TWI447843B - Wafer positioning method and system thereof - Google Patents

Wafer positioning method and system thereof Download PDF

Info

Publication number
TWI447843B
TWI447843B TW100144486A TW100144486A TWI447843B TW I447843 B TWI447843 B TW I447843B TW 100144486 A TW100144486 A TW 100144486A TW 100144486 A TW100144486 A TW 100144486A TW I447843 B TWI447843 B TW I447843B
Authority
TW
Taiwan
Prior art keywords
wafer
unit
light
light intensity
rotation angle
Prior art date
Application number
TW100144486A
Other languages
Chinese (zh)
Other versions
TW201324667A (en
Inventor
Ju Yi Lee
Yi Cheng Chen
Jian You Chen
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW100144486A priority Critical patent/TWI447843B/en
Publication of TW201324667A publication Critical patent/TW201324667A/en
Application granted granted Critical
Publication of TWI447843B publication Critical patent/TWI447843B/en

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

晶圓定位方法及其系統Wafer positioning method and system thereof

本發明係關於一種晶圓定位方法及其系統,特別是一種於傳輸腔體中晶圓位置感測的方法及其系統。The present invention relates to a wafer positioning method and system thereof, and more particularly to a method and system for sensing wafer position in a transfer cavity.

目前產業中使用的半導體成膜設備,係藉由群組式腔體(Cluster Chamber)設計,以及其兼具彈性化製程與量產能力的優點,而廣泛地使用於量產型成膜設備中。其中,量產型成膜設備必需使用機械手臂,負責將晶圓傳送至各個成膜機台的腔體,以完成數個不同的成膜製程。然而,晶圓是否能夠於成膜製程中準確地置放於腔體中正確的位置,將會影響成膜製程的良率。因此,如何即時監控晶圓於腔體中的實際位置,也就是即時偵測晶圓於機器手臂上的擺放位置,是影響製程良率的重要關鍵之一。The semiconductor film-forming equipment used in the industry is widely used in mass production film forming equipment by the design of a cluster chamber and its advantages of flexible process and mass production capability. . Among them, the mass production type film forming equipment must use a robot arm, which is responsible for transferring the wafer to the cavity of each film forming machine to complete several different film forming processes. However, whether the wafer can be accurately placed in the cavity in the film forming process will affect the yield of the film forming process. Therefore, how to instantly monitor the actual position of the wafer in the cavity, that is, to instantly detect the placement of the wafer on the robot arm, is one of the important keys affecting the process yield.

目前普遍使用的晶圓位置偵測技術,已有數篇專利提出,其中大多數係利用數個光偵測器(photo detector),並搭配遮斷式方法,設置於機械手臂運送晶圓由傳輸腔體進出之晶圓儲存槽(cassette)和製程腔體(processing chamber)處,利用光偵測器被晶圓遮住的時間差以計算出晶圓位置是否存在偏差。另外,亦有多篇晶圓定位相關專利利用電荷耦合裝置(charge coupled device,CCD)之照相機擷取晶圓邊緣輪廓影像,搭配適當的平面背光源,利用影像處理技術計算出晶圓圓心位置是否有誤。At present, the commonly used wafer position detection technology has been proposed in several patents. Most of them use several photo detectors and are equipped with an interrupting method. At the wafer storage and processing chambers of the body, the time difference of the photodetector being covered by the wafer is used to calculate whether there is a deviation in the wafer position. In addition, there are also a number of wafer positioning related patents that use a charge coupled device (CCD) camera to capture wafer edge contour images, with appropriate planar backlights, using image processing techniques to calculate whether the wafer center position is mistaken.

因此,如何檢測晶圓是否精準地擺放於成膜機台的腔體中正確的位置,來提升製程之良率,係為本技術領域亟欲解決之問題。Therefore, how to detect whether the wafer is accurately placed in the correct position in the cavity of the film forming machine to improve the yield of the process is a problem to be solved in the technical field.

本發明之一目的係在於提供一晶圓定位方法及其系統,來檢測晶圓的位置,以提升製程之良率。It is an object of the present invention to provide a wafer positioning method and system thereof for detecting the position of a wafer to improve the yield of the process.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。Other objects and advantages of the present invention will become apparent from the technical features disclosed herein.

為達上述之一或部份或全部目的或是其他目的,本發明之一實施例的一種晶圓定位方法適用於感測一晶圓的位置,其步驟包括:提供一托運單元以支撐晶圓,並且托運單元以一移動速度作直線移動;提供一雷射掃描模組,以發射一光束,且光束以一旋轉角度作移動,而於晶圓及托運單元上作掃描,其中雷射掃描模組及托運單元之間具有一固定距離;提供一感光模組,以接收光束之一光強度;當光束與托運單元或晶圓交會時,感光模組擷取光束之光強度所產生之一強度變化;提供一運算單元,以紀錄強度變化的一時間,及相對應之光束的旋轉角度;運算單元根據移動速度、旋轉角度、時間及固定距離,以計算晶圓的位置。For one or a portion or all of the above or other purposes, a wafer positioning method according to an embodiment of the present invention is adapted to sense a position of a wafer, the step comprising: providing a shipping unit to support the wafer And the transport unit moves linearly at a moving speed; a laser scanning module is provided to emit a light beam, and the light beam is moved at a rotation angle to scan on the wafer and the transport unit, wherein the laser scanning mode The set and the transport unit have a fixed distance; a photosensitive module is provided to receive the light intensity of the light beam; and when the light beam meets the transport unit or the wafer, the photosensitive module captures one of the intensity of the light intensity of the light beam Changing; providing an arithmetic unit to record a change in intensity and a corresponding rotation angle of the light beam; the arithmetic unit calculates the position of the wafer according to the moving speed, the rotation angle, the time, and the fixed distance.

在一實施例中,晶圓的位置係由複數晶圓邊緣座標所表示,根據晶圓邊緣座標,運算單元可計算得到晶圓之一圓心位置。其中,每一晶圓邊緣座標係由一水平座標及一垂直座標表示,水平座標係根據固定距離及旋轉角度之變化所計算得到,垂直座標係由移動速度及時間之變化所計算得到。In one embodiment, the position of the wafer is represented by a plurality of wafer edge coordinates, and the arithmetic unit can calculate a center position of the wafer according to the edge coordinates of the wafer. Wherein, the edge coordinate of each wafer is represented by a horizontal coordinate and a vertical coordinate, and the horizontal coordinate is calculated according to the change of the fixed distance and the rotation angle, and the vertical coordinate is calculated by the change of the moving speed and time.

在一實施例中,感光模組擷取強度變化之步驟,包括:當光束未與托運單元及晶圓交會時,感光模組會擷取一第一光強度;當托運單元之邊緣與光束交會時,感光模組會擷取一第二光強度;當晶圓之邊緣與光束交會時,感光模組會擷取一第三光強度。此外,當第一光強度轉換為第二光強度時,運算單元紀錄為一第一時間,且將對應第一時間之光束的旋轉角度,紀錄為一第一旋轉角度;當第一光強度轉換為第三光強度時,運算單元紀錄為一第二時間,且將對應第二時間之光束的旋轉角度,紀錄為一第二旋轉角度。In one embodiment, the step of extracting the intensity of the photosensitive module comprises: when the beam is not intersected with the carrier unit and the wafer, the photosensitive module captures a first light intensity; when the edge of the shipping unit intersects with the beam The photosensitive module captures a second light intensity; when the edge of the wafer meets the beam, the photosensitive module captures a third light intensity. In addition, when the first light intensity is converted into the second light intensity, the operation unit records as a first time, and records the rotation angle of the light beam corresponding to the first time as a first rotation angle; when the first light intensity conversion For the third light intensity, the operation unit records a second time, and records the rotation angle of the light beam corresponding to the second time as a second rotation angle.

為連上述之一或部份或全部目的或是其他目的,本發明之另一實施例的一種晶圓定位系統,適用於感測一晶圓的位置,其包括一托運單元、一雷射掃描模組、一感光模組及一運算單元。托運單元用以支托晶圓,且具有一移動速度。雷射掃描模組設置於托運單元之上方,且與托運單元具有一固定距離。雷射掃描模組發射一光束,光束沿著一第一光路徑前進且光束以一旋轉角度作移動,而於晶圓及托運單元上作掃描。感光模組用以接收光束之光強度,當光束沿著第一光路徑行進而未與托運單元及晶圓交會時,感光模組擷取一第一光強度,當托運單元之邊緣與光束交會時,感光模組擷取一第二光強度,當晶圓之邊緣與光束時,感光模組擷取一第三光強度。運算單元電性連接感光模組及雷射掃描模組,以接收第一光強度、第二光強度及第三光強度。For one or a part or all of the above or other purposes, a wafer positioning system according to another embodiment of the present invention is adapted to sense a position of a wafer, including a shipping unit and a laser scanning The module, a photosensitive module and an arithmetic unit. The shipping unit is used to support the wafer and has a moving speed. The laser scanning module is disposed above the shipping unit and has a fixed distance from the shipping unit. The laser scanning module emits a beam of light that travels along a first optical path and the beam moves at a rotational angle for scanning on the wafer and the transport unit. The photosensitive module is configured to receive the light intensity of the light beam. When the light beam travels along the first light path and does not intersect the shipping unit and the wafer, the photosensitive module captures a first light intensity, and when the edge of the shipping unit meets the light beam The photosensitive module captures a second light intensity. When the edge of the wafer and the light beam, the photosensitive module captures a third light intensity. The computing unit is electrically connected to the photosensitive module and the laser scanning module to receive the first light intensity, the second light intensity, and the third light intensity.

其中,當第一光強度轉換為第二光強度時,運算單元紀錄為一第一時間,且將對應第一時間之光束的旋轉角度,紀錄為一第一旋轉角度。當第一光強度轉換為第三光強度時,運算單元紀錄為一第二時間,且將對應第二時間之光束的旋轉角度,紀錄為一第二旋轉角度。最後,運算單元根據移動速度、第一旋轉角度、第二旋轉角度、第一時間、第二時間及固定距離,以計算晶圓的位置。Wherein, when the first light intensity is converted into the second light intensity, the operation unit records the first time, and records the rotation angle of the light beam corresponding to the first time as a first rotation angle. When the first light intensity is converted into the third light intensity, the operation unit records a second time, and records the rotation angle of the light beam corresponding to the second time as a second rotation angle. Finally, the arithmetic unit calculates the position of the wafer according to the moving speed, the first rotation angle, the second rotation angle, the first time, the second time, and the fixed distance.

在一實施例中,雷射掃描模組包括一雷射光源、一反射鏡及一轉動制動單元。雷射光源發射一光束,並沿著一第二光路徑行進。反射鏡設置於第二光路徑上,以將光束反射而沿著第一光路徑行進。轉動制動單元電性連接反射鏡,且反射鏡設置於轉動制動單元上,轉動制動單元以旋轉角度作轉動,並帶動反射鏡而轉動,使得光束以旋轉角度於晶圓及托運單元上作掃描。In one embodiment, the laser scanning module includes a laser light source, a mirror, and a rotary brake unit. The laser source emits a beam of light and travels along a second path of light. A mirror is disposed on the second light path to reflect the beam and travel along the first light path. The rotating brake unit is electrically connected to the mirror, and the mirror is disposed on the rotating braking unit. The rotating braking unit rotates at a rotation angle and drives the mirror to rotate, so that the beam is scanned on the wafer and the loading unit at a rotation angle.

在一實施例中,晶圓定位系統更包括一散射底面,設置於托運單元之下方,當光束沿著第一光路徑行進而未與托運單元及晶圓交會,光束前進至散射底面,而產生一散射光,其中散射光之光強度係為第一光強度。In one embodiment, the wafer positioning system further includes a scattering bottom surface disposed under the shipping unit. When the light beam travels along the first light path and does not intersect the shipping unit and the wafer, the light beam advances to the scattering bottom surface to generate A scattered light in which the intensity of the scattered light is the first light intensity.

在一實施例中,晶圓的位置係由複數晶圓邊緣座標所表示,根據晶圓邊緣座標,運算單元可計算得到晶圓之一圓心位置。其中,每一晶圓邊緣座標係由一水平座標及一垂直座標表示,水平座標係根據固定距離及旋轉角度之變化所計算得到,垂直座標係由移動速度及時間之變化所計算得到。In one embodiment, the position of the wafer is represented by a plurality of wafer edge coordinates, and the arithmetic unit can calculate a center position of the wafer according to the edge coordinates of the wafer. Wherein, the edge coordinate of each wafer is represented by a horizontal coordinate and a vertical coordinate, and the horizontal coordinate is calculated according to the change of the fixed distance and the rotation angle, and the vertical coordinate is calculated by the change of the moving speed and time.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is for the purpose of illustration and not limitation.

本發明實施例之晶圓定位方法及其系統係利用雷射掃描模組將雷射光束形成一掃描光束,並藉由一感光模組接收掃描光束行進至一托運單元及其上擺放之一晶圓所散射之光強度訊號,再由光強度變化的時間間隔等數據,以計算晶圓之實際位置。The wafer positioning method and system thereof are formed by using a laser scanning module to form a scanning beam by a laser scanning module, and receiving a scanning beam by a photosensitive module to travel to a consignment unit and one of the upper projections thereof The light intensity signal scattered by the wafer, and then the time interval of the light intensity change, to calculate the actual position of the wafer.

請參照第一圖,係為本發明實施例之晶圓定位方法的流程圖。一種晶圓定位方法係適用於感測一晶圓的位置,其步驟說明如下:Please refer to the first figure, which is a flowchart of a wafer positioning method according to an embodiment of the present invention. A wafer positioning method is suitable for sensing the position of a wafer, and the steps are as follows:

步驟(S10):提供一托運單元以支撐晶圓,並且托運單元以一移動速度作直線移動。此時,定義一參考座標,以X-Y座標軸為參考座標,將Y軸方向定義為晶圓移動前進的方向,且X軸與Y軸係相互垂直的。Step (S10): providing a shipping unit to support the wafer, and the shipping unit moves linearly at a moving speed. At this time, a reference coordinate is defined, with the X-Y coordinate axis as a reference coordinate, and the Y-axis direction is defined as the direction in which the wafer moves forward, and the X-axis and the Y-axis are perpendicular to each other.

步驟(S11):提供一運算單元,並且運算單元會紀錄托運單元之移動速度V。Step (S11): an arithmetic unit is provided, and the arithmetic unit records the moving speed V of the shipping unit.

步驟(S12):提供一雷射掃描模組,以發射一光束,且光束以一旋轉角度作移動,而於晶圓及托運單元上作掃描。其中,雷射掃描模組及托運單元之間具有一固定距離h,並且雷射掃描模組中光束之掃描方向,係定義為X軸方向。Step (S12): providing a laser scanning module to emit a light beam, and the light beam is moved at a rotation angle to scan on the wafer and the shipping unit. Wherein, the laser scanning module and the shipping unit have a fixed distance h, and the scanning direction of the light beam in the laser scanning module is defined as the X-axis direction.

步驟(S13):提供一感光模組,以接收光束於晶圓及托運單元所散射之一光強度,並且感光模組擷取光束之光強度所產生之一強度變化。Step (S13): providing a photosensitive module to receive a light intensity scattered by the light beam on the wafer and the loading unit, and the photosensitive module extracts a change in intensity of the light intensity of the light beam.

步驟(S14):運算單元會紀錄光強度變化的一時間。當光束未與托運單元及晶圓交會時,感光模組會擷取一第一光強度;當托運單元之邊緣與光束交會時,感光模組會擷取一第二光強度;當晶圓之邊緣與光束交會時,感光模組會擷取一第三光強度。至於,當第一光強度轉換為第二光強度時,運算單元會紀錄為一第一時間;當第一光強度轉換為第三光強度時,運算單元會紀錄為一第二時間。Step (S14): The arithmetic unit records a time when the light intensity changes. When the beam does not meet the consignment unit and the wafer, the photosensitive module captures a first light intensity; when the edge of the consignment unit meets the beam, the photosensitive module captures a second light intensity; When the edge meets the beam, the photosensitive module captures a third light intensity. As a result, when the first light intensity is converted to the second light intensity, the arithmetic unit records the first time; when the first light intensity is converted to the third light intensity, the arithmetic unit records the second time.

其中,於參考座標中,運算單元將托運單元第一次被光束掃描到的位置定義為一原點,亦即第一光強度第一次上升到第二光強度的第一時間所對應到的位置。Wherein, in the reference coordinate, the operation unit defines the position at which the transport unit is scanned by the beam for the first time as an origin, that is, the first time when the first light intensity first rises to the second light intensity. position.

步驟(S15):同時,運算單元分別對應第一時間及第二時間時,擷取此時光束掃描到晶圓及托運單元之旋轉角度。當第一光強度轉換為第二光強度時,運算單元會擷取其所對應第一時間之光束的旋轉角度,並紀錄為一第一旋轉角度;當第一光強度轉換為第三光強度時,運算單元會擷取其所對應第二時間之光束的旋轉角度,並紀錄為一第二旋轉角度。Step (S15): At the same time, when the computing unit corresponds to the first time and the second time respectively, the rotation angle of the beam scanning to the wafer and the shipping unit is taken. When the first light intensity is converted into the second light intensity, the operation unit captures the rotation angle of the light beam corresponding to the first time, and records it as a first rotation angle; when the first light intensity is converted into the third light intensity The arithmetic unit captures the rotation angle of the beam corresponding to the second time and records it as a second rotation angle.

步驟(S16):運算單元會根據移動速度、旋轉角度、第一時間、第二時間及固定距離等數據,以計算晶圓的位置。其中,晶圓的位置可由複數晶圓邊緣座標所表示,每一晶圓邊緣座標係由一水平座標及一垂直座標表示,也就是以參考座標中X軸及Y軸來表示。水平座標Xi 也就是X軸座標,係根據固定距離及旋轉角度之變化所計算得到。垂直座標Yi 也就是Y軸座標,則可由移動速度及時間之變化所計算得到。Step (S16): The arithmetic unit calculates the position of the wafer according to data such as the moving speed, the rotation angle, the first time, the second time, and the fixed distance. The position of the wafer may be represented by a plurality of wafer edge coordinates, and each wafer edge coordinate is represented by a horizontal coordinate and a vertical coordinate, that is, represented by the X-axis and the Y-axis in the reference coordinate. The horizontal coordinate X i is also the X-axis coordinate, which is calculated based on the change of the fixed distance and the rotation angle. The vertical coordinate Y i is also the Y-axis coordinate, which can be calculated from the change of the moving speed and time.

因此,晶圓邊緣座標Pi (Xi ,Yi )可由下列關係式計算得到:Therefore, the wafer edge coordinates P i (X i , Y i ) can be calculated from the following relationship:

X i =h [tan(θ i )-tan(θ o )] X i = h [tan( θ i )-tan( θ o )]

Y i =V [t i -t o ] Y i = V [ t i - t o ]

其中,第一時間to 與第一角度θo 係分別表示雷射掃描模組中光束掃描到原點,亦即第一光強度第一次上升到第二光強度的第一時間所對應到的位置,及雷射掃描模組中光束之旋轉角度。將時間ti 及光束之旋轉角度θi 分別表示雷射掃描模組中光束掃描到晶圓之邊緣位置。至於,h表示雷射掃描模組及托運單元之固定距離,V則表示托運單元之移動速度。The first time t o and the first angle θ o respectively indicate that the beam of the laser scanning module is scanned to the origin, that is, the first time when the first light intensity first rises to the second light intensity corresponds to The position, and the angle of rotation of the beam in the laser scanning module. The time t i and the rotation angle θ i of the light beam respectively indicate the position of the beam scanning to the edge of the wafer in the laser scanning module. As for, h represents the fixed distance of the laser scanning module and the shipping unit, and V represents the moving speed of the shipping unit.

步驟(S17):根據晶圓邊緣座標Pi (Xi ,Yi ),運算單元可計算得到晶圓之一圓心位置(XC ,YC ),其關係式如下:Step (S17): According to the wafer edge coordinates P i (X i , Y i ), the operation unit can calculate a center position (X C , Y C ) of the wafer, and the relationship is as follows:

以下配合參照第二圖,係為本發明實施例之晶圓定位系統的架構示意圖,以詳細說明上述晶圓定位方法。一種晶圓定位系統適用於成膜設備之傳輸腔體中,用來感測一晶圓W的位置,其包括一托運單元100、一主要由一雷射光源200、一反射鏡210及一轉動制動單元220所組成之雷射掃描模組、一感光模組230及一運算單元240。托運單元100用以支托晶圓W,且以一移動速度V於成膜設備之傳輸腔體中直線移動,其中傳輸腔體具有一散射底面P,設置於托運單元100之下方。The following is a schematic diagram of the structure of the wafer positioning system according to the embodiment of the present invention to explain the above wafer positioning method in detail. A wafer positioning system is suitable for use in a transmission cavity of a film forming apparatus for sensing a position of a wafer W, comprising a shipping unit 100, a main laser source 200, a mirror 210, and a rotating The laser scanning module 220 includes a laser scanning module, a photosensitive module 230 and an arithmetic unit 240. The transport unit 100 is configured to support the wafer W and linearly move in a transport cavity of the film forming apparatus at a moving speed V. The transport cavity has a scattering bottom surface P disposed below the transport unit 100.

雷射掃描模組係設置於托運單元100之上方,且反射鏡210及轉動制動單元220與托運單元100具有一固定距離h。雷射光源200發射一光束,而反射鏡係設置於光束之光路徑上,以將光束反射而沿著第一光路徑L行進。轉動制動單元220係電性連接反射鏡210,且反射鏡210設置於轉動制動單元200上,因此當轉動制動單元220以一旋轉角度θ作轉動,並帶動反射鏡210而轉動,使得光束以旋轉角度θ作移動,而於晶圓W及托運單元100上作往復移動,而形成一掃描光線。在一實施例中,雷射光源200包括一氦氖雷射光源。The laser scanning module is disposed above the shipping unit 100, and the mirror 210 and the rotating braking unit 220 have a fixed distance h from the shipping unit 100. The laser source 200 emits a beam of light, and the mirror is disposed on the light path of the beam to reflect the beam and travel along the first path L. The rotating brake unit 220 is electrically connected to the mirror 210, and the mirror 210 is disposed on the rotating brake unit 200. Therefore, when the rotating braking unit 220 rotates at a rotation angle θ, the mirror 210 is rotated to rotate the beam. The angle θ is moved to reciprocate on the wafer W and the transport unit 100 to form a scanning ray. In an embodiment, the laser source 200 includes a laser source.

感光模組230用以接收光束之光強度。在雷射掃描模組中光束以旋轉角度作連續掃描的過程中,光束會反覆照射在托運單元100、傳輸腔體之散射底面P及晶圓W之表面上,且感光模組230會分別接受到不同強度的散射光。當光束沿著第一光路徑L行進而未與托運單元100及晶圓W交會時,光束前進至散射底面P,而產生一第一散射光,且第一散射光之光強度係為第一光強度,感光模組230會擷取一第一光強度。當托運單元100之邊緣與光束交會時,會產生一第二散射光,感光模組230擷取第二散射光之光強度為一第二光強度。當晶圓W之邊緣與光束交會時,會產生一第三散射光,感光模組230擷取第三散射光之光強度為一第三光強度。The photosensitive module 230 is configured to receive the light intensity of the light beam. During the continuous scanning of the light beam at the rotation angle in the laser scanning module, the light beam is repeatedly irradiated on the surface of the transport unit 100, the scattering bottom surface P of the transmission cavity and the wafer W, and the photosensitive module 230 respectively accepts To different intensity of scattered light. When the light beam travels along the first light path L and does not intersect the carrier unit 100 and the wafer W, the light beam proceeds to the scattering bottom surface P to generate a first scattered light, and the light intensity of the first scattered light is first. The light intensity, the photosensitive module 230 will capture a first light intensity. When the edge of the transport unit 100 intersects the light beam, a second scattered light is generated, and the light intensity of the second scattered light captured by the photosensitive module 230 is a second light intensity. When the edge of the wafer W intersects with the beam, a third scattered light is generated, and the light intensity of the third scattered light captured by the photosensitive module 230 is a third light intensity.

運算單元240包括一控制單元241及一擷取元件242例如一資料擷取卡(data acquisition card,DAQ card)。藉由控制單元241及擷取元件242,運算單元240電性連接雷射掃描模組中轉動制動單元220,控制單元241可輸出一弦波訊號以驅動轉動制動單元220,而使得轉動制動單元220帶動反射鏡210作往復轉動,且擷取元件242將轉動制動單元220所轉動之旋轉角度傳送至運算單元240。同時,藉由擷取元件242,運算單元240可接收感光模組230所感測之第一光強度、第二光強度及第三光強度。The computing unit 240 includes a control unit 241 and a capture component 242 such as a data acquisition card (DAQ card). The operation unit 240 is electrically connected to the rotary brake unit 220 in the laser scanning module by the control unit 241 and the capture unit 242. The control unit 241 can output a sine wave signal to drive the rotary brake unit 220, so that the rotary brake unit 220 is rotated. The mirror 210 is rotated to reciprocate, and the capturing element 242 transmits the rotation angle of the rotation of the rotating brake unit 220 to the arithmetic unit 240. At the same time, the computing unit 240 can receive the first light intensity, the second light intensity, and the third light intensity sensed by the photosensitive module 230 by capturing the component 242.

同時參照第三圖及第四圖,感光模組230以第一光強度I1 作為基準訊號,將散射光強度之變化繪成一曲線圖,如第四圖,其中散射光強度為縱軸,而時間為橫軸。由第四圖可知,第二光強度I2 及第三光強度I3 之間呈現明顯的劇烈變化。利用光強度之劇烈變化的瞬間,可判斷光束是否掃描到托運單元230之邊緣或及晶圓W之邊緣,並記錄下光束與不同物體交會的時間點,以及相對應雷射掃描模組中光束之旋轉角度。因此,當第一光強度轉換為第二光強度時,也就是光束由散射底面P掃描至拖運單元100之邊緣時,運算單元240紀錄為一第一時間to ,且將此時對應第一時間to 之光束的旋轉角度,紀錄為一第一旋轉角度θo ,並可將此位置記錄為Po (too )。當第一光強度轉換為第三光強度時,也就是光束由散射底面P掃描至晶圓W之邊緣時,運算單元240紀錄為一第二時間ti ,且將對應第二時間ti 之光束的旋轉角度,紀錄為一第二旋轉角度θi ,並可將此位置記錄為Pi (tii )。最後,配合第一圖中晶圓定位方法之步驟(S16)至(S17),運算單元240根據托運單元100之移動速度V、第一旋轉角度θo 、第二旋轉角度θi 、第一時間to 、第二時間ti 及固定距離h,以計算晶圓W的位置。Referring to the third and fourth figures, the photosensitive module 230 uses the first light intensity I 1 as a reference signal to plot the change of the scattered light intensity into a graph, as shown in the fourth figure, wherein the scattered light intensity is the vertical axis, and The time is the horizontal axis. As can be seen from the fourth graph, there is a significant sharp change between the second light intensity I 2 and the third light intensity I 3 . Using the moment of dramatic change in light intensity, it can be determined whether the beam is scanned to the edge of the loading unit 230 or the edge of the wafer W, and the time point at which the beam intersects with different objects is recorded, and the beam in the corresponding laser scanning module The angle of rotation. Therefore, when the first light intensity is converted into the second light intensity, that is, when the light beam is scanned from the scattering bottom surface P to the edge of the hauling unit 100, the operation unit 240 records the first time t o , and corresponds to the first time The angle of rotation of the beam at a time t o is recorded as a first angle of rotation θ o and can be recorded as P o (t o , θ o ). When the first light intensity is converted to the third light intensity, that is, when the light beam is scanned from the scattering bottom surface P to the edge of the wafer W, the arithmetic unit 240 records a second time t i and corresponds to the second time t i The angle of rotation of the beam is recorded as a second angle of rotation θ i and this position can be recorded as P i (t i , θ i ). Finally, in conjunction with the steps (S16) to (S17) of the wafer positioning method in the first figure, the operation unit 240 is based on the moving speed V of the shipping unit 100, the first rotation angle θ o , the second rotation angle θ i , and the first time. t o , the second time t i and the fixed distance h to calculate the position of the wafer W.

本發明實施例之晶圓定位方法及其系統,係使用雷射掃描模組形成一掃描光線,並藉由感光模組偵測散射光強度的時序變化,以計算晶圓的位置。因此,藉由晶圓之位置的計算,以檢視晶圓是否精準地擺放於成膜機台的腔體中正確的位置,托運單元將依據此晶圓的位置之資訊進行微調修整,以降低晶圓放置於傳輸腔體中的位置誤差,進而增加製程良率與精確性。The wafer positioning method and system thereof according to the embodiments of the present invention form a scanning light by using a laser scanning module, and detect a timing change of the scattered light intensity by the photosensitive module to calculate the position of the wafer. Therefore, by calculating the position of the wafer, it is checked whether the wafer is accurately placed in the correct position in the cavity of the film forming machine, and the shipping unit will finely adjust the position according to the position of the wafer to reduce The position error of the wafer placed in the transfer cavity increases process yield and accuracy.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

W...晶圓W. . . Wafer

100...托運單元100. . . Consignment unit

200...雷射光源200. . . Laser source

210...反射鏡210. . . Reflector

220...轉動制動單元220. . . Rotating brake unit

230...感光模組230. . . Photosensitive module

240...運算單元240. . . Arithmetic unit

241...控制單元241. . . control unit

242...擷取元件242. . . Capture component

P...散射底面P. . . Scattering bottom

h...固定距離h. . . Fixed distance

L...光路徑L. . . Light path

V...移動速度V. . . Moving speed

I1 ...第一光強度I 1 . . . First light intensity

I2 ...第二光強度I 2 . . . Second light intensity

I3 ...第三光強度I 3 . . . Third light intensity

to ...第一時間t o . . . first timing

ti ...第二時間t i . . . Second time

θ...旋轉角度θ. . . Rotation angle

θo ...第一旋轉角度θ o . . . First rotation angle

θi ...第二旋轉角度θ i . . . Second angle of rotation

Po (too )、Pi (tii )...交會位置P o (t o , θ o ), P i (t i , θ i ). . . Meeting location

第一圖,係為本發明實施例之晶圓定位方法的流程圖。The first figure is a flow chart of a wafer positioning method according to an embodiment of the present invention.

第二圖,係為本發明實施例之晶圓定位系統的架構圖。The second figure is an architectural diagram of a wafer positioning system according to an embodiment of the present invention.

第三圖,係為托運單元及擺放於其上之晶圓的示意圖。The third figure is a schematic diagram of the shipping unit and the wafer placed thereon.

第四圖,係為散射光強度與時間之關係曲線圖。The fourth graph is a plot of the intensity of the scattered light versus time.

Claims (8)

一種晶圓定位方法,適用於感測一晶圓的位置,包括:提供一托運單元以支撐該晶圓,並且該托運單元以一移動速度作直線移動;提供一雷射掃描模組,以發射一光束,且該光束以一旋轉角度作移動,而於該晶圓及該托運單元上作掃描,其中該雷射掃描模組及該托運單元之間具有一固定距離;提供一感光模組,以接收該光束之一光強度;當該光束與該托運單元或該晶圓交會時,該感光模組擷取該光束之該光強度所產生之一強度變化;提供一運算單元,以紀錄該強度變化的一時間,及相對應之該光束的該旋轉角度;以及該運算單元根據該移動速度、該旋轉角度、該時間及該固定距離,以計算該晶圓的位置;其中,該晶圓的位置係由複數晶圓邊緣座標所表示,每一該晶圓邊緣座標係由一水平座標及一垂直座標表示,該水平座標係根據該固定距離及該旋轉角度之變化所計算得到,該垂直座標係由該移動速度及該時間之變化所計算得到,並且,根據該些晶圓邊緣座標,該運算單元可計算得到該晶圓之一圓心位置。 A wafer positioning method for sensing a position of a wafer, comprising: providing a shipping unit to support the wafer, and the shipping unit moves linearly at a moving speed; providing a laser scanning module for transmitting a light beam, wherein the light beam is moved at a rotation angle, and is scanned on the wafer and the carrier unit, wherein the laser scanning module and the shipping unit have a fixed distance; and a photosensitive module is provided. Receiving a light intensity of the light beam; when the light beam intersects the shipping unit or the wafer, the photosensitive module captures a change in intensity of the light intensity of the light beam; providing an arithmetic unit to record the a time at which the intensity changes, and the corresponding rotation angle of the light beam; and the operation unit calculates the position of the wafer according to the moving speed, the rotation angle, the time, and the fixed distance; wherein the wafer The position is represented by a plurality of wafer edge coordinates, and each of the wafer edge coordinates is represented by a horizontal coordinate and a vertical coordinate, and the horizontal coordinate is based on the fixed distance and the rotation The resulting change in the angle calculated, the coordinate system computed by the vertical and the change in the moving velocity of the time available and, in accordance with the plurality of wafer edge coordinates, the arithmetic unit may calculate to obtain the center position of one wafer. 如申請專利範圍第1項所述之晶圓定位方法,其中該感光模組擷取該強度變化之步驟,包括:當該光束未與該托運單元及該晶圓交會時,該感光模組 會擷取一第一光強度;當該托運單元之邊緣與該光束交會時,該感光模組會擷取一第二光強度;以及當該晶圓之邊緣與該光束交會時,該感光模組會擷取一第三光強度。 The wafer positioning method according to claim 1, wherein the photosensitive module captures the intensity change step, comprising: when the light beam is not intersected with the shipping unit and the wafer, the photosensitive module A first light intensity is captured; when the edge of the shipping unit intersects the beam, the photosensitive module captures a second light intensity; and when the edge of the wafer meets the beam, the photosensitive mode The group will draw a third light intensity. 如申請專利範圍第2項所述之晶圓定位方法,其中該運算單元紀錄該強度變化的該時間及相對應之該旋轉角度之步驟,包括:當第一光強度轉換為該第二光強度時,該運算單元紀錄為一第一時間,且將對應該第一時間之該光束的該旋轉角度,紀錄為一第一旋轉角度;以及當第一光強度轉換為該第三光強度時,該運算單元紀錄為一第二時間,且將對應該第二時間之該光束的該旋轉角度,紀錄為一第二旋轉角度。 The wafer positioning method of claim 2, wherein the calculating unit records the time of the intensity change and the corresponding rotation angle, comprising: converting the first light intensity to the second light intensity The operation unit records a first time, and records the rotation angle of the light beam corresponding to the first time as a first rotation angle; and when the first light intensity is converted into the third light intensity, The operation unit records a second time, and records the rotation angle of the light beam corresponding to the second time as a second rotation angle. 一種晶圓定位系統,適用於感測一晶圓的位置,包括:一托運單元,用以支托該晶圓,且具有一移動速度;一雷射掃描模組,係設置於該托運單元之上方,且與該托運單元具有一固定距離,該雷射掃描模組發射一光束,該光束沿著一第一光路徑前進且該光束以一旋轉角度作移動,而於該晶圓及該托運單元上作掃描;一感光模組,用以接收該光束之光強度,當該光束沿著該第一光路徑行進而未與該托運單元及該晶圓交會時,該感光模組擷取一第一光強度,當該托運單元之邊緣與該光束交 會時,該感光模組擷取一第二光強度,當該晶圓之邊緣與該光束時,該感光模組擷取一第三光強度;以及,一運算單元,電性連接該感光模組及該雷射掃描模組,以接收該第一光強度、該第二光強度及該第三光強度,其中,當第一光強度轉換為該第二光強度時,該運算單元紀錄為一第一時間,且將對應該第一時間之該光束的該旋轉角度,紀錄為一第一旋轉角度,當第一光強度轉換為該第三光強度時,該運算單元紀錄為一第二時間,且將對應該第二時間之該光束的該旋轉角度,紀錄為一第二旋轉角度,該運算單元根據該移動速度、該第一旋轉角度、該第二旋轉角度、該第一時間、該第二時間及該固定距離,以計算該晶圓的位置。 A wafer positioning system, configured to sense a position of a wafer, comprising: a shipping unit for supporting the wafer and having a moving speed; and a laser scanning module disposed on the shipping unit Above, and at a fixed distance from the shipping unit, the laser scanning module emits a light beam that travels along a first optical path and the light beam moves at a rotation angle on the wafer and the consignment The unit is configured to receive a light intensity of the light beam. When the light beam travels along the first light path and does not intersect the loading unit and the wafer, the photosensitive module captures one First light intensity when the edge of the shipping unit intersects the beam In time, the photosensitive module captures a second light intensity. When the edge of the wafer and the light beam, the photosensitive module captures a third light intensity; and an arithmetic unit electrically connects the photosensitive module And the laser scanning module to receive the first light intensity, the second light intensity, and the third light intensity, wherein when the first light intensity is converted to the second light intensity, the computing unit records a first time, and the rotation angle of the light beam corresponding to the first time is recorded as a first rotation angle, and when the first light intensity is converted into the third light intensity, the operation unit records as a second Time, and the rotation angle of the light beam corresponding to the second time is recorded as a second rotation angle, and the operation unit is based on the movement speed, the first rotation angle, the second rotation angle, the first time, The second time and the fixed distance are used to calculate the position of the wafer. 如申請專利範圍第4項所述之晶圓定位系統,其中該雷射掃描模組包括:一雷射光源,以發射一光束,並沿著一第二光路徑行進;一反射鏡,係設置於該第二光路徑上,以將該光束反射而沿著該第一光路徑行進;以及一轉動制動單元,係電性連接該反射鏡,且該反射鏡設置於該轉動制動單元上,該轉動制動單元以該旋轉角度作轉動,並帶動該反射鏡而轉動,使得該光束以該旋轉角度於該晶圓及該托運單元上作掃描。 The wafer positioning system of claim 4, wherein the laser scanning module comprises: a laser light source for emitting a light beam and traveling along a second light path; and a mirror And the second light path is configured to reflect the light beam to travel along the first light path; and a rotating braking unit is electrically connected to the mirror, and the mirror is disposed on the rotating braking unit, The rotating brake unit rotates at the rotation angle, and drives the mirror to rotate, so that the light beam is scanned on the wafer and the shipping unit at the rotation angle. 如申請專利範圍第4項所述之晶圓定位系統,更包括一散射底面,設置於該托運單元之下方,當該光束沿著該第一光路徑行進而未與該托運單元及該晶圓交會,該光束前進 至該散射底面,而產生一散射光,其中該散射光之光強度係為該第一光強度。 The wafer positioning system of claim 4, further comprising a scattering bottom surface disposed under the shipping unit, the light beam traveling along the first light path and not being associated with the shipping unit and the wafer Rendezvous, the light beam advances To the bottom of the scattering, a scattered light is generated, wherein the intensity of the scattered light is the first light intensity. 如申請專利範圍第4項所述之晶圓定位系統,其中該晶圓的位置係由複數晶圓邊緣座標所表示,根據該些晶圓邊緣座標,該運算單元可計算得到該晶圓之一圓心位置。 The wafer positioning system of claim 4, wherein the position of the wafer is represented by a plurality of wafer edge coordinates, and the operating unit can calculate one of the wafers according to the edge coordinates of the wafers. Center position. 如申請專利範圍第7項所述之晶圓定位系統,其中每一該晶圓邊緣座標係由一水平座標及一垂直座標表示,該水平座標係根據該固定距離、該第一旋轉角度及該第二旋轉角度所計算得到,該垂直座標係由該移動速度、該第一時間及該第二時間所計算得到。 The wafer positioning system of claim 7, wherein each of the wafer edge coordinates is represented by a horizontal coordinate and a vertical coordinate, the horizontal coordinate is based on the fixed distance, the first rotation angle, and the The second rotation angle is calculated, and the vertical coordinate is calculated by the moving speed, the first time, and the second time.
TW100144486A 2011-12-02 2011-12-02 Wafer positioning method and system thereof TWI447843B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100144486A TWI447843B (en) 2011-12-02 2011-12-02 Wafer positioning method and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100144486A TWI447843B (en) 2011-12-02 2011-12-02 Wafer positioning method and system thereof

Publications (2)

Publication Number Publication Date
TW201324667A TW201324667A (en) 2013-06-16
TWI447843B true TWI447843B (en) 2014-08-01

Family

ID=49033101

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100144486A TWI447843B (en) 2011-12-02 2011-12-02 Wafer positioning method and system thereof

Country Status (1)

Country Link
TW (1) TWI447843B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889429B (en) * 2021-12-06 2022-04-15 杭州众硅电子科技有限公司 Wafer locating device, wafer locating method and wafer speed counting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699515A (en) * 1984-02-28 1987-10-13 Nippon Kogaku K. K. Process of transfer of mask pattern onto substrate and apparatus for alignment therebetween
US7792350B2 (en) * 2003-11-10 2010-09-07 Brooks Automation, Inc. Wafer center finding
TW201104784A (en) * 2009-01-08 2011-02-01 Nitto Denko Corp Alignment apparatus for semiconductor wafer
TW201119777A (en) * 2009-12-01 2011-06-16 Ind Tech Res Inst Laser scanning device and method using the same
TW201137939A (en) * 2003-05-23 2011-11-01 Nikon Corp Exposure apparatus and method for producing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4699515A (en) * 1984-02-28 1987-10-13 Nippon Kogaku K. K. Process of transfer of mask pattern onto substrate and apparatus for alignment therebetween
TW201137939A (en) * 2003-05-23 2011-11-01 Nikon Corp Exposure apparatus and method for producing device
US7792350B2 (en) * 2003-11-10 2010-09-07 Brooks Automation, Inc. Wafer center finding
TW201104784A (en) * 2009-01-08 2011-02-01 Nitto Denko Corp Alignment apparatus for semiconductor wafer
TW201119777A (en) * 2009-12-01 2011-06-16 Ind Tech Res Inst Laser scanning device and method using the same

Also Published As

Publication number Publication date
TW201324667A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
US10254404B2 (en) 3D measuring machine
US9971357B2 (en) Parallel platform tracking control apparatus using visual device as sensor and control method thereof
US7519448B2 (en) Method for determining position of semiconductor wafer, and apparatus using the same
CN109270906B (en) Workpiece processing device and workpiece conveying system
JP2004198330A (en) Method and apparatus for detecting position of subject
US7596425B2 (en) Substrate detecting apparatus and method, substrate transporting apparatus and method, and substrate processing apparatus and method
JP2019516998A (en) Method and apparatus for detecting particles on top of glass, and incident light irradiation method
JP5874252B2 (en) Method and apparatus for measuring relative position with object
JP2016161321A (en) Inspection device
CN109521022A (en) Touch screen defect detecting device based on the confocal camera of line
TWI447843B (en) Wafer positioning method and system thereof
JP4191295B2 (en) Semiconductor package inspection equipment
JP2022077725A (en) Measuring system, measuring device, measuring method, and measuring program
JP5238730B2 (en) Component mounting machine, component detection apparatus, and component mounting method
JP6063270B2 (en) Drawing apparatus and drawing method
CN1685198A (en) Apparatus and method for capturing images from a camera
JP2012137961A (en) Positioning control device and positioning device equipped with the same
JP2015040698A (en) Alignment device and inspection device
JP2003315014A (en) Inspection method and inspection device
CN209624417U (en) Touch screen defect detecting device based on the confocal camera of line
US20050086024A1 (en) Semiconductor wafer location sensing via non contact methods
CN109959354A (en) A kind of large scale road surface evenness measuring device and its measurement method
TWI426575B (en) Wafer positioning system and method thereof
JPH0477465B2 (en)
TWM648148U (en) Visual imaging device and visual inspection device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees