulse width is output to switch the input voltage and the ground voltage. If the output of the DC-to-DC converter is a heavy load, the first pulse width modulation signal is output as the second pulse width modulation signal. The output voltage is provided according to the second pulse width modulation signal. The second predetermined pulse width is greater than the first predetermined pulse width.

在本發明之一實施例中,其中當脈衝寬度調變訊號出現上升緣時拉高輸出電壓,當第二脈衝寬度調變訊號出現下降緣時降低輸出電壓。In an embodiment of the invention, the output voltage is pulled high when the pulse width modulation signal has a rising edge, and the output voltage is decreased when the second pulse width modulation signal has a falling edge.

基於上述,本發明在直流對直流轉換器的負載為輕負載時,輸出具有一預設脈衝寬度的第二脈衝寬度調變訊號,以使直流對直流轉換器在其負載為輕負載時,仍可保有良好的轉換效率。Based on the above, the present invention outputs a second pulse width modulation signal having a predetermined pulse width when the load of the DC-DC converter is lightly loaded, so that the DC-DC converter still has a light load when its load is Can maintain good conversion efficiency.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1繪示為本發明一實施例之直流對直流轉換器的示意圖。請參照圖1,直流對直流轉換器100包括控制模組102以及輸出模組104。輸出模組104耦接控制模組102、直流對直流轉換器100的輸入電壓Vin、接地電壓GND以及直流對直流轉換器100的輸出端與負載106。FIG. 1 is a schematic diagram of a DC-to-DC converter according to an embodiment of the invention. Referring to FIG. 1 , the DC-to-DC converter 100 includes a control module 102 and an output module 104 . The output module 104 is coupled to the control module 102 , the input voltage Vin of the DC-DC converter 100 , the ground voltage GND , and the output of the DC-DC converter 100 and the load 106 .

控制模組102用以接收第一脈衝寬度調變訊號PWM1與負載指示訊號SC1,且輸出第二脈衝寬度調變訊號PWM2,其中第一脈衝寬度調變訊號PWM1具有第一預設脈衝寬度。當負載指示訊號SC1指示負載106為重負載時,控制模組102直接將第一脈衝寬度調變訊號PWM1作為第二脈衝寬度調變訊號PWM2輸出給輸出模組104。輸出模組104則反應第二脈衝寬度調變訊號PWM2來提供輸出電壓Vout,以使直流對直流轉換器100達到良好的轉換效率。The control module 102 is configured to receive the first pulse width modulation signal PWM1 and the load indication signal SC1, and output a second pulse width modulation signal PWM2, wherein the first pulse width modulation signal PWM1 has a first preset pulse width. When the load indication signal SC1 indicates that the load 106 is a heavy load, the control module 102 directly outputs the first pulse width modulation signal PWM1 as the second pulse width modulation signal PWM2 to the output module 104. The output module 104 then reacts the second pulse width modulation signal PWM2 to provide an output voltage Vout to achieve a good conversion efficiency of the DC to DC converter 100.

當負載指示訊號SC1指示負載106為輕負載時,控制模組102輸出具有第二預設脈衝寬度的第二脈衝寬度調變訊號PWM2,以確保直流對直流轉換器100的轉換效率不被輕負載所影響,其中第二預設脈衝寬度大於第一預設脈衝寬度。如此藉由在負載106為重負載與輕負載時分別提供對應的脈衝寬度調變訊號(PWM1、PWM2),即可使直流對直流轉換器100的轉換效率不受負載106之輕重的影響,而持續供應良好的電源品質給後級的系統電路。When the load indication signal SC1 indicates that the load 106 is a light load, the control module 102 outputs a second pulse width modulation signal PWM2 having a second preset pulse width to ensure that the conversion efficiency of the DC-DC converter 100 is not lightly loaded. The second preset pulse width is greater than the first preset pulse width. Thus, by providing corresponding pulse width modulation signals (PWM1, PWM2) when the load 106 is heavily loaded and lightly loaded, the conversion efficiency of the DC-DC converter 100 can be affected by the weight of the load 106, and continues. Supply good power quality to the system circuitry of the latter stage.

圖2繪示為本發明另一實施例之直流對直流轉換器的示意圖。請參照圖2,在本實施例中圖1實施例之第一脈衝寬度調變訊號PWM1可利用圖2所示之脈衝寬度調變訊號產生模組202與分壓阻抗單元204來產生。脈衝寬度調變訊號產生模組202耦接控制模組102與分壓阻抗單元204,而分壓阻抗單元204則耦接於輸出電壓Vout與接地電壓GND之間。2 is a schematic diagram of a DC-to-DC converter according to another embodiment of the present invention. Referring to FIG. 2, in the embodiment, the first pulse width modulation signal PWM1 of the embodiment of FIG. 1 can be generated by using the pulse width modulation signal generating module 202 and the voltage dividing impedance unit 204 shown in FIG. The pulse width modulation signal generating module 202 is coupled to the control module 102 and the voltage dividing impedance unit 204, and the voltage dividing impedance unit 204 is coupled between the output voltage Vout and the ground voltage GND.

輸出模組104包括電感L1、驅動單元208與切換單元210。電感L1之第一端與第二端分別耦接直流對直流轉換器200之輸出端與切換單元210。切換單元210耦接電感L1的第二端、輸入電壓Vin與接地電壓GND。驅動單元208則耦接控制模組102與切換單元210。脈衝寬度調變訊號產生模組202依據參考電壓Vref、電感L1上之電流IL與輸出電壓Vout的分壓來產生第一脈衝寬度調變訊號PWM1。驅動單元208依據第二脈衝寬度調變訊號PWM2輸出第一開關訊號UG1與第二開關訊號LG1至切換單元210,以控制切換單元210切換輸出輸入電壓Vin或接地電壓GND而輸出一脈波訊號P1至電感L1,以對應切換單元210之切換將輸入電壓Vin轉換為輸出電壓Vout。The output module 104 includes an inductor L1, a driving unit 208, and a switching unit 210. The first end and the second end of the inductor L1 are respectively coupled to the output end of the DC-DC converter 200 and the switching unit 210. The switching unit 210 is coupled to the second end of the inductor L1, the input voltage Vin, and the ground voltage GND. The driving unit 208 is coupled to the control module 102 and the switching unit 210. The pulse width modulation signal generation module 202 generates the first pulse width modulation signal PWM1 according to the reference voltage Vref, the voltage IL on the inductor L1 and the voltage division of the output voltage Vout. The driving unit 208 outputs the first switching signal UG1 and the second switching signal LG1 to the switching unit 210 according to the second pulse width modulation signal PWM2 to control the switching unit 210 to switch the output input voltage Vin or the ground voltage GND to output a pulse signal P1. To the inductor L1, the input voltage Vin is converted into the output voltage Vout by the switching of the corresponding switching unit 210.

圖2實施例與圖1實施例間的差異除了脈衝寬度調變訊號產生模組202與分壓阻抗單元204外,圖2實施例之直流對直流轉換器200更包括電流偵測單元206,其耦接切換單元210的輸出端、脈衝寬度調變訊號產生模組202、驅動單元208以及控制模組102。電流偵測單元206用以偵測直流對直流轉換器200的負載電流,以提供負載指示訊號SC1。詳細來說,如圖2所示,電流偵測單元206偵測切換單元210的輸出端的負載電流(亦即電感L1上之電流IL),並依據所偵測出電感L1上之電流IL大小輸出負載指示訊號SC1。脈衝寬度調變訊號產生模組202則可依據負載指示訊號SC1產生第一脈衝寬度調變訊號PWM1,並使控制模組102可依據負載指示訊號SC1判斷直流對直流轉換器200之輸出端的負載106為輕負載或重負載,進而決定輸出第一脈衝寬度調變訊號PWM1或第二脈衝寬度調變訊號PWM2。負載106為輕負載或重負載可例如藉由比較電流IL與一預設電流值間的大小來判斷,當電流IL之電流值小於預設電流值時,判斷負載106為輕負載,而當電流IL之電流值大於預設電流值時,則判斷負載106為重負載。另外驅動單元208亦可依據負載指示訊號SC1控制切換單元210的切換狀態。The difference between the embodiment of FIG. 2 and the embodiment of FIG. 1 is that the DC-to-DC converter 200 of the embodiment of FIG. 2 further includes a current detecting unit 206, in addition to the pulse width modulation signal generating module 202 and the voltage dividing impedance unit 204. The output of the switching unit 210, the pulse width modulation signal generating module 202, the driving unit 208, and the control module 102 are coupled. The current detecting unit 206 is configured to detect a load current of the DC-to-DC converter 200 to provide a load indication signal SC1. In detail, as shown in FIG. 2, the current detecting unit 206 detects the load current at the output end of the switching unit 210 (that is, the current IL on the inductor L1), and outputs according to the detected current IL of the inductor L1. The load indication signal SC1. The pulse width modulation signal generating module 202 can generate the first pulse width modulation signal PWM1 according to the load indication signal SC1, and enable the control module 102 to determine the load 106 of the output end of the DC to DC converter 200 according to the load indication signal SC1. For light load or heavy load, it is determined to output the first pulse width modulation signal PWM1 or the second pulse width modulation signal PWM2. The load 106 is a light load or a heavy load, for example, by comparing the magnitude between the current IL and a preset current value. When the current value of the current IL is less than the preset current value, it is determined that the load 106 is a light load, and when the current is When the current value of IL is greater than the preset current value, it is determined that the load 106 is a heavy load. In addition, the driving unit 208 can also control the switching state of the switching unit 210 according to the load indication signal SC1.

詳細來說,圖2之直流對直流轉換器200的進一步實施電路圖可如圖3所示。圖3繪示為本發明另一實施例之直流對直流轉換器的示意圖。在本實施例中,脈衝寬度調變訊號產生模組202包括誤差放大器302、補償單元306、斜波產生器308以及比較器304。誤差放大器302的正、負輸入端分別耦接參考電壓Vref與分壓阻抗單元204,以依據參考電壓Vref與輸出電壓Vout的分壓產生一誤差訊號ER1。在本實施例中,分壓阻抗單元204包括兩個串接於直流對直流轉換器200的輸出端與接地電壓GND之間的電阻RA、RB,誤差放大器302為依據參考電壓Vref與輸出電壓Vout的分壓來產生誤差訊號ER1。In detail, a further implementation circuit diagram of the DC-to-DC converter 200 of FIG. 2 can be as shown in FIG. 3 is a schematic diagram of a DC-to-DC converter according to another embodiment of the present invention. In the present embodiment, the pulse width modulation signal generation module 202 includes an error amplifier 302, a compensation unit 306, a ramp generator 308, and a comparator 304. The positive and negative input terminals of the error amplifier 302 are respectively coupled to the reference voltage Vref and the voltage dividing impedance unit 204 to generate an error signal ER1 according to the voltage division of the reference voltage Vref and the output voltage Vout. In the present embodiment, the voltage dividing impedance unit 204 includes two resistors RA and RB connected in series between the output terminal of the DC-DC converter 200 and the ground voltage GND. The error amplifier 302 is based on the reference voltage Vref and the output voltage Vout. The partial pressure produces an error signal ER1.

補償單元306耦接誤差放大器302的輸出端,在本實施例中補償單元306包括電阻R1、電容CA及電容CB,其中電阻R1與電容CA串聯,繼而再與電容CB並聯,然並不以此為限。另外比較器304的正、負輸入端分別耦接至誤差放大器302的輸出端與斜波產生器308。補償單元306用以對誤差信號ER1進行補償。斜波產生器308依據時脈訊號CLK與負載指示訊號SC1產生斜波訊號ramp1。在補償單元306完成對誤差信號Vref的補償之後,比較器304將誤差信號ER1與斜波產生器308所提供之斜波訊號ramp1進行比較,以產生第一脈衝寬度調變訊號PWM1。誤差信號ER1、斜波訊號ramp1與第一脈衝寬度調變訊號PWM1的波形可如圖4所示。The compensation unit 306 is coupled to the output of the error amplifier 302. In this embodiment, the compensation unit 306 includes a resistor R1, a capacitor CA, and a capacitor CB. The resistor R1 is connected in series with the capacitor CA, and then in parallel with the capacitor CB. Limited. In addition, the positive and negative inputs of the comparator 304 are coupled to the output of the error amplifier 302 and the ramp generator 308, respectively. The compensation unit 306 is configured to compensate the error signal ER1. The ramp generator 308 generates the ramp signal ramp1 according to the clock signal CLK and the load indication signal SC1. After the compensation unit 306 completes the compensation of the error signal Vref, the comparator 304 compares the error signal ER1 with the ramp signal ramp1 provided by the ramp generator 308 to generate the first pulse width modulation signal PWM1. The waveforms of the error signal ER1, the ramp signal ramp1 and the first pulse width modulation signal PWM1 can be as shown in FIG.

另外,在本實施例中,控制模組102包括第一反閘INV1、第一及閘AND1、第二及閘AND2、固定導通時間單元310以及或閘OR1。第一反閘INV1的輸入端耦接電流偵測單元206,以接收負載指示訊號SC1。第二及閘AND2的輸入端耦接第一反閘INV1的輸出端與比較器304的輸出端,第二及閘AND2的輸出端則耦接至固定導通時間單元310。第一及閘AND1的輸入端耦接電流偵測單元206與比較器304的輸出端,以分別接收負載指示訊號SC1與第一脈衝寬度調變訊號PWM1。或閘OR1的輸入端耦接第一及閘AND1的輸出端與固定導通時間單元310,或閘OR1的輸出端則耦接至驅動單元208。In addition, in the embodiment, the control module 102 includes a first reverse gate INV1, a first AND gate AND1, a second AND gate AND2, a fixed on-time unit 310, and an OR gate OR1. The input end of the first reverse gate INV1 is coupled to the current detecting unit 206 to receive the load indicating signal SC1. The input end of the second AND gate AND2 is coupled to the output end of the first reverse gate INV1 and the output end of the comparator 304, and the output end of the second AND gate AND2 is coupled to the fixed on-time unit 310. The input end of the first AND gate AND1 is coupled to the output of the current detecting unit 206 and the comparator 304 to receive the load indicating signal SC1 and the first pulse width modulated signal PWM1, respectively. The input end of the OR gate OR1 is coupled to the output end of the first AND gate AND1 and the fixed ON time unit 310, or the output end of the gate OR1 is coupled to the driving unit 208.

另外,切換單元210在本實施例中以第一電晶體M1與第二電晶體M2來實施。第一電晶體M1、第二電晶體M2串接於直流對直流轉換器200的輸入電壓Vin與接地電壓GND之間,第一電晶體M1與第二電晶體M2的閘極耦接驅動單元208,以分別接收第一開關訊號UG1與第二開關訊號LG1,第一電晶體M1與第二電晶體M2的共同接點耦接至電感L1。In addition, the switching unit 210 is implemented by the first transistor M1 and the second transistor M2 in this embodiment. The first transistor M1 and the second transistor M2 are connected in series between the input voltage Vin of the DC-DC converter 200 and the ground voltage GND, and the gates of the first transistor M1 and the second transistor M2 are coupled to the driving unit 208. The first switching signal UG1 and the second switching signal LG1 are respectively received, and the common contact of the first transistor M1 and the second transistor M2 is coupled to the inductor L1.

以下將配合圖3與圖4說明直流對直流轉換器200於重負載與輕負載時的運作細節。請同時參照圖3與圖4,如圖4所示,當電流偵測單元206依據所偵測到之電感L1上的電流IL判斷出負載106為重負載時,電流偵測單元206輸出高電壓邏輯準位的負載指示訊號SC1。高電壓邏輯準位的負載指示訊號SC1經由第一反閘INV1反相後,將使得第二及閘AND2的輸出為低電壓邏輯準位,進而使固定導通時間單元310失去作用,而對控制模組102輸出的第二脈衝寬度調變訊號PWM2失去影響力。The details of the operation of the DC-DC converter 200 under heavy load and light load will be described below with reference to FIGS. 3 and 4. Referring to FIG. 3 and FIG. 4 simultaneously, as shown in FIG. 4, when the current detecting unit 206 determines that the load 106 is a heavy load according to the detected current IL on the inductor L1, the current detecting unit 206 outputs high voltage logic. The load indicator of the level indicates the signal SC1. After the high voltage logic level load indication signal SC1 is inverted by the first reverse gate INV1, the output of the second AND gate AND2 is made to a low voltage logic level, thereby causing the fixed on time unit 310 to be disabled, and the control mode is disabled. The second pulse width modulation signal PWM2 output by the group 102 loses its influence.

於此同時,負載指示訊號SC1將使得斜波產生器308操作在一固定的頻率,亦即斜波產生器308所產生之斜坡訊號ramp1將具有一固定的頻率。藉由控制斜波產生器308輸出的斜坡訊號ramp1,並配合將負載指示訊號SC1輸出至第一及閘AND1即可將比較器304輸出的第一脈衝寬度調變訊號PWM1,經由第一及閘AND1與或閘OR1傳送至驅動單元208。驅動單元208則依據第一脈衝寬度調變訊號PWM1以及負載指示訊號SC1輸出第一開關信號UG1與第二開關信號LG1,以分別控制第一電晶體M1與第二電晶體M2的導通狀態,進而控制直流對直流轉換器200的輸出電壓Vout。At the same time, the load indicating signal SC1 will cause the ramp generator 308 to operate at a fixed frequency, i.e., the ramp signal ramp1 generated by the ramp generator 308 will have a fixed frequency. The first pulse width modulation signal PWM1 outputted by the comparator 304 is controlled by the ramp signal ramp1 outputted by the ramp generator 308, and the load indication signal SC1 is output to the first AND gate AND1. AND1 and OR gate OR1 are transmitted to drive unit 208. The driving unit 208 outputs the first switching signal UG1 and the second switching signal LG1 according to the first pulse width modulation signal PWM1 and the load indication signal SC1 to respectively control the conduction states of the first transistor M1 and the second transistor M2, and further The output voltage Vout of the DC-to-DC converter 200 is controlled.

比較器304比較斜坡訊號ramp1與誤差訊號ER1的結果將決定第一脈衝寬度調變訊號PWM1的脈衝寬度。由圖4可看出,當第二脈衝寬度調變訊號PWM2為高電壓邏輯準位時,驅動單元依據第二脈衝寬度調變訊號將第一開關訊號UG1設為高電壓邏輯準位,而將第二開關訊號LG1設為低電壓邏輯準位,亦即將第一電晶體M1設為導通狀態,並將第二電晶體M2設為關閉狀態。另外,當電感L1上之電流IL降至相對低點時,驅動單元208依據負載指示訊號SC1將第二開關訊號LG1設為低電壓邏輯準位,以關閉第二電晶M2。The result of comparing the ramp signal ramp1 with the error signal ER1 by the comparator 304 determines the pulse width of the first pulse width modulation signal PWM1. As can be seen from FIG. 4, when the second pulse width modulation signal PWM2 is at a high voltage logic level, the driving unit sets the first switching signal UG1 to a high voltage logic level according to the second pulse width modulation signal, and The second switching signal LG1 is set to a low voltage logic level, that is, the first transistor M1 is set to an on state, and the second transistor M2 is set to a off state. In addition, when the current IL on the inductor L1 falls to a relatively low level, the driving unit 208 sets the second switching signal LG1 to a low voltage logic level according to the load indication signal SC1 to turn off the second transistor M2.

當電流偵測單元206依據所偵測到之電感L1上的電流判斷出負載106為輕負載時,電流偵測單元206輸出的負載指示訊號SC1將由高電壓邏輯準位轉為低電壓邏輯準位。低電壓邏輯準位的負載指示訊號SC1經由第一反閘INV1反相後,將使得第二及閘AND2的輸出為高電壓邏輯準位,進而致能固定導通時間單元310。同時,低電壓邏輯準位的負載指示訊號SC1將使得第一及閘AND1的輸出為低電壓邏輯準位,而使得比較器304輸出的第一脈衝寬度調變訊號PWM1對控制模組102輸出的第二脈衝寬度調變訊號PWM2失去影響力。When the current detecting unit 206 determines that the load 106 is a light load according to the detected current on the inductor L1, the load indicating signal SC1 output by the current detecting unit 206 will be changed from the high voltage logic level to the low voltage logic level. . After the low voltage logic level load indicating signal SC1 is inverted by the first reverse gate INV1, the output of the second AND gate AND2 is made to be a high voltage logic level, thereby enabling the fixed on time unit 310. At the same time, the load indication signal SC1 of the low voltage logic level will cause the output of the first AND gate AND1 to be a low voltage logic level, and the first pulse width modulation signal PWM1 output by the comparator 304 is output to the control module 102. The second pulse width modulation signal PWM2 loses its influence.

如圖4所示,當負載106為輕負載時,斜波訊號ramp1與誤差訊號ER1分別受到輸出電壓Vout與負載指示訊號SC1的變化影響而轉變為圖4右方所示之波形,其中斜波訊號ramp1與誤差訊號ER1的頻率明顯地下降。而由於第一及閘AND1的輸出為低電壓邏輯準位,因此第二脈衝寬度調變訊號PWM2將完全由固定導通時間單元310的輸出所決定。當比較器304依據斜波訊號ramp1與誤差訊號ER1輸出的第一脈衝寬度調變訊號PWM1出現上升緣時,固定導通時間單元310依據第二及閘AND2之輸出訊號輸出一固定導通時間訊號Son1,進而透過或閘OR1將其作為第二脈衝寬度調變訊號PWM2輸出至驅動單元208。固定導通時間訊號Son1(亦即第二脈衝寬度調變訊號PWM2)之脈衝寬度等於上述之第二預設脈衝寬度,在本實施例中其大於第一脈衝寬度調變訊號PWM1的脈衝寬度。As shown in FIG. 4, when the load 106 is a light load, the ramp signal ramp1 and the error signal ER1 are respectively affected by the change of the output voltage Vout and the load indication signal SC1, and the waveform is converted to the waveform shown on the right side of FIG. The frequency of the signal ramp1 and the error signal ER1 is significantly reduced. Since the output of the first AND gate AND1 is a low voltage logic level, the second pulse width modulation signal PWM2 will be completely determined by the output of the fixed on time unit 310. When the comparator 304 generates a rising edge according to the ramp signal ramp1 and the first pulse width modulation signal PWM1 outputted by the error signal ER1, the fixed on-time unit 310 outputs a fixed on-time signal Son1 according to the output signal of the second AND gate AND2. Further, it is output to the driving unit 208 as the second pulse width modulation signal PWM2 through the OR gate OR1. The pulse width of the fixed on-time signal Son1 (ie, the second pulse width modulation signal PWM2) is equal to the second predetermined pulse width described above, which is greater than the pulse width of the first pulse width modulation signal PWM1 in this embodiment.

在第二脈衝寬度調變訊號PWM2維持在高電壓邏輯準位的期間,斜波訊號ramp1也將被維持於一特定的電壓準位,並於第二脈衝寬度調變訊號PWM2轉為低電壓邏輯準位後,漸漸地降至一較低的電壓準位。另外,受到第二脈衝寬度調變訊號PWM2變寬的影響,驅動單元208所輸出的第一開關訊號UG1與第二開關訊號LG1的脈衝寬度也隨之變寬。當電感L1上之電流降為零時,驅動單元208將依據負載指示訊號SC1關閉第二電晶體M2。如此藉由固定導通時間單元310來依據負載106的輕重來將第二脈衝寬度調變訊號PWM2的脈衝寬度轉換為第二預設脈衝寬度,即可在負載106為輕負載的情形下保持直流對直流轉換器200的轉換效率,進而供應良好的電源品質給後級的應用電路。While the second pulse width modulation signal PWM2 is maintained at the high voltage logic level, the ramp signal ramp1 will also be maintained at a specific voltage level, and the second pulse width modulation signal PWM2 is converted to the low voltage logic. After the level is lowered, it gradually drops to a lower voltage level. In addition, due to the widening of the second pulse width modulation signal PWM2, the pulse widths of the first switching signal UG1 and the second switching signal LG1 output by the driving unit 208 are also widened. When the current on the inductor L1 drops to zero, the driving unit 208 will turn off the second transistor M2 according to the load indicating signal SC1. Thus, by fixing the on-time unit 310 to convert the pulse width of the second pulse width modulation signal PWM2 to the second predetermined pulse width according to the light weight of the load 106, the DC pair can be maintained under the condition that the load 106 is lightly loaded. The conversion efficiency of the DC converter 200, in turn, supplies good power quality to the application circuit of the subsequent stage.

詳細來說,固定導通時間單元310的實施方式可例如圖5A或圖5B所示。在圖5A中,固定導通時間單元310包括第二反閘INV2、第三反閘INV3、第四反閘INV4、反及閘NAND1以及第五反閘INV5。第二反閘INV2~第四反閘INV4串接於第二及閘AND2的輸出端與反及閘NAND1的一輸入端之間,反及閘NAND1的另一輸入端則耦接第二及閘AND2的輸出端。另外,反及閘NAND1的輸出端耦接第五反閘INV5的輸入端,第五反閘INV5的輸出端則耦接至或閘OR1的輸入端。如此便可利用訊號經過邏輯閘會產生時間延遲的特性,將固定導通時間單元310的輸入訊號的脈衝寬度變寬,而輸出具有第二預設寬度的固定導通時間訊號Son1。In detail, an embodiment of the fixed on-time unit 310 can be, for example, as shown in FIG. 5A or FIG. 5B. In FIG. 5A, the fixed on-time unit 310 includes a second reverse gate INV2, a third reverse gate INV3, a fourth reverse gate INV4, a reverse gate NAND1, and a fifth reverse gate INV5. The second reverse gate INV2~the fourth reverse gate INV4 are connected in series between the output end of the second AND gate AND2 and one input end of the reverse gate NAND1, and the other input end of the gate NAND1 is coupled to the second gate The output of AND2. In addition, the output end of the NAND gate NAND1 is coupled to the input end of the fifth reverse gate INV5, and the output end of the fifth reverse gate INV5 is coupled to the input terminal of the OR gate OR1. Thus, by utilizing the characteristic that the signal generates a time delay through the logic gate, the pulse width of the input signal of the fixed on-time unit 310 is widened, and the fixed on-time signal Son1 having the second preset width is output.

值得注意的是,圖5A中所串接邏輯閘的個數僅為一示範性的實施例,實際應用上並不以此為限。固定導通時間單元310增寬輸入訊號的脈衝寬度的幅度可依實際應用情形調整,例如可將反及閘NAND1輸入端所串接之反閘的個數增加為5個或7個,以增加固定導通時間訊號Son1的脈衝寬度。It should be noted that the number of serially connected logic gates in FIG. 5A is only an exemplary embodiment, and the actual application is not limited thereto. The fixed on-time unit 310 widens the amplitude of the pulse width of the input signal according to the actual application situation. For example, the number of reverse gates connected in series with the input terminal of the NAND1 gate can be increased to 5 or 7 to increase the fixed Turn on the pulse width of the time signal Son1.

圖5B繪示為本發明另一實施例之固定導通時間單元的示意圖。請參照圖5B。在本實施例中,固定導通時間單元310包括D型正反器502、第六反閘INV6、第三電晶體M3、電流源I1、電容C1、第七反閘INV7以及第八反閘INV8。D型正反器502的資料輸入端D耦接一操作電壓VOP1,D型正反器502的時脈輸入端耦接第二及閘AND2的輸出端,D型正反器502的資料輸出端Q耦接至或閘OR1的輸入端與第六反閘INV6的輸入端。第三電晶體M3的閘極耦接第六反閘INV6的輸出端,第三電晶體M3的汲極與源極分別耦接電流源I1與接地電壓GND。電容C1耦接於第三電晶體M3的汲極與接地電壓GND之間。第七反閘INV7之輸入端耦接第三電晶體M3的汲極,第七反閘INV7之輸出端耦接第八反閘INV8的輸入端。另外,第八反閘INV8的輸出端則耦接至D型正反器502的重置端R。FIG. 5B is a schematic diagram of a fixed on-time unit according to another embodiment of the present invention. Please refer to FIG. 5B. In the present embodiment, the fixed on-time unit 310 includes a D-type flip-flop 502, a sixth reverse gate INV6, a third transistor M3, a current source I1, a capacitor C1, a seventh reverse gate INV7, and an eighth reverse gate INV8. The data input terminal D of the D-type flip-flop 502 is coupled to an operating voltage VOP1, and the clock input terminal of the D-type flip-flop 502 is coupled to the output terminal of the second AND gate AND2, and the data output terminal of the D-type flip-flop 502 The Q is coupled to the input of the OR gate OR1 and the input of the sixth reverse gate INV6. The gate of the third transistor M3 is coupled to the output end of the sixth inverter INV6, and the drain and the source of the third transistor M3 are coupled to the current source I1 and the ground voltage GND, respectively. The capacitor C1 is coupled between the drain of the third transistor M3 and the ground voltage GND. The input end of the seventh reverse gate INV7 is coupled to the drain of the third transistor M3, and the output end of the seventh reverse gate INV7 is coupled to the input end of the eighth reverse gate INV8. In addition, the output end of the eighth reverse gate INV8 is coupled to the reset terminal R of the D-type flip-flop 502.

如圖5B所示,當第一脈衝寬度調變訊號PWM1出現上升緣時,第二及閘AND2的輸出端議會轉為高電壓邏輯電位,進而使D型正反器502將其資料輸入端D的電壓輸出至其資料輸出端Q,而使固定導通時間訊號Son1轉為高電壓邏輯電位(亦使第二脈衝寬度調變訊號PWM2轉為高電壓邏輯電位)。高電壓邏輯電位的固定導通時間訊號Son1經由第六反閘INV6反相後,將使第三電晶體M3關閉,而使得電容C1上的電壓開始被電流源I1充電而漸漸上升。電容C1上的電壓將經由第七反閘INV7與第八反閘INV8傳遞至D型正反器502的重置端R,等到電容C1上的電壓被充電至高電壓邏輯準位而傳遞至傳遞至D型正反器502的重置端R時,才將D型正反器502的資料輸出端Q拉至低電壓邏輯準位。其中自電容C1開始被充電至D型正反器502的重置端R轉為高電壓邏輯準位的期間,固定導通時間訊號Son1皆保持在高電壓邏輯電位,因而使得固定導通時間訊號Son1(亦使第二脈衝寬度調變訊號PWM2)的脈衝寬度變寬。其中使用者可依據實際情形改變電容C1的大小或反閘的串接個數來調整第二脈衝寬度調變訊號PWM2的脈衝寬度。例如可加大電容C1的電容質或增加反閘的串接個數來增加第二脈衝寬度調變訊號PWM2的脈衝寬度。As shown in FIG. 5B, when the rising edge of the first pulse width modulation signal PWM1 occurs, the output of the second AND gate AND2 is turned into a high voltage logic potential, so that the D-type flip-flop 502 inputs its data input terminal D. The voltage is output to its data output terminal Q, and the fixed on-time signal Son1 is turned into a high-voltage logic potential (also causes the second pulse-width modulation signal PWM2 to be converted to a high-voltage logic potential). After the high-voltage logic potential fixed on-time signal Son1 is inverted by the sixth reverse gate INV6, the third transistor M3 is turned off, so that the voltage on the capacitor C1 starts to be charged by the current source I1 and gradually rises. The voltage on capacitor C1 will be transferred to reset terminal R of D-type flip-flop 502 via seventh back gate INV7 and eighth back gate INV8, and the voltage on capacitor C1 is charged to a high voltage logic level and passed to When the reset terminal R of the D-type flip-flop 502 is pulled, the data output terminal Q of the D-type flip-flop 502 is pulled to the low-voltage logic level. The self-capacitance C1 is charged until the reset terminal R of the D-type flip-flop 502 is turned to the high-voltage logic level, and the fixed on-time signal Son1 is maintained at the high-voltage logic potential, thereby making the fixed on-time signal Son1 ( The pulse width of the second pulse width modulation signal PWM2) is also widened. The user can adjust the pulse width of the second pulse width modulation signal PWM2 by changing the size of the capacitor C1 or the number of series connection of the reverse gate according to actual conditions. For example, the capacitance of the capacitor C1 can be increased or the number of serial connections of the reverse gate can be increased to increase the pulse width of the second pulse width modulation signal PWM2.

另外,電流偵測單元206的實施方式則可例如圖6A或圖6B所示。在圖6A中,電流偵測單元206耦接第一電晶體M1與第二電晶體M2的共同接點以及直流對直流轉換器200的輸出端。電流偵測單元206包括電阻Rf1、電阻Rf2、電容Cf以及操作放大器602。此外,圖6A中耦接於電感L1與直流對直流轉換器200的輸出端之間的電阻RL1為電感L1的等效串聯電阻。電阻Rf1耦接於操作放大器602的正輸入端與第一電晶體M1與第二電晶體M2的共同接點之間。電阻Rf2耦接於操作放大器602的負輸入端與直流對直流轉換器200的輸出端之間。操作放大器602的負輸入端耦接至其輸出端。電容Cf耦接於操作放大器602的正輸入端與直流對直流轉換器200的輸出端之間。其中電感L1上的跨壓VL如下列式子所示:Additionally, embodiments of current detecting unit 206 may be, for example, as shown in FIG. 6A or FIG. 6B. In FIG. 6A, the current detecting unit 206 is coupled to a common contact of the first transistor M1 and the second transistor M2 and an output of the DC-to-DC converter 200. The current detecting unit 206 includes a resistor Rf1, a resistor Rf2, a capacitor Cf, and an operational amplifier 602. In addition, the resistor RL1 coupled between the inductor L1 and the output of the DC-DC converter 200 in FIG. 6A is the equivalent series resistance of the inductor L1. The resistor Rf1 is coupled between the positive input terminal of the operational amplifier 602 and a common junction of the first transistor M1 and the second transistor M2. The resistor Rf2 is coupled between the negative input terminal of the operational amplifier 602 and the output of the DC-DC converter 200. The negative input of the operational amplifier 602 is coupled to its output. The capacitor Cf is coupled between the positive input terminal of the operational amplifier 602 and the output of the DC-to-DC converter 200. The voltage across the voltage VL on the inductor L1 is as follows:

VL=(RL1+sL)IL (1)VL=(RL1+sL)IL (1)

其中L為電感L1的電感值,IL為電感L1上的電流值,s則為複數頻率(complex frequency)。另外,電容Cf上的跨壓Vc則可如下列式子所示:Where L is the inductance of inductor L1, IL is the current value of inductor L1, and s is the complex frequency. In addition, the voltage across the capacitor Cf Vc can be as shown in the following equation:

其中T=L/RL1、T1 =Rf1×Cf1,若使T=T1 ,則Vc=RL1×IL。亦即若適當地選擇Rf1×Cf1=L/RL1,則電容Cf上的跨壓Vc將正比於電感L1上的電流IL,另外流經電阻Rf2上的電流亦正比於於電感L1上的電流IL。因此只要偵測出流經電阻Rf2上的電流大小即可得知電感L1上的電流IL的變化情形,進而得知負載106的輕重,並據以輸出負載指示訊號SC1。Where T = L / RL1, T 1 = Rf1 × Cf1, and if T = T 1 , then Vc = RL1 × IL. That is, if Rf1×Cf1=L/RL1 is properly selected, the voltage across the capacitor Cf Vc will be proportional to the current IL on the inductor L1, and the current flowing through the resistor Rf2 is also proportional to the current IL on the inductor L1. . Therefore, as long as the current flowing through the resistor Rf2 is detected, the change of the current IL on the inductor L1 can be known, and the weight of the load 106 can be known, and the load indication signal SC1 can be output accordingly.

圖6B繪示為本發明另一實施例之電流偵測單元的示意圖。請參照圖6B。在本實施例中,電流偵測單元206包括一電阻Rf3以及操作放大器604。其中電阻Rf3耦接於第一電晶體M1與第二電晶體M2的共同接點N1以及操作放大器604的負輸入端之間。操作放大器604的正輸入端耦接至接地電壓GND,且放大器604的負輸入端耦接至其輸出端。FIG. 6B is a schematic diagram of a current detecting unit according to another embodiment of the present invention. Please refer to FIG. 6B. In this embodiment, the current detecting unit 206 includes a resistor Rf3 and an operational amplifier 604. The resistor Rf3 is coupled between the common junction N1 of the first transistor M1 and the second transistor M2 and the negative input terminal of the operational amplifier 604. The positive input terminal of the operational amplifier 604 is coupled to the ground voltage GND, and the negative input terminal of the amplifier 604 is coupled to its output terminal.

當第一電晶體M1開啟而第二電晶體M2關閉時,電感L1上的電流IL由接點N1流向負載106的方向,且此時接點N1上的電壓為正電壓。相反地,當第一電晶體M1關閉而第二電晶體M2開啟時,由於電感L1上的電流IL部會立即地改變,電流IL依然會由接點N1流向負載106的方向,但此時接點N1上的電壓為負電壓。值得注意的是,在第二電晶體M2開啟的期間,電感L1上的電流IL可藉由偵測流經電阻Rf3的電流而被偵測出,其中流經電阻Rf3的電流為正比於電感L1上的電流IL。由於操作放大器604的正輸入端耦接至接地電壓GND且其負輸入端耦接至其輸出端,因此操作放大器604的負輸入端上的電壓也將等於接地電壓GND。而由於接點N1上的電壓在此時為負電壓且操作放大器604的負輸入端上的電壓也將等於接地電壓GND,電阻Rf3上的電流將由操作放大器604的負輸入端流向接點N1,且電阻Rf3上的電流正比於電感L1上的電流IL。如此,亦僅需偵測出流經電阻Rf3上的電流大小即可得知電感L1上的電流IL的變化情形,進而得知負載106的輕重,並據以輸出負載指示訊號SC1。When the first transistor M1 is turned on and the second transistor M2 is turned off, the current IL on the inductor L1 flows from the contact point N1 to the load 106, and at this time, the voltage on the contact point N1 is a positive voltage. Conversely, when the first transistor M1 is turned off and the second transistor M2 is turned on, since the current IL portion on the inductor L1 changes immediately, the current IL still flows from the contact point N1 to the load 106, but at this time, The voltage at point N1 is a negative voltage. It should be noted that during the period when the second transistor M2 is turned on, the current IL on the inductor L1 can be detected by detecting the current flowing through the resistor Rf3, wherein the current flowing through the resistor Rf3 is proportional to the inductor L1. Current IL on. Since the positive input of the operational amplifier 604 is coupled to the ground voltage GND and its negative input is coupled to its output, the voltage on the negative input of the operational amplifier 604 will also be equal to the ground voltage GND. Since the voltage on the contact N1 is a negative voltage at this time and the voltage on the negative input terminal of the operational amplifier 604 will also be equal to the ground voltage GND, the current on the resistor Rf3 will flow from the negative input terminal of the operational amplifier 604 to the contact N1. And the current on the resistor Rf3 is proportional to the current IL on the inductor L1. In this way, it is only necessary to detect the magnitude of the current flowing through the resistor Rf3 to know the change of the current IL on the inductor L1, and then to know the light weight of the load 106, and accordingly output the load indication signal SC1.

圖7繪示為本發明一實施例之直流對直流轉換器的電壓轉換方法流程圖。請參照圖7,綜上所述,直流對直流轉換器200的電壓轉換方法步驟可歸納如下。首先,偵測直流對直流轉換器的負載電流,以提供負載指示訊號(步驟S702)。接著,接收第一脈衝寬度調變訊號與負載指示訊號,以輸出第二脈衝寬度調變訊號(步驟S704),其中第一脈衝寬度調變訊號具有第一預設脈衝寬度。之後,依據負載指示訊號判斷直流對直流轉換器輸出端之負載為輕負載或重負載(步驟S706)。若直流對直流轉換器之輸出端為輕負載,輸出具有第二預設脈衝寬度的第二脈衝寬度調變訊號(步驟S708),然後再依據第二脈衝寬度調變訊號來提供輸出電壓(步驟S712)。若直流對直流轉換器之輸出端為重負載,則將第一脈衝寬度調變訊號作為第二脈衝寬度調變訊號輸出(步驟S710),之後再依據第二脈衝寬度調變訊號來提供輸出電壓(步驟S712),其中第二預設脈衝寬度大於第一預設脈衝寬度。另外,當電感上之電流降為零或脈衝寬度調變訊號出現下降緣時,直流對直流轉換器的輸出電壓將被降低。而當第二脈衝寬度調變訊號出現上升緣時,直流對直流轉換器的輸出電壓將被拉高。FIG. 7 is a flow chart of a voltage conversion method of a DC-DC converter according to an embodiment of the invention. Referring to FIG. 7, in summary, the voltage conversion method steps of the DC-DC converter 200 can be summarized as follows. First, the load current of the DC-to-DC converter is detected to provide a load indication signal (step S702). Then, the first pulse width modulation signal and the load indication signal are received to output a second pulse width modulation signal (step S704), wherein the first pulse width modulation signal has a first preset pulse width. Then, the load of the DC-to-DC converter output is determined to be light load or heavy load according to the load indication signal (step S706). If the output of the DC-to-DC converter is lightly loaded, outputting a second pulse width modulation signal having a second preset pulse width (step S708), and then providing an output voltage according to the second pulse width modulation signal (step S712). If the output of the DC-to-DC converter is a heavy load, the first pulse width modulation signal is output as the second pulse width modulation signal (step S710), and then the output voltage is provided according to the second pulse width modulation signal ( Step S712), wherein the second preset pulse width is greater than the first preset pulse width. In addition, when the current drop on the inductor is zero or the pulse width modulation signal has a falling edge, the output voltage of the DC-to-DC converter will be lowered. When the rising edge of the second pulse width modulation signal occurs, the output voltage of the DC to DC converter will be pulled high.

綜上所述,本發明實施例在直流對直流轉換器的負載為重負載與輕負載時分別提供與其對應的脈衝寬度調變訊號,以使直流對直流轉換器的轉換效率不受負載之輕重的影響。在直流對直流轉換器的負載為重負載時,輸出具有第一預設脈衝寬度的第二脈衝寬度調變訊號,而在輕負載時,輸出具有第二預設脈衝寬度的第二脈衝寬度調變訊號,其中第二預設脈衝寬度大於第一預設脈衝寬度。如此便可持續供應良好的電源品質給後級的應用電路。In summary, in the embodiment of the present invention, when the load of the DC-DC converter is a heavy load and a light load, respectively, a pulse width modulation signal corresponding thereto is provided, so that the conversion efficiency of the DC-DC converter is not affected by the load. influences. When the load of the DC-DC converter is a heavy load, outputting a second pulse width modulation signal having a first preset pulse width, and at a light load, outputting a second pulse width modulation having a second preset pulse width a signal, wherein the second predetermined pulse width is greater than the first predetermined pulse width. This will continue to supply good power quality to the application circuit of the latter stage.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、200...直流對直流轉換器100, 200. . . DC to DC converter

102...控制模組102. . . Control module

104...輸出模組104. . . Output module

106...負載106. . . load

202...脈衝寬度調變訊號產生模組202. . . Pulse width modulation signal generation module

204...分壓阻抗單元204. . . Voltage divider impedance unit

206...電流偵測單元206. . . Current detection unit

208...驅動單元208. . . Drive unit

210...切換單元210. . . Switching unit

302...誤差放大器302. . . Error amplifier

304...比較器304. . . Comparators

306...補償單元306. . . Compensation unit

308...斜波產生器308. . . Ramp generator

310...固定導通時間單元310. . . Fixed on time unit

502...D型正反器502. . . D-type flip-flop

602、604...操作放大器602, 604. . . Operational amplifier

S702~S708...電壓轉換方法的步驟S702~S708. . . Steps of the voltage conversion method

Vin...輸入電壓Vin. . . Input voltage

GND...接地電壓GND. . . Ground voltage

M1、M2、M3...電晶體M1, M2, M3. . . Transistor

PWM1、PWM2...脈衝寬度調變訊號PWM1, PWM2. . . Pulse width modulation signal

Vout...輸出電壓Vout. . . The output voltage

UG1、LG1...開關信號UG1, LG1. . . Switching signal

L1...電感L1. . . inductance

IL...電感L1上之電流IL. . . Current on inductor L1

SC1...負載指示訊號SC1. . . Load indication signal

P1...脈波訊號P1. . . Pulse signal

Vref...參考電壓Vref. . . Reference voltage

ER1...誤差訊號ER1. . . Error signal

RA、RB、R1、Rf1~Rf3、RL1...電阻RA, RB, R1, Rf1~Rf3, RL1. . . resistance

CA、CB、C1、Cf...電容CA, CB, C1, Cf. . . capacitance

ramp1...斜波訊號Ramp1. . . Oblique wave signal

I1...電流源I1. . . Battery

Vc...電容Cf上之跨壓Vc. . . Cross-voltage on capacitor Cf

VL...電感L1上之跨壓VL. . . Cross-over on inductor L1

CLK...時脈訊號CLK. . . Clock signal

INV1~INV8...反閘INV1~INV8. . . Reverse gate

AND1~AND2...及閘AND1~AND2. . . Gate

NAND1...反及閘NAND1. . . Reverse gate

OR1...或閘OR1. . . Gate

VOP1...操作電壓VOP1. . . Operating voltage

Son1...固定導通時間訊號Son1. . . Fixed on time signal

N1...接點N1. . . contact

圖1繪示為本發明一實施例之直流對直流轉換器的示意圖。FIG. 1 is a schematic diagram of a DC-to-DC converter according to an embodiment of the invention.

圖2繪示為本發明另一實施例之直流對直流轉換器的示意圖。2 is a schematic diagram of a DC-to-DC converter according to another embodiment of the present invention.

圖3繪示為本發明另一實施例之直流對直流轉換器的示意圖。3 is a schematic diagram of a DC-to-DC converter according to another embodiment of the present invention.

圖4繪示為圖3實施例之直流對直流轉換器中多個訊號的波形示意圖。4 is a waveform diagram of a plurality of signals in a DC-to-DC converter of the embodiment of FIG. 3.

圖5A、5B繪示為本發明實施例之固定導通時間單元的示意圖。5A and 5B are schematic diagrams showing a fixed on-time unit according to an embodiment of the present invention.

圖6A、6B繪示為本發明實施例之電流偵測單元的示意圖。6A and 6B are schematic diagrams showing a current detecting unit according to an embodiment of the present invention.

圖7繪示為本發明一實施例之直流對直流轉換器的電壓轉換方法流程圖。FIG. 7 is a flow chart of a voltage conversion method of a DC-DC converter according to an embodiment of the invention.

100...直流對直流轉換器100. . . DC to DC converter

102...控制模組102. . . Control module

104...輸出模組104. . . Output module

106...負載106. . . load

Vin...輸入電壓Vin. . . Input voltage

GND...接地電壓GND. . . Ground voltage

PWM1、PWM2...脈衝寬度調變訊號PWM1, PWM2. . . Pulse width modulation signal

Vout...輸出電壓Vout. . . The output voltage

SC1...負載指示訊號SC1. . . Load indication signal

Claims (9)

一種直流對直流轉換器,適於提供一輸出電壓給一負載,該直流對直流轉換器包括:一控制模組,接收一第一脈衝寬度調變訊號與一負載指示訊號,以輸出一第二脈衝寬度調變訊號,該第一脈衝寬度調變訊號具有一第一預設脈衝寬度;當該負載指示訊號指示該負載為重負載時,該控制模組將該第一脈衝寬度調變訊號作為該第二脈衝寬度調變訊號輸出;當該負載指示訊號指示該負載為輕負載時,該控制模組輸出具有一第二預設脈衝寬度的該第二脈衝寬度調變訊號;以及一輸出模組,耦接該控制模組,該輸出模組依據該第二脈衝寬度調變訊號來提供該輸出電壓,其中該第二預設脈衝寬度大於該第一預設脈衝寬度。A DC-to-DC converter is adapted to provide an output voltage to a load. The DC-to-DC converter includes: a control module that receives a first pulse width modulation signal and a load indication signal to output a second a pulse width modulation signal, the first pulse width modulation signal has a first predetermined pulse width; when the load indication signal indicates that the load is a heavy load, the control module uses the first pulse width modulation signal as the a second pulse width modulation signal output; when the load indication signal indicates that the load is a light load, the control module outputs the second pulse width modulation signal having a second predetermined pulse width; and an output module The output module is coupled to the control module, and the output module provides the output voltage according to the second pulse width modulation signal, wherein the second predetermined pulse width is greater than the first predetermined pulse width. 如申請專利範圍第1項所述之直流對直流轉換器,更包括:一電流偵測單元,用以偵測該輸出模組的一負載電流,以提供該負載指示訊號。The DC-to-DC converter of claim 1, further comprising: a current detecting unit for detecting a load current of the output module to provide the load indicating signal. 如申請專利範圍第2項所述之直流對直流轉換器,其中該控制模組包括:一第一反閘,其輸入端接收該負載指示訊號;一第一及閘,其輸入端接收該第一脈衝寬度調變訊號與該負載指示訊號;一第二及閘,其輸入端接收該第一脈衝寬度調變訊號與該第一反閘的輸出訊號;一固定導通時間單元,耦接該第二及閘之輸出端,當該第二及閘之輸出訊號出現上升緣時,該固定導通時間單元依據該第二及閘之輸出訊號輸出一固定導通時間訊號,其中該固定導通時間訊號之脈衝寬度等於該第二預設脈衝寬度;以及一或閘,其輸入端耦接該第一及閘之輸出端與該導通時間控制單元,依據該第一及閘之輸出結果與該固定導通時間訊號輸出該第二脈衝寬度調變訊號。The DC-DC converter of claim 2, wherein the control module comprises: a first reverse gate, wherein the input end receives the load indication signal; a first AND gate, the input end receives the first a pulse width modulation signal and the load indication signal; a second gate, the input end receiving the first pulse width modulation signal and the output signal of the first back gate; a fixed on time unit coupled to the first And at the output end of the second gate, when the output signal of the second gate has a rising edge, the fixed on-time unit outputs a fixed on-time signal according to the output signal of the second gate, wherein the fixed-on time signal pulse The width is equal to the second predetermined pulse width; and the input terminal is coupled to the output end of the first gate and the on-time control unit, according to the output result of the first gate and the fixed on-time signal The second pulse width modulation signal is output. 如申請專利範圍第3項所述之直流對直流轉換器,其中該固定導通時間單元包括:一第二反閘,其輸入端耦接該第二及閘的輸出端;一第三反閘,其輸入端耦接該第二反閘的輸出端;一第四反閘,其輸入端耦接該第三反閘的輸出端;一第三及閘,其輸入端耦接該第三反閘的輸出端與該第二及閘的輸出端;以及一第五反閘,其輸入端耦接該第三及閘的輸出端,該第五反閘的輸出端耦接該或閘的輸入端。The DC-to-DC converter of claim 3, wherein the fixed on-time unit comprises: a second reverse gate, the input end of which is coupled to the output end of the second gate; and a third reverse gate, The input end is coupled to the output end of the second reverse gate; a fourth reverse gate, the input end of which is coupled to the output end of the third reverse gate; and a third gate, the input end of which is coupled to the third reverse gate And an output terminal of the second gate; and a fifth reverse gate, the input end of which is coupled to the output end of the third gate, and the output of the fifth gate is coupled to the input of the gate . 如申請專利範圍第3項所述之直流對直流轉換器,其中該固定導通時間單元包括:一D型正反器,其資料輸入端耦接一操作電壓,該D型正反器之時脈輸入端耦接該第二及閘的輸出端,該D型正反器之重置端耦接該第一比較器之輸出端,該D型正反器之資料輸出端耦接該或閘的輸入端;一第六反閘,其輸入端耦接該D型正反器之資料輸出端;一第三電晶體,其閘極耦接該第六反閘的輸出端,該第三電晶體之源極耦接該接地電壓;一電流源,耦接該第三電晶體之汲極;一電容,耦接該第三電晶體之汲極;一第七反閘,其輸入端耦接該第三電晶體之汲極;以及一第八反閘,其輸入端耦接該第七反閘的輸出端,該第八反閘的輸出端耦接該D型正反器之重置端。The DC-to-DC converter according to claim 3, wherein the fixed on-time unit comprises: a D-type flip-flop, wherein the data input end is coupled to an operating voltage, and the clock of the D-type flip-flop The input end is coupled to the output end of the second gate, the reset end of the D-type flip-flop is coupled to the output end of the first comparator, and the data output end of the D-type flip-flop is coupled to the gate An input end; a sixth reverse gate, the input end of which is coupled to the data output end of the D-type flip-flop; a third transistor whose gate is coupled to the output end of the sixth reverse gate, the third transistor The source is coupled to the ground voltage; a current source coupled to the drain of the third transistor; a capacitor coupled to the drain of the third transistor; and a seventh reverse gate coupled to the input terminal a drain of the third transistor; and an eighth back gate, the input end of which is coupled to the output end of the seventh reverse gate, and the output end of the eighth reverse gate is coupled to the reset end of the D-type flip-flop. 如申請專利範圍第1項所述之直流對直流轉換器,更包括:一分壓阻抗單元,耦接於該直流對直流轉換器的輸出端與一接地電壓之間;以及一脈衝寬度調變訊號產生模組,耦接一電流偵測單元、該控制模組與該分壓阻抗單元,依據一參考電壓、該負載指示訊號與該輸出電壓的分壓產生該第一脈衝寬度調變訊號。The DC-to-DC converter according to claim 1, further comprising: a voltage dividing impedance unit coupled between the output end of the DC-DC converter and a ground voltage; and a pulse width modulation The signal generating module is coupled to a current detecting unit, the control module and the voltage dividing impedance unit, and generates the first pulse width modulation signal according to a reference voltage, the load indicating signal and a partial voltage of the output voltage. 如申請專利範圍第6項所述之直流對直流轉換器,其中該脈衝寬度調變訊號產生模組包括:一誤差放大器,其正、負輸入端分別耦接該參考電壓與該分壓阻抗單元,根據該參考電壓以及該輸出電壓之分壓產生一誤差信號;一補償單元,耦接該誤差放大器之輸出端,補償該誤差信號;一斜波產生器,耦接該電流偵測單元,依據該負載指示訊號與一時脈訊號產生一斜波訊號;以及一第二比較器,其正、負輸入端分別耦接該誤差放大器之輸出端與該斜波產生器,依據該誤差信號與該斜波訊號之比較結果產生該第一脈衝寬度調變訊號。The DC-to-DC converter according to claim 6, wherein the pulse width modulation signal generating module comprises: an error amplifier, wherein the positive and negative input terminals are respectively coupled to the reference voltage and the voltage dividing impedance unit And generating an error signal according to the reference voltage and the voltage division of the output voltage; a compensation unit coupled to the output end of the error amplifier to compensate the error signal; a ramp generator coupled to the current detection unit, The load indicating signal and the one pulse signal generate a ramp signal; and a second comparator, wherein the positive and negative input ends are respectively coupled to the output end of the error amplifier and the ramp generator, according to the error signal and the oblique The comparison result of the wave signal produces the first pulse width modulation signal. 一種電壓轉換方法,適用於一直流對直流轉換器,該直流對直流轉換器適於提供一輸出電壓給一負載,該電壓轉換方法包括:偵測該直流對直流轉換器的一負載電流,以提供一負載指示訊號;接收一第一脈衝寬度調變訊號與該負載指示訊號,以輸出一第二脈衝寬度調變訊號,該第一脈衝寬度調變訊號具有一第一預設脈衝寬度;依據該負載指示訊號判斷該直流對直流轉換器輸出端之該負載為輕負載或重負載;若該直流對直流轉換器之輸出端為輕負載,輸出具有一第二預設脈衝寬度的該第二脈衝寬度調變訊號;以及若該直流對直流轉換器之輸出端為重負載,將該第一脈衝寬度調變訊號作為該第二脈衝寬度調變訊號輸出;以及依據該第二脈衝寬度調變訊號來提供該輸出電壓,其中該第二預設脈衝寬度大於該第一預設脈衝寬度。A voltage conversion method is applicable to a DC-to-DC converter, wherein the DC-to-DC converter is adapted to provide an output voltage to a load, the voltage conversion method comprising: detecting a load current of the DC-DC converter, Providing a load indication signal; receiving a first pulse width modulation signal and the load indication signal to output a second pulse width modulation signal, wherein the first pulse width modulation signal has a first preset pulse width; The load indication signal determines that the load of the DC-to-DC converter output is a light load or a heavy load; if the output of the DC-to-DC converter is a light load, the output has the second preset pulse width of the second a pulse width modulation signal; and if the output of the DC to DC converter is a heavy load, the first pulse width modulation signal is used as the second pulse width modulation signal output; and the second pulse width modulation signal is used according to the second pulse width modulation signal The output voltage is provided, wherein the second predetermined pulse width is greater than the first predetermined pulse width. 如申請專利範圍第8項所述之電壓轉換方法,其中當該脈衝寬度調變訊號出現上升緣時拉高該輸出電壓,當該第二脈衝寬度調變訊號出現下降緣時降低該輸出電壓。The voltage conversion method of claim 8, wherein the output voltage is raised when a rising edge of the pulse width modulation signal occurs, and decreased when a falling edge of the second pulse width modulation signal occurs.
TW100125612A 2011-07-20 2011-07-20 Dc-dc converter and voltage conversion method thereof TWI450483B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100125612A TWI450483B (en) 2011-07-20 2011-07-20 Dc-dc converter and voltage conversion method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100125612A TWI450483B (en) 2011-07-20 2011-07-20 Dc-dc converter and voltage conversion method thereof

Publications (2)

Publication Number Publication Date
TW201306463A TW201306463A (en) 2013-02-01
TWI450483B true TWI450483B (en) 2014-08-21

Family

ID=48169362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125612A TWI450483B (en) 2011-07-20 2011-07-20 Dc-dc converter and voltage conversion method thereof

Country Status (1)

Country Link
TW (1) TWI450483B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549409B (en) * 2014-10-03 2016-09-11 立錡科技股份有限公司 Voltage converting controller and method of voltage converting control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617016A (en) * 1993-10-22 1997-04-01 Sgs Microelectronics, S.R.L. Buck converter with operating mode automatically determined by the load level
US7019504B2 (en) * 2003-07-08 2006-03-28 Arques Technology Constant ON-time controller for a buck converter
US20080042709A1 (en) * 2006-05-04 2008-02-21 Rengang Chen Method and apparatus for improving light load efficiency in switching power supplies
US7508180B2 (en) * 2006-03-22 2009-03-24 Anpec Electronics Corporation Switching regulator for fixing a frequency
TW201001889A (en) * 2008-03-19 2010-01-01 Swatch Group Res & Dev Ltd Method of controlling a DC-DC converter in discontinuous mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617016A (en) * 1993-10-22 1997-04-01 Sgs Microelectronics, S.R.L. Buck converter with operating mode automatically determined by the load level
US7019504B2 (en) * 2003-07-08 2006-03-28 Arques Technology Constant ON-time controller for a buck converter
US7508180B2 (en) * 2006-03-22 2009-03-24 Anpec Electronics Corporation Switching regulator for fixing a frequency
US20080042709A1 (en) * 2006-05-04 2008-02-21 Rengang Chen Method and apparatus for improving light load efficiency in switching power supplies
TW201001889A (en) * 2008-03-19 2010-01-01 Swatch Group Res & Dev Ltd Method of controlling a DC-DC converter in discontinuous mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549409B (en) * 2014-10-03 2016-09-11 立錡科技股份有限公司 Voltage converting controller and method of voltage converting control

Also Published As

Publication number Publication date
TW201306463A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
US9362833B2 (en) Constant voltage constant current control circuits and methods with improved load regulation
US7199561B2 (en) DC-DC converter and converter device
KR100912865B1 (en) Switching regulator and semiconductor device using the same
JP4855793B2 (en) Switching regulator
TWI477048B (en) Dc-dc converter and voltage conversion method thereof
CN107959421B (en) BUCK-BOOST type direct current converter and control method thereof
US20170288440A1 (en) Secondary control device and charging system having the same
JP2010136497A (en) Hysteretic switching regulator and control method for operation thereof
TWI484737B (en) Control circuit for controlling switching voltage regulator
CN103780097A (en) Switching power converter, clock module, control circuit and related control method
CN108054916B (en) Charge pump system
CN103475216A (en) Power converter, clock module, control circuit and related control method
US9048736B2 (en) Power adaptor with power-saving mechanism
CN110224592A (en) Multiphase critical conduction power inverter and its control method
CN203445787U (en) Power Converter, Clock Module, and Control Circuit
TW201334381A (en) DC-DC converter and voltage conversion method thereof
CN105207480A (en) Synchronous buck DC-DC converter capable of achieving low output ripples in times of underloading
CN108781039B (en) Resonance type power conversion device and abnormality determination method
CN109149973B (en) Constant current output control circuit and design method thereof
TW202119745A (en) Boost converter
US11444538B2 (en) Switching regulator based on load estimation and operating method thereof
US20110057636A1 (en) Method for Reducing Energy Loss in DC-DC Converter and Related Control Device and DC-DC Converter
TWI450483B (en) Dc-dc converter and voltage conversion method thereof
CN114649936A (en) Switch converter and control circuit thereof
CN112467976B (en) Switch converter and control circuit and control method thereof