TWI446449B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- TWI446449B TWI446449B TW99115696A TW99115696A TWI446449B TW I446449 B TWI446449 B TW I446449B TW 99115696 A TW99115696 A TW 99115696A TW 99115696 A TW99115696 A TW 99115696A TW I446449 B TWI446449 B TW I446449B
- Authority
- TW
- Taiwan
- Prior art keywords
- source
- pattern
- gate
- layer
- semiconductor pattern
- Prior art date
Links
Landscapes
- Thin Film Transistor (AREA)
Description
本發明是有關於一種半導體元件及其製作方法,且特別是有關於一種可應用於液晶顯示面板之薄膜電晶體的結構及其製作方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a structure of a thin film transistor that can be applied to a liquid crystal display panel and a method of fabricating the same.
由於多晶矽薄膜電晶體相較於非晶矽薄膜電晶體具有消耗功率小且電子遷徙率(electron mobility)大等優點,因此低溫多晶矽薄膜電晶體目前已經廣泛地應用於大尺寸的液晶顯示器中。Since polycrystalline germanium thin film transistors have advantages of low power consumption and large electron mobility compared with amorphous germanium thin film transistors, low temperature polycrystalline germanium thin film transistors have been widely used in large-sized liquid crystal displays.
請參考圖1,其為習知之一種低溫多晶矽薄膜電晶體的剖面示意圖。如圖1所示,基板100上係形成有一緩衝層(buffer layer)102,而緩衝層102上係形成有一多晶矽層110,且此多晶矽層110中係藉由摻雜(dopping)製程而形成有源極區112、汲極區114以及通道區116,其中通道區116係位於源極區112與汲極區114之間。Please refer to FIG. 1 , which is a schematic cross-sectional view of a conventional low temperature polycrystalline germanium film transistor. As shown in FIG. 1 , a buffer layer 102 is formed on the substrate 100 , and a polysilicon layer 110 is formed on the buffer layer 102 , and the polysilicon layer 110 is formed by a doping process. The source region 112, the drain region 114, and the channel region 116, wherein the channel region 116 is located between the source region 112 and the drain region 114.
請再參考圖1,閘絕緣層120係覆蓋住多晶矽層110與緩衝層102,而閘極130係配置於通道區116上方的閘絕緣層120上。介電層140係覆蓋閘極130與閘絕緣層120,且介電層140與閘絕緣層120中係形成有接觸窗開口112a、114a。另外,源極金屬層152以及汲極金屬層154係配置於介電層140上,且源極金屬層152與汲極金屬層154係分別藉由接觸窗開口112a、114a而與源極區112以及汲極區114電性連接。Referring to FIG. 1 again, the gate insulating layer 120 covers the polysilicon layer 110 and the buffer layer 102, and the gate 130 is disposed on the gate insulating layer 120 above the channel region 116. The dielectric layer 140 covers the gate 130 and the gate insulating layer 120, and the contact openings 112a, 114a are formed in the dielectric layer 140 and the gate insulating layer 120. In addition, the source metal layer 152 and the gate metal layer 154 are disposed on the dielectric layer 140, and the source metal layer 152 and the gate metal layer 154 are connected to the source region 112 by the contact opening 112a, 114a, respectively. And the bungee region 114 is electrically connected.
值得一提的是,為了降低電晶體操作時的橫向電場以增加元件操作的可靠度及降低漏電流,在源極區112、汲極區114與通道區116之間通常會形成有一輕摻雜汲極(lightly doped drain,LDD)區118。習知在製作具有輕摻雜汲極區118的多晶矽薄膜電晶體時,通常需藉由兩道以上的光罩製程,並進行兩次以上的摻雜製程,以形成摻雜濃度不同的源極區112/汲極區114以及輕摻雜汲極區118。然而,上述此種製作輕摻雜汲極區的方式不僅製程較為複雜,且容易造成光罩圖形對準上的困難,使得製成的薄膜電晶體的電性表現不一致,進而影響到產品的可靠度。It is worth mentioning that in order to reduce the lateral electric field during the operation of the transistor to increase the reliability of the operation of the device and reduce the leakage current, a light doping is usually formed between the source region 112, the drain region 114 and the channel region 116. Lightly doped drain (LDD) zone 118. Conventionally, in the fabrication of a polycrystalline germanium thin film transistor having a lightly doped drain region 118, it is generally necessary to perform two or more doping processes by using two or more photomask processes to form sources having different doping concentrations. Zone 112/drain region 114 and lightly doped bungee region 118. However, the above-mentioned method of fabricating the lightly doped drain region is not only complicated in process, but also easy to cause difficulty in alignment of the mask pattern, which makes the electrical performance of the fabricated thin film transistor inconsistent, thereby affecting the reliability of the product. degree.
本發明關於一種半導體元件的製作方法,其可減少製程中的光罩數目,以降低成本,並可改善製程良率。The present invention relates to a method of fabricating a semiconductor device which can reduce the number of masks in a process to reduce cost and improve process yield.
本發明另關於一種具有高可靠度的半導體元件,其可提供較佳的電性表現。The invention further relates to a semiconductor component having high reliability which provides better electrical performance.
為具體描述本發明之內容,在此提出一種半導體元件的製作方法。首先,提供一基板,並形成一第一半導體圖案與一第二半導體圖案於基板上。接著,依序形成一閘絕緣層與一閘極金屬層於基板上,且覆蓋第一半導體圖案與第二半導體圖案。然後,形成一第一罩幕圖案與一第二罩幕圖案於閘極金屬層上,其中第一罩幕圖案位於第一半導體圖案上方並對應暴露出第一半導體圖案的一第一源極/汲極區,而第二罩幕圖案位於第二半導體圖案上方並對應暴露出第二半導體圖案的一第二源極/汲極區。接著,以第一罩幕圖案與第二罩幕圖案為罩幕來圖案化閘極金屬層,而分別形成一第一閘極圖案與一第二閘極圖案。之後,以第一罩幕圖案、第一閘極圖案、第二罩幕圖案與第二閘極圖案為罩幕對第一源極/汲極區與第二源極/汲極區進行第一型離子摻雜,使第一源極/汲極區與第二源極/汲極區具有第一導電型態。然後,對第一罩幕圖案與第二罩幕圖案進行一蝕刻製程,以移除第一罩幕圖案與第二罩幕圖案的部分外壁,進而暴露出部分的第一閘極圖案與第二閘極圖案。接著,以移除部分外壁後之第一罩幕圖案與第二罩幕圖案為罩幕蝕刻第一閘極圖案與第二閘極圖案,以形成一第一閘極與一第二閘極,並對應暴露出第一半導體圖案中第一源極/汲極區內側的一第一輕摻雜區以及第二半導體圖案中第二源極/汲極區內側的一第二輕摻雜區。然後,以第一閘極與第二閘極為罩幕對第一輕摻雜區與第二輕摻雜區進行第一型離子輕摻雜,使第一輕摻雜區與第二輕摻雜區具有第一導電型態。接著,移除第一罩幕圖案與第二罩幕圖案,之後再形成一圖案化罩幕層於基板上,此圖案化罩幕層對應暴露出部分的第二半導體圖案。然後,經由圖案化罩幕層對第二源極/汲極區與第二輕摻雜區進行第二型離子的相反摻雜(counter-doping),以使第二源極/汲極區與第二輕摻雜區的離子形態由第一導電型態轉變為第二導電型態。之後,移除圖案化罩幕層。In order to specifically describe the contents of the present invention, a method of fabricating a semiconductor device is proposed herein. First, a substrate is provided, and a first semiconductor pattern and a second semiconductor pattern are formed on the substrate. Then, a gate insulating layer and a gate metal layer are sequentially formed on the substrate, and cover the first semiconductor pattern and the second semiconductor pattern. Then, a first mask pattern and a second mask pattern are formed on the gate metal layer, wherein the first mask pattern is located above the first semiconductor pattern and correspondingly exposes a first source of the first semiconductor pattern/ a drain region, and the second mask pattern is over the second semiconductor pattern and correspondingly exposes a second source/drain region of the second semiconductor pattern. Then, the gate metal layer is patterned by using the first mask pattern and the second mask pattern as a mask to form a first gate pattern and a second gate pattern, respectively. Thereafter, the first source/drain region and the second source/drain region are first performed with the first mask pattern, the first gate pattern, the second mask pattern, and the second gate pattern as masks The type ion doping has a first source/drain region and a second source/drain region having a first conductivity type. Then, an etching process is performed on the first mask pattern and the second mask pattern to remove a portion of the outer surface of the first mask pattern and the second mask pattern, thereby exposing a portion of the first gate pattern and the second Gate pattern. Then, the first gate pattern and the second gate pattern are etched by the first mask pattern and the second mask pattern after removing the outer wall to form a first gate and a second gate. And correspondingly exposing a first lightly doped region inside the first source/drain region of the first semiconductor pattern and a second lightly doped region inside the second source/drain region of the second semiconductor pattern. Then, the first light-doped region and the second light-doped region are lightly doped with the first type of ions by the first gate and the second gate electrode, so that the first lightly doped region and the second lightly doped region The zone has a first conductivity type. Then, the first mask pattern and the second mask pattern are removed, and then a patterned mask layer is formed on the substrate, and the patterned mask layer correspondingly exposes a portion of the second semiconductor pattern. Then, the second source/drain region and the second lightly doped region are subjected to counter-doping of the second type ions via the patterned mask layer to make the second source/drain region The ion form of the second lightly doped region is changed from the first conductivity type to the second conductivity type. After that, the patterned mask layer is removed.
在本發明之一實施例中,上述之半導體元件的製作方法在移除圖案化罩幕層之後更包括形成一介電層於閘絕緣層上,使其覆蓋第一閘極與第二閘極。接著,形成多個第一接觸窗於介電層與閘絕緣層中,這些第一接觸窗暴露出第一半導體圖案的第一源極/汲極區與第二半導體圖案的第二源極/汲極區。然後,分別形成一第一源極/汲極接觸金屬與一第二源極/汲極接觸金屬於第一接觸窗中,其中第一源極/汲極接觸金屬與第二源極/汲極接觸金屬分別電性連接到所對應的第一源極/汲極區與第二源極/汲極區。In an embodiment of the present invention, the method for fabricating the semiconductor device further includes forming a dielectric layer on the gate insulating layer to cover the first gate and the second gate after removing the patterned mask layer. . Then, a plurality of first contact windows are formed in the dielectric layer and the gate insulating layer, the first contact windows exposing the first source/drain regions of the first semiconductor pattern and the second source of the second semiconductor pattern/ Bungee area. Then, a first source/drain contact metal and a second source/drain contact metal are respectively formed in the first contact window, wherein the first source/drain contacts the metal and the second source/drain The contact metal is electrically connected to the corresponding first source/drain region and the second source/drain region, respectively.
本發明在上述步驟之後,更可形成一平坦層於介電層上,使其覆蓋第一源極/汲極接觸金屬與第二源極/汲極接觸金屬。接著,形成一第二接觸窗於平坦層中,此第二接觸窗暴露出第一源極/汲極接觸金屬。然後,形成一電極圖案於平坦層上,其中電極圖案經由第二接觸窗連接到第一源極/汲極接觸金屬。After the above steps, the present invention further forms a flat layer on the dielectric layer to cover the first source/drain contact metal and the second source/drain contact metal. Next, a second contact window is formed in the planar layer, the second contact window exposing the first source/drain contact metal. Then, an electrode pattern is formed on the planar layer, wherein the electrode pattern is connected to the first source/drain contact metal via the second contact window.
本發明在上述步驟之後,更可在形成第一罩幕圖案與第二罩幕圖案時,同時形成一第三罩幕圖案於閘極金屬層上。之後,在以第一罩幕圖案與第二罩幕圖案為罩幕來圖案化閘極金屬層時,同時以第三罩幕圖案為罩幕來圖案化閘極金屬層,以形成一下層接墊。此外,本發明可更進一步在形成介電層時,更使其覆蓋下層接墊。接著,在形成第一接觸窗時,更在介電層中形成一第三接觸窗,以暴露出下層接墊。然後,在形成第一源極/汲極接觸金屬與第二源極/汲極接觸金屬時,形成一上層接墊於第三接觸窗中,其中上層接墊連接下層接墊。再者,本發明可在形成平坦層時,更使其覆蓋上層接墊。之後,在形成第二接觸窗時,更形成一第四接觸窗於平坦層中,其中第四接觸窗暴露出上層接墊。並且,在形成電極圖案於平坦層時,更形成一接墊圖案於第四接觸窗中,使接墊圖案連接上層接墊。After the above steps, the third mask pattern is simultaneously formed on the gate metal layer when the first mask pattern and the second mask pattern are formed. Thereafter, when the gate metal layer is patterned by using the first mask pattern and the second mask pattern as a mask, the gate metal layer is patterned by using the third mask pattern as a mask to form a lower layer. pad. In addition, the present invention can further cover the underlying pads when forming the dielectric layer. Then, when the first contact window is formed, a third contact window is further formed in the dielectric layer to expose the underlying pad. Then, when the first source/drain contact metal and the second source/drain contact metal are formed, an upper pad is formed in the third contact window, wherein the upper pad is connected to the lower pad. Furthermore, the present invention can cover the upper layer pad even when the flat layer is formed. Thereafter, when the second contact window is formed, a fourth contact window is further formed in the flat layer, wherein the fourth contact window exposes the upper layer pad. Moreover, when the electrode pattern is formed on the flat layer, a pad pattern is further formed in the fourth contact window, and the pad pattern is connected to the upper layer pad.
本發明更提出另一種半導體元件的製作方法。首先,提供一基板,並形成一第一半導體圖案與一第二半導體圖案於基板上。接著,對第二半導體圖案的一第二源極/汲極區進行第二型離子摻雜,使其具有第二導電型態。然後,形成一閘絕緣層於基板上,使其覆蓋第一半導體圖案與第二半導體圖案。接著,形成一閘極金屬層於閘絕緣層上,並形成一第一罩幕圖案與一第二罩幕圖案於閘極金屬層上,其中第一罩幕圖案位於第一半導體圖案上方並對應暴露出第一半導體圖案的一第一源極/汲極區,而第二罩幕圖案位於第二半導體圖案上方並對應暴露出第二半導體圖案之部分的第二源極/汲極區。然後,以第一罩幕圖案與第二罩幕圖案為罩幕來圖案化閘極金屬層,而分別形成一第一閘極圖案與一第二閘極圖案。之後,以第一罩幕圖案與第一閘極圖案為罩幕來對第一源極/汲極區進行第一型離子摻雜,使第一源極/汲極區具有第一導電型態,而第二源極/汲極區維持第二導電型態。接著,對第一罩幕圖案與第二罩幕圖案進行一蝕刻製程,以移除第一罩幕圖案與第二罩幕圖案的部分厚度的外壁,進而暴露出部分的第一閘極圖案與第二閘極圖案。然後,以第一罩幕圖案與第二罩幕圖案為罩幕來蝕刻第一閘極圖案與第二閘極圖案,以形成一第一閘極與一第二閘極,其中第一閘極對應暴露出第一半導體圖案中第一源極/汲極區內側的一輕摻雜區,而第二閘極覆蓋第二半導體圖案的一通道區與部分的第二源極/汲極區。接著,以第一閘極為罩幕來對輕摻雜區進行第一型離子輕摻雜,使輕摻雜區具有第一導電型態,而第二源極/汲極區仍維持第二導電型態。之後,移除第一罩幕圖案與第二罩幕圖案。The present invention further proposes a method of fabricating another semiconductor device. First, a substrate is provided, and a first semiconductor pattern and a second semiconductor pattern are formed on the substrate. Next, a second source/drain region of the second semiconductor pattern is doped with a second type of ion to have a second conductivity type. Then, a gate insulating layer is formed on the substrate to cover the first semiconductor pattern and the second semiconductor pattern. Then, a gate metal layer is formed on the gate insulating layer, and a first mask pattern and a second mask pattern are formed on the gate metal layer, wherein the first mask pattern is located above the first semiconductor pattern and corresponds to A first source/drain region of the first semiconductor pattern is exposed, and the second mask pattern is over the second semiconductor pattern and correspondingly exposes a second source/drain region of a portion of the second semiconductor pattern. Then, the gate metal layer is patterned by using the first mask pattern and the second mask pattern as a mask to form a first gate pattern and a second gate pattern, respectively. Thereafter, the first source/drain region is doped with the first type by using the first mask pattern and the first gate pattern as a mask, so that the first source/drain region has the first conductivity type. And the second source/drain region maintains the second conductivity type. Then, an etching process is performed on the first mask pattern and the second mask pattern to remove the outer wall of the partial thickness of the first mask pattern and the second mask pattern, thereby exposing a portion of the first gate pattern and The second gate pattern. Then, the first gate pattern and the second gate pattern are etched by using the first mask pattern and the second mask pattern as a mask to form a first gate and a second gate, wherein the first gate Correspondingly exposing a lightly doped region inside the first source/drain region of the first semiconductor pattern, and the second gate covering a channel region of the second semiconductor pattern and a portion of the second source/drain region. Then, the light-doped region is lightly doped with the first type ion by the first gate electrode, so that the lightly doped region has the first conductivity type, and the second source/drain region still maintains the second conductivity. Type. Thereafter, the first mask pattern and the second mask pattern are removed.
在本發明之一實施例中,上述之半導體元件的製作方法更包括形成一介電層於閘絕緣層上,使其覆蓋第一閘極與第二閘極。接著,形成多個第一接觸窗於介電層與閘絕緣層中,這些第一接觸窗暴露出第一源極/汲極區與第二源極/汲極區。然後,分別形成一第一源極/汲極接觸金屬與一第二源極/汲極接觸金屬於第一接觸窗中,其中第一源極/汲極接觸金屬與第二源極/汲極接觸金屬分別連接到所對應的第一源極/汲極區與第二源極/汲極區。In an embodiment of the invention, the method for fabricating the semiconductor device further includes forming a dielectric layer on the gate insulating layer to cover the first gate and the second gate. Next, a plurality of first contact windows are formed in the dielectric layer and the gate insulating layer, the first contact windows exposing the first source/drain regions and the second source/drain regions. Then, a first source/drain contact metal and a second source/drain contact metal are respectively formed in the first contact window, wherein the first source/drain contacts the metal and the second source/drain The contact metal is respectively connected to the corresponding first source/drain region and the second source/drain region.
本發明在上述步驟之後,更可形成一平坦層於介電層上,使其覆蓋源極/汲極接觸金屬。接著,形成一第二接觸窗於平坦層中,此第二接觸窗暴露出第一源極/汲極接觸金屬。然後,形成一電極圖案於平坦層上,其中電極圖案經由第二接觸窗連接到第一源極/汲極接觸金屬。After the above steps, the present invention can further form a flat layer on the dielectric layer to cover the source/drain contact metal. Next, a second contact window is formed in the planar layer, the second contact window exposing the first source/drain contact metal. Then, an electrode pattern is formed on the planar layer, wherein the electrode pattern is connected to the first source/drain contact metal via the second contact window.
在本發明之一實施例中,上述之半導體元件的製作方法,更可在形成第一罩幕圖案與第二罩幕圖案時,同時形成一第三罩幕圖案於閘極金屬層上。並且,在以第一罩幕圖案與第二罩幕圖案為罩幕來圖案化閘極金屬層時,同時以第三罩幕圖案為罩幕來圖案化閘極金屬層,以形成一下層接墊。In an embodiment of the present invention, the method for fabricating the semiconductor device described above further forms a third mask pattern on the gate metal layer while forming the first mask pattern and the second mask pattern. Moreover, when the gate metal layer is patterned by using the first mask pattern and the second mask pattern as a mask, the gate metal layer is patterned by using the third mask pattern as a mask to form a lower layer. pad.
此外,本發明在形成上述介電層時,更可使其覆蓋下層接墊。接著,在形成第一接觸窗時,更在介電層中形成一第三接觸窗,以暴露出下層接墊。之後,可在形成第一源極/汲極接觸金屬與第二源極/汲極接觸金屬的同時,形成一上層接墊於第三接觸窗中,使上層接墊連接下層接墊。In addition, the present invention can further cover the underlying pads when forming the dielectric layer. Then, when the first contact window is formed, a third contact window is further formed in the dielectric layer to expose the underlying pad. Thereafter, an upper layer pad is formed in the third contact window while the first source/drain contact metal and the second source/drain contact metal are formed, so that the upper layer pad is connected to the lower layer pad.
另外,本發明在形成上述平坦層時,更可使其覆蓋上層接墊。並且,在形成第二接觸窗時,更形成一第四接觸窗於平坦層中,此第四接觸窗暴露出上層接墊。接著,在形成電極圖案於平坦層時,更形成一接墊圖案於第四接觸窗中,使接墊圖案連接上層接墊。Further, in the present invention, when the flat layer is formed, it is possible to cover the upper layer pad. Moreover, when the second contact window is formed, a fourth contact window is further formed in the flat layer, and the fourth contact window exposes the upper layer pad. Then, when the electrode pattern is formed on the flat layer, a pad pattern is further formed in the fourth contact window, and the pad pattern is connected to the upper layer pad.
在本發明之一實施例中,上述對第一源極/汲極區進行第一型離子摻雜之步驟更包含對部分的第二源極/汲極區進行第一型離子摻雜,且此部分的第二源極/汲極區仍須維持第二導電型態。此外,在對輕摻雜區進行第一型離子輕摻雜時,也可同時對部分的第二源極/汲極區進行第一型離子輕摻雜,且此部分的第二源極/汲極區仍須維持第二導電型態。In an embodiment of the invention, the step of performing first type ion doping on the first source/drain region further comprises performing first type ion doping on a portion of the second source/drain region, and The second source/drain region of this portion must still maintain the second conductivity type. In addition, when the first type ion is lightly doped in the lightly doped region, the second source/drain region of the portion may be lightly doped with the first type ion at the same time, and the second source of the portion is/ The bungee region must still maintain the second conductivity type.
在本發明之一實施例中,上述之半導體元件的製作方法,更包括在形成第一半導體圖案與第二半導體圖案時,同時形成一第三半導體圖案於基板上。接著,在對第二源極/汲極區進行第二型離子摻雜時,同時對第三半導體圖案進行第二型離子摻雜,使其同樣具有第二導電型態。In an embodiment of the invention, the method for fabricating the semiconductor device further includes simultaneously forming a third semiconductor pattern on the substrate when the first semiconductor pattern and the second semiconductor pattern are formed. Next, when performing the second type ion doping on the second source/drain region, the third semiconductor pattern is simultaneously doped with the second type ion so as to have the second conductivity type.
此外,在形成第一罩幕圖案與第二罩幕圖案時,更可同時形成一第四罩幕圖案於閘極金屬層上,其中第四罩幕圖案通過上述的第三半導體圖案上方。接著,在以第一罩幕圖案與第二罩幕圖案為罩幕來圖案化閘極金屬層時,同時以第四罩幕圖案為罩幕來圖案化閘極金屬層,以形成一金屬共電極,其中金屬共電極通過第三半導體圖案上方。另外,在形成介電層時,更使其覆蓋金屬共電極,而在形成第一接觸窗時,更在介電層中形成一第五接觸窗,以暴露出部分的第三半導體圖案。然後,在形成第一源極/汲極接觸金屬時,更使第一源極/汲極接觸金屬經由第五接觸窗連接第三半導體圖案。In addition, when the first mask pattern and the second mask pattern are formed, a fourth mask pattern may be simultaneously formed on the gate metal layer, wherein the fourth mask pattern passes over the third semiconductor pattern. Then, when the gate metal layer is patterned by using the first mask pattern and the second mask pattern as a mask, the gate metal layer is patterned by using the fourth mask pattern as a mask to form a metal. An electrode, wherein the metal common electrode passes over the third semiconductor pattern. In addition, when the dielectric layer is formed, it further covers the metal common electrode, and when the first contact window is formed, a fifth contact window is further formed in the dielectric layer to expose a portion of the third semiconductor pattern. Then, when the first source/drain contact metal is formed, the first source/drain contact metal is further connected to the third semiconductor pattern via the fifth contact window.
上述多個實施例所採用的蝕刻製程例如是一乾式蝕刻製程。更詳細而言,此蝕刻製程例如是藉由氧電漿來蝕刻第一罩幕圖案與第二罩幕圖案。The etching process employed in the above various embodiments is, for example, a dry etching process. In more detail, the etching process is, for example, etching the first mask pattern and the second mask pattern by oxygen plasma.
此外,上述多個實施例所採用的基板例如是玻璃基板,而第一半導體圖案或第二半導體圖案的材質例如是多晶矽。另外,上述之第一型離子例如是N型離子,而第二型離子例如是P型離子。此外,上述之第一罩幕圖案、第二罩幕圖案或圖案化罩幕層的材質例如是光阻。Further, the substrate used in the above embodiments is, for example, a glass substrate, and the material of the first semiconductor pattern or the second semiconductor pattern is, for example, polycrystalline germanium. Further, the above-described first type ions are, for example, N-type ions, and the second type ions are, for example, P-type ions. In addition, the material of the first mask pattern, the second mask pattern or the patterned mask layer is, for example, a photoresist.
本發明另提出一種半導體元件,主要包括一基板、一第一半導體圖案、一第二半導體圖案、一閘絕緣層、一第一閘極以及一第二閘極。第一半導體圖案配置於基板上,並具有一第一通道區、位於第一通道區兩側的一第一源極/汲極區以及位於第一通道區與第一源極/汲極區之間且相互對稱的一輕摻雜區,其中第一源極/汲極區與輕摻雜區具有第一導電型態。此外,第二半導體圖案配置於基板上,且第二半導體圖案具有一第二通道區與位於第二通道區兩側的一第二源極/汲極區,其中第二源極/汲極區具有第二導電型態。閘絕緣層配置於基板上,並覆蓋第一半導體圖案與第二半導體圖案。另外,第一閘極配置於閘絕緣層上,且第一閘極位於第一半導體圖案上方並對應暴露出第一源極/汲極區與輕摻雜區。第二閘極配置於閘絕緣層上,且第二閘極位於第二半導體圖案上方並覆蓋第二通道區與部份第二源極/汲極區。The invention further provides a semiconductor device, which mainly comprises a substrate, a first semiconductor pattern, a second semiconductor pattern, a gate insulating layer, a first gate and a second gate. The first semiconductor pattern is disposed on the substrate and has a first channel region, a first source/drain region on both sides of the first channel region, and the first channel region and the first source/drain region A lightly doped region that is symmetric with each other, wherein the first source/drain region and the lightly doped region have a first conductivity type. In addition, the second semiconductor pattern is disposed on the substrate, and the second semiconductor pattern has a second channel region and a second source/drain region on both sides of the second channel region, wherein the second source/drain region Has a second conductivity type. The gate insulating layer is disposed on the substrate and covers the first semiconductor pattern and the second semiconductor pattern. In addition, the first gate is disposed on the gate insulating layer, and the first gate is located above the first semiconductor pattern and correspondingly exposes the first source/drain region and the lightly doped region. The second gate is disposed on the gate insulating layer, and the second gate is located above the second semiconductor pattern and covers the second channel region and a portion of the second source/drain regions.
在本發明之一實施例中,上述之半導體元件更包括一介電層、一第一源極/汲極接觸金屬與一第二源極/汲極接觸金屬。介電層配置於閘絕緣層上並覆蓋第一閘極與第二閘極,且介電層中具有暴露出第一源極/汲極區與第二源極/汲極區的多個第一接觸窗。此外,第一源極/汲極接觸金屬與第二源極/汲極接觸金屬配置於第一接觸窗中,並分別電性連接至所對應的第一源極/汲極區與第二源極/汲極區。In an embodiment of the invention, the semiconductor device further includes a dielectric layer, a first source/drain contact metal, and a second source/drain contact metal. The dielectric layer is disposed on the gate insulating layer and covers the first gate and the second gate, and the dielectric layer has a plurality of portions exposing the first source/drain region and the second source/drain region A contact window. In addition, the first source/drain contact metal and the second source/drain contact metal are disposed in the first contact window, and are electrically connected to the corresponding first source/drain region and the second source, respectively. Polar/bungee area.
上述之半導體元件更可包括一平坦層與一電極圖案。平坦層配置於介電層上並覆蓋第一源極/汲極接觸金屬與第二源極/汲極接觸金屬,且平坦層中具有一第二接觸窗,以暴露出第一源極/汲極接觸金屬。此外,電極圖案配置於平坦層上並經由第二接觸窗耦接到第一源極/汲極接觸金屬。The above semiconductor device may further include a flat layer and an electrode pattern. The flat layer is disposed on the dielectric layer and covers the first source/drain contact metal and the second source/drain contact metal, and the second layer has a second contact window to expose the first source/汲Extremely contact with metal. Further, the electrode pattern is disposed on the planar layer and coupled to the first source/drain contact metal via the second contact window.
在本發明之一實施例中,上述之半導體元件更包括一下層接墊,其配置於閘絕緣層上。此外,上述之介電層中更可具有一第三接觸窗,用以暴露出下層接墊。In an embodiment of the invention, the semiconductor device further includes a lower layer pad disposed on the gate insulating layer. In addition, the dielectric layer may further have a third contact window for exposing the lower layer pad.
在本發明之一實施例中,上述之半導體元件更包括一上層接墊,其配置於第三接觸窗中,並連接下層接墊。此外,上述之平坦層中更可具有一第四接觸窗,用以暴露出上層接墊。第四接觸窗中更可形成一接墊圖案,以連接上層接墊。In an embodiment of the invention, the semiconductor device further includes an upper layer pad disposed in the third contact window and connected to the lower layer pad. In addition, the flat layer may further have a fourth contact window for exposing the upper layer pad. A pad pattern may be formed in the fourth contact window to connect the upper layer pads.
在本發明之一實施例中,上述之半導體元件更包括一第三半導體圖案,其配置於基板上並被閘絕緣層所覆蓋,且第三半導體圖案具有第二導電型態。此外,第三半導體圖案例如耦接至第一源極/汲極區。In an embodiment of the invention, the semiconductor device further includes a third semiconductor pattern disposed on the substrate and covered by the gate insulating layer, and the third semiconductor pattern has a second conductivity type. Furthermore, the third semiconductor pattern is, for example, coupled to the first source/drain region.
另外,本發明之半導體元件更可包括一金屬共電極,其配置於閘絕緣層上並通過上述之第三半導體圖案上方。In addition, the semiconductor device of the present invention may further include a metal common electrode disposed on the gate insulating layer and passing over the third semiconductor pattern.
上述之基板例如是玻璃基板,而第一半導體圖案或第二半導體圖案的材質例如是多晶矽。另外,第一導電型態例如是N型,而第二導電型態例如是P型。The substrate described above is, for example, a glass substrate, and the material of the first semiconductor pattern or the second semiconductor pattern is, for example, polycrystalline germanium. Further, the first conductivity type is, for example, an N type, and the second conductivity type is, for example, a P type.
基於上述,本發明所形成的薄膜電晶體結構中的輕摻雜區具有對稱的長度,因此有助於提高元件操作時的可靠度與電性表現。此外,由於本發明採用同一道光罩製程來形成不同薄膜電晶體的閘極圖案以及金屬共電極、下層接墊等元件,因此可有效避免習知以不同光罩製程製作上述元件時可能產生的光罩對位誤差,有助於提升製程良率,並可降低製作成本。Based on the above, the lightly doped region in the thin film transistor structure formed by the present invention has a symmetrical length, thereby contributing to improvement in reliability and electrical performance when the device is operated. In addition, since the present invention adopts the same mask process to form gate patterns of different thin film transistors and elements such as metal common electrodes and lower pads, it is possible to effectively avoid the light that may be generated when the above components are fabricated by different mask processes. Cover alignment error helps improve process yield and reduces manufacturing costs.
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;
本發明之半導體元件的製作方法可用於液晶顯示面板中,用以製作在畫素內作為主動元件的多晶矽薄膜電晶體,且基於其製程特性,因此可同時整合面板週邊之相關元件以及外接接墊的製作。以下實施例將以在面板上同時製作至少P型薄膜電晶體(PTFT)、N型薄膜電晶體(NTFT)、以及外接接墊甚或儲存電容進行說明。然其僅為舉例之用,並非用以限定本發明之應用範圍,舉凡半導體領域中類似的元件結構與製程皆可採用本發明所提出的技術,以得到更佳的製程效果與產品品質。The method for fabricating the semiconductor device of the present invention can be used in a liquid crystal display panel for fabricating a polycrystalline germanium film transistor as an active component in a pixel, and based on the process characteristics thereof, the related components of the periphery of the panel and the external pads can be simultaneously integrated. Production. The following embodiments will be described by simultaneously fabricating at least a P-type thin film transistor (PTFT), an N-type thin film transistor (NTFT), and an external pad or even a storage capacitor on a panel. However, it is for illustrative purposes only and is not intended to limit the scope of application of the present invention. For the similar component structures and processes in the field of semiconductors, the techniques proposed by the present invention can be employed to achieve better process results and product quality.
請參照圖2A~2O,其繪示本發明一實施例之一種半導體元件的製作方法。2A to 2O, a method of fabricating a semiconductor device according to an embodiment of the present invention is shown.
首先,如圖2A所示,提供一基板202,並且形成一第一半導體圖案212與一第二半導體圖案214於基板202上。在本實施例中,基板202可為玻璃基板、石英基板、塑膠基板或是其他適用的透明基板,其上所形成的第一半導體圖案212與第二半導體圖案214例如是先在基板202上形成一層非晶矽層,並進行雷射退火(laser annealing)製程使非晶矽層成為多晶矽層,再圖案化此多晶矽層所形成。此處之雷射退火製程所適用的雷射光源可為準分子雷射(excimer laser)、固態雷射(solid-state laser)或二極體激發式固態雷射(diode pumped solid state laser,DPSS)等等。First, as shown in FIG. 2A, a substrate 202 is provided, and a first semiconductor pattern 212 and a second semiconductor pattern 214 are formed on the substrate 202. In this embodiment, the substrate 202 can be a glass substrate, a quartz substrate, a plastic substrate or other suitable transparent substrate, and the first semiconductor pattern 212 and the second semiconductor pattern 214 formed thereon are formed on the substrate 202, for example. A layer of amorphous germanium is subjected to a laser annealing process to form an amorphous germanium layer into a polycrystalline germanium layer, and then patterned by the polycrystalline germanium layer. The laser source used in the laser annealing process herein may be an excimer laser, a solid-state laser or a diode pumped solid state laser (DPSS). )and many more.
值得一提的是,本發明可如同一般常見的多晶矽薄膜電晶體製程,在基板202上先形成緩衝層,用以增進基板202與後續形成之多晶矽層的附著性,並可避免基板200中的金屬離子(例如鈉)擴散而污染多晶矽層。此外,在進行雷射退火製程之前,可先對非晶矽層進行去氫處理(dehydrogenation),以避免進行雷射退火製程時,非晶矽層內所含之氫受熱而產生氫爆(hydrogen exploration)現象。本領域的技術人員應能依據既有技術水準理解上述內容,本實施例不再詳細揭露。It is worth mentioning that the present invention can form a buffer layer on the substrate 202 as in the conventional polycrystalline germanium film transistor process to enhance the adhesion of the substrate 202 to the subsequently formed polysilicon layer, and to avoid the substrate 200. Metal ions (such as sodium) diffuse and contaminate the polycrystalline layer. In addition, before the laser annealing process, the amorphous germanium layer may be subjected to dehydrogenation to avoid hydrogen explosion in the amorphous germanium layer during the laser annealing process (hydrogen). Exploration) phenomenon. Those skilled in the art should be able to understand the above contents according to the existing technical standards, and this embodiment will not be disclosed in detail.
接著,如圖2B所示,依序形成一閘絕緣層220與一閘極金屬層230於基板202上,使閘絕緣層220與閘極金屬層230覆蓋第一半導體圖案212與第二半導體圖案214。其中,形成閘絕緣層220的方法例如是化學氣相沉積(chemical vapor deposition,CVD),而閘絕緣層220的材質例如是氮化矽(silicon nitride,SiN)或氧化矽(silicon oxide,SiO)。此外,閘極金屬層230的材質例如是鉻(Cr)、鋁(Al)、銅(Cu)、鉬(Mo)或其他低阻抗的金屬,其例如是經由濺鍍或其他薄膜沉積製程來形成。Next, as shown in FIG. 2B, a gate insulating layer 220 and a gate metal layer 230 are sequentially formed on the substrate 202, so that the gate insulating layer 220 and the gate metal layer 230 cover the first semiconductor pattern 212 and the second semiconductor pattern. 214. The method for forming the gate insulating layer 220 is, for example, chemical vapor deposition (CVD), and the material of the gate insulating layer 220 is, for example, silicon nitride (SiN) or silicon oxide (SiO). . In addition, the material of the gate metal layer 230 is, for example, chromium (Cr), aluminum (Al), copper (Cu), molybdenum (Mo) or other low-impedance metal, which is formed, for example, by sputtering or other thin film deposition processes. .
然後,如圖2C所示,形成一第一罩幕圖案242與一第二罩幕圖案244於閘極金屬層230上,其中第一罩幕圖案242位於第一半導體圖案212上方並對應暴露出第一半導體圖案212兩側的一第一源極/汲極區212a,而第二罩幕圖案244位於第二半導體圖案214上方並對應暴露出第二半導體圖案214兩側的一第二源極/汲極區214a。形成上述第一罩幕圖案242與第二罩幕圖案244的方法例如是在閘極金屬層230上進行光阻塗佈以及曝光、顯影等黃光製程。值得一提的是,本實施例所揭示者為雙閘極的薄膜電晶體結構,藉以避免產生糾結效應以及漏電流等問題,因此所形成的第一罩幕圖案242可具有兩個部份,皆位於第一半導體圖案212上方。此外,若要在基板202上方形成外接接墊,則本實施例可在此步驟中同時形成一第三罩幕圖案246於閘極金屬層230上。Then, as shown in FIG. 2C, a first mask pattern 242 and a second mask pattern 244 are formed on the gate metal layer 230, wherein the first mask pattern 242 is located above the first semiconductor pattern 212 and correspondingly exposed. a first source/drain region 212a on both sides of the first semiconductor pattern 212, and the second mask pattern 244 is located above the second semiconductor pattern 214 and correspondingly exposes a second source on both sides of the second semiconductor pattern 214 /Bungee area 214a. The method of forming the first mask pattern 242 and the second mask pattern 244 is, for example, performing photoresist coating on the gate metal layer 230 and a yellow light process such as exposure and development. It should be noted that the disclosed embodiment is a double gate thin film transistor structure, so as to avoid problems such as entanglement effect and leakage current, the first mask pattern 242 formed may have two parts. Both are located above the first semiconductor pattern 212. In addition, if an external pad is to be formed over the substrate 202, the third mask pattern 246 may be simultaneously formed on the gate metal layer 230 in this step.
接著,如圖2D所示,以第一罩幕圖案242、第二罩幕圖案244以及第三罩幕圖案246為罩幕來圖案化閘極金屬層230,以分別在閘絕緣層220上形成一第一閘極圖案232、一第二閘極圖案234以及一下層接墊236。此處的圖案化動作例如是藉由進行一乾式或濕式蝕刻製程來達成。Next, as shown in FIG. 2D, the gate metal layer 230 is patterned with the first mask pattern 242, the second mask pattern 244, and the third mask pattern 246 as masks to form on the gate insulating layer 220, respectively. A first gate pattern 232, a second gate pattern 234, and a lower layer pad 236. The patterning action here is achieved, for example, by performing a dry or wet etching process.
然後,如圖2E所示,以第一罩幕圖案242與其對應的第一閘極圖案232、第二罩幕圖案244與其對應的第二閘極圖案234為罩幕對第一源極/汲極區212a與第二源極/汲極區214a進行第一型離子摻雜,使第一源極/汲極區212a與第二源極/汲極區214a具有第一導電型態。此處所進行的第一型離子摻雜例如是N型離子摻雜,以在第一源極/汲極區212a與第二源極/汲極區214a內植入N型摻質,例如磷離子。同時,可在第一閘極圖案232與第二閘極圖案234下方的第一半導體圖案212與第二半導體圖案214內分別定義出第一通道區212c與第二通道區214c。Then, as shown in FIG. 2E, the first gate pattern 232 corresponding to the first mask pattern 242, the second mask pattern 244 and the second gate pattern 234 corresponding thereto are the mask source to the first source/汲The polar region 212a and the second source/drain region 214a are doped with a first type of ions such that the first source/drain region 212a and the second source/drain region 214a have a first conductivity type. The first type of ion doping performed herein is, for example, N-type ion doping to implant an N-type dopant, such as a phosphorus ion, in the first source/drain region 212a and the second source/drain region 214a. . At the same time, the first channel region 212c and the second channel region 214c may be respectively defined in the first semiconductor pattern 212 and the second semiconductor pattern 214 under the first gate pattern 232 and the second gate pattern 234.
之後,如圖2F所示,對第一罩幕圖案242與第二罩幕圖案244進行一蝕刻製程,以移除第一罩幕圖案242與第二罩幕圖案244的部分外壁,進而暴露出部分的第一閘極圖案232與第二閘極圖案234。此外,如果在前述步驟中同時形成第三罩幕圖案246,則第三罩幕圖案246也會一併被蝕刻。本步驟所進行的蝕刻製程例如是一乾式蝕刻製程,更詳細而言,其例如可藉由電漿(如氧電漿)來蝕刻第一罩幕圖案242、第二罩幕圖案244與第三罩幕圖案246,亦即一般所稱的光阻灰化(ashing)製程,其特色在於可對第一罩幕圖案242、第二罩幕圖案244與第三罩幕圖案246進行等向蝕刻。舉例而言,第一罩幕圖案242經過蝕刻之後,除了厚度減少之外,其兩側也會縮減等量的長度L1。Then, as shown in FIG. 2F, an etching process is performed on the first mask pattern 242 and the second mask pattern 244 to remove portions of the outer walls of the first mask pattern 242 and the second mask pattern 244, thereby exposing a portion of the first gate pattern 232 and the second gate pattern 234. Further, if the third mask pattern 246 is simultaneously formed in the foregoing steps, the third mask pattern 246 is also etched together. The etching process performed in this step is, for example, a dry etching process. More specifically, the first mask pattern 242, the second mask pattern 244, and the third layer may be etched by, for example, a plasma such as an oxygen plasma. The mask pattern 246, also known as the photoresist ashing process, is characterized in that the first mask pattern 242, the second mask pattern 244, and the third mask pattern 246 are isotropically etched. For example, after the first mask pattern 242 is etched, in addition to the thickness reduction, the equal length L1 is also reduced on both sides.
接著,如圖2G所示,以第一罩幕圖案242與第二罩幕圖案244為罩幕蝕刻第一閘極圖案232與第二閘極圖案234,以形成一第一閘極232a與一第二閘極234a,並對應暴露出第一半導體圖案212中第一源極/汲極區212a內側的一第一輕摻雜區212b以及第二半導體圖案214中第二源極/汲極區214a內側的一第二輕摻雜區214b。此外,如果在前述步驟中同時形成並蝕刻第三罩幕圖案246,則此步驟更包括以第三罩幕圖案246作為罩幕來蝕刻部分的下層接墊236。值得注意的是,由於第一罩幕圖案242、第二罩幕圖案244與第三罩幕圖案246被等向蝕刻,使其左右兩側向內側縮減對稱的距離,因此被暴露出來的第一輕摻雜區212b以及第二輕摻雜區214b也會具有對稱的長度。Next, as shown in FIG. 2G, the first gate pattern 232 and the second gate pattern 234 are etched by the first mask pattern 242 and the second mask pattern 244 to form a first gate 232a and a The second gate 234a correspondingly exposes a first lightly doped region 212b inside the first source/drain region 212a of the first semiconductor pattern 212 and a second source/drain region of the second semiconductor pattern 214 A second lightly doped region 214b on the inside of 214a. Furthermore, if the third mask pattern 246 is simultaneously formed and etched in the foregoing steps, this step further includes etching a portion of the lower layer pad 236 with the third mask pattern 246 as a mask. It should be noted that since the first mask pattern 242, the second mask pattern 244 and the third mask pattern 246 are etched in the same direction, the left and right sides are reduced inward by the symmetrical distance, so the first exposed The lightly doped region 212b and the second lightly doped region 214b will also have a symmetrical length.
然後,如圖2H所示,以第一閘極232a與第二閘極234a為罩幕對第一輕摻雜區212b與第二輕摻雜區214b進行第一型離子輕摻雜,使第一輕摻雜區212b與第二輕摻雜區214b具有第一導電型態。對應於上述的第一型離子摻雜為N型離子摻雜,此處所進行的第一型離子輕摻雜例如同樣是N型離子摻雜,不同的是使用濃度較低的N型摻質,例如磷離子。Then, as shown in FIG. 2H, the first light-doped region 212b and the second light-doped region 214b are lightly doped with the first type of ions by using the first gate 232a and the second gate 234a as masks. A lightly doped region 212b and a second lightly doped region 214b have a first conductivity type. Corresponding to the above-mentioned first type ion doping is N-type ion doping, the first type ion light doping performed here is, for example, also N-type ion doping, except that a lower concentration N-type dopant is used. For example, phosphorus ions.
本實施例藉由圖2F~2H的步驟製作具有對稱長度的第一輕摻雜區212b,因此可有效避免習知製作輕摻雜汲極區時的光罩對位誤差,進而提高薄膜電晶體的電性表現。In this embodiment, the first lightly doped region 212b having a symmetrical length is formed by the steps of FIGS. 2F to 2H, thereby effectively avoiding the mask alignment error when the lightly doped drain region is fabricated, thereby improving the thin film transistor. Electrical performance.
接著,如圖2I所示,移除第一罩幕圖案與第二罩幕圖案,並形成另一圖案化罩幕層250於基板202上。此圖案化罩幕層250對應暴露出第二半導體圖案214。形成此圖案化罩幕層250的方法例如是在閘絕緣層220上進行光阻塗佈以及曝光、顯影等黃光製程。Next, as shown in FIG. 2I, the first mask pattern and the second mask pattern are removed, and another patterned mask layer 250 is formed on the substrate 202. The patterned mask layer 250 correspondingly exposes the second semiconductor pattern 214. The method of forming the patterned mask layer 250 is, for example, performing photoresist coating on the gate insulating layer 220 and a yellow light process such as exposure and development.
並且,如圖2J所示,經由圖案化罩幕層250對第二半導體圖案214中的第二源極/汲極區214a與第二輕摻雜區214b進行第二型離子的相反摻雜(counter-doping),以使第二源極/汲極區214a與第二輕摻雜區214b的離子形態由第一導電型態轉變為第二導電型態。相對於上述之第一導電型態為N型,此處的第二導電型態則為P型,因此所進行的第二型離子摻雜例如是P型離子摻雜,以在第二源極/汲極區214a與第二輕摻雜區214b內植入P型摻質,例如硼離子。值得一提的是,經實驗結果,為得到較佳的相反摻雜效果,而能使第二源極/汲極區214a與第二輕摻雜區214b成功轉變為第二導電型態,第二型離子摻雜應與前述之第一型離子摻雜有相仿的離子植入深度。And, as shown in FIG. 2J, the second source/drain region 214a and the second lightly doped region 214b in the second semiconductor pattern 214 are subjected to opposite doping of the second type ions via the patterned mask layer 250 ( Counter-doping), so that the ion form of the second source/drain region 214a and the second lightly doped region 214b is changed from the first conductivity type to the second conductivity type. The first conductivity type is N-type with respect to the above, and the second conductivity type here is P-type, so the second type ion doping performed is, for example, P-type ion doping to be at the second source P-type dopants, such as boron ions, are implanted in the /drain region 214a and the second lightly doped region 214b. It is worth mentioning that, according to experimental results, in order to obtain a better opposite doping effect, the second source/drain region 214a and the second lightly doped region 214b can be successfully converted into the second conductivity type, The type II ion doping should have a similar ion implantation depth as the first type ion doping described above.
之後,移除圖案化罩幕層250,便可得到如圖2K所繪示的半導體元件的結構。第一源極/汲極區212a、第一輕摻雜區212b、第一通道區212c與第一閘極232a可構成一NTFT結構,而第二源極/汲極區214a、第二輕摻雜區214b、第二通道區214c與第二閘極234a可構成一PTFT結構。其中,第一輕摻雜區212b具有對稱的長度,因此有助於提高元件操作時的可靠度與電性表現。Thereafter, the patterned mask layer 250 is removed to obtain the structure of the semiconductor device as shown in FIG. 2K. The first source/drain region 212a, the first lightly doped region 212b, the first channel region 212c and the first gate 232a may constitute an NTFT structure, and the second source/drain region 214a and the second lightly doped The impurity region 214b, the second channel region 214c and the second gate 234a may constitute a PTFT structure. Wherein, the first lightly doped region 212b has a symmetrical length, thereby helping to improve the reliability and electrical performance of the component during operation.
另一方面,本發明採用同一道光罩製程來形成第一閘極圖案232、第二閘極圖案234以及下層接墊236,再搭配相反摻雜的技術來形成不同型態薄膜電晶體,如PTFT與NTFT,因此相較於習知技術具有製程簡單、低成本與高良率等優點。更詳細而言,請參考圖3A所繪示之習知液晶顯示面板的周邊線路佈局。此處所繪示者例如是一種CMOS結構的反向器(Inverter)300,由於習知製作反向器300時是使用不同的兩道光罩製程來分別製作PTFT 310與NTFT 320,因此在前後兩道光罩製程中所定義的閘極金屬圖案330a與330b可能因為光罩的對位誤差而無法相連,影響製程良率且增加製程的複雜性。再者,因考量到光罩的對位誤差,在進行前端的元件佈局設計時,也必須為了提供合理的製程裕度,而犧牲部分的可佈局面積。反之,參考圖3B所示之本發明的一種周邊線路佈局,若採用本發明上述實施例的製作方法,可藉由同一道光罩製程來同時定義PTFT 310與NTFT 320的閘極金屬圖案332,因此可克服上述問題,有助於減少製程所需光罩數,降低成本,並改善製程良率。On the other hand, the present invention uses the same mask process to form the first gate pattern 232, the second gate pattern 234, and the lower pad 236, and then combines opposite doping techniques to form different types of thin film transistors, such as PTFT. Compared with NTFT, it has the advantages of simple process, low cost and high yield compared with the prior art. In more detail, please refer to the peripheral circuit layout of the conventional liquid crystal display panel illustrated in FIG. 3A. The present invention is, for example, a CMOS-structured inverter 300. Since the inverter 300 is conventionally fabricated using two different mask processes to separately form the PTFT 310 and the NTFT 320, the front and rear light are respectively The gate metal patterns 330a and 330b defined in the mask process may not be connected due to the alignment error of the mask, affecting the process yield and increasing the complexity of the process. Furthermore, considering the alignment error of the reticle, it is necessary to sacrifice a part of the layout area in order to provide a reasonable process margin when designing the component layout of the front end. On the other hand, referring to a peripheral circuit layout of the present invention shown in FIG. 3B, if the fabrication method of the above embodiment of the present invention is adopted, the gate metal patterns 332 of the PTFT 310 and the NTFT 320 can be simultaneously defined by the same mask process. The above problems can be overcome, which helps to reduce the number of masks required for the process, reduce costs, and improve process yield.
承接圖2K所繪示的步驟,本實施例更可進行後續步驟,以形成源極/汲極接觸金屬、畫素電極、上層接墊等構件。Following the steps illustrated in FIG. 2K, the present embodiment can further perform subsequent steps to form a source/drain contact metal, a pixel electrode, an upper pad, and the like.
請參考圖2L,在移除圖案化罩幕層250之後,可再形成一介電層260於閘絕緣層220上,使其覆蓋第一閘極232a、第二閘極234a以及前述可選擇形成的下層接墊236。並且,形成多個第一接觸窗262與第三接觸窗264於介電層260與閘絕緣層220中。第一接觸窗262暴露出第一半導體圖案212的第一源極/汲極區212a與第二半導體圖案214的第二源極/汲極區214a,而第三接觸窗264暴露出下層接墊236。形成第一接觸窗262與第三接觸窗264的方法例如是對介電層260進行黃光製程及後續的蝕刻製程。Referring to FIG. 2L, after the patterned mask layer 250 is removed, a dielectric layer 260 may be further formed on the gate insulating layer 220 to cover the first gate 232a, the second gate 234a, and the foregoing optional formation. Lower layer pad 236. Also, a plurality of first contact windows 262 and third contact windows 264 are formed in the dielectric layer 260 and the gate insulating layer 220. The first contact window 262 exposes the first source/drain region 212a of the first semiconductor pattern 212 and the second source/drain region 214a of the second semiconductor pattern 214, and the third contact window 264 exposes the lower layer pad 236. The method of forming the first contact window 262 and the third contact window 264 is, for example, performing a yellow light process on the dielectric layer 260 and a subsequent etching process.
之後,再如圖2M所示,形成一第一源極/汲極接觸金屬272與一第二源極/汲極接觸金屬274於第一接觸窗262中,使第一源極/汲極接觸金屬272與第二源極/汲極接觸金屬274分別電性連接到所對應的第一源極/汲極區212a與第二源極/汲極區214a。並且,可選擇同時形成一上層接墊276於下層接墊236所對應的第三接觸窗264中,使上層接墊276與下層接墊236相互連接。形成上述第一源極/汲極接觸金屬272、第二源極/汲極接觸金屬274以及上層接墊276的方法例如是先在介電層260上形成一源極/汲極金屬層(未繪示),再對此源極/汲極金屬層進行黃光及蝕刻製程所形成。此外,此源極/汲極金屬層可採用的材質同樣可為鉻(Cr)、鋁(Al)、銅(Cu)、鉬(Mo)或其他低阻抗的金屬,其例如是經由濺鍍或其他薄膜沉積製程來形成。Then, as shown in FIG. 2M, a first source/drain contact metal 272 and a second source/drain contact metal 274 are formed in the first contact window 262 to make the first source/drain contact The metal 272 and the second source/drain contact metal 274 are electrically connected to the corresponding first source/drain region 212a and the second source/drain region 214a, respectively. Moreover, an upper bonding pad 276 can be simultaneously formed in the third contact window 264 corresponding to the lower bonding pad 236, so that the upper bonding pad 276 and the lower bonding pad 236 are connected to each other. The method of forming the first source/drain contact metal 272, the second source/drain contact metal 274, and the upper pad 276 is, for example, first forming a source/drain metal layer on the dielectric layer 260 (not Illustrated), and then the source/dip metal layer is formed by a yellow light and an etching process. In addition, the source/drain metal layer may be made of chromium (Cr), aluminum (Al), copper (Cu), molybdenum (Mo) or other low-impedance metal, for example, by sputtering or Other thin film deposition processes are formed.
接著,如圖2N所示,形成一平坦層280於介電層260上,使其覆蓋第一源極/汲極接觸金屬272、第二源極/汲極接觸金屬274以及可選擇形成的上層接墊276。並且,形成一第二接觸窗282以及一第四接觸窗284於平坦層280中,其中第二接觸窗282暴露出第一源極/汲極接觸金屬272,而第四接觸窗284暴露出上層接墊276。形成第二接觸窗282與第四接觸窗284的方法例如是對介電層280進行黃光製程及後續的蝕刻製程。Next, as shown in FIG. 2N, a flat layer 280 is formed on the dielectric layer 260 to cover the first source/drain contact metal 272, the second source/drain contact metal 274, and the optional upper layer. Pad 276. Moreover, a second contact window 282 and a fourth contact window 284 are formed in the planar layer 280, wherein the second contact window 282 exposes the first source/drain contact metal 272, and the fourth contact window 284 exposes the upper layer Pad 276. The method of forming the second contact window 282 and the fourth contact window 284 is, for example, performing a yellow light process on the dielectric layer 280 and a subsequent etching process.
之後,如圖2O所示,形成一電極圖案290與一接墊圖案292於平坦層280上,其中電極圖案290經由第二接觸窗282連接到第一源極/汲極接觸金屬272,以作為一畫素電極(pixel electrode),而接墊圖案292經由第四接觸窗284與上層接墊276連接,以作為一外接接墊。此處形成電極圖案290與接墊圖案292的方法例如是先在平坦層280上形成一導電材料層(未繪示),再對此導電材料層進行蝕刻製程所形成。此導電材料層可採用的材質例如是銦錫氧化物(Indium Tin Oxide,ITO)、銦鋅氧化物(Indium Zinc Oxide,IZO)等透明導電材質,其例如是經由濺鍍或其他薄膜沉積製程來形成。Thereafter, as shown in FIG. 2O, an electrode pattern 290 and a pad pattern 292 are formed on the flat layer 280, wherein the electrode pattern 290 is connected to the first source/drain contact metal 272 via the second contact window 282 as A pixel electrode is connected to the upper pad 276 via the fourth contact window 284 as an external pad. The method of forming the electrode pattern 290 and the pad pattern 292 here is, for example, forming a conductive material layer (not shown) on the flat layer 280, and then forming an etching process on the conductive material layer. The conductive material layer may be made of a transparent conductive material such as Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO), for example, by sputtering or other thin film deposition process. form.
至此大致完成本發明可用於液晶顯示面板之包含畫素區與周邊線路區內的一種半導體元件結構,以下將再以其他實施例來說明本發明之內容。請參考圖4A~4J,其繪示本發明另一實施例之半導體元件的製作方法。值得一提的是,下列實施例中部分製程的詳細實施方式與前述實施例所揭示者類似,因此相關說明請參考前述實施例,下文將不再重複贅述。The present invention has been substantially completed for use in a semiconductor element structure including a pixel region and a peripheral wiring region of a liquid crystal display panel, and the contents of the present invention will be described below by way of other embodiments. Please refer to FIG. 4A to FIG. 4J, which illustrate a method of fabricating a semiconductor device according to another embodiment of the present invention. It is to be noted that the detailed implementation of the partial process in the following embodiments is similar to that disclosed in the foregoing embodiments. Therefore, the related embodiments are referred to the foregoing embodiments, and the detailed description thereof will not be repeated below.
首先,如圖4A所示,提供一基板402,形成一第一半導體圖案412與一第二半導體圖案414於基板402上,並且對第二半導體圖案414的一第二源極/汲極區414a進行第二型離子摻雜,使其具有第二導電型態。在本實施例中,基板402同樣可為玻璃基板、石英基板、塑膠基板或是其他適用的透明基板,而第一半導體圖案412與第二半導體圖案414例如是經由雷射退火製程形成多晶矽層,再進行圖案化步驟所得。此外,對第二源極/汲極區414a進行第二型離子摻雜的步驟例如是藉由一光阻層404作為罩幕來達成。此外,本製作方法更可選擇性地在基板402上方形成儲存電容與外接接墊,因此在此步驟中可以額外形成一第三半導體圖案418於基板402上,並且可同時對第三半導體圖案418進行第二型離子摻雜,使其具有第二導電型態。此處所進行的第二型離子摻雜例如是P型離子摻雜,以在第二源極/汲極區414a與第三半導體圖案418內植入P型摻質,例如硼離子。同時,可在第二半導體圖案414內定義出一第二通道區414c。First, as shown in FIG. 4A, a substrate 402 is formed to form a first semiconductor pattern 412 and a second semiconductor pattern 414 on the substrate 402, and a second source/drain region 414a of the second semiconductor pattern 414 is formed. The second type of ion doping is performed to have a second conductivity type. In this embodiment, the substrate 402 can also be a glass substrate, a quartz substrate, a plastic substrate or other suitable transparent substrate, and the first semiconductor pattern 412 and the second semiconductor pattern 414 are formed, for example, by a laser annealing process to form a polysilicon layer. The patterning step is further carried out. In addition, the step of performing the second type ion doping on the second source/drain region 414a is achieved, for example, by using a photoresist layer 404 as a mask. In addition, the manufacturing method can selectively form a storage capacitor and an external pad over the substrate 402. Therefore, a third semiconductor pattern 418 can be additionally formed on the substrate 402 in this step, and the third semiconductor pattern 418 can be simultaneously applied. The second type of ion doping is performed to have a second conductivity type. The second type of ion doping performed herein is, for example, P-type ion doping to implant a P-type dopant, such as boron ions, in the second source/drain region 414a and the third semiconductor pattern 418. At the same time, a second channel region 414c can be defined in the second semiconductor pattern 414.
接著,如圖4B所示,形成一閘絕緣層420於基板402上,使其覆蓋第一半導體圖案412、第二半導體圖案414與第三半導體圖案418。並且,形成一閘極金屬層430於閘絕緣層420上。其中,形成閘絕緣層420的方法例如是化學氣相沉積(chemical vapor deposition,CVD),而閘絕緣層420的材質例如是氮化矽(silicon nitride,SiN)或氧化矽(silicon oxide,SiO)。此外,閘極金屬層430的材質例如是鉻(Cr)、鋁(Al)、銅(Cu)、鉬(Mo)或其他低阻抗的金屬,其例如是經由濺鍍或其他薄膜沉積製程來形成。Next, as shown in FIG. 4B, a gate insulating layer 420 is formed on the substrate 402 to cover the first semiconductor pattern 412, the second semiconductor pattern 414, and the third semiconductor pattern 418. Also, a gate metal layer 430 is formed on the gate insulating layer 420. The method for forming the gate insulating layer 420 is, for example, chemical vapor deposition (CVD), and the material of the gate insulating layer 420 is, for example, silicon nitride (SiN) or silicon oxide (SiO). . In addition, the material of the gate metal layer 430 is, for example, chromium (Cr), aluminum (Al), copper (Cu), molybdenum (Mo) or other low-impedance metal, which is formed, for example, by sputtering or other thin film deposition processes. .
之後,再如圖4C所示,形成一第一罩幕圖案442與一第二罩幕圖案444於閘極金屬層430上,其中第一罩幕圖案442位於第一半導體圖案412上方並對應暴露出第一半導體圖案412的一第一源極/汲極區412a,而第二罩幕圖案444位於第二半導體圖案414上方並對應暴露出第二半導體圖案414之部分的第二源極/汲極區414a。此外,若如前述選擇形成儲存電容與外接接墊,則可在此步驟中額外形成一第三罩幕圖案446與一第四罩幕圖案448於閘極金屬層430上,其中第四罩幕圖案448通過第三半導體圖案上方418。形成上述第一罩幕圖案442與第二罩幕圖案444的方法例如是在閘極金屬層430上進行光阻塗佈以及曝光、顯影等黃光製程。Then, as shown in FIG. 4C, a first mask pattern 442 and a second mask pattern 444 are formed on the gate metal layer 430, wherein the first mask pattern 442 is over the first semiconductor pattern 412 and correspondingly exposed. A first source/drain region 412a of the first semiconductor pattern 412 is formed, and the second mask pattern 444 is located above the second semiconductor pattern 414 and correspondingly exposes a second source/汲 of the portion of the second semiconductor pattern 414 Polar zone 414a. In addition, if the storage capacitor and the external pad are selectively formed as described above, a third mask pattern 446 and a fourth mask pattern 448 may be additionally formed on the gate metal layer 430 in the step, wherein the fourth mask Pattern 448 passes over third semiconductor pattern 418. The method of forming the first mask pattern 442 and the second mask pattern 444 is, for example, performing photoresist coating on the gate metal layer 430 and a yellow light process such as exposure and development.
接著,如圖4D所示,以第一罩幕圖案442、第二罩幕圖案444、第三罩幕圖案446與第四罩幕圖案448為罩幕來圖案化閘極金屬層430,而分別形成一第一閘極圖案432、一第二閘極圖案434、一下層接墊436以及通過第三半導體圖案418上方的一金屬共電極438。之後,再以第一罩幕圖案442與第一閘極圖案432為罩幕來對第一源極/汲極區412a進行第一型離子摻雜,使第一源極/汲極區412a具有第一導電型態,而第二源極/汲極區414a維持第二導電型態。此處的圖案化動作例如是藉由進行一乾式或濕式蝕刻製程來達成,而所進行的第一型離子摻雜例如是N型離子摻雜,以在第一源極/汲極區412a內植入N型摻質,例如磷離子。值得注意的是,由於第二源極/汲極區414a經過此步驟仍須維持原來的第二導電型態,因此在前述所進行的第二型離子摻雜,其P型掺質濃度應該要大於此處第一型離子摻雜的N型摻質濃度。同時,可在第一閘極圖案432下方的第一半導體圖案412內定義出一第一通道區412c。Next, as shown in FIG. 4D, the gate metal layer 430 is patterned by using the first mask pattern 442, the second mask pattern 444, the third mask pattern 446, and the fourth mask pattern 448 as masks, respectively. A first gate pattern 432, a second gate pattern 434, a lower layer pad 436, and a metal common electrode 438 over the third semiconductor pattern 418 are formed. Thereafter, the first source/drain region 412a is first doped with the first mask pattern 442 and the first gate pattern 432 as a mask, so that the first source/drain region 412a has The first conductivity type while the second source/drain region 414a maintains the second conductivity type. The patterning action here is achieved, for example, by performing a dry or wet etching process, and the first type of ion doping performed is, for example, N-type ion doping to be in the first source/drain region 412a. An N-type dopant such as a phosphorus ion is implanted therein. It is worth noting that since the second source/drain region 414a has to maintain the original second conductivity pattern after this step, the P-type dopant concentration of the second type ion doping performed in the foregoing should be It is larger than the N-type dopant concentration of the first type ion doping here. Meanwhile, a first channel region 412c may be defined in the first semiconductor pattern 412 under the first gate pattern 432.
然後,如圖4E所示,對第一罩幕圖案442與第二罩幕圖案444進行一蝕刻製程,以移除第一罩幕圖案442與第二罩幕圖案444的部分厚度的外壁,進而暴露出部分的第一閘極圖案432與第二閘極圖案434。之後,再以移除部分外壁後之第一罩幕圖案442與第二罩幕圖案444為罩幕來蝕刻第一閘極圖案432與第二閘極圖案434,以形成一第一閘極432a與一第二閘極434a,其中第一閘極432a對應暴露出第一半導體圖案412中第一源極/汲極區412a內側的一輕摻雜區412b,而第二閘極434a覆蓋第二半導體圖案414的一通道區414c與部分的第二源極/汲極區414a。此外,如果在前述步驟中同時形成第三罩幕圖案446與第四罩幕圖案448,則第三罩幕圖案446與第四罩幕圖案448也會一併被蝕刻。本步驟所進行的蝕刻製程例如是一乾式蝕刻製程,更詳細而言,其例如可藉由電漿(如氧電漿)來蝕刻第一罩幕圖案442、第二罩幕圖案444、第三罩幕圖案446與第四罩幕圖案448,亦即一般所稱的光阻灰化(ashing)製程,其特色在於可對第一罩幕圖案442、第二罩幕圖案444、第三罩幕圖案446與第四罩幕圖案448進行等向蝕刻。舉例而言,第一罩幕圖案442經過蝕刻之後,除了厚度減少之外,其兩側也會縮減等量的長度L2。此外,在蝕刻的步驟中也包括分別以第三罩幕圖案446與第四罩幕圖案448作為罩幕來蝕刻部分的下層接墊436與部分的金屬共電極438。值得注意的是,由於第一罩幕圖案442被等向蝕刻,使其左右兩側向內側縮減對稱的距離,因此被暴露出來的輕摻雜區412b也會具有對稱的長度。Then, as shown in FIG. 4E, an etching process is performed on the first mask pattern 442 and the second mask pattern 444 to remove the outer wall of the partial thickness of the first mask pattern 442 and the second mask pattern 444. A portion of the first gate pattern 432 and the second gate pattern 434 are exposed. Then, the first gate pattern 432 and the second gate pattern 434 are etched by using the first mask pattern 442 and the second mask pattern 444 after the partial outer wall is removed to form a first gate 432a. And a second gate 434a, wherein the first gate 432a correspondingly exposes a lightly doped region 412b inside the first source/drain region 412a of the first semiconductor pattern 412, and the second gate 434a covers the second portion A channel region 414c of the semiconductor pattern 414 and a portion of the second source/drain region 414a. In addition, if the third mask pattern 446 and the fourth mask pattern 448 are simultaneously formed in the foregoing steps, the third mask pattern 446 and the fourth mask pattern 448 are also etched together. The etching process performed in this step is, for example, a dry etching process. In more detail, for example, the first mask pattern 442, the second mask pattern 444, and the third layer may be etched by a plasma such as an oxygen plasma. The mask pattern 446 and the fourth mask pattern 448, which is generally referred to as a photoresist ashing process, are characterized in that the first mask pattern 442, the second mask pattern 444, and the third mask can be applied. The pattern 446 and the fourth mask pattern 448 are isotropically etched. For example, after the first mask pattern 442 is etched, in addition to the thickness reduction, the equal length L2 is also reduced on both sides. In addition, the etching step also includes etching a portion of the lower pad 436 and a portion of the metal common electrode 438 with the third mask pattern 446 and the fourth mask pattern 448 as masks, respectively. It should be noted that since the first mask pattern 442 is etched in an isotropic manner so that the left and right sides thereof are reduced inward by a symmetric distance, the exposed lightly doped region 412b also has a symmetrical length.
接著,如圖4F所示,以第一罩幕圖案442與其所對應的第一閘極432a為罩幕來對輕摻雜區412b進行第一型離子輕摻雜,使輕摻雜區412b具有第一導電型態。此處所進行的第一型離子輕摻雜例如同樣是N型離子摻雜,不同的是使用濃度較低的N型摻質,例如磷離子。如同前述,第二源極/汲極區414a在此步驟後仍須維持第二導電型態。值得一提的是,由於第二罩幕圖案444與其下方的第二閘極圖案434在被形成(如圖4C所示)之後,仍須再經過 後續的蝕刻製程(如圖4E所示),而被蝕刻掉部分的厚度與側向的長度。因此,為了確保第二閘極圖案434下方的第二通道區434c不會在此步驟中被摻入第一型離子,在膜層圖案的設計上需使第二罩幕圖案444、第二閘極圖案434以及後續形成的第二閘極434a在前述製程中維持覆蓋第二通道區434c的狀態。Next, as shown in FIG. 4F, the light-doped region 412b is lightly doped with the first type ion by using the first mask pattern 442 and the corresponding first gate 432a as a mask, so that the lightly doped region 412b has The first conductivity type. The first type of ion light doping performed herein is, for example, also N-type ion doping, except that a lower concentration of N-type dopants, such as phosphorus ions, is used. As before, the second source/drain region 414a must maintain the second conductivity pattern after this step. It is worth mentioning that since the second mask pattern 444 and the second gate pattern 434 under it are formed (as shown in FIG. 4C), it is still necessary to pass through. Subsequent etching processes (as shown in Figure 4E) are etched away from the thickness of the portion and the lateral length. Therefore, in order to ensure that the second channel region 434c under the second gate pattern 434 is not doped with the first type ions in this step, the second mask pattern 444 and the second gate are required in the design of the film layer pattern. The pole pattern 434 and the subsequently formed second gate 434a maintain a state of covering the second channel region 434c in the foregoing process.
如此,第一源極/汲極區412a、輕摻雜區412b、第一通道區412c與第一閘極432a便可構成一NTFT結構,而第二源極/汲極區414a、第二通道區414c與第二閘極434a便可構成一PTFT結構。Thus, the first source/drain region 412a, the lightly doped region 412b, the first channel region 412c and the first gate 432a can form an NTFT structure, and the second source/drain region 414a and the second channel The region 414c and the second gate 434a may constitute a PTFT structure.
然後,如圖4G所示,移除第一罩幕圖案442與第二罩幕圖案444、第三罩幕圖案446與第四罩幕圖案448,形成一介電層460於閘絕緣層420上,使其覆蓋第一閘極432a、第二閘極434b以及前述可選擇形成的下層接墊436與金屬共電極438。並且,形成多個第一接觸窗462、一第三接觸窗464以及一第五接觸窗466於介電層460與閘絕緣層420中。第一接觸窗462暴露出第一半導體圖案412的第一源極/汲極區412a、第二半導體圖案414的第二源極/汲極區414a,第三接觸窗464暴露出下層接墊436,而第五接觸窗466暴露出部分的第三半導體圖案418。其中,形成第一接觸窗462、第三接觸窗464以及第五接觸窗466的方法例如是對介電層460進行黃光製程及後續的蝕刻製程。Then, as shown in FIG. 4G, the first mask pattern 442 and the second mask pattern 444, the third mask pattern 446 and the fourth mask pattern 448 are removed to form a dielectric layer 460 on the gate insulating layer 420. The first gate 432a, the second gate 434b, and the optional underlying pad 436 and the metal common electrode 438 are covered. Moreover, a plurality of first contact windows 462, a third contact window 464, and a fifth contact window 466 are formed in the dielectric layer 460 and the gate insulating layer 420. The first contact window 462 exposes the first source/drain region 412a of the first semiconductor pattern 412, the second source/drain region 414a of the second semiconductor pattern 414, and the third contact window 464 exposes the lower layer pad 436 And the fifth contact window 466 exposes a portion of the third semiconductor pattern 418. The method of forming the first contact window 462, the third contact window 464, and the fifth contact window 466 is, for example, performing a yellow light process on the dielectric layer 460 and a subsequent etching process.
之後,再如圖4H所示,形成一第一源極/汲極接觸金屬472、一第二源極/汲極接觸金屬474於第一接觸窗462中,並且形成一上層接墊476於第三接觸窗464中,使第一源極/汲極接觸金屬472與第二源極/汲極接觸金屬474分別電性連接到所對應的第一源極/汲極區412a與第二源極/汲極區414a,且上層接墊476經由第三接觸窗464連接至下層接墊436。此外,第一源極/汲極接觸金屬472也會同時經由第五接觸窗466連接到第三半導體圖案418,使第一源極/汲極區412a與第三半導體圖案418相互導通。如此一來,當顯示訊號由第一源極/汲極區412a被導入第三半導體圖案418時,將在第三半導體圖案418與其上方的金屬共電極438之間形成一儲存電容。形成上述第一源極/汲極接觸金屬472、第二源極/汲極接觸金屬474以及上層接墊476的方法例如是先在介電層460上形成一源極/汲極金屬層(未繪示),再對此源極/汲極金屬層進行黃光及蝕刻製程所形成。此外,此源極/汲極金屬層可採用的材質同樣可為鉻(Cr)、鋁(Al)、銅(Cu)、鉬(Mo)或其他低阻抗的金屬,其例如是經由濺鍍或其他薄膜沉積製程來形成。Then, as shown in FIG. 4H, a first source/drain contact metal 472, a second source/drain contact metal 474 are formed in the first contact window 462, and an upper pad 476 is formed. In the three contact window 464, the first source/drain contact metal 472 and the second source/drain contact metal 474 are electrically connected to the corresponding first source/drain region 412a and the second source, respectively. / drain region 414a, and upper pad 476 is connected to lower pad 436 via third contact window 464. In addition, the first source/drain contact metal 472 is also connected to the third semiconductor pattern 418 via the fifth contact window 466 at the same time, so that the first source/drain region 412a and the third semiconductor pattern 418 are electrically connected to each other. As such, when the display signal is introduced into the third semiconductor pattern 418 by the first source/drain region 412a, a storage capacitor is formed between the third semiconductor pattern 418 and the metal common electrode 438 above it. The method of forming the first source/drain contact metal 472, the second source/drain contact metal 474, and the upper pad 476 is, for example, first forming a source/drain metal layer on the dielectric layer 460 (not Illustrated), and then the source/dip metal layer is formed by a yellow light and an etching process. In addition, the source/drain metal layer may be made of chromium (Cr), aluminum (Al), copper (Cu), molybdenum (Mo) or other low-impedance metal, for example, by sputtering or Other thin film deposition processes are formed.
接著,如圖4I所示,形成一平坦層480於介電層460上,使其覆蓋第一源極/汲極接觸金屬472、第二源極/汲極接觸金屬474以及可選擇形成的上層接墊476。並且,形成一第二接觸窗482與一第四接觸窗484於平坦層480中,其中第二接觸窗482暴露出第一源極/汲極接觸金屬472,而第四接觸窗484暴露出上層接墊476。形成第二接觸窗482與第四接觸窗484的方法例如是對介電層480進行黃光製程。Next, as shown in FIG. 4I, a flat layer 480 is formed on the dielectric layer 460 to cover the first source/drain contact metal 472, the second source/drain contact metal 474, and the optional upper layer. Pad 476. Moreover, a second contact window 482 and a fourth contact window 484 are formed in the flat layer 480, wherein the second contact window 482 exposes the first source/drain contact metal 472, and the fourth contact window 484 exposes the upper layer. Pad 476. The method of forming the second contact window 482 and the fourth contact window 484 is, for example, performing a yellow light process on the dielectric layer 480.
之後,如圖4J所示,形成一電極圖案490與一接墊圖案492於平坦層480上,其中電極圖案490經由第二接觸窗482連接到第一源極/汲極接觸金屬472,以作為一畫素電極(pixel electrode),而接墊圖案492經由第四接觸窗484連接到上層接墊476,以作為一外接接墊。此處形成電極圖案490與接墊圖案492的方法例如是先在平坦層480上形成一導電材料層(未繪示),再對此導電材料層進行蝕刻製程所形成。此導電材料層可採用的材質例如是銦錫氧化物(Indium Tin Oxide,ITO)、銦鋅氧化物(Indium Zinc Oxide,IZO)等透明導電材質,其例如是經由濺鍍或其他薄膜沉積製程來形成。Thereafter, as shown in FIG. 4J, an electrode pattern 490 and a pad pattern 492 are formed on the flat layer 480, wherein the electrode pattern 490 is connected to the first source/drain contact metal 472 via the second contact window 482 as A pixel electrode is connected to the upper pad 476 via the fourth contact window 484 as an external pad. The method of forming the electrode pattern 490 and the pad pattern 492 here is, for example, forming a conductive material layer (not shown) on the flat layer 480, and then forming an etching process on the conductive material layer. The conductive material layer may be made of a transparent conductive material such as Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO), for example, by sputtering or other thin film deposition process. form.
上述實施例所形成的薄膜電晶體結構中的輕摻雜區同樣具有對稱的長度,因此有助於提高元件操作時的可靠度與電性表現。此外,由於上述實施例也是採用同一道光罩製程來形成不同薄膜電晶體的閘極圖案以及金屬共電極、下層接墊等元件,因此可有效避免習知以不同光罩製程製作上述元件時可能產生的光罩對位誤差,有助於提升製程良率,並可節省習知在前端元件佈局設計時,必須犧牲的基板的可佈局面積,進而降低製作成本。The lightly doped regions in the thin film transistor structure formed by the above embodiments also have a symmetrical length, thereby contributing to improved reliability and electrical performance during operation of the device. In addition, since the above embodiment also uses the same mask process to form the gate patterns of the different thin film transistors and the metal common electrode, the lower layer pads and the like, it can effectively avoid the possibility that the above components can be produced by different mask processes. The reticle alignment error helps to improve the process yield, and can save the layout area of the substrate that must be sacrificed in the front-end component layout design, thereby reducing the manufacturing cost.
另一方面,上述實施例可整合儲存電容的製作,在形成第一半導體圖案與第二半導體圖案時,一併形成可作為儲存電容之下電極的第三半導體圖案,並對第三半導體圖案進行離子摻雜,使其具有導電性。因此,本實施例所形成的半導體元件可搭配良好的儲存電容,當應用於液晶顯示面板時,將有助於提升液晶顯示面板的顯示品質。On the other hand, in the above embodiment, the storage capacitor can be integrated. When the first semiconductor pattern and the second semiconductor pattern are formed, a third semiconductor pattern that can serve as an electrode under the storage capacitor is formed together, and the third semiconductor pattern is formed. The ions are doped to make them electrically conductive. Therefore, the semiconductor device formed in this embodiment can be matched with a good storage capacitor, and when applied to a liquid crystal display panel, it will help to improve the display quality of the liquid crystal display panel.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and it is possible to make a few changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
100...基板100. . . Substrate
102...緩衝層102. . . The buffer layer
110...多晶矽層110. . . Polycrystalline layer
112...源極區112. . . Source area
112a...接觸窗開口112a. . . Contact window opening
114...汲極區114. . . Bungee area
114a...接觸窗開口114a. . . Contact window opening
116...通道區116. . . Channel area
118...輕摻雜汲極區118. . . Lightly doped bungee zone
120...閘絕緣層120. . . Brake insulation
130...閘極130. . . Gate
140...介電層140. . . Dielectric layer
152...源極金屬層152. . . Source metal layer
154...汲極金屬層154. . . Bungee metal layer
202...基板202. . . Substrate
212...第一半導體圖案212. . . First semiconductor pattern
212a...第一源極/汲極區212a. . . First source/drain region
212b...第一輕摻雜區212b. . . First lightly doped region
212c...第一通道區212c. . . First passage area
214...第二半導體圖案214. . . Second semiconductor pattern
214a...第二源極/汲極區214a. . . Second source/drain region
214b...第二輕摻雜區214b. . . Second lightly doped region
214c...第二通道區214c. . . Second passage zone
220...閘絕緣層220. . . Brake insulation
230...閘極金屬層230. . . Gate metal layer
232...第一閘極圖案232. . . First gate pattern
232a...第一閘極232a. . . First gate
234...第二閘極圖案234. . . Second gate pattern
234a...第二閘極234a. . . Second gate
236...下層接墊236. . . Underlying pad
242...第一罩幕圖案242. . . First mask pattern
244...第二罩幕圖案244. . . Second mask pattern
246...第三罩幕圖案246. . . Third mask pattern
250...圖案化罩幕層250. . . Patterned mask layer
260...介電層260. . . Dielectric layer
262...第一接觸窗262. . . First contact window
264...第三接觸窗264. . . Third contact window
272...第一源極/汲極接觸金屬272. . . First source/drain contact metal
274...第二源極/汲極接觸金屬274. . . Second source/drain contact metal
276...上層接墊276. . . Upper pad
280...平坦層280. . . Flat layer
282...第二接觸窗282. . . Second contact window
284...第四接觸窗284. . . Fourth contact window
290...電極圖案290. . . Electrode pattern
292...接墊圖案292. . . Mat pattern
L1...長度L1. . . length
300...反向器300. . . Inverter
310...PTFT310. . . PTFT
320...NTFT320. . . NTFT
330a、330b、332...閘極金屬圖案330a, 330b, 332. . . Gate metal pattern
402...基板402. . . Substrate
404...光阻層404. . . Photoresist layer
412...第一半導體圖案412. . . First semiconductor pattern
412a...第一源極/汲極區412a. . . First source/drain region
412b...輕摻雜區412b. . . Lightly doped area
412c...第一通道區412c. . . First passage area
414...第二半導體圖案414. . . Second semiconductor pattern
414a...第二源極/汲極區414a. . . Second source/drain region
414c...第二通道區414c. . . Second passage zone
418...第三半導體圖案418. . . Third semiconductor pattern
420...閘絕緣層420. . . Brake insulation
430...閘極金屬層430. . . Gate metal layer
432...第一閘極圖案432. . . First gate pattern
432a...第一閘極432a. . . First gate
434...第二閘極圖案434. . . Second gate pattern
434a...第二閘極434a. . . Second gate
436...下層接墊436. . . Underlying pad
438...金屬共電極438. . . Metal common electrode
442...第一罩幕圖案442. . . First mask pattern
444...第二罩幕圖案444. . . Second mask pattern
446...第三罩幕圖案446. . . Third mask pattern
448...第四罩幕圖案448. . . Fourth mask pattern
460...介電層460. . . Dielectric layer
462...第一接觸窗462. . . First contact window
464...第三接觸窗464. . . Third contact window
466...第五接觸窗466. . . Fifth contact window
472...第一源極/汲極接觸金屬472. . . First source/drain contact metal
474...第二源極/汲極接觸金屬474. . . Second source/drain contact metal
476...上層接墊476. . . Upper pad
480‧‧‧平坦層480‧‧‧flat layer
482‧‧‧第二接觸窗482‧‧‧Second contact window
484‧‧‧第四接觸窗484‧‧‧4th contact window
490‧‧‧電極圖案490‧‧‧electrode pattern
492‧‧‧接墊圖案492‧‧‧push pattern
L2‧‧‧長度L2‧‧‧ length
圖1為習知之一種低溫多晶矽薄膜電晶體的剖面示意圖。1 is a schematic cross-sectional view of a conventional low temperature polycrystalline germanium film transistor.
圖2A~2O繪示本發明一實施例之一種半導體元件的製作方法。2A to 2O illustrate a method of fabricating a semiconductor device in accordance with an embodiment of the present invention.
圖3A繪示習知液晶顯示面板的周邊線路佈局。FIG. 3A illustrates a peripheral circuit layout of a conventional liquid crystal display panel.
圖3B繪示本發明的一種周邊線路佈局。Figure 3B illustrates a peripheral line layout of the present invention.
圖4A~4J繪示本發明另一實施例之半導體元件的製作方法。4A-4J illustrate a method of fabricating a semiconductor device in accordance with another embodiment of the present invention.
402...基板402. . . Substrate
412...第一半導體圖案412. . . First semiconductor pattern
412a...第一源極/汲極區412a. . . First source/drain region
412b...輕摻雜區412b. . . Lightly doped area
412c...第一通道區412c. . . First passage area
414...第二半導體圖案414. . . Second semiconductor pattern
414a...第二源極/汲極區414a. . . Second source/drain region
414c...第二通道區414c. . . Second passage zone
418...第三半導體圖案418. . . Third semiconductor pattern
420...閘絕緣層420. . . Brake insulation
432...第一閘極圖案432. . . First gate pattern
432a...第一閘極432a. . . First gate
434...第二閘極圖案434. . . Second gate pattern
434a...第二閘極434a. . . Second gate
436...下層接墊436. . . Underlying pad
438...金屬共電極438. . . Metal common electrode
460...介電層460. . . Dielectric layer
472...第一源極/汲極接觸金屬472. . . First source/drain contact metal
474...第二源極/汲極接觸金屬474. . . Second source/drain contact metal
476...上層接墊476. . . Upper pad
480...平坦層480. . . Flat layer
490...電極圖案490. . . Electrode pattern
492...接墊圖案492. . . Mat pattern
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99115696A TWI446449B (en) | 2007-05-15 | 2007-05-15 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99115696A TWI446449B (en) | 2007-05-15 | 2007-05-15 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201036068A TW201036068A (en) | 2010-10-01 |
TWI446449B true TWI446449B (en) | 2014-07-21 |
Family
ID=44856109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99115696A TWI446449B (en) | 2007-05-15 | 2007-05-15 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI446449B (en) |
-
2007
- 2007-05-15 TW TW99115696A patent/TWI446449B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201036068A (en) | 2010-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7674658B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100491141B1 (en) | TFT and Method for Fabricating the Same and Active Matrix display device and Method for fabricating the Same using the TFT | |
US7800098B2 (en) | Array substrate for liquid crystal display device and method of fabricating the same | |
CN109860305B (en) | Thin film transistor, manufacturing method thereof, display substrate and display device | |
US7309625B2 (en) | Method for fabricating metal oxide semiconductor with lightly doped drain | |
TW201622158A (en) | Thin film transistor and manufacturing method thereof | |
JPWO2016175086A1 (en) | Semiconductor device and manufacturing method thereof | |
TWI419336B (en) | Semiconductor device and method of making the same | |
CN108565247B (en) | Manufacturing method of LTPS TFT substrate and LTPS TFT substrate | |
JP5328015B2 (en) | Image display system and manufacturing method thereof | |
US7643101B2 (en) | Polycrystalline liquid crystal display device and fabrication method thereof | |
WO2019184026A1 (en) | Preparation method for cmos transistor and preparation method for array substrate | |
KR20010056037A (en) | Method for manufacturing Thin Film Transistor | |
TW201351659A (en) | Thin film transistor and the method for fabricating the same | |
KR101475411B1 (en) | Poly-Si thin film transistor and method of manufacturing the same | |
WO2022001468A1 (en) | Thin film transistor, display substrate and display apparatus | |
TWI446449B (en) | Semiconductor device and manufacturing method thereof | |
KR102090460B1 (en) | Thin film transistor and method of fabricating the same | |
TWI699892B (en) | Electronic device and manufacturing method thereof | |
CN100492618C (en) | Semiconductor component and its production | |
KR20030056252A (en) | Method of manufacturing for poly-Silicone thin layer | |
US9905590B2 (en) | Manufacturing method of a LTPS array substrate | |
KR100477106B1 (en) | Method for fabricating flat panel display using MIC/MILC | |
JP2001036097A (en) | Semiconductor device | |
KR101338994B1 (en) | Thin Film Transistor and Method for fabricating the same |