TWI448978B - 異常辨識系統訓練方法 - Google Patents

異常辨識系統訓練方法 Download PDF

Info

Publication number
TWI448978B
TWI448978B TW100122163A TW100122163A TWI448978B TW I448978 B TWI448978 B TW I448978B TW 100122163 A TW100122163 A TW 100122163A TW 100122163 A TW100122163 A TW 100122163A TW I448978 B TWI448978 B TW I448978B
Authority
TW
Taiwan
Prior art keywords
classification category
signal sample
classification
feature
category
Prior art date
Application number
TW100122163A
Other languages
English (en)
Other versions
TW201301150A (zh
Inventor
Shuen De Wu
Chiu Wen Wu
Original Assignee
Univ Nat Taiwan Normal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan Normal filed Critical Univ Nat Taiwan Normal
Priority to TW100122163A priority Critical patent/TWI448978B/zh
Publication of TW201301150A publication Critical patent/TW201301150A/zh
Application granted granted Critical
Publication of TWI448978B publication Critical patent/TWI448978B/zh

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

異常辨識系統訓練方法
本發明係關於一種異常辨識系統訓練方法,並且特別地,本發明係關於一種可應用於辨識機械系統內部之主軸異常、並可避免過擬合現象以及可提高辨識速度與辨識率之異常辨識系統訓練方法。
在機械系統的運作過程中,各部件係動態地對其他部件作用,其內部會呈現摩擦、阻尼、彈性、負載等不同特性。在運作的過程中,各部件會因摩擦等機械動作而造成零件損耗,因此,上述各種不同特性會隨時間不斷變動,換言之,機械系統內部的動態行為經常是非線性及非穩態的。此外,零件的耗損也可能導致機械系統運作產生異常,更甚者會造成機械系統故障。是故,為維持機械系統穩定運作,必須要能對機械系統內部的異常狀況進行診斷以提早維修。
一般的機械系統會有震動主軸,並且,主軸於震動時會發出震動訊號,於實務中可根據所蒐集到的主軸震動訊號來判斷主軸震動是否有異常,並可進一步監測其震動狀況。在先前技術中,震動訊號可透過不同的特徵抽取方法抽取出訊號的特徵,並將這些特徵放到支援向量機(Support Vector Machine,SVM)分類器中進行訓練,以做為建立主軸異常診斷系統之模型及異常辨識之用。
支援向量機是一種分類演算法,其係根據統計學習理論而提出的一種機械學習方法。支援向量機在解決小樣本、非線性以及高維度識別問題中表現出許多特有的優勢以及良好的學習能力,其根據有限的訓練樣本所得到的決策規則對獨立的訊號樣本仍能夠有良好的辨識度。因此,支援向量機分類器適合作為主軸異常辨識系統的訓練工具。
機械系統之主軸狀態可分類為不同類別,例如,合格(Qualified,Q)、動不平衡(Unbalanced,U)、角度不對心(Angular Misalignment,AM)、平行度不對心(Parallel Misalignment,PM)、預壓過大(Over Preload,OP)、預壓過小(Less Preload,LP)、潤滑油不足(Less Grease,LG)、潤滑油過多(Over Grease,OG)、軸承損傷(Bearing Defect,BD)等狀況。由於支援向量機主要係處理兩個類別的分類問題,若要處理超過兩個類別的分類問題時,可利用下列三種方式達成:一對多支援向量機、一對一支援向量機、以及階層式支援向量機。由於主軸的振動訊號樣本大部分屬於合格(Qualified,Q)類別,因此使用階層式支援向量機可加快辨識速度,然而,其辨識率相較於一對一支援向量機而言係較差的。相對地,一對一支援向量機雖擁有最佳的辨識率,但需訓練較多的分類器而大幅降低了辨識速度。
另一方面,震動訊號可透過不同的特徵抽取方法抽取出複數特徵,例如傅立葉轉換(Fourier Transform)、小波轉換(Wavelet Transform)、希爾伯特-黃轉換(Hilbert Huang Transform)、機械震動訊號統計特性、以及多尺度熵(Multi-Scale Entropy)等特徵抽取方法。上述各種方法所得到之結果若都用來作為震動訊號的特徵,則其特徵數目將會高達數百個。然而,一般用來作為分類器訓練的樣本數大約只有十幾個,遠少於特徵之總數。若將所有特徵都放入支援向量機分類器中進行訓練,將會產生過擬合(Overfitting)現象,導致異常辨識系統的辨識度不佳。
因此,本發明之一範疇在於提供一種異常辨識系統訓練方法,可解決先前技術之問題。
根據一具體實施例,本發明之異常辨識系統訓練方法包含下列步驟:根據至少一種特徵抽取方法對訊號樣本進行特徵抽取以獲得複數個特徵;根據分別因子,判斷各特徵相對於第一分類類別以及第二分類類別之重要性;根據各特徵相對於第一分類類別以及第二分類類別之重要性進行排序,以獲得至少一最重要特徵;以及,以至少一最重要特徵對支援向量機分類器進行訓練,以辨識訊號樣本屬於第一分類類別以及第二分類類別中之何者。
於本具體實施例中,由各種特徵抽取方法所獲得之特徵經由適應性特徵選取之步驟,亦即,以分別因子判斷各特徵的重要性並依重要性排序以獲得最重要特徵之步驟,可有效降低特徵的維度,進而避免先前技術中之過擬合現象,以提高異常辨識系統的辨識率。
本發明之另一範疇在於提供一種異常辨識系統訓練方法,除了可解決先前技術中的過擬合現象,還可使異常辨識系統同時具有高辨識率及高辨識速度。
根據另一具體實施例,本發明之異常辨識系統訓練方法包含下列步驟:根據至少一種特徵抽取方法對訊號樣本進行特徵抽取以獲得複數個特徵;根據分別因子,判斷各特徵相對於第一分類類別以及第二分類類別之重要性;根據各特徵相對於第一分類類別以及第二分類類別之重要性進行排序,以獲得至少一第一最重要特徵;以及,以至少一第一最重要特徵對支援向量機分類器進行訓練,以辨識訊號樣本屬於第一分類類別以及第二分類類別中之何者。
於本具體實施例中,本發明之異常辨識系統訓練方法進一步包含下列步驟:當辨識訊號樣本屬於第二分類類別時,根據分別因子判斷各特徵相對於第三分類類別與第四分類類別之重要性、相對於第三分類類別與第五分類類別之重要性、以及相對於第四分類類別與第五分類類別之重要性,以進一步獲得至少一第二最重要特徵、至少一第三最重要特徵、以及至少一第四最重要特徵;根據至少一第二最重要特徵辨識出訊號樣本屬於第三分類類別以及第五分類類別中之何者、根據至少一第三最重要特徵辨識出訊號樣本屬於第三分類類別以及第五分類類別中之何者、以及根據至少一第四最重要特徵辨識出訊號樣本屬於第四分類類別以及第五分類類別中之何者;最後,對上述各辨識結果進行投票,以決定訊號樣本屬於第三分類類別、第四分類類別、以及該第五分類類別中之何者。
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。
請參閱圖一,圖一係繪示根據本發明之一具體實施例之異常辨識系統訓練方法的步驟流程圖。
如圖一所示,本具體實施例之異常辨識系統訓練方法包含下列步驟:於步驟S10,根據至少一種特徵抽取方法對至少一訊號樣本進行特徵抽取,以獲得複數個特徵;於步驟S12,根據一分別因子,判斷各特徵相對於第一分類類別以及第二分類類別之重要性;於步驟S14,根據各特徵相對於第一分類類別以及第二分類類別之重要性進行排序,以獲得至少一第一最重要特徵;以及,於步驟S16,以上述至少一第一最重要特徵對支援向量機分類器進行訓練,以辨識上述至少一訊號樣本屬於第一分類類別與第二分類類別中之何者。
於實務中,步驟S10所述之至少一訊號樣本可為機械系統之主軸震動所產生的震動訊號,並且,上述至少一種特徵抽取方法可包含傅立葉轉換、小波轉換、希爾伯特-黃轉換、機械震動訊號統計特性以及多尺度熵等特徵抽取方式。一般而言,用來支援向量機分類器的樣本包含大約十幾個樣本數的震動訊號,而根據上述方法所獲得的特徵總數大約有數百個之多。因此基於樣本數與特徵總數差距過大將會造成過擬合現象,本具體實施例之訓練方法提出適應性特徵選取之步驟用以降低特徵之維度,亦即,上述步驟S12及步驟S14。
如上所述,步驟S12之分別因子係用來判斷各特徵相對於第一分類類別以及第二分類類別之重要性。詳言之,一第一訊號所抽取出來之一第一特徵,可透過此分別因子獲得一數值,而此數值係判斷第一特徵對於分辨第一訊號屬於第一分類類別或第二分類類別而言是否重要的依據。
假設屬於第一分類類別的特徵向量所形成之集合定義為C i ={v ik },1≦k≦N i v i =[v ip ],1≦p≦M ,並且屬於第二分類類別的特徵向量所形成之集合定義為C j ={v jk },1≦k≦N j v j =[v jp ],1≦p≦M ,其中,N i 係屬於第一分類類別之訊號樣本數,N j 係屬於第二分類類別之訊號樣本數,M係各訊號樣本之特徵數,並且kp 均屬自然數。各特徵中之第p 個特徵的分別因子係定義為:
根據上述算式,一訊號樣本之各特徵可依分類器不同而分別獲得一分別因子,接著,再將各分別因子依大小進行排序,可找出排列於最前方之至少一個分別因子,這些排序於前方之分別因子所對應的特徵即本具體實施例之步驟S14中的第一最重要特徵。由此可知,藉由上述適應性特徵選取之方法可選出最重要的特徵以訓練分類器,由於大幅減少特徵之維度,故可避免過擬合現象。
於實務中,上述第一最重要特徵之個數可根據不同的分類類別來決定。舉例而言,若訊號樣本為一震動訊號,則用來辨識(Qualified,Q)與動不平衡(Unbalanced,U)之分類器可自上述各特徵抽取方法所抽取出的所有特徵依重要性排序後選出前10個特徵,以進行分類器訓練。另一方面,用來辨識預壓過大(Over Preload,OP)與軸承損傷(Bearing Defect,BD)之分類器可自上述各特徵抽取方法所抽取出的所有特徵依重要性排序後選出前7個特徵,以進行分類器訓練。於實際應用中,可先以不同的特徵數量對分類器進行測試以獲得與各特徵數量對應之辨識率,再以具有最佳辨識率之特徵數量做為此分類器選取第一最重要特徵數量之標準。因此,可有效降低特徵之維度、避免過擬合現象。
於本具體實施例之步驟S16所述,以至少一最重要特徵對支援向量機分類器進行訓練後可辨識訊號樣本屬於第一分類類別與第二分類類別中之何者。然而,於實務中,機械系統之主軸狀態可分類為不同類別,例如,合格(Qualified,Q)、動不平衡(Unbalanced,U)、角度不對心(Angular Misalignment,AM)、平行度不對心(Parallel Misalignment,PM)、預壓過大(Over Preload,OP)、預壓過小(Less Preload,LP)、潤滑油不足(Less Grease,LG)、潤滑油過多(Over Grease,OG)、軸承損傷(Bearing Defect,BD)等多種狀況,並非單純分為兩個類別。一般而言,上述各狀況可先分為合格以及非合格類別,並且非合格類別中再細分為上述其他類別。根據上述分析,本發明進一步提出一種混合式支援向量機分類器,可用於上述機械系統中的主軸異常辨識系統。
請參閱圖二,圖二係繪示根據本發明之另一具體實施例之異常辨識系統訓練方法的步驟流程圖。如圖二所示,本具體實施例之方法進一步包含下列步驟:於步驟S20,當上一具體實施例之步驟辨識出上述至少一訊號樣本屬於第二分類類別時,根據上述分別因子,判斷各特徵相對於第三分類類別以及第四分類類別之重要性;於步驟S22,根據各特徵相對於第三分類類別以及第四分類類別之重要性進行排序,以獲得至少一第二最重要特徵;以及,於步驟S24,以上述至少一第二最重要特徵對支援向量機分類器進行訓練,以辨識上述至少一訊號樣本屬於第三分類類別與第四分類類別中之何者。
為了圖面簡潔,圖二中省略圖一中之各步驟,然而,請注意,本具體實施例之步驟S20~S24係當上一具體實施例之步驟S16辨識出上述至少一訊號樣本屬於第二分類類別時才進行,亦即,本具體實施例之方法亦包含上一具體實施例之各步驟。本具體實施例中與上一具體實施例相同之步驟,於此不再贅述。
於實務中,上述第三分類類別以及第四分類類別係包含於第二分類類別之中。舉例而言,第一分類類別於實務中代表主軸震動訊號合格之狀況,第二分類類別則代表主軸震動訊號非合格之狀況,並且第三分類類別與第四分類類別分別代表可歸類於非合格之動不平衡與角度不對心的狀況。
請參閱圖三,圖三係繪示根據本發明之另一具體實施例之異常辨識系統訓練方法的步驟流程圖。如圖三所示,本具體實施例之方法除了包含上一具體實施例之步驟外,進一步包含下列步驟:於步驟S30,當步驟S16辨識出上述至少一訊號樣本屬於第二分類類別時,根據上述分別因子,判斷各特徵相對於第三分類類別以及第五分類類別之重要性;於步驟S32,根據各特徵相對於第三分類類別以及第五分類類別之重要性進行排序,以獲得至少一第三最重要特徵;以及,於步驟S34,以上述至少一第三最重要特徵對支援向量機分類器進行訓練,以辨識上述至少一訊號樣本屬於第三分類類別與第五分類類別中之何者。
此外,本具體實施例還包含下列步驟:於步驟S40,當步驟S16辨識出上述至少一訊號樣本屬於第二分類類別時,根據上述分別因子,判斷各特徵相對於第四分類類別以及第五分類類別之重要性;於步驟S42,根據各特徵相對於第四分類類別以及第五分類類別之重要性進行排序,以獲得至少一第四最重要特徵;以及,於步驟S44,以上述至少一第四最重要特徵對支援向量機分類器進行訓練,以辨識上述至少一訊號樣本屬於第四分類類別與第五分類類別中之何者。最後,在步驟S50中,對本具體實施例所辨識出之各結果進行投票,以決定上述至少一訊號樣本屬於第三分類類別、第四分類類別以及第五分類類別中之何者。
於本具體實施例中,若訊號樣本被分類為第二分類類別,並且第二分類類別包含第三分類類別、第四分類類別以及第五分類類別,本具體實施例之方法係分別對用以辨識第三分類類別與第四分類類別之分類器、用以辨識第三分類類別與第五分類類別之分類器、及用以辨識第四分類類別與第五分類類別之分類器進行適應性特徵選取並將選出之最重要特徵分別放入各分類器進行訓練,再經投票決定訊號樣本屬於何種分類類別。
於實務中,主軸震動之狀態可分為合格以及非合格類別,並且非合格類別中再細分為其他代表異常狀態之類別。因此,根據本具體實施例之混合式支援向量機分類器可先以階層式支援向量機分類器分類出合格與非合格類別,並且若震動訊號分類為非合格類別,則進一步透過一對一支援向量機分類器將震動訊號再分類為詳細的異常類別,如上述之動不平衡、角度不對心、平行度不對心、預壓過大、預壓過小、潤滑油不足、潤滑油過多、及軸承損傷等狀況。
如上述,混合式支援向量機分類器可於第一階段即快速分類出訊號樣本屬於合格或不合格,因此具備有高辨識速度,更甚者,於實務中可作為線上品質控管之系統。若於第一階段中辨識出訊號樣本屬於不合格,接著可於第二階段分類出訊號樣本異常的類別,並且由於第二階段係一對一支援向量機之機制,故具備有高辨識率。
綜上所述,本發明之異常辨識系統訓練方法透過適應性特徵選取方式降低特徵的維度,因此可避免過擬合現象。此外,本發明之異常辨識系統訓練方法採用混合式支援向量機分類器,可同時具有高辨識率以及高辨識速度,除了可供機械系統進行故障或異常診斷之外,還可供做線上即時品質控管之用。
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。因此,本發明所申請之專利範圍的範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。
S10~S16、S20~S24、S30~S34、S40~S44、S50...流程步驟
圖一係繪示根據本發明之一具體實施例之異常辨識系統訓練方法的步驟流程圖。
圖二係繪示根據本發明之另一具體實施例之異常辨識系統訓練方法的步驟流程圖。
圖三係繪示根據本發明之另一具體實施例之異常辨識系統訓練方法的步驟流程圖。
S10~S16...流程步驟

Claims (8)

  1. 一種異常辨識系統訓練方法,包含下列步驟:根據至少一種特徵抽取方法對至少一訊號樣本進行特徵抽取以獲得複數個特徵;根據一分別因子,判斷各該等特徵相對於一第一分類類別以及一第二分類類別之重要性;根據各該等特徵相對於該第一分類類別以及該第二分類類別之重要性進行排序,以獲得至少一第一最重要特徵;以及以該至少一第一最重要特徵對一支援向量機分類器進行訓練,以辨識該至少一訊號樣本屬於該第一分類類別以及該第二分類類別中之何者。
  2. 如申請專利範圍第1項所述之方法,其中屬於該第一分類類別之特徵向量的集合係定義為C i ={v ik },1≦k≦N i v i =[v ip ],1≦p≦M ,並且屬於該第二分類類別之特徵向量的集合係定義為C j ={v jk },1≦k≦N j v j =[v jp ],1≦p≦M ,其中,N i 係該第一分類類別之訊號樣本數,N j 係該第二分類類別之訊號樣本數,M 係各該至少一訊號樣本之特徵數,kp 係屬於自然數。
  3. 如申請專利範圍第2項所述之方法,其中該等特徵中之第p 個特徵的該分別因子I i,j,p 係定義為
  4. 如申請專利範圍第1項所述之方法,其中該至少一訊號樣本係一震動訊號樣本。
  5. 如申請專利範圍第4項所述之方法,其中該至少一種特徵抽取方法係包含選自由傅立葉轉換、小波轉換、希爾伯特-黃轉換、機械震動訊號統計特性以及多尺度熵所組成群組中之至少一者。
  6. 如申請專利範圍第1項所述之方法,其中該第一分類類別係代表該至少一訊號樣本合格,並且該第二分類類別係代表該至少一訊號樣本非合格。
  7. 如申請專利範圍第6項所述之方法,進一步包含下列步驟:當辨識該至少一訊號樣本屬於該第二分類類別時,根據該分別因子,判斷各該等特徵相對於一第三分類類別以及一第四分類類別之重要性;根據各該等特徵相對於該第三分類類別以及該第四分類類別之重要性進行排序,以獲得至少一第二最重要特徵;以及以該至少一第二最重要特徵對該支援向量機分類器進行訓練,以辨識該至少一訊號樣本屬於該第三分類類別以及該第四分類類別中之何者。
  8. 如申請專利範圍第7項所述之方法,進一步包含下列步驟:當辨識該至少一訊號樣本屬於該第二分類類別時,根據該分別因子,判斷各該等特徵相對於一第三分類類別以及一第五分類類別之重要性;根據各該等特徵相對於該第三分類類別以及該第五分類類別之重要性進行排序,以獲得至少一第三最重要特徵;以該至少一第三最重要特徵對該支援向量機分類器進行訓練,以辨識該至少一訊號樣本屬於該第三分類類別以及該第五分類類別中之何者;當辨識該至少一訊號樣本屬於該第二分類類別時,根據該分別因子,判斷各該等特徵相對於一第四分類類別以及一第五分類類別之重要性;根據各該等特徵相對於該第四分類類別以及該第五分類類別之重要性進行排序,以獲得至少一第四最重要特徵;以該至少一第四最重要特徵對該支援向量機分類器進行訓練,以辨識該至少一訊號樣本屬於該第四分類類別以及該第五分類類別中之何者;以及該支援向量機分類器對所辨識之各結果進行投票,以決定該至少一訊號樣本屬於該第三分類類別、該第四分類類別以及該第五分類類別中之何者。
TW100122163A 2011-06-24 2011-06-24 異常辨識系統訓練方法 TWI448978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100122163A TWI448978B (zh) 2011-06-24 2011-06-24 異常辨識系統訓練方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100122163A TWI448978B (zh) 2011-06-24 2011-06-24 異常辨識系統訓練方法

Publications (2)

Publication Number Publication Date
TW201301150A TW201301150A (zh) 2013-01-01
TWI448978B true TWI448978B (zh) 2014-08-11

Family

ID=48137525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100122163A TWI448978B (zh) 2011-06-24 2011-06-24 異常辨識系統訓練方法

Country Status (1)

Country Link
TW (1) TWI448978B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579012B1 (en) 2021-07-13 2023-02-14 Wistron Corporation Abnormal sound detection method and apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323452B (zh) * 2015-07-06 2019-03-29 中达电子零组件(吴江)有限公司 一种设备异音的检测方法及检测装置
CN107679859B (zh) * 2017-07-18 2020-08-25 中国银联股份有限公司 一种基于迁移深度学习的风险识别方法以及系统
CN114236374B (zh) * 2021-12-13 2023-11-14 中国矿业大学 一种整流器开路故障的实时诊断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW388787B (en) * 1998-07-15 2000-05-01 Abb Research Ltd Bearing condition evaluation
US7421349B1 (en) * 2006-05-15 2008-09-02 United States Of America As Represented By The Secretary Of The Navy Bearing fault signature detection
US20080309366A1 (en) * 2007-06-04 2008-12-18 Wei Zhou System and method for bearing fault detection using stator current noise cancellation
TWM358237U (en) * 2008-12-18 2009-06-01 Han-Jia Hong Detector for bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW388787B (en) * 1998-07-15 2000-05-01 Abb Research Ltd Bearing condition evaluation
US7421349B1 (en) * 2006-05-15 2008-09-02 United States Of America As Represented By The Secretary Of The Navy Bearing fault signature detection
US20080309366A1 (en) * 2007-06-04 2008-12-18 Wei Zhou System and method for bearing fault detection using stator current noise cancellation
TWM358237U (en) * 2008-12-18 2009-06-01 Han-Jia Hong Detector for bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11579012B1 (en) 2021-07-13 2023-02-14 Wistron Corporation Abnormal sound detection method and apparatus

Also Published As

Publication number Publication date
TW201301150A (zh) 2013-01-01

Similar Documents

Publication Publication Date Title
Pandya et al. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN
JP4605132B2 (ja) 異常検出装置、異常検出方法
TWI448978B (zh) 異常辨識系統訓練方法
Zhang et al. Fault diagnosis of rotating machinery based on kernel density estimation and Kullback-Leibler divergence
CN106769051B (zh) 一种基于mcea-kpca和组合svr的滚动轴承剩余使用寿命预测方法
CN113486931B (zh) 一种基于pda-wgangp的滚动轴承增强诊断方法
Pestana-Viana et al. The influence of feature vector on the classification of mechanical faults using neural networks
Praveenkumar et al. Comparison of vibration, sound and motor current signature analysis for detection of gear box faults
CN108267312A (zh) 一种基于快速搜索算法的地铁列车轴承智能诊断方法
CN111707472B (zh) 基于fft和全连接层-svm的滚动轴承故障诊断方法
CN114462475A (zh) 一种基于单分类算法的无监督机器异常声检测方法和装置
Yu et al. A new method for quantitative estimation of rolling bearings under variable working conditions
CN113469252A (zh) 一种考虑不平衡样本的特高压换流阀运行状态评估方法
Martins et al. Improved variational mode decomposition for combined imbalance-and-misalignment fault recognition and severity quantification
Fatima et al. Multiple fault classification using support vector machine in a machinery fault simulator
CN110057588B (zh) 基于奇异值与图论特征融合的轴承早期故障检测与诊断方法及系统
Zhang et al. Gearbox health condition identification by neuro-fuzzy ensemble
Prashanth et al. Vibration based fault monitoring of a compressor using tree-based algorithms
Attaran et al. A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
Zheng et al. Few-shot intelligent fault diagnosis based on an improved meta-relation network
Satishkumar et al. Remaining life time prediction of bearings using K-star algorithm-a statistical approach
Zhu et al. Research on condition assessment method based on projection one-class classifier
Maschler A Survey on Deep Industrial Transfer Learning in Fault Prognostics
Lorenz et al. Vibration Data Analysis for Fault Detection in Manufacturing Systems-A Systematic Literature Review
Satishkumar et al. ESTIMATION OF REMAINING LIFE OF BEARINGS USING ROTATION FOREST AND RANDOM COMMITTEE CLASSIFICATION MODELS–A STATISTICAL LEARNING APPROACH

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees