TWI445944B - Method for classifying color of a solar cell - Google Patents

Method for classifying color of a solar cell Download PDF

Info

Publication number
TWI445944B
TWI445944B TW101102449A TW101102449A TWI445944B TW I445944 B TWI445944 B TW I445944B TW 101102449 A TW101102449 A TW 101102449A TW 101102449 A TW101102449 A TW 101102449A TW I445944 B TWI445944 B TW I445944B
Authority
TW
Taiwan
Prior art keywords
color
training
coordinate points
solar cell
image
Prior art date
Application number
TW101102449A
Other languages
Chinese (zh)
Other versions
TW201331566A (en
Inventor
yi chen Su
Yi Lung Weng
Hsin Tai Yang
Original Assignee
Chroma Ate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chroma Ate Inc filed Critical Chroma Ate Inc
Priority to TW101102449A priority Critical patent/TWI445944B/en
Publication of TW201331566A publication Critical patent/TW201331566A/en
Application granted granted Critical
Publication of TWI445944B publication Critical patent/TWI445944B/en

Links

Landscapes

  • Image Analysis (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Image Processing (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池晶片分色之方法Solar cell wafer color separation method

本發明係關於一種太陽能電池晶片分色之方法,並且特別地,關於一種能以自動學習系統有效地對太陽能電池晶片表面之顏色進行分類的方法。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of color separation of solar cell wafers, and more particularly to a method of efficiently classifying the color of a solar cell wafer surface with an automatic learning system.

近年來,能源以及環保議題受到重視,使得世界各國紛紛發展新式較無汙染的能源,例如,風力、潮汐、地熱、太陽能、以及生質能源等,其中太陽能由於應用範圍廣泛且發展較為成熟而成為各種新式替代能源中最被看好的其中之一。In recent years, energy and environmental issues have received attention, making countries all over the world develop new and less polluting energy sources, such as wind, tide, geothermal, solar, and biomass energy. Among them, solar energy has become widely used due to its wide range of applications and mature development. One of the most promising new alternative energy sources.

太陽能的利用一般係藉由太陽能電池(solar cell)晶片,透過光電轉換把太陽光中所包含的能量轉化為電能。太陽能電池晶片依製程不同,可概分為矽晶太陽能電池晶片以及薄膜太陽能電池晶片等,其中矽晶太陽能電池晶片發展最久同時技術也最成熟。矽晶太陽能電池晶片的基本構造是P型半導體與N型半導體接合而成,當太陽光照射太陽能電池晶片時,其光能將矽原子中之電子激發出來而形成電子與電洞的對流,所產生的電子與電洞受到內建電位影響分別被P型半導體與N型半導體吸引而聚集至不同的兩側,藉由電極可引出電子與電洞進而產生電能。The use of solar energy generally converts the energy contained in sunlight into electrical energy through photoelectric conversion through a solar cell wafer. Solar cell wafers can be divided into twin crystal solar cell wafers and thin film solar cell wafers according to different processes. Among them, twin crystal solar cell wafers have the longest development and the most mature technology. The basic structure of a twinned solar cell wafer is a combination of a P-type semiconductor and an N-type semiconductor. When sunlight illuminates a solar cell wafer, its light energy excites electrons in the germanium atom to form a convection of electrons and holes. The generated electrons and holes are attracted by the P-type semiconductor and the N-type semiconductor to be collected on different sides by the built-in potential, and the electrodes can extract electrons and holes to generate electric energy.

由於太陽能電池晶片係以其表面接收太陽光而進行發電,因此,太陽能電池晶片表面是否能有效吸收光源,將成為提升能量轉換效率的關鍵所在。此外,太陽能電池晶片表面具有一層抗反射層,可用來降低照射至表面之光線的反射率,換言之,增加光吸收效率。抗反射層之厚度將會影響抗反射的效率,而抗反射層之厚度可由太陽能電池晶片表面顏色來區分,一般而言,抗反射層越厚顏色越淺,反之則越深。顏色的差異主要取決於製程的管控,根據顏色之深淺以及均一性也可判斷製程的能力是否不足而須改善製程。Since the solar cell chip generates electricity by receiving sunlight on its surface, whether the surface of the solar cell wafer can effectively absorb the light source will become the key to improving energy conversion efficiency. In addition, the surface of the solar cell wafer has an anti-reflection layer which can be used to reduce the reflectance of light irradiated to the surface, in other words, to increase the light absorption efficiency. The thickness of the anti-reflection layer will affect the efficiency of anti-reflection, and the thickness of the anti-reflection layer can be distinguished by the color of the surface of the solar cell wafer. Generally, the thicker the anti-reflection layer, the lighter the color, and vice versa. The difference in color depends mainly on the control of the process. Depending on the depth and uniformity of the color, it is also possible to judge whether the process capability is insufficient and the process must be improved.

如上所述,太陽能電池晶片表面顏色分類可做為改進生產製程的依據。太陽能電池晶片每片的表面顏色並非僅只一種,而是數種不同顏色混合而成,舉例而言,具有藍黑及深藍兩種顏色的太陽能電池晶片,各晶片上兩種顏色之比例通常不會完全相同。傳統的太陽能電池晶片表面顏色分類之方法係以人眼直接觀看其表面而進行分類,而人眼分類之準則是依照表面主要顏色與次要顏色之比例來進行分色。然而,一般的分類方法僅使用太陽能電池晶片表面主要顏色來進行分類,而對其上次要顏色的重要性予以忽略,容易與人眼分色產生誤差。另外,受限於每個人對顏色定義無法均一,且人眼容易受到疲勞等因素而失準,因此人眼分色判斷方法會具有相當大的誤差。As mentioned above, solar cell wafer surface color classification can be used as a basis for improving the manufacturing process. The surface color of each piece of solar cell wafer is not only one kind, but a mixture of several different colors. For example, solar cell chips with blue-black and dark-blue colors, the ratio of the two colors on each wafer is usually not It's exactly the same. Conventional solar cell wafer surface color classification methods are classified by the human eye directly viewing the surface thereof, and the human eye classification criterion is to perform color separation according to the ratio of the main color of the surface to the secondary color. However, the general classification method only uses the main color of the surface of the solar cell wafer for classification, and the importance of the color to be used last time is neglected, which is easy to cause an error with the color separation of the human eye. In addition, it is limited that each person can't be uniform in color definition, and the human eye is easily subject to fatigue and other factors, so the human eye color separation judgment method will have considerable error.

因此,本發明之一範疇在於提供一種太陽能電池晶片分色之方法,可利用自動學習技術對太陽能電池晶片之表面顏色進行分類,以解決先前技術之問題。Accordingly, it is an object of the present invention to provide a method of color separation of solar cell wafers that can be categorized by automated learning techniques to address the surface color of solar cell wafers.

根據一具體實施例,本發明之太陽能電池晶片分色之方法包含下列步驟:取得太陽能電池晶片表面之影像;分析此影像以獲得色彩空間中的複數個座標點;將各座標點分別歸類到複數個顏色群組之中;分析各顏色群組中座標點的比例,進而獲得顏色特徵向量;將顏色特徵向量輸入機器學習分類器以獲得太陽能電池晶片之表面顏色的分類結果。According to a specific embodiment, the method for color separation of a solar cell wafer of the present invention comprises the steps of: obtaining an image of a surface of a solar cell wafer; analyzing the image to obtain a plurality of coordinate points in a color space; classifying each coordinate point into Among the plurality of color groups; analyzing the proportion of coordinate points in each color group to obtain a color feature vector; and inputting the color feature vector into a machine learning classifier to obtain a classification result of the surface color of the solar cell wafer.

於本具體實施例中,機器學習分類器係經過太陽能電池晶片表面顏色的分色訓練,此分色訓練包含下列步驟:分析訓練影像集合中的各訓練影像,而獲得在色彩空間中對應各訓練影像之座標點集合;以分群演算法自所有座標點集合中歸類出複數個顏色群組,並將各座標點集合分別分類至複數個顏色群組中;分別分析各座標點集合於各顏色群組中之訓練影像座標點之比例,以獲得複數個訓練影像顏色特徵向量;分別提供期望顏色值至各訓練影像顏色特徵向量,以獲得複數個訓練樣本;再以這些訓練樣本對機器學習分類器進行分色訓練。In this embodiment, the machine learning classifier is subjected to color separation training on the surface color of the solar cell wafer. The color separation training includes the following steps: analyzing each training image in the training image set to obtain corresponding training in the color space. a set of coordinate points of the image; a plurality of color groups are classified from all coordinate point sets by a grouping algorithm, and each set of punctuation points is respectively classified into a plurality of color groups; respectively, each coordinate point is collected in each color The ratio of the training image coordinate points in the group to obtain a plurality of training image color feature vectors; respectively providing the desired color values to the respective training image color feature vectors to obtain a plurality of training samples; and then classifying the machine learning with the training samples The device performs color separation training.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

請參閱圖一,圖一係繪示根據本發明之一具體實施例之太陽能電池晶片分色之方法的步驟流程圖。本具體實施例之方法可利用自動學習之系統來對太陽能電池晶片表面之顏色進行分類,而可解決先前技術之問題。Referring to FIG. 1, FIG. 1 is a flow chart showing the steps of a method for color separation of a solar cell wafer according to an embodiment of the present invention. The method of this embodiment can utilize the automated learning system to classify the color of the surface of the solar cell wafer while solving the problems of the prior art.

如圖一所示,本具體實施例之太陽能電池晶片分色之方法包含有下列步驟:於步驟S10,取得欲分類之太陽能電池晶片表面之影像;於步驟S12,分析此影像而獲得色彩空間中之複數個座標點;於步驟S14,將各座標點分別分類至複數個顏色群組中;於步驟S16,分析各顏色群組中之座標點之比例,以獲得此影像之顏色特徵向量;於步驟S18,提供獲得的顏色特徵向量至機器學習分類器,以作為機器學習分類器的輸入值,進而獲得太陽能電池晶片表面顏色分類之結果。As shown in FIG. 1 , the method for color separation of a solar cell wafer according to the embodiment includes the following steps: in step S10, obtaining an image of a surface of a solar cell wafer to be classified; and in step S12, analyzing the image to obtain a color space. a plurality of coordinate points; in step S14, each coordinate point is separately classified into a plurality of color groups; in step S16, the ratio of coordinate points in each color group is analyzed to obtain a color feature vector of the image; Step S18, providing the obtained color feature vector to the machine learning classifier as an input value of the machine learning classifier, thereby obtaining the result of color classification of the surface of the solar cell wafer.

步驟S10中取得欲分類之太陽能電池晶片表面影像之方式,在實務上可利用電荷耦合元件(Charge-Coupled Device,CCD)攝影機等取像裝置擷取表面影像。在步驟S12中,當太陽能電池晶片表面影像擷取出來之後,可經由影像處理系統先找出影像中的有效點,再將影像在各有效點上之顏色分別轉換到色彩空間中的座標點。實務中,有效點的獲得可將太陽能電池晶片影像去除其粗線(busbar)、細線(finger)以及背景(background),去除後之有效面積上的像素點可作為有效點。影像在各有效點上之顏色分佈,可由色彩空間中的座標點來表示。舉例而言,顏色偏深藍的太陽能電池晶片,表示各有效點的顏色以深藍色居多,故轉換後對應於各有效點之座標多數落在色彩空間中代表深藍色之區域。本具體實施例所採用之色彩空間可為CIE Lab色彩空間,然而,於實務中,也可採用CIE XYZ色彩空間或CIE Luv色彩空間等,端看使用者或設計者需求而定。In step S10, the surface image of the solar cell wafer to be classified is obtained. In practice, the image capturing device such as a Charge-Coupled Device (CCD) camera can be used to capture the surface image. In step S12, after the surface image of the solar cell wafer is removed, the effective point in the image can be first found through the image processing system, and then the color of the image at each effective point is converted to the coordinate point in the color space. In practice, the effective point can be obtained by removing the busbar image, the fine line and the background from the solar cell wafer image, and the pixel on the effective area after the removal can be used as an effective point. The color distribution of the image at each effective point can be represented by coordinate points in the color space. For example, a solar cell wafer with a dark blue color indicates that the color of each effective point is mostly dark blue, so that the coordinates corresponding to the effective points after conversion mostly fall in the area representing the dark blue in the color space. The color space used in this embodiment can be the CIE Lab color space. However, in practice, the CIE XYZ color space or the CIE Luv color space can also be used, depending on the needs of the user or the designer.

當步驟S12中將各有效點之顏色轉換到色彩空間之對應座標點後,接著,在步驟S14中將各座標點分別分類到預先設定好的複數個顏色群組之中。上述將各座標點分別分類到顏色群組中之方法舉例而言,各顏色群組在色彩空間中佔有一區域,並且各區域可用一個重心位置來代表,上述各座標點可以歐式幾何距離作為分類的依據,亦即,一座標點會被歸類於與其歐式距離最近之重心位置所代表的顏色群組。請注意,本發明並不以上述歐式距離之分類方法為限,任何可將座標點分類至顏色群組之方法皆可應用於步驟S14之中。After the color of each valid point is converted to the corresponding coordinate point of the color space in step S12, then, in step S14, each coordinate point is respectively classified into a plurality of preset color groups. For example, the method of classifying each coordinate point into a color group is as follows. Each color group occupies an area in the color space, and each area can be represented by a gravity center position, and the above-mentioned respective coordinate points can be classified by the European geometric distance. The basis, that is, a punctuation will be classified into the color group represented by the position of the center of gravity closest to its Euclidean distance. Please note that the present invention is not limited to the above-described European distance classification method, and any method for classifying coordinate points into color groups can be applied to step S14.

透過上述步驟S14,一個太陽能電池晶片影像上所有有效點的顏色可被分到各顏色群組中,接著,在步驟S16,分析各顏色群組中之座標點之比例,以獲得與此太陽能電池晶片表面顏色相關之顏色特徵向量。舉例而言,若一太陽能電池晶片表面之顏色為深藍色偏多、藍黑色次之,則代表深藍色之顏色群組中所包含的座標點數量將會佔所有座標點數量中之最大比例,代表藍黑色之顏色群組中包含的座標點數量比例則次之。Through the above step S14, the color of all the effective points on the image of one solar cell wafer can be divided into the respective color groups, and then, in step S16, the proportion of the coordinate points in each color group is analyzed to obtain the solar cell with the solar cell. The color feature vector associated with the color of the wafer surface. For example, if the surface of a solar cell wafer has a dark blue color and a blue-black color, the number of coordinate points included in the dark blue color group will account for the largest proportion of all coordinate points. The proportion of coordinate points included in the blue-black color group is second.

再藉由另一具體實施例詳細說明步驟S16。若一太陽能電池晶片影像所分析出的各座標點可被分入N個顏色群組中,則依照各顏色群組中所包含的座標點數量與此影像所有座標點總數之比例,可以得到一個向量數值(P1 ,P2 ,...,PN )做為此太陽能電池晶片影像的顏色特徵向量,其中,數字1~N代表N個不同的顏色群組,P則是顏色群組中所包含的座標點數量或是所包含的座標點數量與所有座標點總數之比例。Step S16 is further illustrated by another specific embodiment. If each punctuation point analyzed by a solar cell wafer image can be divided into N color groups, a ratio of the number of coordinate points included in each color group to the total number of all coordinate points of the image can be obtained. The vector values (P 1 , P 2 , . . . , P N ) are used as color eigenvectors for the image of the solar cell wafer, wherein the numbers 1~N represent N different color groups, and P is in the color group. The number of coordinate points included or the number of coordinate points included and the total number of all coordinate points.

當步驟S16獲得關於太陽能電池晶片影像的顏色特徵向量之後,於步驟S18中,可將此顏色特徵向量輸入機器學習分類器,機器學習分類器經判斷後之輸出值則為太陽能電池晶片之表面顏色分類結果。於此須說明的是,此機器學習分類器係已先經過分色訓練,關於其分色訓練之內容將以下述實施例詳述。After step S16 obtains a color feature vector for the solar cell wafer image, in step S18, the color feature vector may be input to the machine learning classifier, and the machine learning classifier judges the output value to be the surface color of the solar cell chip. Classification results. It should be noted that the machine learning classifier has been subjected to color separation training first, and the content of the color separation training will be described in detail in the following embodiments.

請參閱圖二,圖二係繪示根據圖一之太陽能電池晶片分色之方法中所應用之機器學習分類器,其分色訓練的步驟流程圖。Please refer to FIG. 2 . FIG. 2 is a flow chart showing the steps of the color separation training of the machine learning classifier used in the method for color separation of solar cell wafers according to FIG. 1 .

如圖二所示,本具體實施例之機器學習分類器之分色訓練包含下列步驟:於步驟S20,分別分析訓練影像集合中的複數個訓練影像,以獲得色彩空間中分別對應各訓練影像之複數組座標點集合,其中,各座標點集合分別包含了複數個訓練影像座標點;接著,於步驟S22,以分群演算法自所有訓練影像座標點中歸類出複數個顏色群組,並將各座標點集合之各訓練影像座標點分別分類至各顏色群組中;於步驟S24,分析各座標點集合於各顏色群組中之訓練影像座標點之比例,以獲得相關於各訓練影像之訓練影像顏色特徵向量;於步驟S26,分別提供期望顏色值至各訓練影像顏色特徵向量,而得到複數個訓練樣本;以及,於步驟S28,將這些訓練樣本輸入機器學習分類器,以對機器學習分類器進行分色訓練。As shown in FIG. 2, the color separation training of the machine learning classifier of the embodiment includes the following steps: in step S20, analyzing a plurality of training images in the training image set respectively to obtain corresponding training images in the color space respectively. a complex array of coordinate points, wherein each set of punctuation points respectively includes a plurality of training image coordinate points; then, in step S22, a plurality of color groups are classified from all training image coordinate points by a grouping algorithm, and Each training image coordinate point of each set of punctuation points is respectively classified into each color group; in step S24, the proportion of the training image coordinate points of each coordinate point group collected in each color group is analyzed to obtain related training images. Training the image color feature vector; in step S26, respectively providing the desired color value to each training image color feature vector to obtain a plurality of training samples; and, in step S28, inputting the training samples into the machine learning classifier to machine learning The classifier performs color separation training.

步驟S20所分析之訓練影像集合,可由不同顏色的太陽能電池晶片之影像所組成,亦即,前述之訓練影像。於實務中,做為訓練樣本之各太陽能電池晶片可先經過其他的分色方法分類其表面顏色,例如,以人眼分色以建立太陽能電池晶片的顏色類別。當形成訓練影像集合時,可自各不同顏色類別取出一定數量的太陽能電池晶片的影像,舉例而言,可自六種顏色類別中取出共五千多張影像混合作為訓練影像集合,而每張訓練影像中僅顯示一個太陽能電池晶片。The training image set analyzed in step S20 may be composed of images of solar cell chips of different colors, that is, the aforementioned training images. In practice, each solar cell wafer as a training sample can be classified by its other color separation method, for example, by color separation of the human eye to establish the color category of the solar cell wafer. When a training image set is formed, a certain number of images of the solar cell wafer can be taken from different color categories. For example, a total of more than 5,000 image images can be taken from the six color categories as a training image set, and each training is performed. Only one solar cell wafer is shown in the image.

上述五千多張訓練影像可分別進行分析,而將每個有效點上之顏色轉換到色彩空間中的訓練影像座標點。請注意,由於分色是以一個太陽能電池晶片為單位,因此,每張訓練影像所轉換出來的複數個訓練影像座標點可分別形成不同的座標點集合。步驟S20中之色彩空間同樣可為CIE Lab色彩空間、CIE XYZ色彩空間或CIE Luv色彩空間等。雖然步驟S20以及上述具體實施例之步驟S12均可應用不同的色彩空間來進行轉換,然而,實務上步驟S20所採用之色彩空間應與步驟S12所採用之色彩空間一致,例如,兩者皆採用CIE Lab色彩空間。The above five thousand training images can be separately analyzed, and the color at each effective point is converted to the training image coordinate point in the color space. Please note that since the color separation is based on a solar cell wafer, the plurality of training image coordinate points converted from each training image can form different sets of coordinate points. The color space in step S20 can also be a CIE Lab color space, a CIE XYZ color space, or a CIE Luv color space. Although the step S20 and the step S12 of the above specific embodiment can apply different color spaces for conversion, the color space used in the step S20 should be consistent with the color space used in step S12, for example, both are adopted. CIE Lab color space.

於步驟S22中,透過分群演算法,可自所有座標點集合中的所有訓練影像座標點中歸類出複數個顏色群組,而各座標點集合之各訓練影像座標點則可分別分類到各顏色群組中。如上述,由於一個太陽能電池晶片上之顏色並非僅有一種,故從一個太陽能電池晶片的顏色類別中所取出之太陽能電池晶片,其轉換出的訓練影像座標點可能會分別被分類到不同的顏色群組裡。步驟S22中所採用之分群演算法,實務中可為,但不受限於K-means分群演算法。In step S22, through the grouping algorithm, a plurality of color groups can be classified from all the training image coordinate points in all coordinate point sets, and each training image coordinate point of each coordinate point set can be classified into each In the color group. As described above, since the color of a solar cell wafer is not unique, the converted image pixel points of the solar cell wafer taken out from the color category of a solar cell wafer may be classified into different colors, respectively. In the group. The grouping algorithm used in step S22 may be, but is not limited to, the K-means grouping algorithm.

相關於各訓練影像之各座標點集合形成後,步驟S24中可分別針對各座標點集合分析其中之訓練影像座標點於各顏色群組中之比例,進而獲得相關於各訓練影像的訓練影像顏色特徵向量。舉例而言,若有N個顏色群組,則一訓練影像之訓練影像座標點,依照其在各顏色群組中之比例可得到關於此訓練影像之向量數值(P1 ,P2 ,...,PN ),即為其訓練影像顏色特徵向量F(feature vector)。After the set of coordinate points of each training image is formed, in step S24, the proportion of the training image coordinate points in each color group may be separately analyzed for each coordinate point set, thereby obtaining the training image color related to each training image. Feature vector. For example, if there are N color groups, the training image coordinate points of a training image can obtain the vector value (P 1 , P 2 , ..) of the training image according to the proportion in each color group. , P N ), that is, the training image color feature vector F (feature vector).

由於各訓練影像係從已分類過的顏色類別中取出,因此各訓練影像已有一個期望的分類顏色。若各訓練影像所期待的分類顏色以期望顏色值B來代表,則每張訓練影像可提供一期望顏色值至其訓練影像顏色特徵向量F,進而取得一組(F,B)做為訓練樣本,如步驟S26所述。Since each training image is taken from the classified color categories, each training image has a desired classification color. If the classification color expected by each training image is represented by the desired color value B, each training image can provide a desired color value to its training image color feature vector F, and then obtain a set (F, B) as a training sample. , as described in step S26.

各訓練影像分別取得其(F,B)訓練樣本後,於步驟S28,可將所有(F,B)訓練樣本輸入至機器學習分類器的輸入端進行訓練。經過步驟S28的訓練,機器學習分類器可用於圖一之具體實施例之方法中而做為分類之工具。請注意,由本具體實施例所訓練出之機器學習分類器,對待分類之太陽能電池晶片所分類出之結果大致上與用來預先分類各訓練樣本之分色方法所分類出的結果相符,其係因為訓練時所採用的期望顏色值是根據預先分類之方法而設定的。舉例而言,上述具體實施例之期望顏色值B若是根據人眼分色法而來,機器學習分類器對一個待分類之太陽能電池晶片之表面顏色分類結果,大致上會與人眼分色法所分類之結果相同。值得注意的是,各期望顏色值可由使用者或設計者設定,因此可根據實際需求而調整機器學習分類器的分色訓練,使得機器學習分類器的分類結果更貼近使用者或設計者的要求。After each training image obtains its (F, B) training samples, in step S28, all (F, B) training samples can be input to the input of the machine learning classifier for training. Through the training of step S28, the machine learning classifier can be used as a tool for classification in the method of the specific embodiment of Fig. 1. Please note that the machine learning classifier trained by the specific embodiment, the results classified by the solar cell wafers to be classified are substantially consistent with the results classified by the color separation method for pre-classifying each training sample, Because the desired color values used during training are set according to the pre-classification method. For example, if the desired color value B of the above specific embodiment is based on the human eye color separation method, the machine learning classifier classifies the surface color of a solar cell wafer to be classified, which is roughly related to the human eye color separation method. The results of the classification are the same. It should be noted that each desired color value can be set by the user or the designer, so the color separation training of the machine learning classifier can be adjusted according to actual needs, so that the classification result of the machine learning classifier is closer to the requirements of the user or the designer. .

實務中,機器學習分類器可包含,但不受限於類神經網路(neural network)、支持向量機(Support Vector Machine,SVM)或高斯混合模型(Gaussian Mixture Models,GMM)等。以類神經網路為例,類神經網路通常包含有輸入層、隱藏層以及輸出層,其中,輸入層可供輸入向量,接著經過隱藏層的學習或分類後,在輸出層輸出結果。在上述具體實施例中,分色訓練的訓練樣本以及實際進行顏色分類時取得的顏色特徵向量皆可由輸入層輸入,並在輸出層獲得結果。隱藏層中包含有複數個節點,節點的數量可根據使用者或設計者需求而定。In practice, the machine learning classifier may include, but is not limited to, a neural network, a support vector machine (SVM), or a Gaussian Mixture Models (GMM). Taking a neural network as an example, a neural network usually includes an input layer, a hidden layer, and an output layer. The input layer is available for the input vector, and then the result is outputted in the output layer after learning or classifying the hidden layer. In the above specific embodiment, the training samples of the color separation training and the color feature vectors obtained when actually performing color classification can be input by the input layer, and the results are obtained at the output layer. The hidden layer contains a plurality of nodes, and the number of nodes can be determined according to the needs of the user or the designer.

請參閱圖三,圖三係繪示根據本發明之另一具體實施例之太陽能電池晶片分色之方法的步驟流程圖。如圖三所示,本具體實施例之太陽能電池晶片分色之方法先利用複數個訓練影像對機器學習分類器進行分色訓練,再將待分類之太陽能電池晶片所轉換並計算出的顏色特徵向量輸入至機器學習分類器中,而由機器學習分類器對太陽能電池晶片的表面顏色進行分類。Referring to FIG. 3, FIG. 3 is a flow chart showing the steps of a method for color separation of a solar cell wafer according to another embodiment of the present invention. As shown in FIG. 3, the method for color separation of a solar cell wafer in the embodiment of the present invention first performs color separation training on a machine learning classifier by using a plurality of training images, and then converts and calculates color characteristics of the solar cell wafer to be classified. The vector is input into a machine learning classifier, and the machine learning classifier classifies the surface color of the solar cell wafer.

於本具體實施例中,太陽能電池晶片分色之方法包含有下列步驟:於步驟S30,分別對訓練影像集合中之複數個訓練影像進行分析,以獲得色彩空間中之複數組座標點集合,其中,各座標點集合分別包含有色彩空間中的複數個座標點;接著,於步驟S32,以一分群演算法自所有座標點中歸類出複數個顏色群組,並將各座標點集合之各座標點分別分類到這些顏色群組中;於步驟S34,對各座標點集合於各顏色群組中之座標點的比例進行分析,以進一步獲得複數個顏色特徵向量,其中各顏色特徵向量分別相關於各訓練影像;於步驟S36,分別對各顏色特徵向量提供期望顏色值,而獲得複數個訓練樣本;於步驟S38,以所獲得的複數個訓練樣本對機器學習分類器進行訓練;以及,於步驟S40,輸入待分類之太陽能電池晶片所轉換並計算出的第一顏色特徵向量至訓練後之機器學習分類器,進而獲得太陽能電池晶片之表面顏色的分類結果。In this embodiment, the method for color separation of a solar cell wafer includes the following steps: in step S30, analyzing a plurality of training images in the training image set to obtain a set of complex array coordinate points in the color space, wherein Each set of punctuation points respectively includes a plurality of coordinate points in the color space; then, in step S32, a plurality of color groups are classified from all coordinate points by a grouping algorithm, and each of the punctuation points is set The coordinate points are respectively classified into the color groups; in step S34, the proportions of the coordinate points of each coordinate point set in each color group are analyzed to further obtain a plurality of color feature vectors, wherein each color feature vector is correlated For each training image; in step S36, each color feature vector is respectively provided with a desired color value to obtain a plurality of training samples; in step S38, the machine learning classifier is trained with the obtained plurality of training samples; and Step S40, input the first color feature vector converted and calculated by the solar cell wafer to be classified to after training Machine learning classifier, thereby to obtain a classification result of the surface color of the solar cell wafer.

在本具體實施例中,步驟S30至步驟S38訓練出的機器學習分類器可用來進行太陽能電池晶片之顏色分類。請注意,本具體實施例步驟S30至步驟S38之機器學習分類器的分色訓練方法的各步驟流程,係與上述具體實施例之分色訓練方法中相對應的步驟大體上相同,故於此不再贅述。另外,步驟S40中,待分類之太陽能電池晶片的第一顏色特徵向量之獲得方式,同樣於上述具體實施例中已進行說明,於此亦不再贅述。In this embodiment, the machine learning classifier trained in steps S30 to S38 can be used to perform color classification of solar cell wafers. Please note that the steps of the color separation training method of the machine learning classifier of steps S30 to S38 of this embodiment are substantially the same as the steps corresponding to the color separation training method of the above specific embodiment. No longer. In addition, in the step S40, the manner of obtaining the first color feature vector of the solar cell wafer to be classified is also described in the above specific embodiment, and details are not described herein again.

綜上所述,本發明之太陽能電池晶片分色之方法係先以自動學習方法訓練出可用來分色之機器學習分類器,其係利用色彩空間的轉換以及分群演算法將各訓練影像轉換成訓練樣本,並利用這些訓練樣本對機器學習分類器進行訓練。待分類其表面顏色之太陽能電池晶片同樣也經過色彩空間轉換,並且將轉換後的座標點分類至上述分群演算法所分類出的顏色群組中,進而獲得顏色特徵向量。接著,再將顏色特徵向量輸入至已經過訓練之機器學習分類器即可得到分類結果。相較於先前技術,本發明之太陽能電池晶片分色之方法不僅可根據表面主要顏色與次要顏色對太陽能電池晶片進行分色,甚至可依表面可能出現之顏色來進行分色。同時,利用機器學習分類器進行分色可避免個人主觀顏色認定以及人眼疲勞所造成的誤差。藉此,可更有效地對太陽能電池晶片的表面顏色進行分類。In summary, the method for color separation of a solar cell wafer of the present invention first trains a machine learning classifier that can be used for color separation by an automatic learning method, which converts each training image into a color space by using a color space conversion and a grouping algorithm. Train the samples and use these training samples to train the machine learning classifier. The solar cell wafers whose surface colors are to be classified are also subjected to color space conversion, and the converted coordinate points are classified into the color groups classified by the above-described grouping algorithm, thereby obtaining color feature vectors. Then, the color feature vector is input to the trained machine learning classifier to obtain the classification result. Compared with the prior art, the method for color separation of the solar cell wafer of the present invention can not only separate the solar cell wafer according to the main color and the secondary color of the surface, but also perform color separation according to the color that may appear on the surface. At the same time, the use of machine learning classifiers for color separation can avoid personal subjective color recognition and errors caused by human eye fatigue. Thereby, the surface color of the solar cell wafer can be classified more effectively.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。因此,本發明所申請之專利範圍的範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed. Therefore, the scope of the patented scope of the invention should be construed as broadly construed in the

S10~S18、S20~28、S30~S40‧‧‧流程步驟S10~S18, S20~28, S30~S40‧‧‧ Process steps

圖一係繪示根據本發明之一具體實施例之太陽能電池晶片分色之方法的步驟流程圖。1 is a flow chart showing the steps of a method for color separation of a solar cell wafer according to an embodiment of the present invention.

圖二係繪示根據圖一之太陽能電池晶片分色之方法中所應用之機器學習分類器,其分色訓練的步驟流程圖。FIG. 2 is a flow chart showing the steps of the color separation training of the machine learning classifier applied in the method for color separation of solar cell wafers according to FIG. 1.

圖三係繪示根據本發明之另一具體實施例之太陽能電池晶片分色之方法的步驟流程圖。3 is a flow chart showing the steps of a method for color separation of a solar cell wafer according to another embodiment of the present invention.

S30~S40...流程步驟S30~S40. . . Process step

Claims (11)

一種太陽能電池晶片分色之方法,用以分類一太陽能電池晶片之表面顏色,該方法包含下列步驟:取得該太陽能電池晶片之表面之一影像;分析該影像以獲得一色彩空間中之複數個座標點;將該等座標點分別分類至複數個顏色群組中;分析被分類至每一該顏色群組中之座標點數量與該等座標點之座標點總數之比例以獲得一顏色特徵向量;以及提供該顏色特徵向量作為一機器學習分類器之輸入值,以獲得該太陽能電池晶片之表面顏色的分類結果,其中該機器學習分類器係經過一分色訓練。 A solar cell wafer color separation method for classifying a surface color of a solar cell wafer, the method comprising the steps of: obtaining an image of a surface of the solar cell wafer; analyzing the image to obtain a plurality of coordinates in a color space Points; classifying the coordinate points into a plurality of color groups; analyzing a ratio of the number of coordinate points classified into each of the color groups to the total number of coordinate points of the coordinate points to obtain a color feature vector; And providing the color feature vector as an input value of a machine learning classifier to obtain a classification result of the surface color of the solar cell wafer, wherein the machine learning classifier is subjected to a color separation training. 如申請專利範圍第1項所述之方法,其中該色彩空間係CIE Lab色彩空間。 The method of claim 1, wherein the color space is a CIE Lab color space. 如申請專利範圍第1項所述之方法,其中,分析該影像以獲得該色彩空間中之該等座標點之步驟包含:分析該影像以獲得複數個有效點;以及將該影像於該等有效點上之顏色分別轉換至該色彩空間中之該等座標點。 The method of claim 1, wherein the analyzing the image to obtain the coordinate points in the color space comprises: analyzing the image to obtain a plurality of valid points; and validating the image on the image The colors on the dots are converted to the coordinate points in the color space, respectively. 如申請專利範圍第1項所述之方法,其中該機器學習分類器所經過之該分色訓練包含下列步驟:分別分析一訓練影像集合中之複數個訓練影像,以獲得該色彩空間中之複數組座標點集合,該等座標點集合分別包含該色彩空間中之複數個訓練影像座標點;以一分群演算法自該等訓練影像座標點中歸類出該等 顏色群組,並將該等訓練影像座標點分別分類至該等顏色群組中;分別分析該等座標點集合於該等顏色群組中之該等訓練影像座標點之比例,以獲得複數個訓練影像顏色特徵向量;分別提供複數個期望顏色值至該等訓練影像顏色特徵向量,以獲得複數個訓練樣本;以及以該等訓練樣本對該機器學習分類器進行訓練。 The method of claim 1, wherein the color separation training of the machine learning classifier comprises the steps of separately analyzing a plurality of training images in a training image set to obtain a plurality of colors in the color space. a set of coordinate points, each of which includes a plurality of training image coordinate points in the color space; and a grouping algorithm classifies the training image coordinate points from the training points a color group, and classifying the training image coordinate points into the color groups; respectively analyzing the proportions of the coordinate points of the training images collected in the color groups to obtain a plurality of Training the image color feature vector; respectively providing a plurality of desired color values to the training image color feature vectors to obtain a plurality of training samples; and training the machine learning classifier with the training samples. 如申請專利範圍第4項所述之方法,其中該分群演算法係K-means分群演算法。 The method of claim 4, wherein the grouping algorithm is a K-means grouping algorithm. 如申請專利範圍第1項所述之方法,其中該機器學習分類器係一類神經網路,該類神經網路具有一隱藏層,並且該隱藏層具有複數個節點。 The method of claim 1, wherein the machine learning classifier is a type of neural network having a hidden layer and the hidden layer has a plurality of nodes. 如申請專利範圍第1項所述之方法,其中該機器學習分類器係一支持向量機(Support Vector Machine,SVM)及一高斯混合模型(Gaussian Mixture Models,GMM)的其中之一。 The method of claim 1, wherein the machine learning classifier is one of a Support Vector Machine (SVM) and a Gaussian Mixture Models (GMM). 一種太陽能電池晶片分色之方法,用以分類一太陽能電池晶片之表面顏色,該方法包含下列步驟:分別分析一訓練影像集合中之複數個訓練影像,以獲得一色彩空間中之複數組座標點集合,該等座標點集合分別包含該色彩空間中之複數個座標點;以一分群演算法自該等座標點中歸類出複數個顏色群組,並將該等座標點分別分類至複數個顏色群組中;分別分析該等座標點集合中,被分類至每一該顏色群組中之座標點數量與該等座標點之座標點總數之比 例,以獲得複數個顏色特徵向量;分別提供複數個期望顏色值至該等顏色特徵向量,以獲得複數個訓練樣本;以該等訓練樣本對一機器學習分類器進行訓練;以及提供該太陽能電池晶片之一第一顏色特徵向量作為該機器學習分類器之輸入值,以獲得該太陽能電池晶片之表面顏色的分類結果。 A solar cell wafer color separation method for classifying a surface color of a solar cell wafer, the method comprising the steps of separately analyzing a plurality of training images in a training image set to obtain a complex array coordinate point in a color space a collection, the set of coordinate points respectively comprise a plurality of coordinate points in the color space; a plurality of color groups are classified from the coordinate points by a grouping algorithm, and the coordinate points are respectively classified into a plurality of color points In the color group; respectively analyzing the ratio of the number of coordinate points classified into each color group to the total number of coordinate points of the coordinate points in the set of coordinate points For example, obtaining a plurality of color feature vectors; respectively providing a plurality of desired color values to the color feature vectors to obtain a plurality of training samples; training a machine learning classifier with the training samples; and providing the solar cell A first color feature vector of the wafer is used as an input value of the machine learning classifier to obtain a classification result of the surface color of the solar cell wafer. 如申請專利範圍第8項所述之方法,其中該分群演算法係K-means分群演算法。 The method of claim 8, wherein the clustering algorithm is a K-means grouping algorithm. 如申請專利範圍第8項所述之方法,其中該色彩空間係CIE Lab色彩空間。 The method of claim 8, wherein the color space is a CIE Lab color space. 如申請專利範圍第8項所述之方法,其中,分別分析該訓練影像集合中之該等訓練影像,以獲得該色彩空間中之該等座標點集合之步驟包含:分別分析該等影像以獲得複數個有效點集合,該等有效點集合分別包含複數個有效點;以及將該等影像於相對應之該等有效點上之顏色分別轉換至該色彩空間中之該等座標點。The method of claim 8, wherein separately analyzing the training images in the training image set to obtain the set of coordinate points in the color space comprises: separately analyzing the images to obtain a plurality of sets of valid points, each of the set of valid points respectively comprising a plurality of valid points; and the colors of the images on the corresponding effective points are respectively converted to the coordinate points in the color space.
TW101102449A 2012-01-20 2012-01-20 Method for classifying color of a solar cell TWI445944B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101102449A TWI445944B (en) 2012-01-20 2012-01-20 Method for classifying color of a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101102449A TWI445944B (en) 2012-01-20 2012-01-20 Method for classifying color of a solar cell

Publications (2)

Publication Number Publication Date
TW201331566A TW201331566A (en) 2013-08-01
TWI445944B true TWI445944B (en) 2014-07-21

Family

ID=49478972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102449A TWI445944B (en) 2012-01-20 2012-01-20 Method for classifying color of a solar cell

Country Status (1)

Country Link
TW (1) TWI445944B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709529B (en) * 2017-01-18 2020-04-14 河北工业大学 Visual detection method for photovoltaic cell color difference classification

Also Published As

Publication number Publication date
TW201331566A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
Karimi et al. Generalized and mechanistic PV module performance prediction from computer vision and machine learning on electroluminescence images
CN100336070C (en) Method of robust human face detection in complicated background image
Jin et al. Deep image aesthetics classification using inception modules and fine-tuning connected layer
CN103258206A (en) Silicon solar cell surface defect detection and identification method
CN103302039B (en) Solar battery wafer color separation method
CN1794266A (en) Biocharacteristics fusioned identity distinguishing and identification method
CN106651795A (en) Method of using illumination estimation to correct image color
CN107871101A (en) A kind of method for detecting human face and device
CN112991264B (en) Method for detecting crack defect of monocrystalline silicon photovoltaic cell
Sun et al. Encoding spectral and spatial context information for hyperspectral image classification
CN106407915A (en) SVM (support vector machine)-based face recognition method and device
CN110046568B (en) Video action recognition method based on time perception structure
CN107169417A (en) Strengthened based on multinuclear and the RGBD images of conspicuousness fusion cooperate with conspicuousness detection method
CN102854147B (en) Hyperspectral data based mural manuscript information extraction method
CN103218626B (en) The method of solar cell wafer color separation
Lee et al. Pedestrian detection based on deep fusion network using feature correlation
CN106228172B (en) Damaged insulator image extraction method based on clustering
CN116797582A (en) Method and device for detecting defects of photovoltaic cells based on improved Yolov7 network model
TWI445944B (en) Method for classifying color of a solar cell
Wang et al. Structure-priority image restoration through genetic algorithm optimization
Chen et al. An improved GMM-based algorithm with optimal multi-color subspaces for color difference classification of solar cells
Ying et al. RetouchingFFHQ: A Large-scale Dataset for Fine-grained Face Retouching Detection
CN111709936B (en) Ream defect detection method based on multistage feature comparison
TWI457858B (en) Method for classifying color of a solar cell
CN101504723B (en) Projection space establishing method and apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees