TWI447910B - A semiconductor structure with a stress region - Google Patents

A semiconductor structure with a stress region Download PDF

Info

Publication number
TWI447910B
TWI447910B TW097118265A TW97118265A TWI447910B TW I447910 B TWI447910 B TW I447910B TW 097118265 A TW097118265 A TW 097118265A TW 97118265 A TW97118265 A TW 97118265A TW I447910 B TWI447910 B TW I447910B
Authority
TW
Taiwan
Prior art keywords
region
stress
semiconductor structure
gate
substrate
Prior art date
Application number
TW097118265A
Other languages
Chinese (zh)
Other versions
TW200950083A (en
Original Assignee
Eon Silicon Solution Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eon Silicon Solution Inc filed Critical Eon Silicon Solution Inc
Priority to TW097118265A priority Critical patent/TWI447910B/en
Publication of TW200950083A publication Critical patent/TW200950083A/en
Application granted granted Critical
Publication of TWI447910B publication Critical patent/TWI447910B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

一種具應力區的半導體結構Semiconductor structure with stress region

本發明係關於一種金屬氧化半導體(metal-oxide-semiconductor,MOS)結構,更特別的是關於一種具應力區的半導體結構。The present invention relates to a metal-oxide-semiconductor (MOS) structure, and more particularly to a semiconductor structure having a stress region.

隨著科技的進步,快閃記憶體的製程技術也跨入奈米時代,為了加速元件的操作速率,增加元件的積集度,和降低元件操作電壓等等考量的因素,元件閘極的通道長度和氧化層厚度的微縮是必然的趨勢。元件閘極線寬已從以往的微米(10-6 公尺)縮減到現在的奈米(10-9 公尺),然而隨著元件的微縮卻也帶來了許多問題,如:壓致漏電流(stree-induced leakagecurrent,SILC)及閘極線寬的縮短會使得短通道效應(Short Channel Effect)越來越嚴重,而為避免短通道效應對元件造成影響,氧化層厚度就必須越薄;然而當氧化層厚度做到8nm或甚至更薄時,材料方面的物理極限限制會變成一種元件製程的障礙。壓致漏電流(SILC)是一種元件在經過定電壓或定電流的施加後所增加的閘極漏電流,在氧化層厚度的縮小後,壓致漏電流(SILC)就變成一項很重要的問題,該漏電流會的增加會造成保存在浮動閘(floating gate)中的電子遺失,大大地降低資料的保存性,並增加MOS元件功率的消耗。此外,記憶體位元的讀寫干擾(Gate disturb,Drain disturb)亦在元件縮小的過程 中大大限制了氧化層的厚度。因此,當元件尺寸達到物理極限之後,除了縮小元件尺寸的方法之外,如何改善因尺寸縮小所帶來的缺點就變的相當迫切需要。With the advancement of technology, the flash memory process technology has also entered the nano-era, in order to accelerate the operating rate of components, increase the accumulation of components, and reduce the operating voltage of components, etc., the channel of the component gate The shrinkage of the length and thickness of the oxide layer is an inevitable trend. The gate width of the device has been reduced from the previous micron (10 -6 meters) to the current nano (10 -9 meters), but with the shrinkage of components, it also brings many problems, such as: pressure leakage The stree-induced leakage current (SILC) and the shortening of the gate line width will make the Short Channel Effect more and more serious. To avoid the influence of the short channel effect on the component, the thickness of the oxide layer must be thinner. However, when the thickness of the oxide layer is 8 nm or even thinner, the physical limit of the material becomes an obstacle to the component process. The induced leakage current (SILC) is a gate leakage current that increases after a constant voltage or constant current is applied. After the thickness of the oxide layer is reduced, the induced leakage current (SILC) becomes an important factor. The problem is that the increase in leakage current will cause the electrons stored in the floating gate to be lost, greatly reducing the preservability of the data and increasing the power consumption of the MOS device. In addition, the memory disturb (Gate disturb, Drain disturb) also greatly limits the thickness of the oxide layer during the component shrinking process. Therefore, after the component size reaches the physical limit, in addition to the method of reducing the size of the component, how to improve the disadvantage caused by the size reduction becomes quite urgent.

為了改善元件電流的表現,有許多方法來增加載子遷移率,在各種增加載子遷移率的方法中,有一種已知的應變矽通道(strained Si channel)方法是形成帶有應力的矽通道,該應力可以增強電子或電洞的遷移率,MOS元件的特性就可以透過帶有應力的通道來改善。且應力的施加亦可對記憶體位元的讀寫干擾(Gate disturb,Drain disturb)帶來好處,即較低的汲極電壓就能帶來較高的汲極電流,因此僅需要較低的汲極電壓就能達到原本所需要的汲極電流,進而降低干擾的程度。In order to improve the performance of the component current, there are many ways to increase the mobility of the carrier. Among various methods for increasing the mobility of the carrier, a known strained Si channel method is to form a channel with stress. This stress can enhance the mobility of electrons or holes, and the characteristics of the MOS device can be improved by the channel with stress. And the application of stress can also benefit from the memory bit interference (Gate disturb, Drain disturb), that is, the lower bucker voltage can bring higher bungee current, so only a lower 汲 is needed. The pole voltage can reach the required bungee current, which in turn reduces the degree of interference.

一種增加應力的方式可透過在MOS元件上形成一應力層來實現。一接觸蝕刻停止層(Contact Etch Stop Layer,CESL)即可當作該應力層。當該應力層沉積時,因與底下的物質之間晶格間隔距離的差異,為了去拉齊對齊彼此的晶格,共平面應力就會產生並使得能帶分離。參見第七圖,係MOS半導體中應力方向與能帶關係圖,即相對應到k空間上kx 與ky 方向的能谷(fourfold degenerate,△4)能帶上升,而kz 方向能谷(twofold degenerate,△2)能帶下降,因此電子大都分布於能帶較低的△2能谷(有效質量較低),除此外應變引致能帶分離(Strain-induced band splitting)一方面降低能谷間散射率(inter-valley scattering rate,即光聲子散射率),另一方面降低導電帶的有效狀態密度,進而減少 能谷內散射率(intra-valley scattering rate,即音聲子散射率),因此較低的有效質量與散射率改善電子遷移率。同於上述,價電帶上能量簡併的輕電洞帶與重電洞帶分離,能帶間與能帶內的散射率減少因而電洞遷移率也獲得改善。然而,若該應力層太厚則會影響之後填縫的困難。若太薄,所產生的應力效果就會受限。One way to increase stress can be achieved by forming a stressor layer on the MOS device. A contact Etch Stop Layer (CESL) can be used as the stress layer. When the stress layer is deposited, coplanar stress is generated and band separation is achieved in order to align the crystal lattices of each other due to the difference in lattice spacing distance from the underlying material. Referring to the seventh figure, it is the relationship between the stress direction and the energy band in the MOS semiconductor, that is, the energy band (fourfold degenerate, Δ4) energy band corresponding to the k x and k y directions in the k space, and the k z direction energy valley (twofold degenerate, △ 2) The energy band decreases, so most of the electrons are distributed in the lower energy band Δ2 energy valley (low effective mass), in addition to strain-induced band splitting, on the one hand, the energy is reduced. Inter-valley scattering rate (on-the-valley scattering rate), on the other hand, reduces the effective state density of the conductive strip, thereby reducing the intra-valley scattering rate (infratron scattering rate) Therefore, lower effective mass and scattering rate improve electron mobility. In the same manner as above, the light electric hole with degenerate energy on the valence band is separated from the heavy electric hole, and the scattering rate between the energy band and the energy band is reduced, and the mobility of the hole is also improved. However, if the stress layer is too thick, it will affect the difficulty of subsequent caulking. If it is too thin, the resulting stress effect will be limited.

因此,如何改善該應力層及其相關配置,以在不增加設計的複雜度下增進元件的特性就變的相當重要。Therefore, how to improve the stress layer and its associated configuration becomes important to enhance the characteristics of the component without increasing the complexity of the design.

本發明的主要目的在提供一種具應力區的半導體結構,以改善載子的遷移率。SUMMARY OF THE INVENTION A primary object of the present invention is to provide a semiconductor structure having a stress region to improve carrier mobility.

為達上述目的,本發明係為一種具應力區的半導體結構,其包含:一基底,具有一第一元件區與一第二元件區;其中,該第一元件區與該第二元件區各包含一閘極,該第一元件區與該第二元件區之間包含一汲極;其中該些閘極上端各設有一自動對準金屬矽化物層(salicide layer),而該汲極端上則未設;一應力區,係位於該第一元件區與該第二元件區內;其中,該應力區在該第一及該第二元件區內各包含有一第一部分及一第二部分;其中,該第一及第二部分產生的應力不相同,該第一部分具有一成對且互相相反的L形間隙壁(L-shape);一位障插塞,係分隔該第一元件區與該第二元件區。To achieve the above object, the present invention is a semiconductor structure having a stress region, comprising: a substrate having a first component region and a second component region; wherein the first component region and the second component region a gate is included, and a drain is included between the first component region and the second component region; wherein the upper ends of the gates are respectively provided with an automatic alignment metal salicide layer, and at the top of the gate An unstressed region is located in the first component region and the second component region; wherein the stress region includes a first portion and a second portion in each of the first and second component regions; The first and second portions generate different stresses, and the first portion has a pair of L-shaped barriers opposite to each other; a barrier plug that separates the first component region from the Second component area.

為達上述目的,本發明的一實施例中,該第一部份為 一成對且互相相反的L形間隙壁(L-shape);該第二部份為一接觸孔蝕刻停止層(CESL)。該第二部分之應力大於該第三部份之應力,且該應力為單軸伸張應力。In order to achieve the above object, in an embodiment of the present invention, the first part is A pair of L-shaped barriers opposite each other; the second portion is a contact hole etch stop layer (CESL). The stress of the second portion is greater than the stress of the third portion, and the stress is a uniaxial tensile stress.

為達上述目的,本發明的另一實施例為該基底係為一矽基底,並沿<110>方向製作一N通道。In order to achieve the above object, another embodiment of the present invention is that the substrate is a substrate and an N channel is formed along the <110> direction.

為達上述目的,本發明的另一實施例為該基底係為一矽基底,並沿<100>方向製作一通道。In order to achieve the above object, another embodiment of the present invention is that the substrate is a substrate and a channel is formed along the <100> direction.

藉此,本發明之一種具應力區的半導體結構即能產生適當的應力,增進載子遷移率。Thereby, a semiconductor structure having a stress region of the present invention can generate appropriate stress and enhance carrier mobility.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明於後。在這些不同的圖式與實施例中,相同的元件將使用相同的符號。In order to fully understand the objects, features and advantages of the present invention, the present invention will be described in detail by the accompanying drawings. In the various figures and embodiments, the same elements will be given the same symbols.

參照第一圖,係本發明一實施例的晶圓剖面圖。圖中顯示一半導體基底100上形成一第一元件區112及一第二元件區114,該第一元件區與該第二元件區為N通道或P通道或二者混合,本實施例中為N通道。於該半導體基底100上形成源極104(source)、閘極106、穿隧氧化層106a(tunneling oxide layer)、浮動閘106b(floating gate)、介電層106c、控制閘106d(control gate)、一第一氧化層108、一第二氧化層110。該基底材料可為矽、SiGe、絕緣層上覆矽(silicon on insulator,SOI)、絕緣層上覆矽鍺(silicon germanium on insulator,SGOI)、絕緣層上覆鍺(germanium on insulator,GOI);於本實施例中,該基底100係為一矽基底,且為(100)方向並將通道沿<110>方向製作。該第二氧化層110可為SiN、氮氧化矽(oxynitride)、氧化矽(oxide)等,本實施例中為SiN。Referring to the first drawing, there is shown a cross-sectional view of a wafer according to an embodiment of the present invention. The figure shows a first device region 112 and a second device region 114 formed on a semiconductor substrate 100. The first device region and the second device region are N-channel or P-channel or a mixture of the two, in this embodiment N channel. A source 104, a gate 106, a tunneling oxide layer 106a, a floating gate 106b, a dielectric layer 106c, a control gate 106d, and a control gate are formed on the semiconductor substrate 100. A first oxide layer 108 and a second oxide layer 110. The base material may be tantalum, SiGe, silicon on insulator (SOI), silicon on insulator (silicon) Germanium on insulator (SGOI), germanium on insulator (GOI); in this embodiment, the substrate 100 is a germanium substrate, and is in the (100) direction and the channel is made in the <110> direction. . The second oxide layer 110 may be SiN, oxynitride, oxide, or the like, and is SiN in this embodiment.

參照第二圖,利用一習知的沉積技術,如:來源氣體包含NH3 及SiH4 的化學氣相沉積法(CVD)、快速熱退火化學氣相沉積(rapid thermal chemical vapor deposition,RTCVD)、原子層沉積(atomic layer deposition,ALD),於此沉積一氧化層210。該氧化層210的厚度介於200至1500,在本實施例中為750。位於106b和106d旁的氧化層110和210沉積厚度總和至少大於區域107寬度d的二分之一,用以封閉區域107。再將該氧化層210蝕刻成複數個氧化層間隔物(Oxide spacer)310a~d(見第三圖),且將位於106d上的氧化層110和210完全地蝕刻去除(見第三圖)。Referring to the second figure, a conventional deposition technique such as chemical vapor deposition (CVD) using a source gas containing NH 3 and SiH 4 , rapid thermal chemical vapor deposition (RTCVD), Atomic layer deposition (ALD), where an oxide layer 210 is deposited. The thickness of the oxide layer 210 is between 200 To 1500 In this embodiment, it is 750 . The oxide layers 110 and 210 located adjacent to 106b and 106d have a deposition thickness at least greater than one-half of the width d of the region 107 for enclosing the region 107. The oxide layer 210 is then etched into a plurality of Oxide spacers 310a-d (see FIG. 3), and the oxide layers 110 and 210 on 106d are completely etched away (see FIG. 3).

參照第四圖,第二氧化層110形成一第一、第二、第三及第四L形間隙壁(L-shape)402、404、406、408(其中,第一及第三L形間隙壁402與406為反L形),該些L型間隙壁為一成對且互相相反,即402與404一對、406與408一對,且此時第二與第三L形間隙壁404與406連接在一起而呈一U形。該些L型間隙壁能產生所需的單軸張應力(第一部分)。然而,該應力可透過適當的材質選取以及形成的方法來調整。形成的方法中,可調整的製程參 數有溫度、沉積速度、功率等。熟悉該項技術者能發現這些製程參數與一沉積層應力之關係。Referring to the fourth figure, the second oxide layer 110 forms a first, second, third, and fourth L-shaped spacers (L-shape) 402, 404, 406, 408 (wherein the first and third L-shaped gaps) The walls 402 and 406 are inverted L-shaped), the L-shaped spacers are in a pair and opposite to each other, that is, a pair of 402 and 404, a pair of 406 and 408, and at this time, the second and third L-shaped spacers 404 Connected to 406 to form a U shape. The L-shaped spacers produce the desired uniaxial tensile stress (first part). However, the stress can be adjusted by appropriate material selection and formation methods. Adjustable process parameters in the formed method The number has temperature, deposition speed, power, and the like. Those skilled in the art will be able to discover the relationship between these process parameters and a sedimentary layer stress.

接著,利用乾式或濕式蝕刻將位於區域107內的氧化層210完全蝕刻去除,之後於表面形成一由鈷(cobalt,Co)、鈦(titanium,Ti)、鎳(nickel,Ni)或鉬(molybdenum,Mo)所構成之金屬矽化物層,並且進行一快速熱退火處理製程,以於該第一元件區與該一第二元件區裡之該些閘極與該汲極表面形成一自動對準金屬矽化物層410a與410b(salicide layer),用以降低寄生電阻提昇元件驅動力。Next, the oxide layer 210 located in the region 107 is completely etched away by dry or wet etching, and then a cobalt (Co), titanium (Ti), nickel (nickel, Ni) or molybdenum is formed on the surface. a metal telluride layer formed by molybdenum, Mo), and performing a rapid thermal annealing process to form an automatic pair of the gates of the first component region and the second component region with the surface of the drain The metalloid telluride layers 410a and 410b (salicide layer) are used to reduce the driving force of the parasitic resistance lifting element.

參照第五圖,接續上述步驟,於該半導體基底100上沉積一接觸孔蝕刻停止層502(contact etch stop layer,CESL),其可為SiN、氮氧化矽(oxynitride)、氧化矽(oxide)等,在本實施例中為SiN。該接觸孔蝕刻停止層502的沉積厚度為100至1500。在本實施例中,該接觸孔蝕刻停止層502利用沉積製程來產生所需的單軸伸張應力(第二部分)。其中,應力之增加量與該停止層502的氫原子含量有關,氫原子含量越低,伸張應力增加量就會越大。然而,本實施例中該些L型間隙壁產生的單軸伸張應力要小於該接觸孔蝕刻停止層502產生的單軸伸張應力。接著,一層間介電質層504(inter-layer dielectric,ILD),如:二氧化矽SiO2 ,沉積在該接觸孔蝕刻停止層502之上。Referring to the fifth figure, following the above steps, a contact etch stop layer 502 (CESL) is deposited on the semiconductor substrate 100, which may be SiN, oxynitride, oxide, etc. In the present embodiment, it is SiN. The contact hole etch stop layer 502 is deposited to a thickness of 100 to 1500 . In the present embodiment, the contact hole etch stop layer 502 utilizes a deposition process to produce the desired uniaxial tensile stress (second portion). Wherein, the increase of the stress is related to the hydrogen atom content of the stop layer 502, and the lower the hydrogen atom content, the greater the increase of the tensile stress. However, the uniaxial tensile stress generated by the L-type spacers in this embodiment is smaller than the uniaxial tensile stress generated by the contact hole etch stop layer 502. Next, an inter-layer dielectric (ILD), such as cerium oxide SiO 2 , is deposited over the contact hole etch stop layer 502.

參照第六圖,係接續上述步驟,經離子佈植形成一汲極102(drain),再利用習知的光阻光罩製程,將一接觸孔602從該層間介電質層504非均向性地蝕刻到該接觸蝕刻 停止層502。接著進行汲極的離子佈植及用於活化元件內摻雜(doping)的快速熱退火。再藉由化學氣相沉積法沉積一位障插栓604(barrier plug)並直接接觸該汲極102。並將該第二與第三L形間隙壁404與406從原本連接在一起的U形切開而呈L形(L形間隙壁406為反L形)。該接觸孔蝕刻停止層502亦被切開為502a與502b。該第一元件區112與該第二元件區114的該些氧化層間隔物呈非對稱形(即310a與310b;310c與310d)。Referring to the sixth figure, the above steps are followed to form a drain 102 by ion implantation, and a contact hole 602 is non-uniform from the interlayer dielectric layer 504 by a conventional photoresist mask process. Sexually etched into the contact etch Stop layer 502. Ion implantation of the drain and rapid thermal annealing for doping in the active element are then performed. A barrier plug 604 is deposited by chemical vapor deposition and directly contacts the drain 102. The second and third L-shaped spacers 404 and 406 are cut into an L shape from the U-shape originally connected (the L-shaped spacer 406 is inverted L-shaped). The contact hole etch stop layer 502 is also cut into 502a and 502b. The oxide layer spacers of the first device region 112 and the second device region 114 are asymmetric (ie, 310a and 310b; 310c and 310d).

在前述的實施例中,應力區包含有該些L型間隙壁402、404、406、408(第一部分);及該接觸孔蝕刻停止層502a與502b(第二部分);其中該些L型間隙壁及該接觸孔蝕刻停止層在不同的步驟中皆經歷快速熱退火處理來產生適當的單軸張應力,藉此提高電子的有效質量進而降低穿隧漏電流,也因此,在相同的壓致漏電流(SILC)情況下能降低穿隧氧化層的厚度,減低短通道效應(SCE)發生的可能。In the foregoing embodiment, the stress region includes the L-type spacers 402, 404, 406, 408 (first portion); and the contact hole etch stop layers 502a and 502b (second portion); wherein the L-types The spacer and the contact hole etch stop layer undergo rapid thermal annealing treatment in different steps to generate an appropriate uniaxial tensile stress, thereby increasing the effective mass of the electron and thereby reducing the tunnel leakage current, and therefore, at the same pressure The leakage current (SILC) can reduce the thickness of the tunneling oxide layer and reduce the possibility of short channel effect (SCE).

於一實施例中,該些L型間隙壁產生的單軸張應力要小於該接觸孔蝕刻停止層502a與502b產生的單軸張應力,且由於基底100係為(100)方向並將通道沿<110>方向製作,加上該些應力區所產生之單軸伸張應力,使得記憶體元件增加其電子遷移率。因此,較高的電子遷移率可以提升讀取電流,亦即可用較低的讀取電壓來達到原本所需的讀取電流,進而使資料保持性得以提升。In one embodiment, the L-type spacers generate less uniaxial tensile stress than the contact hole etch stop layers 502a and 502b, and since the substrate 100 is in the (100) direction and along the channel The <110> direction is produced, and the uniaxial tensile stress generated by the stress regions increases the electron mobility of the memory device. Therefore, a higher electron mobility can increase the read current, and a lower read voltage can be used to achieve the desired read current, thereby improving data retention.

於另一實施例中,基底100係為(100)方向並將通道 沿<100>方向製作。與<110>方向相比,電子在<100>通道上具有較高的壓阻係數(piezoresistance coefficient),因此該應力區所產生之單軸伸張應力,可更提昇記憶體元件中電子的遷移率。此外,因該晶格方向為<100>,PMOS中的電洞遷移率並不會因此降低。In another embodiment, the substrate 100 is in the (100) direction and the channel Made along the <100> direction. Compared with the <110> direction, electrons have a higher piezoresistance coefficient on the <100> channel, so the uniaxial tensile stress generated by the stress region can further increase the mobility of electrons in the memory device. . Further, since the lattice direction is <100>, the hole mobility in the PMOS is not lowered.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以下文之申請專利範圍所界定者為準。The invention has been described above in terms of the preferred embodiments, and it should be understood by those skilled in the art that the present invention is not intended to limit the scope of the invention. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of the invention is defined by the scope of the following claims.

100‧‧‧基底100‧‧‧Base

102‧‧‧汲極102‧‧‧汲polar

104‧‧‧源極104‧‧‧ source

106‧‧‧閘極106‧‧‧ gate

106a‧‧‧穿隧氧化層106a‧‧‧ Tunneling Oxidation Layer

106b‧‧‧浮動閘106b‧‧‧Floating gate

106c‧‧‧介電層106c‧‧‧ dielectric layer

106d‧‧‧控制閘106d‧‧‧Control gate

107‧‧‧區域107‧‧‧Area

108‧‧‧第一氧化層108‧‧‧First oxide layer

110‧‧‧第二氧化層110‧‧‧Second oxide layer

112‧‧‧第一元件區112‧‧‧First component area

114‧‧‧第二元件區114‧‧‧Second component area

210‧‧‧氧化層210‧‧‧Oxide layer

310a~310d‧‧‧氧化層間隔物310a~310d‧‧‧Oxide spacer

402、404、406、408‧‧‧L形間隙壁402, 404, 406, 408‧‧‧ L-shaped spacer

410a‧‧‧第一金屬矽化物410a‧‧‧First metal telluride

410b‧‧‧第二金屬矽化物410b‧‧‧Second metal telluride

502、502a、502b‧‧‧接觸孔蝕刻停止層502, 502a, 502b‧‧‧ contact hole etch stop layer

504‧‧‧層間介電質層504‧‧‧Interlayer dielectric layer

602‧‧‧接觸孔602‧‧‧Contact hole

604‧‧‧位障插栓604‧‧‧ Barrier plug

第一圖到第六圖係顯示在不同製程步驟時,本發明實施例的晶圓剖面圖。The first to sixth figures show wafer cross-sectional views of embodiments of the present invention at different process steps.

第七圖係MOS半導體中應力方向與能帶關係圖。The seventh figure is a diagram of the relationship between the stress direction and the energy band in the MOS semiconductor.

100‧‧‧基底100‧‧‧Base

102‧‧‧汲極102‧‧‧汲polar

104‧‧‧源極104‧‧‧ source

106a‧‧‧穿隧氧化層106a‧‧‧ Tunneling Oxidation Layer

106b‧‧‧浮動閘106b‧‧‧Floating gate

112‧‧‧第一元件區112‧‧‧First component area

114‧‧‧第二元件區114‧‧‧Second component area

310a‧‧‧氧化層間隔物310a‧‧‧Oxide spacer

310d‧‧‧氧化層間隔物310d‧‧‧Oxide spacer

402、404、406、408‧‧‧L形間隙壁402, 404, 406, 408‧‧‧ L-shaped spacer

502a、502b‧‧‧接觸孔蝕刻停止層502a, 502b‧‧‧ contact hole etch stop layer

504‧‧‧層間介電質層504‧‧‧Interlayer dielectric layer

602‧‧‧接觸孔602‧‧‧Contact hole

604‧‧‧位障插栓604‧‧‧ Barrier plug

Claims (8)

一種具應力區的半導體結構,其包含:一基底,具有一第一元件區與一第二元件區;其中,該第一元件區與該第二元件區各包含一閘極,該第一元件區與該第二元件區之間包含一汲極;其中該些閘極上端各設有一自動對準金屬矽化物層(salicide layer),而該汲極端上則未設,每一該閘極係位於該基底上且具有側壁,每一該閘極之側壁係接觸有第一氧化層;一應力區,係位於該第一元件區與該第二元件區內;其中,該應力區在該第一及該第二元件區內各包含有一第一部分及一第二部分;其中,該第一及第二部分產生的應力不相同,該第一部分具有一成對且互相相反的L形間隙壁(L-shape),該第二部份為一接觸孔蝕刻停止層(CESL),於該閘極之側壁外的方向上,該第一部分係接觸該第一氧化層且未覆蓋該閘極的上端,該第二部份係接觸該第一部分;一位障插塞,係分隔該第一元件區與該第二元件區,其中該接觸孔蝕刻停止層自上端至該閘極之側壁外係形成有容置該位障插栓之接觸孔的孔壁。 A semiconductor structure having a stress region, comprising: a substrate having a first device region and a second device region; wherein the first device region and the second device region each comprise a gate, the first component a drain is included between the region and the second component region; wherein each of the gates is provided with an automatic alignment metal salicide layer, and the gate is not provided, and each gate is Located on the substrate and having sidewalls, each sidewall of the gate is in contact with a first oxide layer; a stress region is located in the first component region and the second component region; wherein the stress region is in the first And the second component region includes a first portion and a second portion; wherein the first and second portions generate different stresses, and the first portion has a pair of L-shaped spacers opposite each other ( L-shape), the second portion is a contact hole etch stop layer (CESL), the first portion contacting the first oxide layer and not covering the upper end of the gate in a direction outside the sidewall of the gate The second portion is in contact with the first portion; a barrier plug The first partition member-based region and the second element region, wherein the contact hole etch stop layer from the upper end to the outer wall of the cell walls of the gate line contact hole formed in the accommodating position of the barrier plug. 如申請專利範圍第1項所述之半導體結構,其中該基底為一矽基底,沿<110>方向製作一通道。 The semiconductor structure of claim 1, wherein the substrate is a substrate and a channel is formed along the <110> direction. 如申請專利範圍第2項所述之半導體結構,其中該通道為N通道。 The semiconductor structure of claim 2, wherein the channel is an N channel. 如申請專利範圍第1項所述之金屬氧化半導體結構,其中該基底為一矽基底,沿<100>方向製作一通道。 The metal oxide semiconductor structure according to claim 1, wherein the substrate is a germanium substrate, and a channel is formed along the <100> direction. 如申請專利範圍第1項所述之半導體結構,其中該L形間隙壁可為SiN、氮氧化矽(oxynitride)、氧化矽(oxide)。 The semiconductor structure of claim 1, wherein the L-shaped spacer may be SiN, oxynitride, or oxide. 如申請專利範圍第1項所述之半導體結構,其中該接觸孔蝕刻停止層可為SiN、氮氧化矽(oxynitride)、氧化矽(oxide)。 The semiconductor structure of claim 1, wherein the contact hole etch stop layer is SiN, oxynitride, or oxide. 如申請專利範圍第1項所述之半導體結構,其中該第一部分之應力小於該第二部份之應力。 The semiconductor structure of claim 1, wherein the stress of the first portion is less than the stress of the second portion. 如申請專利範圍第7項所述之半導體結構,其中該應力為一單軸伸張應力。 The semiconductor structure of claim 7, wherein the stress is a uniaxial tensile stress.
TW097118265A 2008-05-16 2008-05-16 A semiconductor structure with a stress region TWI447910B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097118265A TWI447910B (en) 2008-05-16 2008-05-16 A semiconductor structure with a stress region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097118265A TWI447910B (en) 2008-05-16 2008-05-16 A semiconductor structure with a stress region

Publications (2)

Publication Number Publication Date
TW200950083A TW200950083A (en) 2009-12-01
TWI447910B true TWI447910B (en) 2014-08-01

Family

ID=44871191

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097118265A TWI447910B (en) 2008-05-16 2008-05-16 A semiconductor structure with a stress region

Country Status (1)

Country Link
TW (1) TWI447910B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578314B (en) * 2002-06-10 2004-03-01 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
TW200818339A (en) * 2006-08-31 2008-04-16 Advanced Micro Devices Inc A field effect transistor having a stressed contact etch stop layer with reduced conformality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW578314B (en) * 2002-06-10 2004-03-01 Mitsubishi Electric Corp Semiconductor device and manufacturing method thereof
TW200818339A (en) * 2006-08-31 2008-04-16 Advanced Micro Devices Inc A field effect transistor having a stressed contact etch stop layer with reduced conformality

Also Published As

Publication number Publication date
TW200950083A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
JP5009611B2 (en) Method for forming a structure in a FINFET device
KR100674914B1 (en) MOS transistor having strained channel layer and methods of manufacturing thereof
US7629220B2 (en) Method for forming a semiconductor device and structure thereof
TWI485848B (en) Semiconductor device and method for fabricating the same
TWI446453B (en) Stressed field effect transistor and methods for its fabrication
JP5279807B2 (en) Semiconductor device and manufacturing method thereof
US7164189B2 (en) Slim spacer device and manufacturing method
US20050156274A1 (en) Strained channel transistor and methods of manufacture
US7678635B2 (en) Method of producing a transistor
JP5126930B2 (en) Manufacturing method of semiconductor device
US8227316B2 (en) Method for manufacturing double gate finFET with asymmetric halo
JP2006148077A (en) Semiconductor device utilizing an extension spacer and method of forming the same
JP2006121074A (en) Semiconductor device and manufacturing method of the same
US9412859B2 (en) Contact geometry having a gate silicon length decoupled from a transistor length
US20060170053A1 (en) Accumulation mode multiple gate transistor
KR20110135771A (en) Method of fabricating semiconductor integrated circuit device
JP5286416B2 (en) Semiconductor device and manufacturing method thereof
CN104347508B (en) Semiconductor structure and formation method thereof
US20080142879A1 (en) Integrated circuit system employing differential spacers
TWI447910B (en) A semiconductor structure with a stress region
TWI805947B (en) Horizontal gaa nano-wire and nano-slab transistors
US8008692B2 (en) Semiconductor memory structure with stress regions
US8349677B2 (en) Semiconductor device and method for manufacturing the same
CN101651140B (en) Metal oxide semiconductor structure with stress area
CN101071823A (en) Semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees