TWI446280B - 基於自主生物學的學習工具 - Google Patents

基於自主生物學的學習工具 Download PDF

Info

Publication number
TWI446280B
TWI446280B TW098107266A TW98107266A TWI446280B TW I446280 B TWI446280 B TW I446280B TW 098107266 A TW098107266 A TW 098107266A TW 98107266 A TW98107266 A TW 98107266A TW I446280 B TWI446280 B TW I446280B
Authority
TW
Taiwan
Prior art keywords
tool
data
component
autonomous
target
Prior art date
Application number
TW098107266A
Other languages
English (en)
Other versions
TW200945220A (en
Inventor
Kenji Sugishima
Sukesh Janubhai Patel
Sanjeev Kaushal
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200945220A publication Critical patent/TW200945220A/zh
Application granted granted Critical
Publication of TWI446280B publication Critical patent/TWI446280B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation

Description

基於自主生物學的學習工具 [交互參照]
本發明係有關2008年3月8日提出申請、共同轉讓並且共同申請中之美國專利申請案第(12/044,959)號,案名為AUTONOMOUS ADAPTIVE SEMICONDUCTOR MANUFACTURING。其揭示內容於此全文併入本案作為參考。
本發明係有關基於自主生物學的學習工具系統與方法,尤有關用於半導體製造之自主生物學的學習工具系統與方法。
技術上的進步使得流程驅動(process-driven)式的自動化設備日形複雜。用來完成特定目標或實施特定高技術流程的工具系統通常含有多項功能單元以完成目標或成功執行流程,並且有多種感測器會收集資料以監測設備的運作。此種自動化設備產生的資料量很大。資料可包含與產品相關的實質資訊,或是特定任務中已經實施過的服務,也可包含大量與流程本身執行相關的日誌資訊。
雖然今日的電子儲存技術已可達到儲存持續增加的資料量,但是對於所積聚的資料卻利用不佳。所收集的資訊不但通常需要人工介入加以檢驗與解釋,就算是有進步的計算能力(像是多核心處理器、大量平行處理平台、以及處理器網格)以及進步的計算模式(像是物件導向的程式設計、重複使用模組程式碼、基於網站的應用以及近來的量子運算),對於已收集資料的處理卻仍然是未自主化的、靜態的計畫性事務。更重要的是在非自主化的資料處理中,資料本身是無法驅動分析流程的。故採用此種資料處理模式的後果便是在高科技流程期間由自化設備產生的資料間所蘊含的大量關係,除非經過針對特定種類關係所設計的特定分析,否則的話是不會被發現的。此外也不會發現由設備中不同單位所產生不同資料間的多重相關性所造成的緊急狀況,而該緊急狀況卻可能決定複雜的自動化工具或機器的最佳效能。
因此需要一種自動化設備,不但是自主的,而且可以分析特定流程的資料,並且根據該特定流程在所製造的資產上,持續採用一種基於資料間關係的模式;其中資料的分析可被流程或相關資產的本身所驅動或影響,其方式為透過學習,就好像人腦運作的方式一樣:對於和流程相關的資訊或資產的理解,會被資訊本身所影響,通常引導至學習、確認分析目標的修正、分析的手段與方法,用來增進對於資訊的理解並提昇相關資產的品質。
以下將說明本發明簡化後的發明內容以提供本發明其中一些態樣的基本理解。此發明內容並不是本發明之廣泛概述。這並不表示要識別出本發明關鍵或重要的單元,或是要畫定本發明的範圍;其目的僅為了提出本發明一些簡化後的觀念,作為之後更詳細敘述的引言。
本發明提出一種基於自主生物學的學習工具系統,以及該工具系統用來學習的方法。該基於自主生物學的學習工具系統包含:(一)一或多種工具系統,係獨立的系統或是依照階層配置的群組與集團系統,用來實施特定的任務(像是半導體的製造任務)或是流程(像是氧化物蝕刻或離子植入),並且產生反映出流程與工具效能的資料;(二)一種互動的管理器,用來接收並包裝資料供進一步利用;以及(三)一種基於生物學習原理的自主學習系統,係透過語意網路(semantic network)集合內之概念的傳播活化(spread activation)來學習。該自主學習系統包括一種功能結構,可由三個功能區塊的群組來遞迴定義:記憶平台、處理平台、以及供資訊在記憶平台與處理平台之間傳遞的知識通訊網路,以及該工具系統和外部的角色(例如電腦或是人類主體)。記憶平台包含記憶體階層,此階層包含情節記憶(episodic memory)、短期記憶(short term memory)、與長期記憶(long term memory)。情節記憶是用來接收資料的印象(data impression)以及伴隨的學習指導(learning instructions);短期記憶是用於知識的發展;而長期記憶則是用來儲存知識,並將知識加進語意網路。處理平台中的功能單位係處理儲存在記憶平台內的資訊以幫助學習。此種建構區塊及伴隨的功能性是發想自生物的結構以及人類頭腦的行為。
學習是透過定義在語意網路的概念活化(concept activation)來完成,而活化的門檻值則是透過伴隨各個概念之優先序的組合來指定。優先序則是根據被處理的概念種類而定;亦即,程序式的概念(procedural concept)所具有的優先序是跟據活化與抑制能量(inhibition energy)而定。
個人、群組或集團式的自主工具系統係利用被產生並累積在自主學習系統內的知識,而該自主學習系統可在基於自主生物學的學習工具、以及由多種工具系統所產生的資產中帶來多項改善:(a)隨時間的演進,所增加的獨立性可帶來更少的角色介入(像是人工指示與監督);(b)增加輸出的生產效能(像是至少有部份完成的輸出資產)並確保輸出的高品質;(c)向角色傳達可控告資訊(actionable information)的資料資產(例如:自主系統劣化(degradation)的狀態;更易找出故障的問題根源;對於個別的零件、工具、工具群組與集團式的工具提出一組系統使用壽命的預測,與伴隨的時間量像是平均無故障工作時間和平均修復時間);以及(d)隨時間而增加的效能,也就是以更快的速度傳遞改善後的產品或服務,並且消耗更少的資源,並且以更短的工具停機時間來製造。
為了完成上述及相關的目的,下文的敘述與附圖係詳細闡明本發明的特定示範態樣。此類態樣雖然為象徵性的,但是仍可表達本發明可採取之原則性的一些方法,而申請專利範圍係打算包含所有此類態樣及其均等物。本發明其他的優點與新穎的特徵將從以下詳細的說明連同附圖而容易明白。
現在參考附圖來說明本發明,其中本文通篇使用相同的元件編號來表示相同的元件。以下的敘述係為了解釋而闡明多種特定的細節,以提供對於本發明的完全理解。然而將會明白,就算沒有這些特定的細節仍然可以實施本發明。在其他例子中為了方便描述本發明,眾所周知的結構與裝置是以方塊圖來表示。
本說明書使用到的詞彙「物件」、「模組」、「介面」、「構件」、「系統」、「平台」、「引擎」、「單位」、「儲存」等等,是指與電腦或具有特定功能性的運作機器相關的實體。該實體可為硬體、硬體與軟體的組合、軟體、或是正在執行的軟體。例如,某構件可以是(但不限為)在處理器上執行的程序、一種處理器、一個物件、一個執行檔、一個執行緒、一支程式、與/或一台電腦。在說明中,於伺服器上執行的應用程式或是伺服器本身兩者都可以是構件。一或多個構件可能位於單一的電腦上,與/或分散在兩台或兩台以上的電腦中。再者,這些構件可從多種電腦可讀取的媒體上來執行,而在該媒體上則具有多種資料結構。構件可經由本地與/或遠端的程序來進行通訊,像是按照具有一或多個資料封包的信號(例如,來自某構件的資料可經由該信號而與別的構件互相聯繫,而別的構件則是位於本地系統、分散式系統、與/或橫跨像是網際網路的網路所連接的其他系統)。
此外,「或(or)」是指兼容的「或」(inclusive or),而非排他的「或」(exclusive or)。亦即,除非特別指明或是從前後關係中明確可知,「X採用A或B」是指任何一種自然、兼容的排列。也就是說,如果X採用A、X採用B、或是X採用A與B兩者,則「X採用A或B」滿足以上任何一種情形。此外,冠詞「一個」在本申請案與所附之申請專利範圍中應解釋為「一或多個」,除非有另外特別指明或是從前後關係中清楚可知是指單數的形式。
參照附圖,第1圖描繪基於自主生物學之學習系統100的範例。自我適應的推理引擎110係連接至目標構件120。有線或無線的通訊連線115連接起此類構件。對於由目標構件120所建立或進行(pursue)的特定目標,自我適應的推理構件110係接收可用來達成目標的輸入130,並傳達可代表或記錄已進行或已完成之目標的態樣的輸出140。再者,自我適應的推理引擎110可透過連線155接收來自資料儲存器150的資料,也可將資料或資訊存入此資料儲存器。例如,所儲存的資訊可為透過有線或無線連線165而傳達之部份的輸出140。應明白的是(一)輸入130、輸出140、與資料儲存器150中的資料(以及輸入、輸出、與資料儲存器中資料的歷史)包括用於自我適應的推理引擎110之運算的前後關係(context),並且(二)經由連線115、155、165而回授進引擎的該前後關係可幫助基於前後關係的自我適應。特別是目標構件120可利用被回授的前後關係來適應特定的初始目標,並藉此建立及進行該被適應的目標。
輸入130可視為外來資料或資訊,包含(1)聲音,像是語音指令、環境噪音或人聲、警報;(2)影像,由固定或移動式的地面照相機所捕捉,或是空中照相機(像是飛機、人造衛星),其中,照相機可運作於輻射光譜的多個區間內;(3)生物量(biometric)的指示器;(4)標記(token),像是成批的產品、材料的試樣;而資料則可包含指令、紀錄、測量結果等等。在性質上輸出140可與輸入130實質相同,且可視為內在資料。輸入130與輸出140可分別被輸入與輸出介面所接收與傳達,該介面像是照相機、輸入板、媒體塢(media dock,例如USB埠、紅外線的無線輸入端),位於自我適應的推理構件110內。如以上已經指出的,輸入130與輸出140可為用於自我適應的推理引擎110之前後關係的一部份。此外,自我適應的推理構件110在進行目標時可請求輸入130。
位在基於自主生物學的系統100內的構件可被遞迴定義,而賦予自主系統100藉由基本的構件來構成相當程度之優異的學習複雜度。
每條連線115、155或165可包含通訊介面,用來幫助要被傳送或是接收的資料與資訊的處理;可利用資料庫來儲存資料或進行資料探勘(data mining);可從角色處收送資訊。連線115、155或165之有線的實施例可包含雙絞線、T1/E1電話線、AC線、光纖、以及相對應的電路;而無線的實施例可包括先進的行動寬頻(ultramobile wideband)連線、長期的演化連線(long-term evolution link)、或是IEEE 802.11連線、以及伴隨的電子設備。至於資料儲存器150雖然在圖上繪製成單一單元,但卻可以是分散式的資料倉儲,其中,資料記憶體的集合被安排在迥然不同的實質或邏輯位置。
在範例系統100中,自我適應的推理引擎110以及目標構件120被描繪成分開的構件,不過應明白的是此類構件其中之一可被包含在另一者內。
目標構件120可屬於一或多個領域(例如科學領域、商業領域、藝術領域、文化領域等等)或是企業的部門(例如市場部門、工業部門、研究部門、能源部門、公共政策部門等等)。此外,由於目標通常具有多種領域並且聚焦於多種市場,故目標構件可在一或多種特別的領域或部門內建立多種不同的目標。為了進行目標,目標構件可包括功能構件與監測構件。用來完成目標的特定操作是透過一或多個功能構件實施完成目標之特定操作透過動能構件而作用,而與完成目標相關的變數條件則是由監測構件來決定。再者,一或多個功能構件能決定出可由目標構件120完成的目標空間(space of goals)。目標空間包括實質上所有能利用特定功能性來達到的目標。應明白的是對於由功能構件提供之此種特定的功能性而言,特定目標之前後關係的自我適應可在目標空間內將第一目標適應成第二目標。目標空間內的初始目標可由一或多個角色來決定;其中,角色可為機器或是人類主體(像是終端用戶)。應注意的是初始目標可為一般性的、上位的目標,因為自我適應的推理引擎110可透過目標飄移(goal drifting)而將目標構件120驅向更複雜的目標。目標、目標構件以及目標的自我適應說明如下。
第2圖的圖200描繪出前後關係的目標自我適應。目標(例如目標2101 或目標2103 )通常是與目標構件(例如構件120)的功能性相關的抽象物。目標可為上位的抽象物:「為退休後的生活存錢」、「獲取利潤」、「接受招待」、「學烹飪」、「去某地旅行」、「建立資料庫」、「製造產品」等等。此外,目標可進一步精鍊成像是「存錢以提早退休,且年收入在60,000至80,000美元的範圍」、「於淡季從美國去日本旅行,且旅費含住宿不超過5000美元」或是「至面試場所向一群可能是未來的雇主發表35分鐘的報告」。此外,目標(如2101 )具有伴隨的前後關係(如2201 )。如之前所指出的,連接至自我適應的推理引擎110的目標構件120通常相容於已經建立的目標(如2101 或2103 )。例如,目標「製造產品」(如目標2101 )係根據像是分子束磊晶反應器的製造工具系統(一個目標構件120的例子)以標準或調整過的規格來製造產品。在完成此目標(如目標2101 )期間,輸出140可包含該製成的產品。再者,自我適應的推理構件(構件110)能適應(自我適應2301 )該「製造產品」的目標(如目標2101 ),係根據前後關係(如前後關係2201 ),該前後關係可像是由工具系統的規格、或是目標構件之監測構件所收集的資料來產生。特別是該初始、上位的目標(如目標2101 )可被適應成「製造半導體裝置」(如目標2102 )。如以上已經指明的,為了完成目標,目標構件120可包含多個功能構件。此外,目標構件120可為模組化的,其中,目標的子構件可隨著目標適應的進行而合併進來。舉例來說,進行「製造產品」目標的目標構件可包括多重市場的評估以及預測構件,而該預測構件則連接到大量平行化的智能計算平台,該平台則能在多種市場中分析市場的條件,以便將目標適應(如2301 )成「製造一種多核心處理器,其係利用分子電子學的構件」(如目標210N )。應注意的是此種自我適應可牽涉多個中間階段的自我適應2301 至230N-1 ,以及中間階段被適應的目標2102 至210N-1 ,其中,中間階段的自我適應係根據由之前已進行的目標所產生之中間階段的前後關係2202 至220N
再舉一例說明目標、目標構件以及目標的自我適應,目標可為「在商店B購買電影A的DVD」,而目標構件120可為具有導航系統的車輛,而該導航系統則包括自我適應的推理引擎110(應注意的是此例中自我適應的推理引擎110是位於目標構件120之內)。某角色(如車輛的駕駛人)可輸入或選擇商店B的位置,而目標構件則可產生用來完成目標的指示。如果自我適應的推理引擎110接收輸入130後得知商店B沒有電影A的存貨(例如,RFID的讀取機更新了存貨資料庫,且更新後的訊息已廣播至構件110),而該角色正在前往商店B的路上,則自我適應的推理引擎110可以(一)請求額外的輸入130以識別出商店C具有電影A的庫存;(二)評估該角色要到達商店C所需的資源;(三)估計該角色想要完成本目標所感興趣的程度。如(一)至(三)的說明,透過輸入130所發展之修正後的前後關係,目標構件可藉此接收到指示而將目標適應成「在商店C購買電影A的DVD」。
應明白的是自我適應的推理引擎110可建立伴隨由目標構件120決定之目標的子目標。為了幫助完成該目標,子目標係藉由啟用自我適應的推理引擎來完成互補的任務,或是學習和目標相關的概念。
總之,基於自主生物學的系統100是一種目標驅動的系統,具有前後關係的目標自我適應。應明白的是基於所接收之前後關係的目標自我適應會引進額外的自我適應層,用來分析輸入的資訊以產生可控告資訊的輸出140。此種兼具(一)適應資訊或資料分析的流程、以及(二)根據前後關係來適應初始目標的能力,使得該系統具有相當的自我適應或是自主性。
第3圖描繪出基於自主生物學的學習工具300之範例的概念方塊圖。在實施例300中,自主學習系統包含工具系統310,而工具系統310則包括功能構件315以及感測器構件325。功能構件315賦予該工具系統特定的功能性,並可包括單一功能的工具構件,或是一堆實質上功能相同或迥異的工具構件。感測器構件325能偵測數種和該工具所實施的流程(如半導體晶圓的熱處理)相關之可被觀察的量,並產生伴隨該流程的資產328。收集到的資產328包含像是生產流程資料或試運轉資料的資料資產,可傳達給互動構件330。互動構件330包含適配器構件335、互動管理器345以及一或多個資料庫355。適配器構件335是用來作為接收資產328的介面,互動管理器345可處理收到的資產328,而資料庫355則可儲存已收到並且處理過的資料。互動構件330是用來幫助工具系統310與基於自主生物學的學習系統360的互動。與工具系統310實施流程所產生之資料的相關資訊可被接收並漸增式的輸送至自主學習系統360。
基於自主生物學的學習系統360包含記憶平台365。記憶平台365是用來儲存接收的資訊358(例如,資料、變數與伴隨的關係、因果關係圖(causal graph)、樣板等等)。資訊358可經由知識網路375傳送給處理平台385。處理平台385可處理所接收的資訊,並透過知識網路375將已經處理的資訊回傳給記憶平台365。自主學習系統360的構件大致上乃模仿頭腦的生物態樣,其中,記憶是採用處理構件來構成網路,用來處理資訊與產生知識。此外,知識網路375可從互動構件330接收資訊,也可對其傳達資訊。互動構件330則能經由互動管理器345來傳送資訊給工具系統310、或者是角色390。由於資訊358被自主學習系統360接收、儲存、處理及傳達,對於依賴資訊358的工具系統310及該等角色可帶來多項改善。亦即,其改善包括(一)隨著時間的演進,自主學習系統360與工具系統310變得越來越獨立,而越來越不需要角色的介入(例如,人工的指導與監督);(二)自主系統改善了自身輸出至角色的品質(例如,更易找出問題的根源,或是能預測出系統故障);以及(三)隨著時間演進,自主學習系統360的效能會越來越好-自主學習系統360以更快的速率及消耗更少的資源便能產出改善後的結果。
記憶平台365包括功能記憶構件的階層,當工具系統310初始化或組構時(如先驗知識,a priori knowledge),可組構用來儲存收到的知識(如資訊358)。先驗知識可透過互動構件330,以資訊輸入358的形式傳達。再者,記憶平台365可儲存(a)在工具系統310初始化/組構之後,用來訓練自主學習系統360的訓練資料(如資訊輸入358),以及(b)由自主學習系統360產生的知識;該知識可透過互動構件330,經由互動管理器345來傳達給工具系統310或是角色390。
由角色390(如人類主體)提供的資訊輸入358(如資料)可包括用來識別伴隨琉程的變數、在兩個或兩個以上的變數之間的關係、因果關係圖(如相依圖)、或是情節資訊。此種資訊可於學習過程中幫助導引基於自主生物學的系統360。此外在某態樣中,角色390可視此種資訊輸入358為重要的,並且此種重要性可相關於由工具系統310實施之特定流程的資訊關連性。例如,氧化物蝕刻系統的操作者(如角色390是一個人類主體)可判定蝕刻率對於生產流程的結果相當關鍵,故蝕刻率可為傳送至自主學習系統360的一項屬性。而在另一種態樣中,由角色390提供的資訊輸入358可為一種提示,藉此可在流程變數之間做出學習特定關係的提示。舉例說明,對於工具系統310之沈積室在特定沈積步驟中的壓力行為,提示可傳達學習該種行為的建議,並以沈積室體積、排氣壓力與進氣流量的函數來表示。而在另一例中,提示可指明去學習關於沈積室壓力之詳細的時間關係。此種示範性的提示能活化自主學習系統中一或多個功能處理單位,而該功能處理單位可學習壓力對於多個流程變數的函數相關性。此外,此種提示也可活化一或多個功能單位,該功能單位可應用並比較和角色390可利用之模型或是經驗的功能性有關、已學習到的功能性。
像是半導體製造工具的工具系統310極其複雜,因此不同的角色會透過不同種類的特定知識,無論完整或不完整,來專門處理與操作該工具系統。舉例來說,像是工具工程師的人類主體知道不同的氣體具有不同的分子量,故可產生不同的壓力。而流程/工具工程師則知道如何將由第一氣體產生的壓力讀數轉換成由第二氣體產生的對等壓力;此種知識的淺顯例子是將壓力讀數從一個單位(如Pa)轉換成另一單位(如lb/in2 或PSI)。還有一種位在基於自主生物學的學習系統中、常見但是更複雜的知識為在工具系統的性質(如艙室的體積)以及工具系統的量測值(如艙室內測得的壓力值)之間的函數關係。例如,蝕刻工程師知道蝕刻率與蝕刻室內的溫度有關。為了讓知識更具多樣性且兼顧該種知識可能有不完備之處,角色(例如,像是終端使用者的人類主體)可透過被傳達知識的不同程度來引導自主學習系統360:(一)不指定任何知識。角色對於自主學習系統不提供任何引導;(二)基本知識。角色傳達在工具系統的性質與工具系統中測量值之間的有效關係;舉例來說,角色傳達在蝕刻率(κE )以及流程溫度(T)之間的關係(例如,關係(κE ,T)),但是不提供細節;(三)具有已識別輸出的基本知識。對於在工具系統的性質與工具系統中測量值之間的關係,更進一步由角色提供在關係中某應變量的特定輸出(例如,關係(輸出(κE ),T))。(四)關係的部分知識。角色知道在工具系統的性質與測量值之間的數學方程式結構,以及相關的應變量與自變量(如κE =k1 e-k2/T ,但是不知道k1 或k2 具體的值)。然而該角色可能無法確知伴隨該關係的一或多個常數值。(五)完整的知識。角色擁有函數關係完整的數學描述。應注意的是可隨時間演進而提供越來越多此種引導,因為自主學習系統360也會演化並試著自動學習工具的函數關係。
知識網路375是一種知識匯流排,根據已建立的優先序傳遞資訊(如資料)或是傳送能量。該優先序可由一對資訊來源與資訊目的構件或平台所建立。此外,優先序可基於正在被傳輸的資訊(例如該資訊必須以及時的方式發送)。應注意的是優先序可為動態的而非靜態的,其變化可用自主學習系統360之學習發展的函數表示,並且係考慮基於自主生物學的學習工具300內所具有的一或多個構件中的一或多項需求一例如,發現某種問題狀況之後,一定會發出通訊來作為回應。經由知識網路375的通訊以及能量的傳送可透過有線連線(例如,雙絞線、T1/E1電話線、AC線、光纖)或是無線連線(例如,UMB、LTE、IEEE 802.11)來實施,並且可能發生在功能平台(例如,記憶平台365與處理平台385)內的構件(圖上未繪出)之間、或是在不同平台內的構件之間(例如,與其他自我意識的子構件通訊之自我意識的記憶平台內的構件),又或是該通訊可位於構件之間(例如,意識(awareness)的構件與概念化(conceptualization)的構件進行通訊)。
處理平台385包括功能處理單位,用來處理下面的資訊:接收或取得指定類型的輸入資訊(例如特定的資料類型,像是數值、序列、時間序列、函數、類別、因果關係圖等),並由處理單位實施計算以產生特定類型的輸出資訊。輸出資訊可經由知識網路375傳達至記憶平台365中一或多個構件。在某態樣中,功能處理單位可讀取並修改儲存在記憶平台335的資料結構或資料類型的實例,也可在其中存入新的資料結構。其他態樣的功能處理單位可提供對於各式各樣數值屬性的調整,像是適合性、重要性、活化/抑制能量、與通訊的優先序。每個功能處理單位都具有動態的優先序,係決定用來處理資訊的階層;具有較高優先序的單位會比較低優先序的單位更早處理資料。如果已經一直在處理特定資訊的功能處理單位無法產生新的知識(例如學習)時,像是產生排名、或從伴隨工具系統310之運作來鑑別出良好與不良運行的排名函數,則伴隨該功能處理單位的優先序便會被調低。反之,如果有產生新的知識,則該處理單位的優先序便被調高。
應明白的是處理平台385透過具有優先序的功能處理單位,模擬出人類對於特定狀況(例如特定的資料類型)試著採取的的第一操作的傾向。如果該操作產生新的知識,便在後續實質上相同的狀況中繼續實施該操作;反之,當第一操作無法產生新知識時,利用該第一操作來處理狀況的傾向便會降低,而使用第二操作(如傳播活化)。如果第二操作無法產生新的知識,則其優先序會被降低,並改採第三操作。處理平台385會繼續採取別的操作,直到有新的知識產生為止,並由別的操作取得更高的優先序。
於某態樣中,角色390可為自主學習系統360提供流程的配方參數(recipe parameter)、指導(例如接受離子植入之晶圓,其退火週期的溫度分佈;半導體之氣相沈積時,斷續器(shutter)的開關順序;離子植入過程中的離子束能量;或是濺鍍時的電場大小)、以及初始化參數。在別的態樣中,角色可供應伴隨工具系統310保養的資料。在其他態樣中,角色390可產生並提供由工具系統310實施之流程的電腦模擬結果。由此種模擬產生的結果可用來作為訓練基於自主生物學的學習系統之訓練資料。此外,模擬或是終端使用者可傳遞伴隨流程的最佳化資料給工具系統370。
自主學習系統360可透過一或多個訓練週期來訓練,每個訓練週期可發展基於自主生物學的學習工具300以(一)能夠實施大量的功能而無需外在的介入;(二)提供更佳的回應,像是當診斷製造系統健康度的問題根源時,可提供改良後的準確度或正確度;(三)提高性能,像是更快的反應時間、減少記憶體的使用、或是產品品質的改進。如果訓練資料是收集自資料328,而該資料328係伴隨工具系統310的流程校正或標準運行(此類資料可視為「內部的」)、或是透過互動管理器345的話,則該訓練資料可經由適配器構件335來輸進自主學習系統。當訓練資料是收集自一或多個資料庫365(例如,透過外部的探測器測得之外部測量的相關資料、或是因為修理而介入工具系統310的紀錄)時,此類訓練資料可視為「外部的」。當訓練資料是由角色供應時,資料係透過互動管理器345來傳達,並可視為「外部的」。根據內部或外部訓練資料的訓練週期能幫助自主學習系統360去學習工具系統310的預期行為。
如以上所指出的,功能構件315可包括多個指定工具之半導體製造能力的功能性工具構件(未繪出),而該等構件能讓工具被使用作(一)製造半導體基版(例如,晶圓、顯示器的平板、液晶顯示器(LCD)等);(二)實施磊晶或非磊晶的氣相沈積;(三)幫助離子植入或是氣體團簇式的離子注入;(四)實施電漿或非電漿(乾式或濕式)的氧化物蝕刻處理;(五)實施微影製程(例如光微影製程、電子束微影製程等),等等。工具系統310亦可實施在熔爐中;用於受到控制之電化學環境中操作的曝光工具;平面化裝置;電鍍系統;用於光學、電性以及熱性質的測試裝置,其包含使用壽命的測量(透過操作週期);度量衡工具;晶圓清潔機器等。
在由工具系統310所實施的流程中,含有感測器構件325的感測器與探測器可收集不同物理與機械性質的資料(如資料資產)。不同的物理性質像是壓力、溫度、濕度、質量密度、沈積率、層厚度、表面粗糙度、結晶定向、摻雜濃度等;不同的機械性質則像是閥門孔徑或閥門角度、斷續器的開/關操作、氣體流量、基板的角速度、基板的定向等。其係根據所收集資料的用途,而透過不同複雜度的多種轉換器與技術。該等技術包含,但不限於,X光繞射、穿透式電子顯微鏡分析(transmission electron microscopy,TEM)、掃瞄式電子顯微鏡分析(scanning electron microscopy,SEM)、質譜分析、曝光評估、磁電遷移測量(magnetoelectric transport measurement)、光學性質測量等。其他相關於產品(如半導體基版)的資料資產為顯影檢視(development inspection,DI)關鍵尺寸(critical dimension,CD)以及最終檢視(final inspectation,FI)CI。應明白的是探測器可位於工具系統310的外部,並可透過介面構件(未繪出)來存取。例如,該類外部的探測器可提供DI CI與FI CI。應明白的是該等資料資產328有效地表示出輸出資產的特徵、或是由工具系統310製造或裝配之實體產品的特徵。
在態樣中,感測器構件325中的資料來源可連接至適配器構件335,而適配器構件335則可組構用來以類比或數位形式收集資料資產328。根據自主學習系統310內資料的預定用途,在資料存入記憶平台365之前,適配器構件335也可幫助將流程運行中所收集到的資料368組織或解構。適配器構件335的適配器可關連於感測器構件325的一或多個感測器,並且能以特定的頻率或其他指定的條件來讀取該一或多個感測器。外部的資料來源適配器也可能具有拉進資料以及傳遞從工具外推送進來之資料的能力。例如,MES/歷史資料庫的適配器知道如何諮詢MES資料庫而從各種自動機器人處抽取資訊,並且將該資料封裝/存進自主系統之一或多個構件之工作記憶體中。舉例來說,當工具處理晶圓時,適配器構件335可一次收集一片晶圓之晶圓層級的運行資料。然後適配器構件335可集中某批次(batch)中的個別運行以形成「分批(lot)層級資料」、「保養區間資料」等。另一選擇為,如果工具系統310對於分批層級資料輸出單一檔案(或是電腦產品資產),適配器構件335便能抽取晶圓層級資料、步驟層級資料等。再者,被解構的資料單元可相關於工具系統300的一或多個構件,像是感測器構件325的壓力控制器正在運作時的變數與次數。對於上述收到的資料328在處理或封裝之後,適配器構件335可將處理後的資料存進一或多個資料庫355。
一或多個資料庫355包含的資料可來自(一)工具系統370,係透過感測器構件325內的感測器實施測量;(二)製造執行系統(manufacturing execution system,MES)資料庫或歷史資料庫;或是(三)工具系統310之電腦模擬產生的資料,像是模擬由角色390實施的半導體晶圓製造。態樣的MES是一種系統,可測量並控制製造的流程、追蹤設備的可用度與狀態、控制庫存、以及監測警報的發生。
應明白的是由工具系統310所製作的產品或產品資產,可透過互動構件330傳達給角色390。應明白的是該產品資產可被角色390分析之後,所得的結果資訊、或資料資產再傳達給自主學習系統360。另一態樣的互動構件330則可經由適配器構件335對於產品資產328實施分析。
再者,應瞭解的是實施例300的互動構件340與自主學習系統360是部署在工具系統310的外部。可以理解的是有另一種基於自主生物學的學習工具300的部署組構,像是嵌入式的部署,其中,互動構件340與基於自主生物學的學習系統310都位於工具系統370的內部,成為單一的特定工具構件(如單一嵌入模式),或是成為工具構件的叢集(如多重嵌入模式)。此種另類的部署可採用階層的方式實作,其中,自主學習系統支援一組自主式的學習工具,此組工具形成群組工具、或是工具的集團。以下討論此種複雜的組構。
下面參考第4圖來討論示範用的工具系統310。基於自主生物學的學習系統360的範例架構則參考第5至9圖來詳細討論。
第4圖是採用基於自主生物學的學習系統360來監督、分析並改善操作之示範用的半導體製造系統400。系統400特別是根據第3圖所討論之工具系統310來說明的熱顯影與塗層系統。系統400包含載入/卸載區405、處理區410、以及介面區415。在態樣中,載入/卸載區405具有卡匣台420,在卡匣台420上每個卡匣425存放有複數個半導體基版。基板會被載入系統400,也會從系統400中卸載。處理區410具有多種單一基板的處理單位,用來循序一個接著一個處理基板。介面區415可幫助存取多個探測器與感測器,作為品管、流程發展、現場問題根源的分析。收集的資料(如資料368)透過介面構件可傳達給基於自主生物學的學習系統。
某態樣的處理單位410包括第一處理單位群430,其具有冷卻單位(COL)435、定位單位(ALIM)440、黏著單位(AD)445、延伸單位(EXT)450、兩個預焙單位(PREBAKE)455、以及兩個後焙單位(POBAKE)460,由下到上依序堆疊。此外,第二處理單位群465則包含冷卻單位(COL)435、延伸冷卻單位(EXTCOL)470、延伸單位(EXT)475、第二冷卻單位(COL)435、兩個預焙單位(PREBAKE)455、以及兩個後焙單位(POBAKE)460。冷卻單位(COL)435與延伸冷卻單位(EXTCOL)470可操作在低流程溫度下,並被安排在較低層;而預焙單位(PREBAKE)455、後焙單位(POBAKE)460、以及黏著單位(AD)445則是操作在高流程溫度下,並被安排在較高層。此種安排方式可減少單位間的熱干擾。另一選擇為,該等單位可具有別的替代物或別種安排方式。預焙單位(PREBAKE)455、後焙單位(POBAKE)460、以及黏著單位(AD)445之各者皆包括熱處理設備,可用來加熱基板至高於室溫的溫度。態樣的溫度與壓力資料可透過介面構件340而從預焙單位455、後焙單位460以及黏著單位445供應至基於自主生物學的學習系統360。而基板的轉速與位置資料則可傳達自定位單位440。
第5圖描繪基於自主生物學的學習系統之範例架構500的概略方塊圖。實施例500的自主學習系統360包括功能性記憶構件的階層,其包含長期記憶(LTM)510、短期記憶(STM)520、以及情節記憶(EM)530。此種功能性記憶構件之各者可透過知識網路375來通訊,如討論第3圖時描述的運作。此外,自主學習系統360包含自動機器人構件540,其包含可辨識出的自動機器人之功能處理單位,並與描述處理平台385時的功能單位具有實質相同的特徵。應注意的是自動機器人構件540可為處理平台385的一部份。
此外,自主學習系統360可包括一或多個主要功能單位,其包含自我意識構件550、自我概念化構件560、以及自我最佳化構件570。第一前饋(FF)迴圈552可當作正向連線,並可在自我意識構件550與自我概念化構件560之間進行資料通訊。此外,第一回授(FB)迴圈558可當作反向連線,並可在自我概念化構件560與自我意識構件550之間進行資料通訊。同樣地,在自我概念化構件560與自我最佳化構件570之間的正向連線與反向連線,其資料通訊也可以分別透過第二FF迴圈562與第二FB迴圈568完成。應明白的是FF連線的資料在傳遞至接收該資料以進一步處理的構件之前便可先被轉換,而FB連線的下一個資料單元則可在處理之前便先被接收該資料的構件轉換。舉例來說,透過FF連線552傳送的資料在傳遞給自我概念化構件560之前,可先被自我意識構件550轉換。尚須明白的是FF連線552與562可幫助在構件550與構件570之間資料的間接通訊,而FB連線568與558則可幫助構件570與550之間資料的間接通訊。此外,資料可透過知識網路375直接傳達在構件550、360、與370之間。
在工具系統初始化或組構期間(如先驗知識)透過互動構件330供應的知識可儲存在長期記憶510中,用來在初始化/組構之後訓練自主性的學習工具系統300。再者,由自主學習系統360產生的知識可儲存在長期記憶510內。應明白的是LTM 510可為記憶平台365的一部份,因此可展現出與記憶平台365實質相同的特徵。長期記憶510通常包括具有工具系統構件(如製造構件、探測器構件等)之相關資訊的知識庫、關係、以及步驟。至少有部分的知識庫可為描述或分類資料類型(像是序列、平均數、或標準差)的語意網路、資料類型之間的關係、以及用來轉換第一組資料類型成為第二組資料類型的步驟。
知識庫可包含知識單元或是概念。在態樣中,每個知識單元係伴隨兩個數值:知識單元或是概念的適合性(ξ)與慣性(τ);此二屬性共同決定了概念的優先序。此二數值屬性的嚴格定義函數(如加權總數、幾何平均數)可為概念的情境分數(situation score,σ)。例如σ=ξ+τ。知識單元的適合性可定義成知識單元(如概念)在特定時間對於工具系統或是目標構件情境的關連性。在態樣中,具有比第二單元更高適合性分數的第一單元或概念對於自主學習系統360目前的狀態以及工具系統310目前的狀態,會比適合性分數較低的第二單元更具關連性。知識單元或是概念的慣性可定義為利用該知識單元的困難度。例如,低的第一慣性值可視成數值單元;一列數值可視成第二慣性值,且其值較第一慣性值高;一序列的數值可具有第三慣性值,且其值較第二慣性值高;而數值的矩陣則可具有第四慣性值,且其值較第三慣性值高。應注意的是慣性可應用在其他的知識或資訊的結構,像是圖形、資料庫中的表格、音頻檔案、視頻框(video frame)、程式碼片段(code snippet)、程式碼腳本(code script)等,後者可實質上是輸入130的一部份。本發明提出適合性與慣性的嚴格定義函數,可影響取得與應用知識單元的可能性。具有最高情境分數的概念是最有可能提供給短期記憶520的處理單位作處理的概念。
短期記憶520是一種暫時的儲存體,可用作工作記憶體(如工作區或快取)或是一個地方,此地是伴隨特定演算法或步驟之合作/競爭操作、或是自動機器人可處理資料類型之處。STM 520的資料具有一或多種資料結構。STM 520的該等資料結構可隨著被自動機器人與計畫者思考機器人(,例如專屬於計劃的機器人)所實施的資料轉換而改變。短期記憶305可包括資料、由互動管理器345提供的學習指導、來自長期記憶310的知識、由一或多個自動機器人或思考機器人提供與/或產生的資料、與/或由角色390提供之初始化/組構的命令。短期記憶520可追蹤一或多個用來轉換儲存在短期記憶520中資料之自動機器人與/或思考機器人的狀態。
情節記憶530儲存的情節包含可由角色識別之伴隨流程的參數與概念的集合。態樣中的情節可包括外來資料或是輸入130,並可提供特定的前後關係給自主學習系統100。應注意的是情節通常伴隨特定的劇情(scenario),而該劇情是在進行目標時被識別或產生的(例如,被工具系統110、目標構件120、或自主學習系統160)。識別某情節的角色可為機器或是人類主體,像是製程工程師、工具工程師、現場支援工程師等。應明白的是情節記憶530類似人類的情節記憶,其中,伴隨特定一或多個劇情的知識(例如:情節)可以被呈現及存取而不必回想造成該情節的學習過程。情節的介紹或是定義通常是訓練週期的一部份、或是實質上由外來的輸入所提供,並可帶來基於自主生物學的學習系統360去嘗試學習特徵化伴隨該情節之資料中的資料型樣或輸入型樣。伴隨情節之資料的已特徵化型樣可連同情節與情節名稱一起儲存在情節記憶530內。將情節添加到情節記憶530會產生指定情節的自動機器人,當由工具系統310或通常由目標構件120進行之流程中的一組參數進入該情節所定義的工作範圍時,便可活化該機器人。而當伴隨已進行過的目標或流程之第一特徵被確認時,該指定情節的自動機器人便接收充分的活化能量。如果該等參數滿足由所收到的情節所建立的標準,該指定情節的自動機器人便比較情節中資料的型樣以及目前可用的資料。如果工具系統310目前的情境(如資料之已經確認的型樣)或是目標構件吻合所儲存的情節,便會產生警報以確保工具維修工程師知道該情境而採取預防措施,降低對於功能構件315、或感測器構件325、或工具製程中所使用材料的更多損害。
自動機器人構件540包括自動機器人的程式庫,自動機器人係對於輸入的資料類型(如矩陣、向量、序列等)實施特定的操作。態樣的自動機器人存在於自動機器人的語意網路內,其中,各自動機器人可具有伴隨的優先序。自動機器人的優先序是其活化能量(EA )與抑制能量(EI )的函數。自動機器人構件540是組織化後的自動機器人倉庫,所包含的自動機器人用於自我意識構件550、自我概念化構件560、自我最佳化構件570、以及其他能在構件與多種記憶單位之間參與資料轉換與傳遞的自動機器人。自動機器人能實施的操作可包含序列的平均、序列的排序、第一與第二向量的內積、第一矩陣與第二矩陣的乘法、時間序列對於時間的導數、序列的自相關計算、第一與第二序列之間的互相關運算、將某函數以基本函數的完整集合來解構、將時間序列的數值資料流以小波來解構、或是時間序列的傅力葉解構。應明白的是根據輸入的資料可實施其他的操作,亦即對於影像、聲音記錄、或生物量指示器、視頻框壓縮、環境聲音或語音指令的數位化等,從其中抽取特徵。自動機器人實施的每項操作可為一種已命名的函數,用來轉換一或多種輸入的資料類型來產生一或多種輸出的資料類型。每個函數在自動機器人構件540中都有自動機器人,各函數可具有LTM中的單元,使得思考機器人能根據自主學習系統360的需求與全部的注意力持續時間(attention span)來對於自動機器人的活化/抑制能量做出決定。相似於自主學習系統360,自動機器人構件540的自動機器人可隨著時間而改善效能。自動機器人的改善包含產生的結果(如輸出)品質更好、執行的效能更好(如縮短執行時間、能夠實施更大量的運算等)、或對於特定的自動機器人增強輸入的範圍(如包含機器人可操作之額外的資料類型)。
儲存在LTM 510、STM 520、與EM 530內的知識(概念與資料)可被主要功能單位所運用,並且賦予基於自主生物學的學習系統360部分的功能性。
自我意識構件550可判定工具系統310的第一可接受操作狀態、以及後來工具系統發生劣化的後續狀態之間,工具系統劣化的程度。態樣中的自主學習系統360可接收用來特徵化可接受操作狀態的資料、以及在此種可接受狀態下製造之產品資產所伴隨的資料。此種資料可視為典型資料。基於自主生物學的學習系統360可處理該典型資料,而該伴隨的結果(如重要參數相關的統計量、一或多個參數中可觀察到的飄移、和工具參數相關的預測函數等)則可被自我意識構件550儲存,並用來和以資訊輸入358的形式所輸入的資料(如生產流程資料或試運行的資料)互相比較。如果在典型資料已產生與學習的結果以及裝置流程的運行資料之間的差異小,則可視該製造系統的劣化低;另一選擇為,如果在典型資料已產生與學習的結果、以及該樣本流程資料之間的差異大,則可能有相當程度的工具系統(如半導體製造系統)劣化。劣化的顯著程度會導致流程、或是目標、前後關係的調整。此處描述的劣化可由劣化向量(Q1 ,Q2 ,…,QU )算出,其中,劣化向量的每個構件Qλ (λ=1,2,…,U)是可用資料集合的不同方面。例如,Q1 可為多變量的平均數、Q2 為多變量的離差、Q3 為流程步驟中特定變數之小波係數的集合、Q4 可為預測壓力與實測壓力的均差等。標準的訓練運行係對於各構件產生數值的特定集合(如訓練資料的資產),可再用來與產生自每個構件之運行資料(如運行資料資產)的構件Q1 -QU 作比較。為了評估劣化,可從劣化向量在{Q}空間的「標準位置」採用適當的距離度量來比較該劣化向量的(如歐幾里得)距離。此種歐幾里得距離越大。表示工具系統的劣化越嚴重。此外,可採用第二種度量來計算兩向量之間餘弦函數的相似性度量。
自我概念化構件560可被組構以建立對於重要的工具系統310的關係(例如:一或多個工具行為函數)以及說明(例如:被請求與被測量的參數相關的統計量、參數對於劣化的影響等)的理解。應明白的是關係與說明也是資料資產、或軟資產。該理解是由自主學習系統360自主地建立(例如,藉由輸入資料所產生的影響及前後關係的目標自我適應,透過多變量迴歸或進化規劃法、例如基因演算法),或是透過角色390(如人類主體)提供引導。自我概念化構件560可為工具系統310的單一參數建構行為的函數說明,或通常為類似構件120的目標構件,像是在特定的沈積步驟中半導體製造系統沈積室內的壓力對於時間的函數。此外,自我概念化構件560可學習伴隨工具系統的行為,像是應變量在輸入資訊358之特定集合上的函數關係。態樣的自我概念化構件560可學習於特定氣體流速、溫度、排氣閥門角度、時間等條件下,給定體積之沈積室內的壓力行為。再者,自我概念化構件560能產生可用作預測的系統關係與性質。在已經學到的行為之間,自我概念化構件可學習用來將標準狀態特徵化的關係與說明。此標準狀態通常在比對觀察者工具行為內的變異時,被自主學習系統360採用作為參考狀態。
自我最佳化構件570能根據預測值(例如,基於自我概念化構件560與測量值而學習到的函數相關性或關係所做的預測)之間工具系統310離差的程度來分析基於自主生物學的學習系統300目前的健康狀況或效能,以辨識出(一)工具系統360故障的可能原因;(二)根據自主學習系統360收集到的資訊,找出一或多個工具系統劣化的問題根源。無論自主學習系統360在一開始是否辨識出故障的問題根源,自我最佳化構件570仍可隨著時間而學習,因為學習系統300允許輸入保養記錄或用戶的引導以正確識別問題真正的根源。為了改善未來診斷的準確度,態樣的自主學習系統360利用貝氏推論(Bayesian inference)與學習來更新其診斷的基礎。另一選擇為,最佳化的計畫能為了適應而有所改變,而此種被適應的計畫則可儲存在最佳化案例的歷史紀錄中,用於之後的取得、引用以及執行。此外,由工具系統310對於某流程所進行的一組自我適應、或通常由目標構件120所進行的目標可透過最佳化的計畫來完成。自我最佳化構件570會利用資料的回授(例如,由連線565、555與515所形成的迴圈)來發展能增進流程或目標最佳化的自我適應計畫。
實施例500的基於自主生物學的學習系統360尚包括計畫者構件580與系統前後關係構件590。功能性記憶構件510、520、530以及主要功能單位550、560、570可透過知識網路375而與計畫者構件580與系統前後關係構件590進行通訊。
計畫者構件580可以利用並包括自動機器人構件540中更高層級的自動機器人。該等自動機器人可稱為計畫者思考機器人,用來調整多種數值屬性,像是適合性、重要性、活化/抑制能量、以及通訊優先序。計畫者構件580可實作嚴格的直接全域策略(direct global strategy)。例如,創造一組計畫者思考機器人,透過短期記憶505與自動機器人中可用的特定知識來強制特定的資料類型或資料結構供短期記憶520處理。在態樣中,由計畫者構件580創造的自動機器人可部署在自動機器人構件540內,並應用於知識網路375。此外,另一選擇是計畫者構件580可實作間接全域策略,該間接全域策略為自主學習系統360目前之前後關係的函數、工具系統310目前的狀況、短期記憶520的內容(可包含伴隨在內容中運作的自動機器人)、以及多種自動機器人的利用成本/利潤分析。應明白的是所討論之基於自主生物學的學習工具300可以動態地擴充計畫者構件。
計畫者構件580可當作是調節構件,用來確保在基於自主生物學的工具300內之流程或是目標的自我適應不會劣化。態樣的調節特徵可透過直接全域策略來實作,其經由創造出根據已計畫的流程來推論操作條件的調節思考機器人。此推論可透過該調節思考機器人活動所在之資料類型的語意網路來完成,並且該推論可被成本/利潤分析所支持或是補充。應明白的是計畫者構件580可保持目標飄移限定在目標空間的特定範圍內,故可減輕對於像工具系統310之目標構件的特定損害。
系統前後關係構件590可保留利用自主學習系統360之基於自主生物學的學習工具300目前的能力。系統前後關係構件590可包含狀態標示器,該狀態標示器包括(一)伴隨能力之內部程度的值(例如,當進行流程或目標時工具系統310的有效程度、當進行該流程時採用的一組資源、最終產品或服務(或是已經進行之目標的結果)的品質評估、裝置的交貨時間(time-to-delivery)等等);(二)標籤或標示器,用來指出自主學習工具300的狀態。例如,該標籤指出的狀態像「初始狀態」、「訓練狀態」、「監測狀態」、「學習狀態」、或「應用知識」。該能力程度可由已決定範圍內的數值或是度量來特徵化。此外,系統前後關係構件590可包含由自主學習系統360在特定時間區間實施之學習的摘要,以及考慮可由已實施過的學習來實作之可能的流程或目標自我適應的摘要。
第6A圖描繪自動機器人構件540的一個範例。自動機器人6151 -615N 代表自動機器人和思考機器人的程式庫,每一個都具有特定的活動力優先序6251 -625N 。自動機器人6151 -615N 可與記憶體(如長、短期記憶,或是情節記憶)進行通訊。如前所述,自動機器人的優先序是由自動機器人的活化能量與抑制能量所決定的。當可被自動機器人處理的資料位於STM中時,自動機器人(如自動機器人6151 或615N )便(透過思考機器人)獲得活化能量。自動機器人(如自動機器人6152 )之活化能量與抑制能量的加權總數,如Σ=wA EA +wI EI, 可決定何時該自動機器人能自我活化以實施其功能性任務。當Σ>ψ時,自動機器人便自我活化,其中ψ是預定的內建門檻值。應明白的是所討論之基於自主生物學的學習工具300具有動態增加自動機器人的能力。
第6B圖描繪自動機器人的範例架構650。自動機器人660可實質上為包含在自動機器人構件340內的任何一個自動機器人。功能性構件663係判定並實施至少一部份可由自動機器人660實施在輸入資料上的運作。處理器666能執行由自動機器人660實施之該運算的至少一部份。態樣的處理器666可當作功能性構件663的協同處理器(co-processor)。自動機器人660也可以包括內部記憶體669,也就是之前實施的一組運算結果所在之處。在態樣中,內部記憶體是作為快取記憶體,用來儲存伴隨操作的輸入資料、EA 與EI 現有及先前的值、自動機器人的操作歷史紀錄等。當特定類型與數目的錯誤回授或往回傳遞至自動機器人660時,內部記憶體669亦能幫助自動機器人660學習如何改善即將發生的結果品質。因此,透過一組訓練週期可訓練自動機器人660以特定方法去處理特定的輸入資料。
自動機器人(如自動機器人660)亦可自我描述(self-describing),因為自動機器人能指定(一)一或多個該自動機器人能處理或要求的輸入資料類型;(二)自動機器人能產生的資料類型;(三)對於輸入與輸出資訊的一或多個限制。態樣的介面675能幫助自動機器人660自我描述,因此可對思考機器人表達自動機器人的可用度與能力,使得思考機器人根據特定的工具劇情(tool scenario)而向自動機器人供應活化/抑制能量。
第7圖描繪出在基於自主生物學的學習系統中,自我意識構件的範例結構700。自我意識構件350可決定對於工具系統(如工具系統310)內學到的標準狀態目前劣化的程度。劣化可能發生自多種來源,像是工具系統中機械零件的磨損、為了發展配方(如資料資產)而實施的不當操作或發展操作、或是會強迫工具系統在一或多個最佳範圍以外操作的流程、不適當的修改工具系統、未切實按計畫進行保養。自我意識構件550可被遞迴地組裝或是定義,其透過(一)記憶體階層,如可作為部分記憶平台365的意識記憶;(二)功能性操作單位,像是意識自動機器人,其位於自動機器人構件540內並作為處理平台385的一部份;以及(三)一組意識計畫者。根據劣化的程度,自主學習系統360可分析可用的資料資產328以及資訊358以排名可能的錯誤原因。在態樣中,對於像是工具系統錯誤的嚴重劣化程度,角色(如現場工程師)可實施一或多種保養行動(如清理腔室、汰換聚焦環等)來作為回應。例如,如果成功且確認修復了工具系統,而使劣化程度回復成和工具系統發生錯誤前一致的話,則在保養行動之前伴隨的症狀(像是資料資產與型樣、關係、以及實質上抽取自該類組合之任何類型的理解)可繼續由自主學習系統360保持。因此,對於未來的案例(透過從資料資產所自主蒐集到的新理解而辨識出已經學會的症狀)便可重新實施已經儲存的修復計畫而降低成本並縮短平均修復時間(MTTR)。
意識工作記憶體(awareness working memory,AWM)710是一種STM,其包含稱為意識感測記憶體(awareness sensory memory,ASM)720的記憶體特別區域,該特別區域可用來儲存像是資訊輸入358的資料,可來自感測器構件325中的感測器內或角色390內,可被適配器構件335中一或多個適配器封裝,並可被知識網路375接收。自我意識構件550亦可包括複數個特定功能性的自動機器人,該等自動機器人可位於自動機器人構件540內並包含意識計畫者思考機器人(awareness planner uberbot,AP)。
此外,自我意識構件550可包括意識知識記憶體(awareness knowledge memory,AKM)730,該意識知識記憶體是LTM的一部份,並包含複數個和自我意識構件550操作相關的概念(例如,一種屬性、一種像是類別或因果關係圖的實體、一種關係、或是程序)。在態樣中,用於半導體製造工具的自我意識構件550包含特定範圍的概念(像是步驟、運行、批次、保養區間、溼清潔週期等)以及通用的概念(像是數值、列、序列、集合、矩陣、連線等)。該等概念可進入較上位的抽象概念。例如,晶圓的運行可定義成有順序的步驟序列,其中,步驟同時具有配方參數設定(如所需數值)以及一或多種步驟的測量。再者,AKM 730可包含能連接兩個或兩個以上概念(如平均、標準差、範圍、相關性、主要構件分析(principle component analysis,PCA)、多刻度主要構件分析(multi-scale principle component analysis,MSPCA)、小波或實質上任何的基本函數等)的函數關係。應注意的是可應用多重函數關係並因而相關於相同的概念。例如,一列數值藉由「平均」而被對應至一個實數的實例,該平均便是一種(函數的)關係與標準差關係、以及最大值關係等。當一或多個實體至另一實體的關係是函數或泛函數(函數的函數)時,為了使該函數生效故有伴隨的程序,而該程序可被思考機器人所執行。概念的精確定義可採用像是UML、OMGL等適合的資料模式(data schema)定義語言來描述。尚須注意的是AKM 730的內容可在(工具系統)執行時期被動態地增強而不必將系統停機。
AKM 730中的每個概念,如同此處描述的知識庫中的任何概念一樣,可伴隨導向至該概念的特定情境分數之適合性屬性以及慣性屬性。首先在資料提供給自主系統之前,AKM 730內所有單元的適合性值都是零,但是對於所有概念的慣性卻與工具有關,並且可被角色指定,或是基於歷史資料(例如,一或多個資料庫355內的資料)。在態樣中,從數值的集合產生平均之程序其慣性相當低(如=1),因為平均的計算被視為一種相當簡單的操作,可應用於實質上和所收集的資料集合或電腦模擬相關的所有情況。同樣地,用來轉換一組數值之求最大值與求最小值的程序,可被賦予相當低的慣性值。另一選擇為,計算範圍與計算標準差可給予較高的慣性值(如=2),因為該等知識單元較難應用,而計算PCA表現出更高的慣性層級,且計算MSPCA又具有更高的慣性值。
情境分數可用來判定哪些概念要從AKM 730傳遞至AWM 710(如下)。凡高於情境分數門檻值的知識單元或是概念都適格並被傳達給AWM 710。當AWM 710內有足夠的可用儲存器來保留該概念、並且尚未傳達給AWM 710的不同概念沒有更高的情境分數時,該等概念便可被傳達。AWM 710內概念的適合性、甚而概念的情境分數會隨著時間而衰減,故當已經在記憶體中的一或多個概念不再需要或不能再用時,便讓具有更高適合性的新概念進入意識工作記憶體710。應注意的是概念的慣性越大,則將其傳達以及從AWM 710移除所需的時間便越久。
當工具系統的狀態改變時(例如更換濺鍍靶,加入電子束槍、完成沈積製程、初始化原處的探測器、完成退火階段等),意識計畫者550思考機器人可記錄哪一個概念(如知識單元)能應用於新的狀態,並可增加AKM 730內此種概念中各者的適合性值、甚而其情境分數。為了降低特定自動機器人的活化能量,並增加用於適合新情境之自動機器人的EA ,自動機器人6151 -615N 的活化能量可被思考機器人調整。適合性(以及情境分數)的增加可被計畫者思考機器人散佈至該等概念的第一鄰居、然後至第二鄰居、再繼續下去。應明白的是在AKM 730中第一概念的鄰居可為第二概念,而該第二概念以拓樸學的觀念來說,係根據所選的測量值(如跳躍(hop)次數、歐幾里得距離等)為單位而位於距離該第一概念的特定距離之內。應注意的是第二概念距離已收到原來的適合性增加之第一概念越遠,則該第二概念在適合性上的增加便越小。因此,適合性(以及情境分數)的增加代表被緩衝的散佈(dampened spread)為「概念距離」的函數。
在架構500內,自我意識構件550包括意識排程適配器(awareness schedule adapter,ASA)760,係為意識計畫者構件750的延伸,並且能整批請求與實現改變外來資料或內在資料(例如經由透過互動構件330的感測器構件325、經由輸入130、或經由(回授)連線155)。態樣的意識排程適配器760能帶來資料取樣頻率的調整,例如調節適配器構件335中不同適配器傳達資料至打算用於ASM 720之知識網路375(如資訊輸入358)的速度。再者,對於和資料標準型樣的描述無關的流程變數,或是從自我適應的推理引擎所接收的資料中推得、但卻不能進行以完成目標的變數,意識排程適配器760能以低頻率採樣、或是實質上排除伴隨這些變數所收集的資料。反之,ASA 760卻能以較高的頻率採樣一組被資料的標準型樣廣泛使用的變數、或是可以主動進行目標的一組變數。此外,當自主學習系統360認出工具系統310狀態的改變(或是伴隨特定目標的情境改變)且其中的資料指出產品品質或流程可靠度逐漸偏離標準的資料型樣時(或是因為目標的飄移導致離開目標空間內的初始目標甚遠時),該自主學習系統可經由ASA 760來請求更快地取樣資料以收集大量的可控告資訊(如輸入130),藉以有效地確認出該劣化並因此觸發適當的警報。態樣的目標構件能向進入初始目標的角色展示目標飄移的摘要。例如,當電器行內的顧客採購家庭劇院時若已經實質偏離了原先打算的花費,便可在預算的自我適應後被顯示成預計費用改變的一項紀錄;又或是於目標自我適應時,向資料庫建構師顯示伴隨記憶體空間以及基礎建設的成本,以最佳化資料倉儲。
角色390(例如人類主體)可採用多種方式訓練自我意識構件550,包含一或多個情節的定義(例如包含被成功適應的目標的說明)。透過自我意識構件550,對於情節的自主學習系統360的訓練可能發生如下:角色390創造了情節,並給予該情節獨特的名稱。之後對於該新創造之情節的資料可交付自主學習系統360。該資料可為工具系統在單獨特定操作步驟時對於特定感測器的資料、在單獨之特定步驟時的一組參數、對於某運行的單獨參數的平均等。
另一選擇,或是附加地,角色390可提供更多基本的引導。例如,現場支援工程師可對工具系統310實施預防性的工具保養(preventive tool maintenance,PM)。PM可列入計畫定期實施,或是不經計畫、非定期的。應明白的是預防性工具保養可以是回應自主學習系統360發出的請求、回應定期性的預防保養、或是回應不在計畫內的保養,以實施在製造系統上。兩次連續的PM中間會經過一段時間區間,在此時間區間內一或多項流程(如晶圓/批次的製造)會在工具系統內發生。透過資料和產品資產、以及像是生效的計畫者與不在計畫內之保養的伴隨資訊,自主學習系統便能推理出「故障週期」。因此,自主學習系統可利用資產328來推得平均無故障工作時間(mean time between failure,MTBF),此種推理是透過無故障工作時間對於重要資料與產品資產之函數的模型而得到支持。再者,透過所接收成為資訊I/O 358之不同資產間的關係、或是透過由專家角色傳遞之受到監督訓練期間產生的歷史資料,自主學習系統360便可以發展模型。應明白的是專家角色可以是與已受過訓練之不同自主學習系統互動的不同角色。
角色390可引導該自主系統,其方式為通知該系統他可以平均晶圓層級的運行資料以及橫跨PM時間區間來評估重要參數的飄移。該自主系統可實施更具挑戰性的練習,其中,於不在計畫內的PM之前,角色390透過學習指導向自主學習系統360指明去學習特徵化晶圓平均層級的資料。此種指導可促使自主學習系統360於不在計畫內的PM之前去學習資料的型樣。如果資料的型樣可被意識自動機器人所識別,則自我意識構件550便能與時俱進地學會該型樣。在學習型樣時,意識構件550可從自動機器人構件540內的自我概念化構件560或是意識自動機器人處請求協助(或是服務)。當以高度的信心(例如,PCA解構係數反應之型樣重現性的程度測量值、K叢集演算法之顯性叢集(dominant cluster)的大小、或是以一組不同參數與時間的函數來對第一參數的大小作預測等)學會了用於該工具系統的型樣時,基於自主生物學的學習系統360可產生伴隨會導致工具保養需求之故障的參考情節,因此在該參考情節發生之前便能觸發警報。應注意的是位於自動機器人構件540內的意識自動機器人,可能無法在參考情節或特定情境發生之前便完全特徵化用於該故障參考情節的資料型樣、或是實質上任何需要不在計畫內之保養的特定情境。應明白的是即使如此,此種工具系統310的預防性健康管理,其包含深度的行為與預測功能性分析,仍然可被自我概念化構件560內的自動機器人實施。
第8圖是在意識工作記憶體520內運作之自動機器人的圖800。所示範的自動機器人(計量器815、期望引擎825、驚奇分數產生器835、摘要產生器845)可構成意識引擎;虛擬的緊急構件,其緊急的本質來自基本構成物(自動機器人815、825、835與845)的協同操作。應明白的是該意識引擎是一種範例,說明一或多個計畫者思考機器人如何使用一群協力自動機器人去實施複雜的活動。計畫者思考機器人採用不同的自動機器人(例如平均、標準差、PCA、小波、導數等)或是自我概念化構件560的服務以特徵化在基於自主生物學的學習系統內收到的資料型樣。每個步驟、運行、批次等資料在訓練時可被外部的實體標示為正常或不正常。計量器815可被計畫者思考機器人用來開拓正常資料以學習典型、正常流程的資料型樣。再者,計量器815可存取儲存在ASM 720內未加標籤的資料集合(如資訊輸入358),並且比較正常的資料型樣以及未加標籤資料的資料型樣。對於正常資料期望的型樣或是以正常資料去預測參數的方程式可透過期望引擎825來儲存及處理。應注意的是根據多種度量,未加標籤的資料型樣在許多方面都與正常的資料型樣不同;例如,對於荷特林(Hotelling)T2統計量的門檻值(如應用在PCA與MS-PCA並從訓練運行所導出)可被超過;和正常訓練之運行資料的平均數相比,未加標籤資料之集合的資料子集其平均數會相差超過三個σ(或是其他預定的離差區間);已測量之參數的飄移可能實質上不同於在伴隨正常運行的資料內所觀察到的飄移等等。因此,摘要產生器845係產生用於正常資料的構件向量,而驚奇分數產生器835則可合併、實質上排名或加權在該向量的構件中所有此類差異(該差異反應出工具系統的健康狀況以及該工具系統離開標準值的程度),並計算該工具系統的淨劣化驚奇分數。應明白的是在正常量與未加標籤量之間的校差(discrepancy),其改變量是時間的函數。因此,透過逐漸增量之正常資料的收集,該自主學習系統360可與時俱進地學習多種操作限制並得到較高層級的統計信心,並藉此調整製造流程的配方(如目標)。舉例來說,透過驚奇分數所測量的劣化條件可經由摘要產生器845向角色報告。
第9圖描繪基於自主生物學的學習系統之自我概念化構件的實施例900。自我概念化構件的功能性是要建立對於重要的半導體製造工具之關係與描述的理解。此理解可用來調整半導體製程(如目標)。所學到的理解是自主地建立、或是兼採終端使用者(如角色390)提供的引導。類似於其他主要功能構件550與560,自我概念化構件570係由記憶體階層、操作單位、或自動機器人與計畫者來組裝或是遞迴地定義。該等構件可傳遞具有啟用優先序的知識網路。
實施例900描繪概念化知識記憶體(conceptualization knowledge memory,CKM)910,其包含自我概念化構件570操作所需的概念(如屬性、實體、關係與步驟)。CKM 910中的概念包含(一)特定領域的概念,像是步驟、運行、批次、保養區間、溼清潔週期、步驟量測、晶圓量測、批次量測、晶圓上位置、晶圓區域、晶圓中心、晶圓邊緣、第一晶圓、最後晶圓等;以及(二)通用的、和領域無關的概念,像是數值、常數(如e、π)、變數、序列、時間序列、矩陣、時間矩陣、細粒(fine-grained)行為、粗粒(coarse-grained)行為等。自我概念化構件也包含通用函數關係的巨大陣列,該通用函數關係像是加、減、乘、除、平方、立方、次方、指數、對數、正弦、餘弦、正切、誤差函數(erf)等,以及其他可表現不同細節程度且位於自我適應的概念化樣版記憶體(adaptive conceptualization template memory,ACTM)920中特定領域的函數關係。
ACTM 920是CKM 910的延伸,而CKM 910可保持一種函數關係,該函數關係對於和工具系統310(如半導體製造工具)互動的角色(如終端使用者)來說係完全明白或部分明白。應注意的是雖然ACTM是CKM的邏輯延伸,但是自動機器人、計畫者、與其他的功能構件卻不被此種分別所影響,這是因為真正的記憶體儲存在自我概念化構件560內可以單一儲存單位的形式出現。自我概念化構件560亦可包含概念化目標記憶體(conceptulization goal memory,CGM)930,該概念化目標記憶體930是概念化工作記憶體(conceptualization working memory,CWM)940的延伸。CGM 930能幫助當前目標(例如,去學習(f、壓力、時間、步驟))的自動機器人對於特別的流程步驟學習壓力的函數f,其中,該函數與時間有關。應注意的是學習函數f代表子目標,該子目標能幫助完成利用工具系統310來製造半導體裝置的目標。
ACTM 920中的概念也具有適合性的數值屬性以及慣性的數值屬性,並能導出情境分數。慣性值能指出被學習之概念的可能性。例如,對於矩陣概念較高的慣性與對於時間序列概念較低的慣性能導出一種情境,在該情境中自我概念化構件560可學習時間序列的功能性行為,而不是矩陣中資料的功能性行為。類似自我意識構件550,具有較低慣性的概念更可能從CKM 910被傳達至CWM 940。
概念計畫者(donceptual planner,CP)對多種自動機器人提供活化能量,並對CKM 910與ACTM 920中的多種概念提供情境能量,而能量的形式為目前前後關係、工具系統310(或通常為目標構件120)的目前狀態、CWM 940的內容、或是CWM 940內目前活化之自動機器人的函數。應明白的是活化能量與情境能量的交替可導出基於知識(如基於學習)的目標自我適應,而該知識則是對於CWM 940或CKM 910中概念的語意網路被交替的結果-因為自我適應的推理引擎做出的推理可基於概念的傳播態樣。
CTM 920的內容為描述以上討論之知識的概念,因此該等概念具有適合性與慣性的數值屬性。自動機器人能使用CTM 920的內容去學習工具系統310的功能性行為(其限制為較低慣性的概念比較高慣性的概念更容易被活化)。對於全部的引導而言,並不需要具有相同的慣性。例如即使兩個概念都代表完整的功能,仍給予第一完整功能較第二完整功能為低的慣性。
當像是部分定義的方程式之部分知識被上載至CWM940時,可以被像是既有知識來完整化,因為多個CP會協調自動機器人採用可用的資料先去辨識未知係數的值。因此,特定的係數集合可完整化部分定義的方程式概念成為完整的函數概念。然後該完整的方程式概念可利用在之前已建立之功能性關係的概念中,像是加、乘等。具有輸出的基本知識(例如,關係(輸出(κE ),T))能幫助CWM940中的自動機器人去建構並評估多種牽涉κE 與T之資料的功能性描述,以識別出能描述κE 與T之間關係的最佳函數。另一選擇為,不具輸出的基本知識可幫助自動機器人,在多個CP的協助下去指定某變數作為輸出,或是獨立地指定變數並試著以其餘變數的函數來表達。當找不到好的功能性描述時,可指定替代的變數作為自變量。重複此流程直到收斂至充分的函數關係、或是自主學習系統360(比如向角色390)指出找不出充分的函數關係。已識別的良好函數關係可提交至CKM 910,供自主學習系統360內具有由CP所指定之慣性值的自動機器人利用。例如,所指定的慣性可為已識別關係之數學複雜度的函數-兩變數間的線性關係可被指定一個慣性值,該慣性值會低於被指定給某非線性關係的另一慣性值,而該非線性關係則牽涉多個變數、參數、與運算子(例如斜率、拉普拉斯(Laplacian)算子、偏導數等)。
概念化引擎945可為一種「虛擬構件」,代表意識自動機器人與概念化自動機器人的協力活動。態樣的自我意識構件550能(透過FF迴圈552)前饋一群變數(例如,該群中的變數可為展現良好成對相關性質的變數)給自我概念化構件560。被前饋的資訊可幫助自我概念化構件560去檢查用於函數關係樣版的CKM 910與ACTM 920。樣版的可用度能讓位於概念化引擎945內的概念化學習者(conceptualization learner,CL)的自動機器人更快地在被前饋的群之變數中間學會功能性行為。應明白的是學習此種功能性行為可為主要目標的子目標。CL自動機器人在CP自動機器人的協助下亦可使用概念化確認者(conceptualization validator,CV)的自動機器人。CV自動機器人評估已提出之函數關係的品質(例如,在預測值與測量值之間的平均誤差係位於儀器的解析度內)。CL自動機器人能自主地或透過角色提供的引導來獨立地學習函數關係;此類角色提供的引導可視為外來資料。CL學到的函數可反饋(如經由FB連線558)至自我意識構件550,作為一群利益變數(variables of interest)。例如,學習函數κE0 exp(-U/T)之後,其中κ0 (如漸近的蝕刻率)與U(如活化屏障)具有CL明白的特定值,自我概念化構件560可反饋該引導群(輸出(κE ,T))給自我意識構件550。此種回饋的通訊能供應自我意識構件550去學習關於該群變數的型樣,使得對於該群變數的劣化能很快被認出,並視需要產生並觸發警報(例如,警報的摘要、確認警報接收者的清單)。記憶體960則是概念化情節記憶體。
應注意下列與CL和CV相關的兩個態樣。首先,CL包含可(如透過符號的處理)簡化方程式的自動機器人,能幫助以簡潔的數學表示式來儲存函數關係。舉例來說,關係P=((2+3)Φ)((1+0)÷Θ)簡化成P=3Φ÷Θ,其中P、Φ和Θ分別表示壓力、流量、與排氣閥門角度。第二,當CV判定該函數關係的品質(例如,對於具有實質相同特徵的參數,像是預測值對於測量值的平均誤差)並發現能採用較簡單的方程式而非更複雜的方程式時(例如,較簡單的方程式具有較低的概念慣性),CV能因式分解方程式結構的複雜度。
此外,從自我意識構件550至自我概念化構件560的重要資訊FF 552通訊,以及從自我概念化構件560至自我意識構件550的FB 558通訊,涉及意識自動機器人與概念化自動機器人的協力運作以特徵化情節的資料型樣。結合以上第5圖的說明,當自我意識構件550無法學習情節時,自我概念化構件560可透過提供一組相關的函數關係來協助自我意識構件550。例如,情節的特徵化需要工具系統310內運行的流程中安定步驟之壓力與時間相關的細粒描述。在該安定步驟中,自我概念化構件560可建構此種詳細的(如,一秒接一秒)壓力與時間相關性。因此於正常的工具情境下,在安定步驟時透過FB迴圈558,自我意識構件550可學習去特徵化壓力的型樣,並且比較已學習的壓力時間相關性與特定情節資料中的壓力型樣。舉例來說,對於情節中的資料在安定步驟之前於所測得的壓力內存在尖峰值但是在正常工具運作時的壓力資料卻不存在該尖峰值,便可偵測為一種資料型樣,用來識別基於自主生物學的學習工具300中該情節的發生。
類似的情況是對於不在計畫內的PM預測,可依靠工具系統資料的重要測量之時間變動的知識、以及由自我概念化構件570傳達之一組預測函數的可用度。該預測函數能協助自我意識構件(如構件550)去預測未經計畫PM的緊急情境,如果該預測係根據一組變數預測值的時間函數而定的話。
第10圖說明基於自主生物學的學習系統中自我最佳化構件的示範實施例1000。如上所述,自我最佳化構件的功能性是分析工具系統310目前的健康(如效能),並基於目前健康分析的結果來實質上診斷或是排名所有工具系統310健康惡化的潛在原因,並識別基於自主學習系統360而學到的問題根源。類似於其他主要功能構件550與560,自我最佳化構件570是由屬於記憶平台365的記憶體階層、以及屬於處理平台385的一部分之自動機器人及計畫者來遞迴建立的。
最佳化知識記憶體(optimization knowledge memory,OKM)1010包含與工具系統310行為的診斷與最佳化有關的概念(如知識)。應明白的是行為包含目標或子目標。因此,OKM 1010包含範圍、目標、或像是步驟、步驟資料、運行、運行資料、批次、批次資料、PM時間區間、溼清潔週期、流程配方、感測器、控制器等的特定概念。後者的概念係伴隨製造半導體裝置的工具系統310。此外,OKM 1010包括與範圍無關的概念,該概念包含讀數(例如,感測器構件325內的壓力感測器讀數)、序列、比較器、案例、案例索引、案例參數、原因、影響、因果相關性、證據、因果關係圖等。再者,OKM 1010可包括一組像是比較、傳遞、排名、求解等的函數關係。該等函數關係可被自動機器人構件540中的自動機器人所利用,並可在自動機器人構件540中且透過程序的執行授予OKM 1010至少部份的功能。儲存在OKM 1010中的概念具有適合性的數值屬性與慣性的數值屬性,以及藉此推導出的情境分數屬性。適合性、慣性與情境分數的語意與自我意識構件550及自我概念化構件560的語意實質相同。因此,如果提供的運行資料其慣性低於步驟資料,則自我最佳化構件570的計劃者(如思考機器人)更有可能從OKM 1010處傳遞運行資料的概念至最佳化工作記憶體(OWM)1020。此外,在運行資料與步驟資料之間的慣性關係能增加處理運行相關概念的最佳化自動機器人的活化率。
應注意的是透過FF連線552與562,自我意識構件550與自我概念化構件560能影響儲存在OKM 1010上之概念的情境分數、以及透過最佳化計劃者(optimization planner,OP)影響位於最佳化計劃者構件1050內之最佳化自動機器人的活化能量。應明白的是儲存在OKM 1010中、並透過自我意識構件550與自我概念化構件560而受到影響的概念,可判定將被最佳化成特定前後關係之函數的特定目標態樣。舉例說明,如果自我意識構件550辨識出對於某流程步驟的資料型樣已經明顯劣化的話,伴隨該步驟概念的情境分數便會被增加。因此,OP便供應額外的活化能量給相關於該步驟觀念的最佳化自動機器人,以修改在流程期間(例如,當進行目標時)執行的一組步驟。同樣地,如果自我概念化構件560辨識出用於產品批次的工具測量值之間新的函數關係,則從自我概念化構件560(例如經由FF 562)、自我最佳化構件570接收之FF資訊便能增加(一)批次概念的情境分數;(二)具有基於批次概念的功能性之最佳化自動機器人的活化能量;並藉此修改該批次概念的態樣(例如,批次中晶圓的數目或類型、批次的成本、批次使用的資源等)。
工具系統310的健康評估可透過診斷引擎825來實施。理由如下。應注意的是健康評估可為製造流程的子目標。診斷引擎825係自主地產生相依圖,並使得角色390能擴充該相依圖(此種相依圖可視為外來資料或內在資料)。根據工具系統310進行之流程的活動力、以及可被角色390設計的診斷計畫,該因果關係圖可被遞增地傳達。舉例來說,因果關係圖顯示「壓力」的故障為四種原因的其中之一所造成:沈積室有裂縫、流入沈積室的氣體流量有問題、排氣閥門角度(其係控制氣體流量的大小)有問題、或是壓力的感測器有問題。工具系統310的構件具有故障的先驗機率(例如,沈積室有裂縫的機率為0.01、氣體流量有問題的機率是0.005等)。此外,角色390或自我概念化構件560可對於壓力故障定義出條件相依性,並以條件機率來表示;例如,當沈積室有裂縫時,壓力也有問題的機率為p(有壓力問題∣有裂縫問題)。通常和工具故障根源相關的條件機率可由角色390提供。應注意的是自主學習系統360假設由角色390定義的指定機率是近似的估計量,但是在許多狀況裡會和實際的機率有很大的出入(例如由觀察者所支持的實際機率)。以下將提出因果關係圖的範例並與第11A與11B圖一起討論。
自我最佳化構件570亦可包括預兆構件1060,透過伴隨工具360之資訊I/O 358而產生和工具系統360之效能相關的一組預兆。此種資訊包括功能構件所採用的材料品質、工具系統360製造之產品資產328的物理性質(像是折射率、光學吸收係數、或是如果產品資產328摻雜載體時的磁電傳輸性質等)。預兆構件1060可利用多種技術。該等技術包括第一特徵化技術,其和自我意識構件在處理資訊358時採用的技術實質上相同;換言之,像是(一)頻率分析,利用傅力葉轉換、蓋伯(Gabor)轉換、小波解構、基於統計技術的非線性濾波、光譜相關性;(二)時域分析,利用與時間相關的光譜性質(可由感測器構件325測量)、非線性的訊號處理技術(像是朋加萊()對映與李雅普諾夫(Lyapunov)光譜技術);(三)實空間或是訊號空間的向量振幅與角度變動分析;(四)異常預測技術等。透過(一)(二)(三)(四)分析產生的資訊或是資料資產可以預測技術作為補充,像是神經網路推理、模糊邏輯、貝氏(Bayes)網路傳播、進化演算法(如基因演算法、資料融合技術)等。分析和預測技術的結合能用來幫助工具系統310的最佳化,其經由感測器構件325所感測而識別之特定資產或是性質中的問題趨勢、與OKM 101中可用的資訊、由最佳化計劃者構件1050產生之合適的改進措施、以及位在構件540中的最佳化自動機器人。
第11A圖描繪的是由自我概念化構件530產生的範例因果關係圖900。因果關係圖表示數學函數的應變量與自變量之間的關係、或是由自我概念化構件530預測的關係。舉例說明,藉由存取壓力(P)、氣體流量(Φ)、與閥門角度(Θ)的資料,自我概念化構件530可使用一或多種數學的技術,像是曲線嵌合、線性回歸、基因演算法等來概念化或是學習預測函數1110,而該預測函數1110則係用於感興趣的輸出或是應變量(如壓力),並以資料輸入或是自變量(氣體流量、閥門角度、溫度、濕度等)的函數來表示。已學會的預測函數1110的範例可為以下在壓力與兩輸入變數Φ、Θ之間的關係:P=2π(Φ/Θ3 )。藉由這種已學會函數,自我概念化構件530便自主地建構該相依圖900。
欲產生相依圖1100,自我概念化構件530採取兩個步驟:(一)以比較器1120作為接收輸入單一已學會函數1110的根節點。比較器1120中的故障表示採用基於自主生物學之自主學習系統的工具(如工具系統310)中的故障。基於壓力的測量值以及透過已學會函數1110產生的預測值的比較結果,比較器的故障可為布林值(如「通過/失敗」1130),當預測的壓力值與收集的壓力資料(例如位於感測器構件378中的壓力感測器所回報)之間的平均差異無法保持在使用者指定的範圍內時(例如平均差異需保持在預測值的5%以內),自我概念化構件530會在比較器1120內標記出故障。比較器1120的故障會視預測函數1110的輸出而定,故比較器的故障係根據(受其影響)壓力讀數(PR 1140)的故障;其故障原因是壓力感測器(PS 1143)發生故障、或是實際的壓力(如物理量PP 1146)發生故障。因為壓力機構(PM 1149)會故障,故實際的壓力PP 1146也會故障。因此,該系統自主地產生PR 1140與{PS 1143,PP 1146}之間、以及PP 1140與{PM 1149}之間的相依性。
(二)已學會函數1110中的應變量係被用來完成該相依圖,如下述。當氣體流量讀數(ΦR 1150)故障或閥門角度讀數(ΘR 1160)故障(即已學會函數1110中的應變量)時,實際的機構PM 1149會發生故障。因此,自我概念化構件530產生PM 1149與{ΘR 1150,ΦR 1160}之間的相關性。基於實質相同的處理或理解,讀數的故障可被自我概念化構件530採用以產生ΦR 1150與{Φs 1153,ΦP 1156}之間、以及ΘR 1160與{Θs 1163,ΘP 1166}之間的相依性。然後自我概念化構件530可相加在ΦP 1156與{ΦM 1159}之間、以及在ΘP 與{ΘM }之間的相依性。應注意的是在物理量(如PP 1146、ΦP 1156、ΘP 1166)與伴隨的機構(如PM 1149、ΦM 1159與ΘM 1169)之間的關係是多餘的,於此處提出是為了解釋清楚。機構節點(如節點1149、1159與1169)也可以移除,而其子節點則成為該伴隨物理量節點的子節點(如節點1146、1156與1169)。
在像是相依圖900的相依圖中,位於葉層的節點是實際發生故障的點,例如節點1140、1143、1146與1149;節點1140、1153、1156與1159;以及1160、1163、1166與1169。對於所有實際發生故障的點,態樣的角色(如角色390,可能是某使用者)可將先驗機率供應給生物學的自主學習系統。這種先驗機率可從該構件、現場資料、MTBF資料等的製造說明書獲得,或是由位於製造工具內零件的效能模擬產生,並與相關的製造流程有關。該角色亦可根據先前的經驗、判斷、現場資料、與可能發生故障的模式(例如,發生了第一次故障則表示發生第二次故障的機率較低,或是發生第一次故障表示發生第二次故障的機率較高等)來供應條件機率。舉例來說,當經由像是構件340的互動構件接收先驗與條件機率時,該自主系統可根據提交給自主系統的實際故障資料,使用貝氏網路傳播與學習來更新該機率。因此,就算一開始由角色提供的機率是錯的,該自主系統也會調整該機率,因為現場的資料係支持故障的結果或是與其抵觸,也就是比較器通過或失敗的結果。
應注意的是角色(角色390,可以是某使用者)可增加根源於機構故障之自主產生的相依圖(如相依圖900)的相依性。舉例來說,此種增加可透過互動管理器355實施。再舉一例,態樣的相依圖1100可用標示為PLEAK 1170與PALT 1173的兩個節點來擴充,該二節點係造成PM 1149在{ΦR 1150、ΘR 1160、PLEAK 1170、與PALT 1173}上的相依性。應明白的是相依圖1100也可以用更深的圖形來擴充。節點PLEAK 1170的增加係透過自我概念化構件530來通知該自主系統,除了氣體流量讀數或閥門角度的讀數發生故障以外,萬一工具中存在有裂縫,因此壓力機構也會發生故障。節點PALT 1173對於節點1170具有互補的效果,因為節點PALT 1173代表除了裂縫以外,由機構造成系統故障的可能性。當節點增加或是圖形的深度更深時,角色應為該節點指定先驗機率以及伴隨之描述相依性的條件機率。
應明白的是已學會函數會比上述的函數P=F(Φ,Θ)更複雜,並包含實質上更多的自變量;然而,因果關係圖依然可用實質相同的方式來準備。
第11B圖是具有預測與配方比較器之已學會函數相依圖的範例圖形1180。除了已學會函數的比較器(如比較器1120)以外,基於生物學的自主學習系統能產生一或多個配方比較器。配方比較器(如比較器A 1195A 或比較器B 1195B )係比較配方參數的設定值與相對應之平均測量值、或是來自工具系統(如工具系統370)中伴隨的感測器讀數。在態樣中,給定一群具有伴隨之感測器與相對應指定值的配方參數(如Θ1185A 或Φ1185B ),該自主系統便產生用於各組參數的配方比較器。類似於預測函數的比較器,如果該設定的配方值與讀數之間的差異超過由角色(如角色190)決定的特定門檻值,則該配方比較器使發出故障訊號。應注意的是在圖1180中,用於壓力的配方比較器並沒有被產生,因為流程的壓力並未設定成指定值。
為了辨識出問題的根源(例如具有最高故障可能性的實際故障點),基於生物學的自主學習系統可利用一或多個預測器或配方比較器的故障來排名出現在相依圖中所有的實際點。在態樣中,對於具有一或多個比較器的完整相依圖而言,該基於生物學的自主學習系統可使用貝氏推理來傳播已給定比較器故障記號(signature)的該機率。因此對於各比較器,該系統能計算對於特定通過/失敗結果(例如,對於比較器A 1195A 的結果1198A 、或是對於比較器B 1195B 的結果1198B )的失敗機率。舉例來說,假設預測器比較器1120與配方比較器A 1195A 故障、但是比較器B 1195B 卻通過,該自主系統可計算造成該比較器故障之每個實際故障點的故障機率。(例如,假設比較器1195A 與比較器A 1195A 故障,但是比較器B 1195B 卻通過,那麼壓力感測器故障的機率為何?)之後每個故障點的排序係按照從最可能故障(算出機率最高者)、或最有可能是問題根源,排到最不可能故障(算出機率最低者)。問題根源的識別,也可視為可控告智能(如輸出140),可經由互動管理器傳達給角色供進一步流程使用,像是訂新的零件、請求保養服務(由角色聯絡或是角色就位於該工具製造商所在地)、下載軟體更新、排程新的訓練期間等等。
第12圖描繪基於自主生物學的學習工具系統之群組部署範例的概念方塊圖1200。該自主工具系統12201 至1220K 的群組可由基於自主生物學的學習工具360來控制,該學習工具360接收(輸入)並傳達(輸出)資訊358至介面330,而該介面330則是幫助角色390與自主工具系統12201 至1220K 的群組以及自主學習系統360互動。自主工具系統12201 至1220K 中的各者分別被伴隨的自主學習系統1250所支持或是協助。此種學習系統具有和學習系統360實質上相同的功能性。應明白的是在群組1210中,自主工具12201 至1220K 中的各者可分別達到與伴隨的本地角色3901 -390K 獨立互動。此種角色具有與角色390實質相同的功能性,如前文第3圖所述。此外,與自主工具12201 至1220K 的互動方式亦和自主系統300內的相同,透過互動構件1240並藉由收發指定工具的資訊(12481 至1248K )與資產,通常兩者都只和特定的工具系統有關(如資產12501 至1250K )。特別應明白的是在群組部署1212中,角色3901 至390K 的各者能監測運作與其伴隨之系統工具(如系統工具12202 )的不同態樣。舉例來說,本地角色3901 至390K 能建立一組特定的輸出(如12601 至1260K )為重要的。此判定可基於歷史資料或設計(如用於流程的配方)、或是透過產生的型樣、結構、關係等自主產生。如果無此判定,群組自主學習系統360便實質上假設導向至群組輸出1265的所有輸出(如12601 至1260K )都是重要的。
在群組工具1200的正常(非故障)運作期間,態樣的自主學習系統360可學習(透過以上與系統300相關描述的學習機構)對於重要輸出參數的期望值。在態樣中,當測得的輸出1265偏離期望的輸出時,自主學習系統360可識別群組1200之效能的效能度量為「劣化」。應明白的是進行後者的評估可與單一自主工具系統300相關的描述實質採取相同的方式,亦即透過自主學習系統360的自我意識構件。應注意的是即使自主群組工具1200表現出劣化的效能,自主工具系統12201 -1220K 的子集仍然能提供未劣化且符合預定度量之個別期望值的輸出。
此外,類似於單一工具系統(如工具系統310)的情形,自主學習系統360可對於重要的輸出參數建構預測模型,並表示成與個別工具相關之輸出參數的函數。應明白的是此種輸出參數可透過資產328輸入/輸出來收集。應注意的是在群組工具1200內,工具輸出(如12601 至1260K )的測量可經由位於各工具系統12201 至1220K 的感測器構件而提供給基於自主生物學的學習系統360,並透過現存於各自主學習系統(如360或1250)內已部署的知識網路來存取。
此外,自主系統360也可建構群組使用壽命的預測模型,表示成群組1200之資產328的函數,例如群組輸入資料、群組輸出、群組配方、或群組保養活動。在態樣中,為了判定群組使用壽命,自主學習系統360會收集故障資料,包括偵測(如透過一組感測器的構件)到的故障之間的時間、伴隨的資產12501 至1250K 、輸出12601 -1260K 、以及對於在工具12201 -1220K 的集合中實質上所有運作工具的保養活動。(應明白的是由於先前故障評估的結果,在群組1200之工具集合(如工具12201 至1220K )中的特定工具(如工具系統2 12202 與工具系統K 1220K )可能無法運作)。所收集的資料可被自主分析(如透過自主學習系統360內的處理構件385)以學習對於使用壽命的預測函數,並以群組資產(如輸入、配方等)、輸出、與保養活動的函數來表示。應明白的是由所收集的資料所建構的該群組使用壽命模型很快展現出影響群組工具1200效能的基本因素。
在態樣中,對於群組工具1200的工具系統(如12201 至1220K )中個別構件所建構的使用壽命模型,可被角色390(如群組層級的控制員)用來最佳化零件存貨以及最佳化保養排程。應明白的是此種最佳化至少有部分能由自主系統360進行。例如,自主系統存取MES(或ERP)系統以識別可用零件的數目。當提供工具系統12201 至1220K 功能性的一組零件(例如,位於像是系統310中構件315之功能構件內的一或多個構件的零件),且該組零件在特定期間 被認為是必要的(如用來更換),當其庫存不敷使用時便可訂購更多的零件。或者,或額外地為當零件可用時,可分析必要零件的期望排程以決定最佳的、或是足夠的下單時間。
應明白的是在必要的、之前排程過的保養活動期間,可再次評估及最佳化保養排程以利用自主系統360可用的機會去分析並識別在實質上短期內會故障的零件。尚須明白的是在態樣中群組或個別的使用壽命排程可自主地以額外資訊(像是零件成本、更換零件的時間等)來補充,以決定在目前的保養循環期間更換某零件是否比在下次排程的保養循環時才更換該零件更有利。應注意的是對於該群組為了計算每個輸出產品(如晶圓、汽車、電腦等)的成本、以及在群組工具1200的操作期間製造某特定訂單的總成本,自主系統360也可輸入多種伴隨群組工具1200的操作成本。在以個別工具資產12501 至1250K (如配方)、輸出12601 至1260K 、與保養活動的函數建立出成本的模型之後,自主系統360能以運作成本漸增的順序排名個別的工具系統12201 至1220K 。組合的成本資料資產可用來建構成本對於資產、輸出、與伴隨個別工具系統之保養活動的預測模型。例如,此種評估能識別實質影響群組工具運作或保養成本的操作資產與變數。為了最小化成本,態樣的自主系統360能利用可用的歷史資料資產來重新設計生產線或廠房樓層的設備組構。此外在這種最佳化的過程中,自主系統360能採取停機多種工具系統,藉以利用運作的其他型樣。再者,自主系統360能利用成本效益分析來判定一組折衷的劇情,其中特定輸出的產生係繼續進行而無須對於特定、非常昂貴的工具系統輸出。
工具系統12201 至1220K 可以實質上相同,或是不同(例如,工具系統12201 至12203 為步進器、工具1220J 是步進器、以及1220K-4 -1220K 是渦輪分子的真空泵)。通常在同質(如工具系統是相同的)與異質(如工具是不同的)之間的中心差分(central difference)會在於輸入與輸出測量值(如測量資產)的不同。例如,對於工具群組1200感到興趣的重要輸出可為D1 CD的均勻度,但是作為群組工具1200一部份的塗層系統無法提供此種輸出的測量值。因此,自主系統360可建構一種模型,以個別工具(如12201 至1220K )輸出的函數來描述工具群組的輸出。因此當群組的效能發生劣化時,伴隨個別工具的個別效能可被分析以隔離造成效能劣化最大權重的工具。
第13圖描繪自主工具系統的集團部署圖。集團系統1310包括一組自主工具集團13201 至1320Q 。各工具集團可包括同質或異質的自主工具群組,像是一組不同的自主工具群組(包括自主生產設備(未繪出))、或是一組不同的自主製造設備。應明白的是自主集團13201 至1320Q 通常位在不同的地理位置(例如,某集團代表汽車的組裝線,以不同地方製造的零件來組裝汽車)。同樣地,考慮製造流程可包括多個步驟,工廠內的自主工具群組可部署在廠內不同的位置。因此,產品輸出鍊1365能幫助提供半成品、成品、或已分析的產品給不同的自主工具集團13201 -1320Q ;此種特徵是以雙向箭頭13601 至1360Q 來指示,代表伴隨集團13201 至1320Q 的輸出/輸入。
集團系統1310可被具有互動構件340、角色390、與自主學習系統360的自主學習系統自主地支持。在態樣中,自主支持可被導向至改善輸出資產(如輸出1365或1265)的整體製造效率(overall fabrication effectiveness,OFE)。此外,每個自主工具集團13201 至1320Q 可輪流被互動構件1330與自主學習系統1340自主地支持。介面構件1330係幫助自主學習系統1340與角色3901 至390Q 之間的互動。此類構件中各者的功能性與上述關於系統360與1200個別構件的功能性是實質上相同的。在互動構件1330與自主系統1340之間通訊的資訊1348I (I=1,2,…Q)係伴隨各自的自主工具集團I 1320I 。同樣地,傳達給以及接收自自主工具集團I 1320I 的資產1350I 也是特定的。
為了處理自主工具集團13101 至1310Q 的效能,製造過程的多重步驟特性可透過效能標籤來標示。該效能標籤係利用複合式集團指標Cα 來識別產品,其中,該指標α表示在集團C(如自主集團1320Q )中特定的工具群組以及運行指標(R);因此產品的品質、或是伴隨特定產品之效能的量便經由標籤(Cα ;R)來識別,也可稱為「群組層級輸出」。此標籤係幫助將各自主運作群組識別成個別的構件Cα 。因此,自主系統360可將品質與效能的量對應成製造集團(如自主工具集團13102 )的函數與在各製造集團內工具群組的函數。後者係幫助效能或品質不佳的問題根源分析,首先識別出集團(如製造設施),接著實施對於伴隨該已評估為劣化之工具的分析。應明白的是用來說明「包括多項集團工具的自主系統中產生的輸出資產」此項事實的指標Cα 可從第一集團(N)運送至第二集團(N’)。因此,用來追蹤伴隨資產轉移(如多重步驟之製造過程的一部份)效能的該複合式符號可讀成C α; N N '
自主工具集團的效能可用產品良率的函數來實施。此種良率係用來排名不同的集團。態樣的自主學習系統360能發展出一種良率的模型,其至少有部分基於從各自主工具、或群組工具輸出的資產。舉例來說,對於半導體製造採用的工具、或工具群組,良率的表達可用晶圓厚度、裝置均勻度、雜質濃度(如外來與內在的摻雜物濃度)、DI CD、FI CD等的函數。再者,其他良率的度量也可用來決定良率的模型,特別是在含有工具集團系統(13201 至1320Q )的自主學習系統內,其中,輸出資產可在集團間移轉:整體設備效率(overall equipment efficiency,OEE)、循環時間效能、即時傳遞率、產能利用率、重做率、力學線路良率、偵測良率與最終測試良率、資產生產量、起始或高產能效能率等。應注意的是對於和上述良率的度量相關的調整,為了重新設計流程或是與角色3901 至390Q 通訊,支援一組自主工具集團運作的自主系統可自主地辨識在良率度量之間的關係。
前述的良率函數分析可透過結合靜態與動態分析(如模擬)來根據影響的程度或是權重而排名群組層級的輸出,以朝特定的良率進行。應注意的是在至少有部分基於對資產輸出或良率造成影響之群組層級輸出的排名工具、工具群組、或集團,可使群組或集團自主學習系統360透過伴隨群組或集團中群組的自主系統去自主地辨識某特定工具是否在良率的劣化中具有決定性,並將其隔離。當定位出此工具時,該群組或集團層級的自主系統360能發出警報至維修部門,並提供可能是造成效能劣化的故障排名相關資訊。
此外,對於排名最低的自主工具集團,其良率可用來識別對良率影響最大之工具群組的群組層級輸出。此種工具群組的使用壽命可用來和不同自主集團內實質相同的工具群組比較,以辨識出造成效能低落的原因。此外,自主工具集團系統是在不同工具集團中特定的工具群組之內排名工具的。應注意的是支持與分析自主工具集團(如13201 至1320Q )的群組之自主學習系統能按照對於各集團推理之使用壽命來排名各集團。考慮像是輸入/輸出資產(如資產358)的負載,由於使用壽命會隨著運作的時間區間而改變,故可在特定的時間點(像是每週、每月、每季、或每年)更新具有預測使用壽命資料的資料庫。
此外,當識別出造成群組工具效能低落之元兇的個別工具時(例如,在群組工具內效能排名最低的該工具,像是對於具有均勻摻雜濃度或均勻表面反射係數之品質的特定目標性質的資產,最常發生無法輸出此種資產的工具),伴隨該最低效能工具、或是包含該效能不佳工具的集團系統之自主系統可分析該工具輸出,以識別影響該最低效能群組最大的該等輸出。舉例來說,在具有上述低均勻度之輸出資產的工具群組或集團內的工具,會導致工具群組均勻度變化(例如,光學顯示器表面反射率的均勻度因高品質顯示器之塗層的反射表面上之均勻度問題而引起的變化)的實質百分比(如60%)。為達此目的,在態樣中對於群組內各輸出而言,工具自主系統係建構一種函數,以工具資產(如輸入、配方、流程參數、工具操作員或角色等)的函數來表達工具輸出。然後該模型會被分析以識別造成效能不佳的最大因素。應注意的是自主系統也可以識別群組工具內效能最佳的工具,並分析使該工具效能最佳的原因。例如,在運作期間該工具的真空程度持續低於群組工具中不同工具的真空程度、或是在磊晶沈積時位於最佳效能工具中的晶圓其轉速低於實施沈積的不同工具,故該工具持續地達到較佳的裝置品質。在最高與最低排名工具中的此類因素可以和集團系統內其他工具的相同參數來比較。如果比較結果指出造成最高與最低效能排名之根本原因的該因素在整個工具集團系統內實質上都是相同的話,則可發展出新的模型來識別另一種問題根源。此種重複、自主的模型發展與驗證流程可繼續下去,直到找出問題根源、模擬出最佳方法(例如用於工具集團1320P 內的鍍覆配方被廣用於所有工具集團內,希望該配方能增加輸出資產的效能達特定、所需的程度)、並且降低該效能不彰之問題根源的影響(例如,放棄特定品牌的塗料,因為該塗料的黏性在塗裝管道的操作溫度下會造成塗色產品的上色不均勻)。工具、工具群組、或是工具集團的排名係自主的,並且以和單一自主工具系統(如系統360)實質相同的方式進行。支援自主工具集團運作的自主系統視此種自主集團為單一的構件,而不論其內部的複雜結構,並透過伴隨該集團的自主系統進行存取與管理。
第14圖是描繪上述工具系統類別間的模組化與遞迴連接的圖1400,例如個別的自主工具360、自主群組工具1200、以及自主集團工具1300。在自主系統1400中,目標、前後關係、與資產透過繪製成軸心通路的知識網路375而旋轉,並傳達給不同的自主工具系統360、1200、1300。此種資訊與資產係在各自主系統中被作用,作用可包含新資訊與資產的分析、修改、與產生;此種作用圖示成各代表自主系統360、1200、1300之外輸送帶上的箭頭。被處理與產生的資產係傳達至知識網路375,而該知識網路375則是在自主系統之間旋轉。在圖1400內,資產的處理與產生繪製成以方位角出現,而資產的通訊則是一種根過程(radical process)。如圖1400所示,自主工具系統係基於以實質相同方式運作的實質相同單元。
第15圖描繪用於產生資產之範例系統1500,對於多站式(multi-station)的流程進行估計與報告。自主系統1505包括基於自主生物學的學習系統360、角色390、與伴隨之互動構件330,可接收並傳達源自N-站流程1510的資產328,並透過反向鍊結來估計效能。該N-站流程係透過一組N個流程站15101 至1510N 來實施,該組流程站係產生輸出1520並包含個別的自主工具360、自主工具群組1220、或自主工具集團1320。評估效能後的結果是自主系統1508能定位出位於具有特定效能劣化程度之流程站15101 至1510N 內的工具或工具群組。再者,對於所選出的站,自主系統1508能提供評估報告、修理報告、或是保養排程。應明白的是不同的流程站可實施實質上相同的運作。此種劇情將反應輸出資產1515回到特定工具或工具群組所在的情境,用於資產1515已經被產生並運送到不同工具或工具群組之後的後續處理。
在反向鍊結中,導致輸出的行動流程(如流程1530)一般會與常用來評估該行動流程的偵測流程(如評估流程1540)呈相反的方向。因此,評估大抵是以由上到下的方式發生,其中,評估是在特定行動的高層次階段進行,像是已完成的資產輸出1520,再進行至低層次的階段,以求在特定行動完成之前將評估的焦點放在特定的階段上。如自主系統1504所應用的一般,輸出資產1520係經由流程站N 1510N 所接收。對於實質上所有在流程站1510N 內的運作構件(如工具、群組或集團工具),該自主系統1504係根據至少一部份期望的效能,如1546所繪來評估一組導致特定劣化向量(未繪出)之效能的度量。此外應明白的是在流程1530中,輸出資產(如資產1515)可跨越不同的地理區域運送,因此該自主系統1504所評估的劣化向量可包括一種度量,該度量係伴隨製造半成品資產1515該流程的內傳送(in-transit)部分。舉例來說,當流程1530考量用於車輛安全氣囊裝配的加速計時,由於係採用別的運送路線而非流程1530所揭示的路線,被運送的加速器內可能發生機械零件的損壞。當此種評估的結果1549指出N站輸出1520故障時,自主系統1504便隔離伴隨流程站N的故障工具或是工具群組,並且產生報告(如評估報告1550、修理報告1560、或保養排程1570)。產生的報告可包含將被一或多個角色(如角色3901 至390Q )使用的資訊。再者,對於特定的效能問題,可儲存報告以產生解決方案(或「修正」)的前案,特別是不常發生的問題,較佳的作法反而是角色的介入,而非通常能得益於廣泛可用資料的自主發展解決方案。再者,報告的可用度有助於故障的模擬或是故障情節的鑑識分析,可在至少兩層級內降低製造成本:(一)昂貴但不常故障的設備可被預測為在極少發生的條件下才會故障,可由自主系統360模擬,發生自由完全不熟悉該複雜設備的角色所實施的操作;(二)透過預測多種故障的劇情來最佳化零件存貨,至少部分取材自評估報告1550與修理報告1560中的歷史資料。
如果流程站N 1510N 的結果1549並無任何故障的工具或是工具群組,便對於較低層次、產生半成品輸出資產1515的流程站N-1 1510N-1 實施評估,而該評估也是用來產生輸出1520之流程循環1530的一部份。透過分析一組不同的效能度量,便能抽取出劣化的程度並定位出伴隨的自主工具或自主工具的群組(如集團C)。在不具自主工具之故障集團、或是自主工具的群組、或是個別的自主工具的情形中,自主系統1504持續以該物件進行向後的、由上到下的評估流程1540來定位在最終輸出1520內造成效能不佳的來源。
第16圖是範例自主系統1600的方塊圖,自主系統1600能分送由工具集團系統自主產生的輸出資產。在系統1600中,工具集團1320Q 能自主地產生一組輸出資產1610,而輸出資產1610可為(一)關於某狀態而蒐集或推論的資訊(例如,結構與資料型樣、在所測變數之間的關係(像是在組成自主工具集團1320Q 之相同或不同工具群組內,對於現有劣化情節的補救方法)等),包括組成工具集團系統1320Q 之一或多個工具的效能劣化條件;或(二)由上述集團製造的輸出產品。再者於系統1600內,輸出資產1610可被資產選擇器1620篩選並傳達或傳遞至分散構件1630。此種分散構件1630可利用基於自主生物學的學習系統360的智能態樣。分散構件1630包括管理構件1635、加密構件1655、以及排程器1665與資產監測器1675;其中,管理構件能處理封裝構件1645,而加密構件則能準備資料。封裝構件1645可以是分散流程內準備要被分散的資產,此種準備可包含損害預防以及損失預防。對於資訊(例如,情節記憶530內的事件,像是源自零件說明書以外的操作(如溫度超過門檻值)所造成之系統不該有的條件)或資料資產,封裝構件1645能至少有部分根據要分散的該資產的預定接受者,變更特定的格式來表達該資訊。舉例來說,所有權資訊可能是抽象的,並沒有特定表達(例如,氣體明確的名稱會以「氣體」一詞取代;特定參數之間的關係可被推廣成變數之間的關係,像是「p(O2 )<10-8 托」可封裝成「p(氣體)<10-8 托」)。此外,封裝構件1645可於預定的接受者處,在資產傳送與資產修復期間利用加密構件1655以確保資訊的完整性。
再者,態樣中的管理構件1635可存取(一)資產儲存器1683,通常包含已排程要被分散的資產、或是已經被分散的資產;(二)伙伴儲存器1686,包含與該特定資產之分散或完成相關的生意伙伴;(三)客戶儲存器1689,包含目前、過去或是未來可能的客戶,也就是所選擇的資產已經分散或是可被分散的對象;(四)政策儲存器,可決定伴隨資產分散的態樣,像是執照、客戶支援與關係、資產封裝步驟、排程步驟、實施智慧財產權等。應明白的是包含在政策儲存器理的資訊可動態地改變,其至少有部分係根據知識,像是藉由基於自主生物學的學習系統所學習或產生的資訊資產。
當某資產被封裝,該封裝包含添加像是主動或被動式的RFID標籤、或是條碼(如二維條碼、阿茲特克(Aztec)條碼等)的監測裝置,並且封裝好的資產已經排程要被分散,便可儲存一筆分散的紀錄,或是若該資產為資料資產的話則也可以儲存該資產的副本。之後該資產可被傳遞至不同的自主工具集團P 1320P
第17圖描繪自主決定分散步驟的範例,從資產(如成品、半成品等)的設計、製造到行銷。六邊形格1710代表特定的地理區域(如城市、郡、州、一或多個國家),其中有自主工具集團的兩個類別:如圓形的集團1720、1730、1740、1750與1760,以及方形的集團1765與1775,參與一組產品或資產的製造鍊(應注意的是該地理區域除了六邊形格以外,可實質包含任何有界區域)。舉一劇情為例(但並非用來限定),某資產的製造從集團1720開始。集團1720可為高山運動(如滑雪、爬山、滑翔跳傘等)之光學管理所訂製的固態裝置提供設計。該設計包括實施原料與原料組合之光學性質的計算模擬、以及裝置的模擬。此例中集團1720可為大型平行運算的超級電腦,在本例中可視為一組自主工具群組(第12圖),其中,模擬電腦的網路內的每個電腦可視為一個自主工具群組。集團1720輸出該光學裝置的一或多種設計、以及一系列伴隨該裝置描述的報告,如資料資產。此種輸出或是資產(未繪出)在適當的加密與封裝(如透過構件)之後,可經由通訊連線1724(可為無線連線)而傳達給集團1730。
集團1730可接收該資料資產,以及根據所收到的資產起始沈積的過程來製造固態裝置(此例非作為限定)。為達此目的,集團1730可與集團1740合作,兩者皆可視為雙集團之自主集團工具1310一部分的製造設備。此種集團可根據所收到的說明書資產來製作多個裝置。當裝置作好便可進行測試,並指定品質與效能的度量。此種度量可導致反向鍊結,而在進入集團1730與1740的自主工具之間定位「表現不佳者」。透過多種度量的判定,便有可能自主調整集團1720與1730的運作以最佳化裝置的生產或是輸出資產。應注意的是連線1724指明一種內部的連線,其中,集團1730與1740是屬於同一工廠的零件。因此與連線1724被使用在車輛運輸路線時相較,該資產可於實質相異的條件下被傳送。連線1744在不同地理區域可用來運送要被商業包裝的裝置(此種運輸可應用有利的包裝成本、熟練的工人、公司稅賦減免等)。應明白的是集團1740處的自主學習系統能最佳化運送的時間(例如經由排程器)與路線(如連線1744),以確保準時且經濟的傳遞。在集團1750處,資產被包裝且經由集團1760內的無線連線進行遠端測試。在態樣中,受測裝置的量以及受測裝置的批次可由集團1760內的自主系統來決定。一旦包裝好的裝置被確認可以上市的時候,該資產便經由道路連線1744運送至集團1740,並接著經由道路連線1770運送至集團1775不同的類別處。此集團可為伙伴廠商,而集團1775則可為倉庫,兩者可視成工具群組集團。此種集團係經由內部連線,連接到作為收到之資產展示間的集團1765。
考慮上述提出的範例系統,可根據已揭露的主題實作出方法論,並參考附圖18、19、20的流程圖幫助瞭解。同時為了簡化說明起見,該方法論係以一系列的方塊來表示與描述。應明白的是所揭露的態樣並不受限於作用(act)的數目或順序,因為有些作用會以不同的順序與/或會和不同於此處描繪和說明的方塊同時出現。再者,並非所有繪出的作用都必須用於實作下文描述的方法論。應明白的是伴隨該等方塊的功能性可以軟體、硬體、結合軟硬體或任何其他適當的手段(如裝置、系統、流程、構件)來實作。此外,尚須明白的是下文揭露的該方法論在本說明書中是可以被儲存在製造品中的,因此得以將該等方法論傳輸或傳送給多種裝置。熟習該項技術者將明白方法論也可以表示成一系列有相互關係的狀態或事件,好像狀態圖(state diagram)一般。
第18圖呈現示範方法1800的流程圖,用於具有前後關係的目標調整之基於生物學的自主學習。在作用1810處建立一項目標。目標是伴隨用來完成該目標或目的之目標構件功能性的抽象概念。目標可以包含多種學科,並且跨越多個部門(如工業、科學、文化、政治等)。對於連接至學習系統(如自我適應的推理引擎)的目標構件而言是外部的或外來的角色,通常作用1810可由該角色執行。考慮目標多學科的特性,目標構件可為一種工具、裝置、或是具有多重功能性的系統;像是實施特定流程的工具系統(如工具系統310)、或是提供特定結果給一組請求的裝置等。資料被接收於作用1820。該等資料可為內在的,例如在進行目標之目標構件(如構件120)中產生的資料。在態樣中,實施該特定流程的其中一部份是一組伴隨該工具的感測器或探測器收集在自我適應的智能構件中接收到的資料。接收到的資料也可以是外來的,像是由角色(如角色190)傳達的資料,而該角色可為人類主體或是機器。外來資料可以是用來驅動流程、或通常是去驅動完成特定目標的資料。人類主體可以是工具系統的操作員,並可對於該工具實施的流程提供伴隨的指導或特定步驟。角色的其中一例是對於該工具系統、或實質上任意目標構件實施模擬的電腦。應明白的是工具系統的模擬可用來判定該工具系統的部署參數、或是用來測試該工具運作的替代條件(例如,會造成人類主體危險或是昂貴的運作條件)。接收到的資料可以是伴隨特定流程、或通常是特定程式碼的訓練資料或生產資料。
在更深入的態樣中,該收到的資料可伴隨有資料類型或程序、或是功能性、單位。資料類型係實際資料的高層次抽象概念;舉例來說,在工具系統的退火狀態中,於退火循環的期間,溫度可被控制在程式化的水平,因此由該工具系統之溫度感測器所測量的溫度值,其時間序列可伴隨「系列」這種資料類型。功能單位相當於所收到的指導的程式庫、或是所收到的處理程式碼的修正,該程式庫與修正係處理工具運作所需的資料、或用於工具產生的分析資料。功能單位可被抽離成與單位的特定功能性有關的概念;例如,乘法的程式碼片段可被抽離成乘法的概念。此概念可被超載以使概念相關於複數種資料類型,像是乘法(序列)、乘法(矩陣)、或乘法(常數,矩陣)。再者,伴隨功能單位的概念可繼承伴隨功能單位的其他概念;像是導數(純量積(向量,向量)),便能說明一種概念,代表對於某自變量,兩向量之純量積的導數。應明白的是函數概念係直接類比於類別,而類別本身即為概念。此外,資料類型可伴隨優先序,並根據該優先序而存放於語意網路中。同樣地,函數概念(或自動機器人)也可伴隨優先序而存放在不同的語意網路中。概念的優先序是動態的,能幫助活化語意網路中的概念。
在作用1830處,知識係從收到的資料產生,該收到的資料可如上述表示在語意網路中。知識的產生可在語意網路中藉由傳遞活化來完成。除了分數結合以外,此種傳遞可由指定給概念的情境分數來判定。在態樣中,分數結合可以是兩個分數的加權利、或是兩個或兩個以上分數的平均。應明白的是用於分數結合的規則可視需要來修改,端視工具系統的條件或是從外部角色接收的資訊輸入而定。應明白的是優先序會隨著時間而衰減,以廢棄不常活化的概念,並讓新概念變得更重要。
該產生的知識可為完整的資訊;例如,在沈積步驟中的穩態壓力是一種精確的、嚴格定義的數學函數(例如,一種單值函數(single-valued function),且輸入此函數的所有參數都是確定的,而非隨機的或是未知的),該函數含有像是穩態流量與穩態排氣閥門角度的兩個自變量。另一選擇為該產生的知識可表示一種部分的理解;例如,蝕刻率與溫度具有已知的函數相關性(如指數的相關性),雖然兩者之間特定的關係(如決定該函數相關性的參數精確值)還不明白。
在作用1840處,該產生的知識會被儲存,作為後續使用或是未來知識的自主產生之用。態樣中的知識可儲存在記憶體階層中。階層可由記憶體中知識的持續性與用來產生額外知識之該知識的可讀性來決定。在態樣中,階層中的第三層可為情節記憶(如情節記憶530),其中,收到的資料印象與知識會被收集起來。在此種記憶層中,概念的處理並不顯著,而是作為可用資訊儲存體的記憶體,該可用資訊係接收自工具系統或外部角色。在態樣中,此種記憶體可視成元資料庫(metadatabase),其中可儲存多種資料類型與程序概念。在第二層,知識可儲存在短期記憶內,其中概念會被大量處理,並發生語意網路內的傳播活化。在此記憶體層中,功能單位或程序概念係運作於接收的資料、產生新知識的概念、或是學習。第一層記憶體可為長期記憶(如LTM 510),其中,知識會被維護並主動利用,且有大量的新知識會儲存在此記憶體層。此外,在長期記憶內的知識也可被短期記憶內的功能單位所使用。
於作用1850處,已產生或已儲存的知識會被利用。知識可被採用於:(一)判定目標構件(如工具系統310)的劣化程度,係藉由辨識已儲存的知識與新收到的資料(見自我意識構件550)之間的差異,其中,該收到的資料可以是外來的(如輸入130)或內在的(如部分的輸出140);(二)特徵化外來資料、內在資料或是兩者,例如藉由辨識資料型樣,或是藉由發現變數之間的關係(如同在自我概念化構件560中一般),其中該變數可用來完成已經建立的目標;或是(三)分析產生資料之工具系統的效能(如自我最佳化構件570)、指出預測中可能發生的故障或是已經發生的故障之問題根源、提供必須的修理、以及在工具系統劣化到造成工具故障之前,觸發實施預防保養的警報。應注意的是已儲存及已產生的知識之使用會被該收到之外來或內在資料、以及隨後產生的知識所影響。
作用1860是一種驗證的作用,其中,目標的完成度可參考所產生的知識來查驗。如果完成了該既定目標,示範方法1800便到此結束。另一選擇為,如果該既定任務尚未完成,則該既定目標可在作用1870處被檢討。在後者中,如果當前的目標將被修正或修改的話,方法1800的流程能導致建立新的目標。例如,目標的自我適應可根據已經產生的知識。如果當前的目標並不用進行任何修正,方法1800的流程便回歸到產生知識,而該知識可用來繼續進行當前的既定目標。
第19圖呈現一種示範方法的流程圖1900,用於調整伴隨目標構件狀態之概念的情境分數。於作用1910處,判定目標構件的狀態。狀態通常是透過前後關係來建立,可由多種資料輸入(如輸入130)來決定、或是透過伴隨輸入並展現特殊關係的概念網路。該輸入資料係有關由該目標構件正在進行的目標。例如,用於特定薄膜裝置之塗層製程的配方可視為伴隨目標「沈積絕緣元件」的輸入。在作用1920處,判定可應用在該目標構件狀態的一組概念。該等概念可為進入作用1910之資料類型的抽象概念,或可為記憶平台(如長期記憶510或短期記憶520)中既有的概念。一般說來,作用在說明概念(descriptive concept,如不具功能構件的概念)的函數概念會更常被用來達成目標。在作用1930處,判定伴隨目標狀態的一組概念中每個概念的情境分數。一組情境分數能建立出概念的利用或應用的階層,而該階層能判定目標的活動力,像是目標的自我適應、或是子目標的創造/隨機化。作為目標自我適應的一部份,對於特定概念來調整情境分數不但能驅策目標的達成,同時也可以在目標空間內驅策傳播。
第20圖呈現一種示範方法的流程圖2000,用於透過推理來產生知識。在作用2010處,判定概念的優先序,並且該概念係伴隨一種資料類型。優先序通常可根據概念利用的機率、或是概念的權重來判定。此權重可透過參數的函數(如加權總數或幾何平均數)來判定,其中,該參數係表示利用概念的容易程度(如運作於資料類型的複雜度)。此種參數可用概念的慣性、以及用來描述狀態之概念的適合性參數(例如會和該概念有關之鄰近概念的數目)加以識別。應明白的是由於明顯與時間相關的慣性與適合性參數、或是由於概念傳播的關係,因此優先序會和時間相關。與時間相關的優先序會將老化的態樣帶進特定概念中,故可促進知識的活用,像是透過概念的知識(例如用來進行目標的模式,像是用於製備奈米結構裝置的配方)在特定知識的劇情內(如基於優先序的知識網路內的節點結構)會變得越來越不重要。於作用2020處,對於具有優先序的一組概念,建立語意網路。應明白的是該語意網路可包括多種子網路,其中,每個子網路能特徵化類別內概念之間的一組關係。舉例來說,在雙層的語意網路內,第一子網路代表從資料類型導出之概念之間的關係,而第二子網路則包括描述可用來變更資料類型運作的函數概念(如計畫者自動機器人或思考機器人、概念自動機器人)之間的關係。於作用2030處,該組優先序係在整個語意網路內傳播,用來進行推理並藉此產生伴隨該概念網路的知識。態樣中此種傳播可用來產生對於目標自我適應的最佳化計畫、或是預測進行特定目標之系統內的故障。
第21圖是用於資產分散的示範方法2100的流程圖。資產可提供自個別的自主工具、自主的群組工具(如系統1210)、或是自主的集團工具系統(如系統1310)。應明白的是資產也可由其他替代方式產生。資產在作用2110處被接收。在態樣中,該收到的資產可為選自由一或多種自主工具所產生的輸出資產。在作用2120處,該收到的資產會被處理以用於分散。如上所述,資產通常攜帶有伴隨用於產生該資產之知識的優點;因此,資產可以採用無法被競爭對手以逆向工程(reverse-engineer)處理該資產的方式來封裝。應明白的是根據該資產的目的地,伴隨該資產的封裝資訊可以被訂製,至少有部分係根據接收該資產的實體是否是生意伙伴、客戶、或其他子公司、部門、或是製造該資產之組織的群組而傳遞不同程度的資訊。與該資產一同封裝的資訊程度可遵循特定的政策(例如,儲存在政策儲存器1692內的政策)。此外對於資料資產或電腦程式資產,該等資產在封裝時可同時被加密以維持由該資產傳達之資訊的完整性。再者對於分散資產的處理,其中一部份可包含當遵行適當的分散排程時,在儲存器(如資產儲存器1683)內維持該資產。在態樣中,此種排程可由自主系統(如系統360)來最佳化,而該自主系統係支援製作或製造要被分散之資產的工具系統。
在作用2130處,分散該已經處理過的資產。分散通常與資產的特徵與特性、以及資產的目的地有關。舉例來說,資產可於同一工廠內被分散以完成資產的生產,像是組裝線中的汽車(一種資產)半成品會運送通過不同的組裝階段。同樣地,在食品工業中,冷凍肉品(一種資產)會分散通過整個食品加工廠。根據工業別,此外或另一選擇為資產的半成品可分散至海外完成,以便得益於成本低而收效大的市場。
於作用2140處,監測已分散的資產以確保像是資產的分散會遵循適合的分散規範,或是藉由存取該資產的分散狀態來確保足夠的存貨補充。再者,監測資產的分散可降低損失與損害,以及能幫助與生意伙伴和客戶的互動。
此處描述的多種態樣或特徵可利用標準的程式與/或工程技術來實作成一種方法、設備、或是製造品。此處用語「製造品」係打算包含可從任何電腦可讀取的裝置、載體、或媒體來存取的電腦程式。舉例來說,電腦可讀取的媒體包含(但不限於)磁性儲存裝置(如硬碟、軟碟、磁帶等)、光碟(如CD、DVD等)、智慧卡(smart card)、與快閃記憶體裝置(如記憶卡、記憶棒、拇指碟等)。
以上所述包含所申請專利主題的範例。當然,為了描述該主題不可能羅列所有想得到的構件或方法的組合,但是本領域之一般技藝人士可明白對於本申請專利主題尚有可能包含多種排列組合。因此,本申請專利主題係打算包括所有位於申請專利範圍之精神與領域內的此類替代作法、修改與變化。再者,無論是在申請專利範圍或是在實施方式中,用語「包含(include)」在程度上與用語「包括(comprise)」是相同的,如同「包括」在申請專利範圍中用作過渡詞一樣。
100...學習系統
110...推理引擎
120...目標構件
130...輸入
140...輸出
150...資料儲存器
155...連線
165...連線
200...圖
300...學習工具
310...工具系統
315...功能構件
325...感測器構件
328...資產
330...互動構件
335...適配器構件
340...構件
345...互動管理器
355...資料庫
358...資訊
360...自主學習系統
365...記憶平台
370...工具系統
375...知識網路
385...處理平台
390...角色
400...系統
405...載入/卸載區
410...處理區
415...介面區
420...卡匣台
430...第一處理單位群
440...定位單位
445...黏著單位
455...預焙單位
460...後焙單位
500...範例架構
510...長期記憶
520...短期記憶
530...情節記憶
540...自動機器人構件
550...自我意識構件
552...FF連線
558...FB連線
6151 -615N ...自動機器人
560...自我概念化構件
560...自我概念化構件
562...第二FF迴圈
568...第二FB迴圈
570...自我最佳化構件
650...範例架構
660...自動機器人
663...功能性構件
666...處理器
669...內部記憶體
675...介面
700...範例結構
710...意識工作記憶體
720...意識感測記憶體
730...意識知識記憶體
815...計量器
825...期望引擎
835...驚奇分數產生器
845...摘要產生器
910...概念化知識記憶體
920...概念化樣版記憶體
930...概念化目標記憶體
940...概念化工作記憶體
945...概念化引擎
1010...最佳化知識記憶體
1020...最佳化工作記憶體
1050...最佳化計劃者構件
1060...預兆構件
1110...預測函數
1120...比較器
1140、1143、1146、1149、1153、1156、1159...節點
1160、1163、1166、1169...節點
1200...群組工具
1220...自主工具群組
1240...互動構件
1265...輸出
1310...集團系統
1320...自主工具集團
1330...互動構件
1365...產品輸出鍊
1504...自主系統
15101 至1510N ...流程站
1515...資產
1520...輸出
1530...流程
1550...評估報告
1560...修理報告
1570...保養排程
1600...系統
1610...輸出資產
1620...資產選擇器
1630...分散構件
1635...管理構件
1645...封裝構件
1655...加密構件
1665...排程器
1675...資產監測器
1683...資產儲存器
1686...伙伴儲存器
1689...客戶儲存器
1720、1730、1740、1750、1760...集團
1810、1820、1830、1840、1850、1860、1870...作用
1910、1920、1930、2010、2020、2030...作用
2110、2120、2130、2140...作用
1900、2000...流程圖
2100...示範方法
第1圖描繪基於自主生物學的學習工具的概念方塊圖。
第2圖係根據本發明描述的態樣描繪出前後關係的目標自我適應。
第3圖描繪基於自主生物學的學習工具之範例的概念方塊圖。
第4圖描繪用於半導體製造的範例工具系統,該系統係利用基於自主生物學的學習系統。
第5圖描繪基於自主生物學的學習系統之範例架構的概念方塊圖。
第6A與6B圖分別描繪範例自動機器人構件以及範例自動機器人的架構。
第7圖描繪基於自主生物學的學習系統之自我意識構件的範例架構。
第8圖係根據本發明描述的態樣,描繪運作在意識工作記憶體中的範例自動機器人。
第9圖描繪基於自主生物學的學習系統之自我概念化構件的範例實施例。
第10圖描繪基於自主生物學的學習系統之自我最佳化構件的範例實施例。
第11A與11B圖分別描繪根據本發明的態樣產生之單一的預測比較器以及兩個配方比較器的相依圖範例。
第12圖係根據本發明的態樣,描繪基於自主生物學的學習工具之群組部署範例。
第13圖係根據本發明的態樣,描繪自主工具系統的集團部署。
第14圖描繪本發明之自主工具系統的模組特徵與遞迴連接特徵。
第15圖係根據本發明的態樣,描繪對於多站式的資產產生流程進行估計與報告的範例系統。
第16圖係根據本發明的態樣描繪範例自主系統的方塊圖,該系統能分散由工具集團系統自主產生的輸出資產。
第17圖描繪從資產(如成品、半成品等)的設計、製造到行銷之自主決定分散步驟的範例。
第18圖係根據本發明的態樣,描繪基於生物學的自主學習之示範方法的流程圖。
第19圖係根據本發明的態樣,描繪用於調整概念之情境分數的示範方法流程圖。
第20圖係根據本發明的態樣,描繪用來產生知識之示範方法的流程圖。
第21圖係根據本發明的態樣,描繪用於資產分散之示範方法的流程圖。
300...學習工具
310...工具系統
315...功能構件
325...感測器構件
328...資產
330...互動構件
335...適配器構件
345...互動管理器
355...資料庫
358...資訊
360...自主學習系統
365...記憶平台
375...知識網路
385...處理平台
390...角色

Claims (31)

  1. 一種基於自主生物學的半導體工具系統,包括:實施任務的工具系統,該工具包含感測器構件,且該感測器構件產生特徵化該任務的資料;接收該產生資料的互動構件,該互動構件包含封裝該資料並傳達該已封裝資料的適配器;以及自主學習系統,係接收該已封裝資料,並產生特徵化該已封裝資料與該工具效能的知識,該自主學習系統包括:處理該已封裝資料的平台,該平台包含一組運作於該已封裝資料的功能單元,該組功能單元包括:自我適應的推理引擎,至少部分根據該工具系統的製程目標分析資料並推理該工具系統所要實施的動作;以及演化該製程目標的目標構件,係至少部分根據該已封裝資料或前後關係的改變之其中一者;以及儲存該知識的記憶平台,其中,該記憶平台包含記憶階層結構,該記憶階層結構包含長期記憶、短期記憶以及情節記憶,該長期記憶儲存一組概念,其中,該組概念包含實體、關係或程序之至少其中一者,該組概念中的概念包含指出概念對於該工具目前狀態之關連性的第一數值屬 性,以及指出使用該概念之困難度的第二數值屬性。
  2. 如申請專利範圍第1項的系統,其中,該已封裝資料包含內在資料或外來資料之至少其中一者,並且其中,該內在資料是透過演化該製程目標之目標構件的功能性所產生,而外來資料則是被該目標構件所接收。
  3. 如申請專利範圍第1項的系統,其中,該互動構件復包括有助於與外部角色交換資料的互動管理器。
  4. 如申請專利範圍第3項的系統,其中,產生的資料或與該外部角色交換的該資料之至少其中一者包含訓練資料。
  5. 如申請專利範圍第4項的系統,其中,該訓練資料復包含:伴隨該任務的工具變數的識別物;伴隨該任務的兩個或兩個以上工具變數之間的函數關係;包含一組先驗機率和一組條件機率的因果關係圖,該先驗機率係伴隨一組與該任務有關並且存在於該因果關係圖中的工具變數,而該條件機率係相關於與該任務有關並且存在於該因果關係圖中的一個或多個工具變數;或是描述該工具系統的行為的一組參數之至少其中一者。
  6. 如申請專利範圍第1項的系統,其中,知識網路有助 於在該記憶平台中該記憶階層結構之間、在該處理平台中處理該已封裝資料的該組功能單元之間、或是兩者組合之間的通訊。
  7. 如申請專利範圍第1項的系統,其中,該組功能單元包含至少一個識別該工具系統的劣化條件的單元。
  8. 如申請專利範圍第7項的系統,其中,識別該工具系統的劣化條件的該至少一個單元復識別資料的典型型樣,且儲存該資料的典型型樣於該記憶平台中。
  9. 如申請專利範圍第8項的系統,其中,識別該資料的典型型樣的該至少一個單元係比較兩個或兩個以上之資料的典型型樣。
  10. 如申請專利範圍第1項的系統,其中,該組功能單元包含至少一個單元,該單元係識別於該已封裝資料之間的一組關係。
  11. 如申請專利範圍第1項的系統,其中,該組功能單元包含至少一個識別該工具系統的效能條件的單元。
  12. 如申請專利範圍第11項的系統,其中,識別該工具系統的效能條件的該至少一個單元係透過指定以及傳播故障機率至該組中的各個故障點而排列該組故障點。
  13. 如申請專利範圍第1項的系統,其中,儲存在該短期記憶中的內容是暫時的。
  14. 一種基於在自主生物學的半導體工具系統中藉由使用電腦用於學習的方法,該方法包括:建立目標; 接收伴隨該目標的資料;從該接收資料產生知識;儲存該產生的知識於該自主生物學的自主學習系統的記憶平台中,其中,該記憶平台包含記憶階層結構,該記憶階層結構包含長期記憶、短期記憶以及情節記憶,該長期記憶儲存一組概念,其中,該組概念包含實體、關係或程序之至少其中一者,該組概念中的概念包含指出概念對於該工具目前狀態之關連性的第一數值屬性,以及指出使用該概念之困難度的第二數值屬性;利用該產生或儲存的知識判定該目標被完成或該目標將被改變之至少其中一者;以及依據從該產生或儲存的知識所抽取的前後關係改變該目標。
  15. 如申請專利範圍第14項的方法,其中,從該接收資料產生知識復包括:判定進行該目標的構件狀態;判定應用於進行該目標的構件狀態的一組概念;以及調整用於該組概念中各概念的情境分數。
  16. 如申請專利範圍第15項的方法,其中,用於各概念的該情境分數至少包括指出該概念之適合性的度量以及指出實施該概念以演化該已進行目標之複雜度的度量。
  17. 如申請專利範圍第14項的方法,復包括:將一組概念相關聯於一組資料類型;判定用於一組概念的語意網路,係依據用於該組概念中各概念所判定的一組優先序,而該組優先序中的優先序則定義情境分數;以及在該語意網路中傳播該組優先序以進行推理。
  18. 如申請專利範圍第15項的方法,其中,該語意網路包括一組基於優先序的子網路,而該子網路係連結至已判定的概念類別。
  19. 如申請專利範圍第18項的方法,其中,概念的類別至少包含函數概念類別。
  20. 如申請專利範圍第16項的方法,其中,指出概念之該適合性以演化目標的該度量是時間的函數。
  21. 如申請專利範圍第16項的方法,其中,指出實施概念以演化目標之該複雜度的該度量是時間的函數。
  22. 如申請專利範圍第14項的方法,其中,該目標包括由工具系統所實施的製程。
  23. 如申請專利範圍第14項的方法,其中,利用該產生或儲存的知識復包括最佳化要完成的該目標。
  24. 如申請專利範圍第14項的方法,其中,利用該產生或儲存的知識復包括:設計用於保養該基於自主生物學的工具系統的計畫;以及執行該設計的計畫。
  25. 如申請專利範圍第24項的方法,其中,設計用於保養該基於自主生物學的工具系統的計畫包括進行問題根源分析。
  26. 如申請專利範圍第25項的方法,其中,執行該設計的計畫必定對該基於自主生物學的工具系統實施已排程或未排程的預防保養之至少其中一者。
  27. 如申請專利範圍第26項的方法,其中,該已排程或未排程的預防保養之至少其中一者是以定期或特定事件中之至少其中一者來進行。
  28. 如申請專利範圍第14項的方法,其中,伴隨該目標的該資料是一組訓練資料或一組生產資料之至少其中一者。
  29. 如申請專利範圍第14項的方法,其中,該資料包括內在資料,該內在資料係於進行該目標時所產生。
  30. 如申請專利範圍第14項的方法,其中,該資料包括外來資料,係於進行該目標所伴隨進行的製程時所產生或接收。
  31. 一種電腦程式產品,包含電腦可讀取的儲存媒體,該儲存媒體包括一組指令,當藉由電腦執行該組指令時,會使該電腦實施下列行動:在基於自主生物學的工具系統中學習;接收資料,該資料包含訓練資料與生產資料;從該接收的資料產生知識;儲存該產生的知識於該自主生物學的自主學習系 統的記憶平台中,其中,該記憶平台包含記憶階層結構,該記憶階層結構包含長期記憶、短期記憶以及情節記憶,該長期記憶儲存一組概念,其中,該組概念包含實體、關係或程序之至少其中一者,該組概念中的概念包含指出概念對於該工具目前狀態之關連性的第一數值屬性,以及指出使用該概念之困難度的第二數值屬性;以及利用該產生或儲存的知識。
TW098107266A 2008-03-08 2009-03-06 基於自主生物學的學習工具 TWI446280B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/044,958 US8190543B2 (en) 2008-03-08 2008-03-08 Autonomous biologically based learning tool

Publications (2)

Publication Number Publication Date
TW200945220A TW200945220A (en) 2009-11-01
TWI446280B true TWI446280B (zh) 2014-07-21

Family

ID=41065534

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107266A TWI446280B (zh) 2008-03-08 2009-03-06 基於自主生物學的學習工具

Country Status (6)

Country Link
US (2) US8190543B2 (zh)
JP (2) JP5542697B2 (zh)
KR (1) KR101611628B1 (zh)
CN (2) CN102016827B (zh)
TW (1) TWI446280B (zh)
WO (1) WO2009114387A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806496B (zh) * 2022-03-16 2023-06-21 緯創資通股份有限公司 遞迴貝式網路建構系統、遞迴貝式網路建構方法、電腦可讀取記錄媒體、非暫時性電腦程式產品及無線網路控制系統

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100073202A1 (en) * 2008-09-25 2010-03-25 Mazed Mohammad A Portable internet appliance
TWI388952B (zh) * 2009-02-11 2013-03-11 Inotera Memories Inc 基於使用者需求之半導體加工排程最佳化規劃方法
CN101973031B (zh) * 2010-08-24 2013-07-24 中国科学院深圳先进技术研究院 云机器人系统及实现方法
US8543533B2 (en) * 2010-12-03 2013-09-24 International Business Machines Corporation Inferring influence and authority
US8626680B2 (en) 2010-12-03 2014-01-07 International Business Machines Corporation Group variable selection in spatiotemporal modeling
KR101216517B1 (ko) * 2011-04-01 2012-12-31 국방과학연구소 최적의 네트워크 시뮬레이션 환경 구축 방법 및 그 시스템
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
CN103870317B (zh) * 2012-12-10 2017-07-21 中兴通讯股份有限公司 云计算中的任务调度方法及系统
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US20140278713A1 (en) * 2013-03-15 2014-09-18 Oracle International Corporation Asset forecasting in asset intensive enterprises
US9600772B1 (en) 2013-05-03 2017-03-21 Omniphysical LLC Infrastructure enabling information systems to be aware and self-aware
KR102061763B1 (ko) 2013-05-27 2020-01-03 삼성전자 주식회사 시뮬레이션 시스템 및 방법, 상기 시스템을 포함하는 컴퓨팅 시스템
US9218570B2 (en) 2013-05-29 2015-12-22 International Business Machines Corporation Determining an anomalous state of a system at a future point in time
JP6179224B2 (ja) * 2013-07-02 2017-08-16 富士通株式会社 画像処理フィルタの作成装置及びその方法
US9396443B2 (en) * 2013-12-05 2016-07-19 Tokyo Electron Limited System and method for learning and/or optimizing manufacturing processes
US9412069B1 (en) 2013-12-10 2016-08-09 Omniphysical LLC Information infrastructure enabling mind supportable by universal computing devices
US10279488B2 (en) 2014-01-17 2019-05-07 Knightscope, Inc. Autonomous data machines and systems
US10514837B1 (en) 2014-01-17 2019-12-24 Knightscope, Inc. Systems and methods for security data analysis and display
US10002364B2 (en) 2014-06-25 2018-06-19 Oracle International Corporation Consumption-driven forecasting using multi-level heterogeneous input data
US10181107B2 (en) 2014-06-25 2019-01-15 Oracle International Corporation Using consumption data and an inventory model to generate a replenishment plan
CN105468933B (zh) * 2014-08-28 2018-06-15 深圳先进技术研究院 生物学数据分析方法和系统
US10510016B2 (en) * 2014-11-17 2019-12-17 Optimitive S.L.U. Methods and systems using a composition of autonomous self-learning software components for performing complex real time data-processing tasks
CN104407589B (zh) * 2014-11-26 2017-01-25 西北工业大学 面向车间制造过程的实时生产性能主动感知与异常分析方法
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US10228678B2 (en) * 2015-07-22 2019-03-12 Tokyo Electron Limited Tool failure analysis using space-distorted similarity
JP6140236B2 (ja) 2015-09-30 2017-05-31 ファナック株式会社 機械学習装置及び電動機用着磁装置
JP6055058B1 (ja) 2015-09-30 2016-12-27 ファナック株式会社 機械学習器及び組み立て・試験器を備えた生産設備
US10521215B2 (en) * 2015-12-10 2019-12-31 Intel Corporation Technologies for customized crowd-sourced features, automated safety and quality assurance with a technical computing environment
US10726034B2 (en) * 2016-03-30 2020-07-28 Microsoft Technology Licensing, Llc Modular electronic data analysis computing system
JP6623119B2 (ja) * 2016-05-27 2019-12-18 株式会社日立製作所 データ対応付け装置及び方法
EP3531892B1 (en) * 2016-10-26 2022-04-06 Telefonaktiebolaget LM Ericsson (PUBL) Identifying sensory inputs affecting working memory load of an individual
US20180240015A1 (en) * 2017-02-21 2018-08-23 Scriyb LLC Artificial cognitive declarative-based memory model to dynamically store, retrieve, and recall data derived from aggregate datasets
JP6526081B2 (ja) * 2017-02-28 2019-06-05 ファナック株式会社 在庫管理および予防保全を行う機能を有する在庫管理システム
EP3607466A4 (en) * 2017-04-07 2020-12-02 INTEL Corporation ADVANCED ARTIFICIAL INTELLIGENCE AGENT TO MODEL PHYSICAL INTERACTIONS
US10303829B2 (en) 2017-05-31 2019-05-28 International Business Machines Corporation Automated method for integrated analysis of back end of the line yield, line resistance/capacitance and process performance
CN107450491B (zh) * 2017-08-04 2021-02-23 杭州南江机器人股份有限公司 一种机器人调度系统、方法、电子设备和存储介质
CN107578104B (zh) * 2017-08-31 2018-11-06 江苏康缘药业股份有限公司 一种中药生产过程知识系统
CN110245752B (zh) * 2017-08-31 2020-10-09 中科寒武纪科技股份有限公司 一种使用芯片装置进行全连接运算方法及装置
KR102311962B1 (ko) * 2017-11-03 2021-10-13 김선중 자연 모사 기법을 이용한 솔루션 아이디어 제공 시스템 및 방법
JP7121506B2 (ja) 2018-03-14 2022-08-18 株式会社日立ハイテク 探索装置、探索方法及びプラズマ処理装置
KR20200123480A (ko) * 2018-03-20 2020-10-29 도쿄엘렉트론가부시키가이샤 통합형 반도체 공정 모듈을 포함하는 자기 인식 및 보정 이종 플랫폼, 및 이를 사용하기 위한 방법
JP7137943B2 (ja) 2018-03-20 2022-09-15 株式会社日立ハイテク 探索装置、探索方法及びプラズマ処理装置
US11619524B2 (en) 2018-07-03 2023-04-04 Brandon Moore Dental equipment monitoring system
US11755944B1 (en) 2018-09-13 2023-09-12 Omniphysical LLC Platform evaluation and automatic transfer of a descriptive information infrastructure
US10572804B1 (en) 2018-09-13 2020-02-25 Omniphysical LLC Platform evaluation and automatic transfer of a descriptive information infrastructure
JP7036697B2 (ja) 2018-09-27 2022-03-15 株式会社日立製作所 監視システム及び監視方法
TWI701595B (zh) * 2018-12-28 2020-08-11 技嘉科技股份有限公司 記憶體的效能優化方法以及使用其的主機板
GB201903884D0 (en) * 2019-03-21 2019-05-08 Quantum Motion Tech Limited Architectures for quantum information processing
WO2020243116A1 (en) * 2019-05-26 2020-12-03 Vilynx, Inc. Self-learning knowledge graph
US10990092B2 (en) 2019-06-06 2021-04-27 Robert Bosch Gmbh Test time reduction for manufacturing processes by removing a redundant test
US11275362B2 (en) * 2019-06-06 2022-03-15 Robert Bosch Gmbh Test time reduction for manufacturing processes by substituting a test parameter
US20210012236A1 (en) * 2019-07-10 2021-01-14 Sony Interactive Entertainment LLC Dual machine learning pipelines for transforming data and optimizing data transformation
CN114341877A (zh) * 2019-09-24 2022-04-12 西门子(中国)有限公司 根本原因分析方法、装置、电子设备、介质以及程序产品
US20210103221A1 (en) * 2019-10-08 2021-04-08 International Business Machines Corporation Tool control using multistage lstm for predicting on-wafer measurements
US11747774B2 (en) 2019-12-03 2023-09-05 Hitachi High-Tech Corporation Search device, search program, and plasma processing apparatus
US11797836B1 (en) * 2019-12-23 2023-10-24 Waymo Llc Sensor-integrated neural network
JP7333284B2 (ja) * 2020-03-16 2023-08-24 株式会社日立製作所 保守支援システム及び保守支援方法
TWI798563B (zh) * 2020-07-01 2023-04-11 台達電子工業股份有限公司 智慧排程方法與智慧排程裝置
US20220109728A1 (en) * 2020-10-05 2022-04-07 Electronics And Telecommunications Research Institute Composite energy sensor based on artificial intelligence
WO2022226258A2 (en) * 2021-04-23 2022-10-27 Battelle Memorial Institute Causal relational artificial intelligence and risk framework for manufacturing applications
EP4116888A1 (en) * 2021-07-07 2023-01-11 ASML Netherlands B.V. Computer implemented method for diagnosing a system comprising a plurality of modules
TWI815173B (zh) * 2021-08-26 2023-09-11 力晶積成電子製造股份有限公司 半導體製程的生產排程估測方法以及系統
US11928128B2 (en) * 2022-05-12 2024-03-12 Truist Bank Construction of a meta-database from autonomously scanned disparate and heterogeneous sources

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007200A (en) * 1931-11-25 1935-07-09 Semet Solvay Eng Corp Water gas carburetor
US5495417A (en) * 1990-08-14 1996-02-27 Kabushiki Kaisha Toshiba System for automatically producing different semiconductor products in different quantities through a plurality of processes along a production line
JPH04112204A (ja) 1990-09-03 1992-04-14 Agency Of Ind Science & Technol 制御知識生成装置
JPH04123231U (ja) 1991-04-26 1992-11-06 東燃化学株式会社 粘着テ−プ
JP3115082B2 (ja) * 1992-03-10 2000-12-04 株式会社東芝 熱源機器の運転制御装置
US5644686A (en) * 1994-04-29 1997-07-01 International Business Machines Corporation Expert system and method employing hierarchical knowledge base, and interactive multimedia/hypermedia applications
JP3446311B2 (ja) 1994-06-22 2003-09-16 富士通株式会社 最適製造、制御、提示条件生成装置
JP3129932B2 (ja) 1995-05-16 2001-01-31 シャープ株式会社 ファジィ・ニューラルネットワーク装置およびその学習方法
US5867799A (en) * 1996-04-04 1999-02-02 Lang; Andrew K. Information system and method for filtering a massive flow of information entities to meet user information classification needs
US6201999B1 (en) 1997-06-09 2001-03-13 Applied Materials, Inc. Method and apparatus for automatically generating schedules for wafer processing within a multichamber semiconductor wafer processing tool
US6122397A (en) * 1997-07-03 2000-09-19 Tri Path Imaging, Inc. Method and apparatus for maskless semiconductor and liquid crystal display inspection
JP3325833B2 (ja) * 1998-05-20 2002-09-17 東京エレクトロン株式会社 熱処理装置
US8938688B2 (en) 1998-12-04 2015-01-20 Nuance Communications, Inc. Contextual prediction of user words and user actions
US6678572B1 (en) 1998-12-31 2004-01-13 Asml Holdings, N.V. Recipe cascading in a wafer processing system
US6304999B1 (en) * 2000-10-23 2001-10-16 Advanced Micro Devices, Inc. Method and apparatus for embedded process control framework in tool systems
US6931644B2 (en) * 2000-12-21 2005-08-16 International Business Machines Corporation Hierarchical connected graph model for implementation of event management design
TW583522B (en) 2001-04-27 2004-04-11 Tokyo Electron Ltd Remote maintenance system for semiconductor manufacturing apparatus and plant-side client and vendor-side server and storage medium and remote maintenance method for semiconductor manufacturing apparatus
US7233933B2 (en) 2001-06-28 2007-06-19 Microsoft Corporation Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability
US6965895B2 (en) * 2001-07-16 2005-11-15 Applied Materials, Inc. Method and apparatus for analyzing manufacturing data
US7218980B1 (en) * 2001-07-23 2007-05-15 Esilicon Corporation Prediction based optimization of a semiconductor supply chain using an adaptive real time work-in-progress tracking system
US6872715B2 (en) * 2001-08-06 2005-03-29 Kosan Biosciences, Inc. Benzoquinone ansamycins
US7287014B2 (en) 2001-11-16 2007-10-23 Yuan Yan Chen Plausible neural network with supervised and unsupervised cluster analysis
US20030194409A1 (en) * 2002-01-17 2003-10-16 Rothman James E. Conjugate heat shock protein-binding peptides
JP2003209035A (ja) 2002-01-17 2003-07-25 Toshiba Corp 半導体製造工程のパラメータ管理値設定方法及びプログラム並びに装置
US7133804B2 (en) * 2002-02-22 2006-11-07 First Data Corporatino Maintenance request systems and methods
US20030199112A1 (en) * 2002-03-22 2003-10-23 Applied Materials, Inc. Copper wiring module control
KR100873114B1 (ko) 2002-07-03 2008-12-09 도쿄엘렉트론가부시키가이샤 자동 센서 설치 방법 및 장치
JP2004094900A (ja) * 2002-07-09 2004-03-25 National Institute Of Advanced Industrial & Technology 生産計画作成システム及び方法、並びにプログラム
GB0216858D0 (en) 2002-07-19 2002-08-28 Bae Systems Plc Fault diagnosis system
JP4123231B2 (ja) 2002-08-22 2008-07-23 サンケン電気株式会社 直流変換装置
US7194445B2 (en) * 2002-09-20 2007-03-20 Lenovo (Singapore) Pte. Ltd. Adaptive problem determination and recovery in a computer system
IE20030437A1 (en) 2003-06-11 2004-12-15 Scient Systems Res Ltd A method for process control of semiconductor manufacturing equipment
US7062411B2 (en) * 2003-06-11 2006-06-13 Scientific Systems Research Limited Method for process control of semiconductor manufacturing equipment
MY138544A (en) 2003-06-26 2009-06-30 Neuramatix Sdn Bhd Neural networks with learning and expression capability
CN101906106A (zh) * 2003-09-18 2010-12-08 康福玛医药公司 作为hsp90-抑制剂的新的杂环化合物
US20050114829A1 (en) * 2003-10-30 2005-05-26 Microsoft Corporation Facilitating the process of designing and developing a project
US6876894B1 (en) 2003-11-05 2005-04-05 Taiwan Semiconductor Maufacturing Company, Ltd. Forecast test-out of probed fabrication by using dispatching simulation method
TWI267012B (en) 2004-06-03 2006-11-21 Univ Nat Cheng Kung Quality prognostics system and method for manufacturing processes
US7451011B2 (en) 2004-08-27 2008-11-11 Tokyo Electron Limited Process control using physical modules and virtual modules
US7212878B2 (en) 2004-08-27 2007-05-01 Tokyo Electron Limited Wafer-to-wafer control using virtual modules
US7177714B2 (en) 2004-09-28 2007-02-13 Siemens Technology-To-Business Center, Llc Method and apparatus for determining and representing continuous resource loading profiles and overload probability functions for complex discrete manufacturing
GB0423110D0 (en) 2004-10-18 2004-11-17 Manthatron Ip Ltd Acting on a subject system
US20060129257A1 (en) * 2004-12-13 2006-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Novel method and apparatus for integrating fault detection and real-time virtual metrology in an advanced process control framework
JP2007018490A (ja) 2005-02-23 2007-01-25 Sony Corp 行動制御装置および行動制御方法、並びに、プログラム
JP4900642B2 (ja) * 2005-02-23 2012-03-21 ソニー株式会社 学習制御装置、学習制御方法、およびプログラム
JP4525477B2 (ja) * 2005-02-23 2010-08-18 ソニー株式会社 学習制御装置および学習制御方法、並びに、プログラム
US7299154B1 (en) 2005-05-16 2007-11-20 Advanced Micro Devices, Inc. Method and apparatus for fast disturbance detection and classification
US7127304B1 (en) * 2005-05-18 2006-10-24 Infineon Technologies Richmond, Lp System and method to predict the state of a process controller in a semiconductor manufacturing facility
CN100386702C (zh) 2005-06-10 2008-05-07 同济大学 基于信息素的用于半导体生产线的动态调度方法
US7937264B2 (en) 2005-06-30 2011-05-03 Microsoft Corporation Leveraging unlabeled data with a probabilistic graphical model
DE112006004263B4 (de) 2005-09-02 2015-05-13 Google, Inc. Speicherbaustein
US7359759B2 (en) 2005-10-31 2008-04-15 Taiwan Semiconductor Manufacturing Company Method and system for virtual metrology in semiconductor manufacturing
US7571019B2 (en) 2005-12-30 2009-08-04 Intel Corporation Integrated configuration, flow and execution system for semiconductor device experimental flows and production flows
US7454312B2 (en) * 2006-03-15 2008-11-18 Applied Materials, Inc. Tool health information monitoring and tool performance analysis in semiconductor processing
JP5044968B2 (ja) * 2006-04-03 2012-10-10 オムロン株式会社 要因推定装置、要因推定方法、プログラムおよびコンピュータ読取可能記録媒体
US7596718B2 (en) 2006-05-07 2009-09-29 Applied Materials, Inc. Ranged fault signatures for fault diagnosis
TWI315054B (en) * 2006-05-10 2009-09-21 Nat Cheng Kung Universit Method for evaluating reliance level of a virtual metrology system in product manufacturing
US20070288419A1 (en) * 2006-06-07 2007-12-13 Motorola, Inc. Method and apparatus for augmenting data and actions with semantic information to facilitate the autonomic operations of components and systems
US20080051930A1 (en) 2006-07-10 2008-02-28 Oh Hilario L Scheduling method for processing equipment
US7522968B2 (en) 2006-07-10 2009-04-21 Applied Materials, Inc. Scheduling method for processing equipment
JP2008158748A (ja) 2006-12-22 2008-07-10 Toshiba Corp 変数選択装置、方法およびプログラム
US7531368B2 (en) * 2007-03-30 2009-05-12 Tokyo Electron Limited In-line lithography and etch system
US7373216B1 (en) * 2007-03-30 2008-05-13 Tokyo Electron Limited Method and apparatus for verifying a site-dependent wafer
US7596423B2 (en) * 2007-03-30 2009-09-29 Tokyo Electron Limited Method and apparatus for verifying a site-dependent procedure
US8010321B2 (en) 2007-05-04 2011-08-30 Applied Materials, Inc. Metrics independent and recipe independent fault classes
US7974728B2 (en) 2007-05-04 2011-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. System for extraction of key process parameters from fault detection classification to enable wafer prediction
US7702411B2 (en) * 2007-05-31 2010-04-20 International Business Machines Corporation Integration of job shop scheduling with discreet event simulation for manufacturing facilities
US20090222123A1 (en) 2007-11-07 2009-09-03 Optessa, Inc. Method and system for scheduling a set of events in real time
US8396582B2 (en) 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool
US8725667B2 (en) * 2008-03-08 2014-05-13 Tokyo Electron Limited Method and system for detection of tool performance degradation and mismatch
DE102008020379A1 (de) * 2008-04-23 2009-10-29 Siemens Aktiengesellschaft Verfahren zur rechnergestützten Steuerung und/oder Regelung eines technischen Systems
US7937175B2 (en) 2008-07-10 2011-05-03 Palo Alto Research Center Incorporated Methods and systems for pervasive diagnostics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806496B (zh) * 2022-03-16 2023-06-21 緯創資通股份有限公司 遞迴貝式網路建構系統、遞迴貝式網路建構方法、電腦可讀取記錄媒體、非暫時性電腦程式產品及無線網路控制系統

Also Published As

Publication number Publication date
JP5732495B2 (ja) 2015-06-10
WO2009114387A1 (en) 2009-09-17
CN102016827B (zh) 2013-06-19
JP2011517807A (ja) 2011-06-16
KR20110052534A (ko) 2011-05-18
US9275335B2 (en) 2016-03-01
CN102016827A (zh) 2011-04-13
US20110131162A1 (en) 2011-06-02
TW200945220A (en) 2009-11-01
US20120209798A1 (en) 2012-08-16
KR101611628B1 (ko) 2016-04-26
JP5542697B2 (ja) 2014-07-09
JP2014013581A (ja) 2014-01-23
US8190543B2 (en) 2012-05-29
CN103295065B (zh) 2016-09-28
CN103295065A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
TWI446280B (zh) 基於自主生物學的學習工具
TWI472887B (zh) 半導體工具系統、用於分配產品資產的方法、及用於半導體製程的設備
US8725667B2 (en) Method and system for detection of tool performance degradation and mismatch
KR101755746B1 (ko) 반도체 제조 툴을 자기-학습 및 자기-개선하는 방법 및 시스템