TWI443656B - 磁性疊層結構及其製造方法 - Google Patents

磁性疊層結構及其製造方法 Download PDF

Info

Publication number
TWI443656B
TWI443656B TW098112666A TW98112666A TWI443656B TW I443656 B TWI443656 B TW I443656B TW 098112666 A TW098112666 A TW 098112666A TW 98112666 A TW98112666 A TW 98112666A TW I443656 B TWI443656 B TW I443656B
Authority
TW
Taiwan
Prior art keywords
magnetic
layer
metal layer
metal
free magnetic
Prior art date
Application number
TW098112666A
Other languages
English (en)
Other versions
TW201039344A (en
Inventor
Teho Wu
Linhsiu Ye
Chingming Lee
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW098112666A priority Critical patent/TWI443656B/zh
Priority to US12/499,802 priority patent/US8435652B2/en
Publication of TW201039344A publication Critical patent/TW201039344A/zh
Priority to US13/004,904 priority patent/US20120052193A1/en
Application granted granted Critical
Publication of TWI443656B publication Critical patent/TWI443656B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/115Magnetic layer composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Description

磁性疊層結構及其製造方法
本發明是有關於一種磁性結構,且特別是有關於一種應用於磁性隨機存取記憶體之磁性結構。
磁性隨機存取記憶體(Magnetic Random Access Memory,簡稱MRAM)是一種非揮發性記憶體,其中的磁性結構係利用磁阻變化的特性以儲存資料。
1995年由科學家發現穿隧磁阻效應(Tunneling Magneto Resistance,簡稱TMR),其結構為自由磁性層(free layer)/穿隧屏障層(tunneling barrier)/固定磁性層(pinned layer)。上述之穿隧屏障層為絕緣層;固定磁性層之磁矩為固定方向,無法受外加磁場驅動而偏轉;而自由磁性層之磁矩可受外加磁場驅動而轉向。當施加外加磁場時,自由磁性層之磁矩可受外加磁場的影響,形成與固定磁性層之磁矩平行或反平行的兩種磁矩排列方式,而使穿隧屏障層產生不同大小的兩種電阻,以紀錄0與1的訊號。
因此,本發明之一態樣是在提供一種磁性疊層結構,其具有小尺寸、低矯頑力之磁性層,並可獲得具有良好方正性之磁滯曲線。
依據本發明一實施方式,提出一種磁性疊層結構,包含一自由磁性層、一第一金屬層以及一第二金屬層。自由磁性層的材料為稀土-過渡金屬合金,且自由磁性層厚度範圍是1nm至30nm。第一金屬層接觸連接於自由磁性層之一側,且該第一金屬層厚度範圍是0.1nm至20nm。第二金屬層接觸連接於自由磁性層之另一側,且第二金屬層厚度範圍是0.1nm至20nm。
本發明之另一態樣是在提供一種磁性疊層結構之製造方法,可製出厚度較小且低矯頑力、並具有良好方正性的磁滯曲線之磁性疊層結構。
依據本發明一實施方式,提出一種磁性疊層結構之製造方法,包含形成一第一金屬層,形成一自由磁性層於該第一金屬層之上,形成一第二金屬層於該磁性層之上。其中,自由磁性層之厚度範圍是1nm至30nm,且選用稀土-過渡金屬合金作為材料,而第一金屬層及第二金屬層之厚度範圍是0.1nm至20nm。且更包含將磁性疊層結構升溫至溫度範圍25℃~350℃以進行退火。
本發明之又一態樣是在提供一種磁性穿隧疊層結構,其中的自由磁性層厚度小,且具有方正性高、矯頑力低之特性,可施以較小的外加電場即可驅動自由磁性層內部的磁矩翻轉,不但可減小功率耗損,更可避免過大的外加電場誤觸磁性隨機存取記憶體中其他的磁性元件。
依據本發明一實施方式,提出一種磁性穿隧疊層結構,包含一導電金屬層、一固定磁性層、一緩衝金屬層、一穿隧層、一第一金屬層、一自由磁性層及一第二金屬層。固定磁性層之材料為一稀土-過渡金屬合金,且位於導電金屬層之上。緩衝金屬層位於固定磁性層之上。穿隧層為非磁性之絕緣層,且位於緩衝金屬層之上。第一金屬層之厚度範圍是0.1nm至20nm,且位於穿隧層之上。自由磁性層之材料為一稀土-過渡金屬合金,且厚度範圍是1nm至30nm,並位於第一金屬層之上。第二金屬層之厚度範圍是0.1nm至20nm,且第二金屬導電層位於自由磁性層之上。
由於自由磁性層之磁矩必須受外加磁場的驅動而翻轉,因此自由磁性層所被測出之磁滯曲線必須具有良好方正性及低矯頑力。
一般常見的磁滯曲線,係用來表示磁性材料的磁化性質,x軸為外加磁場H,其單位為Oe,y軸則為磁化量M,其單位為emu/c.c.。當外加磁場最大時所對應到之磁化量為飽和磁化量Ms,也就是磁性材料中所被感應而站立的磁矩量。而當外加磁場為零時,所對應到之磁化量為殘餘磁化量Mr,也就是去除外加磁場後,磁性材料中還能站立的磁矩量。殘餘磁化量Mr與飽和磁化量Ms的比值(Mr/Ms)即為磁性材料的方正性,其可代表磁性材料保持磁化程度。而且,其值越接近1代表磁性材料的方正性越佳,亦即此磁性材料維持磁化方向的能力越佳。而矯頑力為磁化量M為0時所需的外加磁場值,其代表磁性材料之磁矩被驅動所需的最小外加磁場。
由於習知應用於MRAM之自由磁性層的磁性材料的厚度皆大於30nm,其矯頑力皆為1kOe以上,因此外加磁場要驅動自由磁性層中的磁矩會有一定的難度。若欲使自由磁性層的厚度較薄,自由磁性層的方正性又會下降,將降低其MRAM應用的可靠度,甚至會有無法保持被磁化的情形發生。
綜上所述,製作出兼具小尺寸並具有良好方正性及低矯頑力的磁性材料來應用在MRAM的自由磁性層,是產業界共有的目標。
請參照第1圖,其係繪示依照本發明一實施方式的一種磁性疊層結構之剖面結構示意圖。在第1圖中,由下至上依序為基層100、第一金屬層110、自由磁性層120以及第二金屬層130,其中第一金屬層110、自由磁性層120以及第二金屬層130堆疊構成上述磁性疊層的結構。
上述基層100的材料例如可為矽。上述第一金屬層100與第二金屬層130的材料例如可為Al、Mg、Ti、Ta、Pt、Pd或前述金屬合金或金屬化合物,其厚度例如可為0.1nm~20nm。而上述自由磁性層120的材料例如可為稀土-過渡金屬合金,如GdFeCo、TbFeCo或DyFeCo,其厚度例如可為1nm~30nm。
請參照第2圖,其係繪示依照本發明一實施方式的一種磁性疊層結構之製造方法的步驟流程圖,用以製造第1圖之磁性疊層結構。在第2圖中,步驟200形成第一金屬層於Si基層上,步驟210形成自由磁性層於第一金屬層上,步驟220形成第二金屬層於自由磁性層上,步驟230升溫至25℃~300℃以進行退火。上述之第一金屬層、自由磁性層及第二金屬層的形成方法為依序利用濺鍍法進行薄膜沉積,以堆疊構成如第1圖所示之磁性疊層結構。
因此,根據步驟200、步驟210、步驟220及步驟230可取得具有良好方正性、低矯頑力的磁性疊層結構。
請參照第3圖,係為第1圖之磁性疊層結構之一實施例及其他比較例的磁滯曲線對照圖。表一則為本實施例及其比較例所選用之材料及其方正性。
配合第3圖及上表,圖中曲線300、310及320分別為比較例1、2及3的磁滯曲線。而曲線330則為實施例1的磁滯曲線,其自由磁性層GdFeCo厚度為10nm,第一金屬層A1厚度為20nm,而第二金屬層A1厚度為10nm。比較表一中的方正性可知,上下皆為金屬A1的自由磁性層具有較佳的方正性,表示自由磁性層上下具有金屬層可提升自由磁性層被磁化的能力。
請參照第4圖,係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。表二則為本實施例與其他比較例所選用之材料及退火溫度。
上述各實施例及比較例皆選用以厚度10nm的GdFeCo作為自由磁性層,選用厚度20nm的Al作為第一金屬層,並選用厚度10nm的Al作為第二金屬層。配合第4圖及表二,曲線400為表示實施例1之磁滯曲線,即為沒有進行退火的磁性疊層結構之磁滯曲線。實施例2~6及比較例4之磁滯曲線則分別為第二圖之曲線410-460。由第4圖可知,退火溫度越高時,自由磁性層的內部晶體結構重新排列,可消除內部應力,使矯頑力漸漸降低。但當升溫至350℃時,磁滯現象會完全消失,所以此結構的退火溫度理想範圍是100℃~300℃。
請參照第5圖,係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。表三則為本實施例與其他比較例所選用之材料及退火溫度。
上述各實施例及比較例皆選用厚度為3nm的TbFeCo作為自由磁性層,選用厚度10nm的Al作為第一金屬層,並選用厚度10nm的Al作為第二金屬層。對照第5圖及表三,實施例7對應曲線500,其為沒進行退火的磁性疊層結構之磁滯曲線,而實施例8~10及比較例5分別對應曲線510-540。比較曲線500-540可知,沒有經過退火步驟的實施例7,其為矯頑力最大,而實施例8~10之矯頑力則隨著退火溫度上升而降低,但比較例5所對應之曲線540完全失去磁滯現象,因此可知,此磁性疊層結構理想的退火溫度範圍為100℃~200℃。
請參照第6圖,係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。表四為本實施例與其他比較例材料及退火溫度。
上述各實施例及比較例皆選用厚度為5nm的DyFeCo作為自由磁性層,選用厚度10nm的Al作為第一金屬層,並選用厚度10nm的Al作為第二金屬層。對照第6圖及表四,實施例11對應曲線600其為沒進行退火的磁性疊層結構之磁滯曲線,而實施例12、13及比較例6分別對應曲線610~630。比較曲線600、610及620可知,隨著退火溫度升高,矯頑力會減小,使自由磁性層中的磁矩更容易被驅動。但當退火溫度升至250℃時,磁滯現象會完全消失,因此可知,此磁性疊層結構最理想的退火溫度範圍為150℃~200℃。請參照第7圖,其係繪示依照本發明一實施方式的一種磁性穿隧疊層結構之剖面結構示意圖。在第7圖中,由下至上依序為基層700、導電金屬層710、固定磁性層720、緩衝金屬層730、穿隧層740、第一金屬層110、自由磁性層120及第二金屬層130,其中第一金屬層110、自由磁性層120及第二金屬層130即為第1圖之磁性疊層結構。上述各層係依序利用濺鍍法沉積薄膜,以堆疊構成上述磁性穿隧疊層的結構。
將第1圖之磁性疊層結構及第2圖之磁性疊層結構的製造方法應用於第7圖之磁性穿隧疊層結構,具有下列優點。
1.使厚度較小的磁性層具有良好方正性的磁滯曲線,提升磁性層維持磁化的程度。
2.降低磁性結構的矯頑力,使磁性層內的磁矩可受較小的外加磁場驅動而翻轉,不但可避免誤觸周圍其他磁性元件,亦可降低磁性結構的功率耗損。
3.在製作過程中加入退火的程序,可使磁性層內部晶格重新排列,消除晶格間的應力,使矯頑力降低,進而使磁性層內部的磁矩較容易受外加磁場偏轉。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...基層
110...第一金屬層
120...自由磁性層
130...第二金屬層
200...步驟
210...步驟
220...步驟
230...步驟
300...曲線
310...曲線
320...曲線
330...曲線
400...曲線
410...曲線
420...曲線
430...曲線
440...曲線
450...曲線
460...曲線
500...曲線
510...曲線
520...曲線
530...曲線
540...曲線
600...曲線
610...曲線
620...曲線
630...曲線
700...基層
710...導電金屬層
720...固定磁性層
730...緩衝金屬層
740...穿隧層
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:
第1圖係繪示依照本發明一實施方式的一種磁性疊層結構之剖面結構示意圖。
第2圖係繪示依照本發明一實施方式的一種磁性疊層結構之製造方法的步驟流程圖。
第3圖係為第1圖之磁性疊層結構之實施例及其比較例的磁滯曲線對照圖。
第4圖係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。
第5圖係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。
第6圖係為第1圖之磁性疊層結構升溫至不同溫度並進行退火的磁滯曲線對照圖。
第7圖係繪示依照本發明一實施方式的一種磁性穿隧疊層結構之剖面結構示意圖。
100...基層
110...第一金屬層
120...自由磁性層
130...第二金屬層

Claims (9)

  1. 一種磁性疊層結構,係應用於一磁性隨機存取記憶體,包含:一自由磁性層,其材料為TbFeCo,且該自由磁性層厚度範圍是1nm至30nm,其中該自由磁性層的矯頑力為58 Oe~831 Oe;一第一金屬層,係接觸連接於該自由磁性層之一側,且該第一金屬層厚度範圍是0.1nm至20nm;以及一第二金屬層,係接觸連接於該自由磁性層之另一側,且該第二金屬層厚度範圍是0.1nm至20nm。
  2. 如請求項1所述之磁性疊層結構,其中該第一金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
  3. 如請求項1所述之磁性疊層結構,其中該第二金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
  4. 一種磁性疊層結構,係應用於一磁性隨機存取記憶體,包含:一自由磁性層,其材料為GdFeCo,且該自由磁性層厚度範圍是1nm至30nm,其中該自由磁性層的矯頑力為28 Oe~143 Oe; 一第一金屬層,係接觸連接於該自由磁性層之一側,且該第一金屬層厚度範圍是0.1nm至20nm;以及一第二金屬層,係接觸連接於該自由磁性層之另一側,且該第二金屬層厚度範圍是0.1nm至20nm。
  5. 如請求項4所述之磁性疊層結構,其中該第一金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
  6. 如請求項4所述之磁性疊層結構,其中該第二金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
  7. 一種磁性疊層結構,係應用於一磁性隨機存取記憶體,包含:一自由磁性層,其材料為DyFeCo,且該自由磁性層厚度範圍是1nm至30nm,其中該自由磁性層的矯頑力為744 Oe;一第一金屬層,係接觸連接於該自由磁性層之一側,且該第一金屬層厚度範圍是0.1nm至20nm;以及一第二金屬層,係接觸連接於該自由磁性層之另一側,且該第二金屬層厚度範圍是0.1nm至20nm。
  8. 如請求項7所述之磁性疊層結構,其中該第一金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
  9. 如請求項7所述之磁性疊層結構,其中該第二金屬層之材料為Al、Mg、Ti、Ta、Pt、Pd或前述金屬之合金或金屬化合物。
TW098112666A 2009-04-16 2009-04-16 磁性疊層結構及其製造方法 TWI443656B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW098112666A TWI443656B (zh) 2009-04-16 2009-04-16 磁性疊層結構及其製造方法
US12/499,802 US8435652B2 (en) 2009-04-16 2009-07-09 Magnetic stack structure and manufacturing method thereof
US13/004,904 US20120052193A1 (en) 2009-04-16 2011-01-12 Magnetic stack structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098112666A TWI443656B (zh) 2009-04-16 2009-04-16 磁性疊層結構及其製造方法

Publications (2)

Publication Number Publication Date
TW201039344A TW201039344A (en) 2010-11-01
TWI443656B true TWI443656B (zh) 2014-07-01

Family

ID=42981213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098112666A TWI443656B (zh) 2009-04-16 2009-04-16 磁性疊層結構及其製造方法

Country Status (2)

Country Link
US (2) US8435652B2 (zh)
TW (1) TWI443656B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201303340A (zh) * 2011-07-04 2013-01-16 Univ Nat Yunlin Sci & Tech 量測磁性結構之交換耦合常數之方法
US20150303373A1 (en) * 2014-04-17 2015-10-22 Qualcomm Incorporated Spin-transfer switching magnetic element formed from ferrimagnetic rare-earth-transition-metal (re-tm) alloys

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
US6905780B2 (en) * 2001-02-01 2005-06-14 Kabushiki Kaisha Toshiba Current-perpendicular-to-plane-type magnetoresistive device, and magnetic head and magnetic recording-reproducing apparatus using the same
US6485989B1 (en) * 2001-08-30 2002-11-26 Micron Technology, Inc. MRAM sense layer isolation
US6751149B2 (en) * 2002-03-22 2004-06-15 Micron Technology, Inc. Magnetic tunneling junction antifuse device
US6828639B2 (en) * 2002-07-17 2004-12-07 Micron Technology, Inc. Process flow for building MRAM structures
US6967863B2 (en) * 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) * 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7230265B2 (en) * 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US7489541B2 (en) * 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
TWI303063B (en) * 2006-03-20 2008-11-11 Univ Nat Yunlin Sci & Tech Composing structure of magnetic tunneling junction for magnetic random access memory
JP2008252008A (ja) * 2007-03-30 2008-10-16 Toshiba Corp 磁気抵抗効果素子、およびその製造方法
US7782659B2 (en) * 2007-05-10 2010-08-24 Macronix International Co., Ltd. Magnetic memory and memory cell thereof and method of manufacturing the memory cell

Also Published As

Publication number Publication date
TW201039344A (en) 2010-11-01
US8435652B2 (en) 2013-05-07
US20120052193A1 (en) 2012-03-01
US20100266873A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
US10522747B2 (en) Fully compensated synthetic ferromagnet for spintronics applications
US9373777B2 (en) Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8987847B2 (en) Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8871365B2 (en) High thermal stability reference structure with out-of-plane aniotropy to magnetic device applications
CN110710009B (zh) 降低磁性装置中的薄膜粗糙度的多层结构
TWI398973B (zh) 垂直式磁性磁阻元件結構
US20130230741A1 (en) High Thermal Stability Free Layer with High Out-of-Plane Anisotropy for Magnetic Device Applications
KR101209328B1 (ko) 수직자기이방성을 가지는 코발트-철-보론/팔라듐 다층박막 및 이를 이용하여 제조한 자기 랜덤 액세스 메모리
US9673385B1 (en) Seed layer for growth of <111> magnetic materials
KR20130015928A (ko) 자기 메모리 소자 및 그 제조 방법
TWI443656B (zh) 磁性疊層結構及其製造方法
Tomczak et al. Influence of the reference layer composition on the back-end-of-line compatibility of Co/Ni-based perpendicular magnetic tunnel junction stacks
TWI450284B (zh) 具有垂直異向性之合成反鐵磁結構及其製法