TWI441489B - 包含遞迴延遲器之裝置及用以測量相位雜訊之方法 - Google Patents

包含遞迴延遲器之裝置及用以測量相位雜訊之方法 Download PDF

Info

Publication number
TWI441489B
TWI441489B TW099134723A TW99134723A TWI441489B TW I441489 B TWI441489 B TW I441489B TW 099134723 A TW099134723 A TW 099134723A TW 99134723 A TW99134723 A TW 99134723A TW I441489 B TWI441489 B TW I441489B
Authority
TW
Taiwan
Prior art keywords
signal
delay
power
phase
output signal
Prior art date
Application number
TW099134723A
Other languages
English (en)
Other versions
TW201125321A (en
Inventor
Marco Pausini
Jochen Rivoir
Original Assignee
Advantest Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Singapore Pte Ltd filed Critical Advantest Singapore Pte Ltd
Publication of TW201125321A publication Critical patent/TW201125321A/zh
Application granted granted Critical
Publication of TWI441489B publication Critical patent/TWI441489B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31708Analysis of signal quality
    • G01R31/31709Jitter measurements; Jitter generators

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Noise Elimination (AREA)
  • Manipulation Of Pulses (AREA)

Description

包含遞迴延遲器之裝置及用以測量相位雜訊之方法
本發明實施例係有關包含用以測量一相位雜訊之遞迴延遲器的裝置以及用以測量一相位雜訊之方法。
發明背景
信號源之相位雜訊是通訊系統中性能下降之嚴重原因。因此,在被組態以處理無線電頻率範圍(3KHz高至300THz)中之電氣、光學及/或電磁信號之無線電頻率(RF)晶片生產的階段中,對於精確地測量待測裝置(DUT)之相位雜訊是非常重要地,同時亦儘可能地維持低的測試成本(COT)。
用於相位雜訊測量之延遲線鑑別器技術是習知的,並且可提供具有良好相位雜訊特性而避免外部來源的優點,例如,大體上比待測裝置具有較低相位雜訊之一本地震盪器。特別是對於最高性能之待測裝置的相位雜訊測量,一本地震盪器被預期比目前技術具有較少的相位雜訊。延遲線鑑別器技術是一相位雜訊測量方法,其不需要本地震盪器。將被測量的無線電頻率信號被分離成二個線路:第一線路是通過一可調的移相器,並且第二路線是通過一延遲線。在移相器之輸出的信號接著與在延遲線之輸出的信號混合。延遲線鑑別器提供一相對容易且低成本之相位雜訊測量方法。
習見的延遲線鑑別器之說明可被發現於克里斯多夫喜玻耳(Christopher Schiebold)於1983年12月發表之微波期刊第103頁ff部份中,其標題為:“用於相位雜訊測之延遲線鑑別器的理論與設計”。
但是,由於在相位雜訊波形以及其之延遲形式間之非零相關性,習知之延遲線鑑別器對於展示不良性能之迫近的相位雜訊測量將遭受嚴重敏感性損失。對於迫近的相位雜訊測量之不良性能是由於當通過延遲線鑑別器時低頻成份遭受強力的衰減。這衰減之強度可能使信號低於雜訊基底,實際上使得相位雜訊測量成為不可能。在相位雜訊波形以及其之延遲形式間之相關性可被減少並且因此藉由使用較長的延遲線而改進敏感性。但是,長的類比延遲線是不容易建立的。
相位雜訊測量需要高精確性之相位雜訊測量。這可藉由使用改善測量敏感性之長延遲線被達成而不必進一步地增加延遲線之複雜性以使測量成本最小化。
本發明實施例提供一種用以測量一測試信號之相位雜訊的裝置,該裝置包含一遞迴延遲器。本發明實施例免除於鑑別器為基礎之相位雜訊測量中之不易處理之可調整移相器。本發明實施例提供一成本有效的裝置以及用於相位雜訊測量之方法。在一些情況中,由於不需要可調整的移相器,故並不需要複雜的校正,以至於測試處理程序的容易自動化操作成為可行。本發明實施例不需要具有高精確性相位雜訊性質之外部來源,例如,提供參考相位之本地震盪器。本發明實施例透過利用一回授路線以提高測量敏感性之新穎的遞迴延遲線結構而增加相位雜訊測量敏感性。本發明一些實施例展示超過習見的延遲線鑑別器大約40dB之顯著的測量敏感性增益。
本發明實施例提供一種用以測量一測試信號之相位雜訊之裝置,該裝置包含一遞迴延遲器、一組合器以及一相位雜訊測定器。該遞迴延遲器被組態以依據該測試信號而提供一延遲信號。該組合器被組態以組合一第一信號與一第二信號,其中該第一信號是依據該測試信號或相同於至該測試信號,而該第二信號是依據該延遲信號或相同於該延遲信號,以得到一組合器輸出信號。該相位雜訊測定器被組態以依據該組合器輸出信號而提供一相位雜訊資訊。
本發明一些實施例包含一遞迴數位延遲器,該遞迴數位延遲器被組態以依據該測試信號而提供一延遲數位信號。本發明其他實施例包含一可調整的遞迴延遲器。本發明其他實施例提供一種裝置,其被調適以接收一類比信號、一數位信號或一方波信號。
本發明實施例包含一類比混合器,其被組態以組合一第一類比信號,該第一類比信號是依據該測試信號,與一第二類比信號,該第二類比信號是依據該延遲信號,以得到一類比混合器輸出信號。本發明其他實施例包含一類比混合器,其被組態以組合一第一類比信號與一第二數位信號,該第一類比信號是依據該測試信號且該第二數位信號是依據該延遲信號,以得到一類比混合器輸出信號。本發明其他實施例包含一數位混合器,該數位混合器被組態以組合一第一數位信號與一第二數位信號,該第一數位信號是依據該測試信號且該第二數位信號是依據該延遲信號,以得到一數位混合器輸出信號。本發明實施例包含一類比濾波器以過濾該數位混合器輸出信號。
圖式簡單說明
參考附圖1a至19,將說明包含用以測量一測試信號之相位雜訊的一遞迴延遲器之裝置以及用以測量一測試信號相位雜訊之方法的實施例。
第1a圖展示依據一習見實作例之一延遲線鑑別器的方塊圖;第1b圖展示依據一習見實作例之一類比延遲線鑑別器的方塊圖;第1c圖展示依據一習見實作例具有如第1b圖展示之類比延遲線鑑別器的脈衝以及頻率響應之等效方塊圖;第2a圖展示依據本發明一實施例包含一遞迴延遲器之裝置的方塊圖;第2b圖展示依據本發明一實施例包含一遞迴延遲器之另一裝置的方塊圖;第3a圖展示依據本發明一實施例如第2b圖所示關於相位雜訊發送之裝置的等效方塊圖;第3b圖展示依據本發明一實施例如第3a圖所示之展示頻率響應的裝置之等效方塊圖;第4圖展示依據本發明一實施例如第2b圖所示之展示相位調變的餘弦形狀測試信號之發送的方塊圖;第5圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;第6圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;第7圖展示依據本發明一實施例包含一遞迴數位延遲器之裝置的方塊圖;第8圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;第9圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;第10圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;第11圖展示依據本發明一實施例包含一可調整遞迴延遲器之裝置的方塊圖;第12圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;第13圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;第14圖展示依據本發明一實施例如第13圖所示之裝置的等效方塊圖;第15圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;第16a圖展示如第14圖所示用於以多音調變之一載波信號裝置之功率發送的圖形,該載波信號作為被施加至裝置之輸入信號,該多音調變具有-56dBm之功率;第16b圖展示如第14圖所示對於如第16a圖所示之輸入信號的裝置之功率發送圖形,該多音調變具有-76dBm之功率;第17a圖展示如第1b圖所示對於如第16a圖所示之輸入信號的習見延遲線鑑別器之功率發送圖形,該多音調變具有-56dBm之功率;第17b圖展示如第1b圖所示對於如第16a圖所示之輸入信號的習見延遲線鑑別器之功率發送圖形,該多音調變具有-76dBm之功率;第18a圖展示如第14圖所示之裝置的信號對雜訊比之圖形;第18b圖展示如第1b圖所示之習見延遲線鑑別器的信號對雜訊比之圖形;以及第19圖展示依據本發明一實施例用以測量一測試信號相位雜訊之方法的流程圖。
第1a圖展示依據一習見實作例之一延遲線鑑別器的方塊圖。一延遲線鑑別器100包含一延遲線101、一移相器102、一混合器103以及一低通濾波器104。延遲線鑑別器100被調適以測量可由一待測源105提供之測試信號110的相位雜訊。該測試信號110被輸入至延遲線101並且被輸入至移相器102。延遲線101提供一延遲測試信號111,其是測試信號110之一延遲形式。移相器102提供一輸出信號,其是一移相測試信號112。延遲測試信號111以及移相測試信號112被輸入至混合器103,其提供一混合信號113,該混合信號113被輸入至低通濾波器104。低通濾波器104提供一低通濾波輸出信號u(t),其可藉由在延遲線鑑別器100內部或在延遲線鑑別器100外部之進一步的單元被分析。
測試信號110可具有一角頻率ω0 以及一時間依據相位Φ(t)之一餘弦狀信號形式,例如,具有cos(ω0 t+Φ(t))形式。延遲測試信號111是測試信號110之一延遲形式,例如,具有cos(ω0 (t-Td )+Φ(t-Td ))形式。移相測試信號112是測試信號110之一移相形式,例如,具有信號cos(ω0 t+Φ(t)+φ)形式之移相φ。延遲測試信號111以及移相測試信號112具有關聯於延遲線101的延遲時間Td 以及移相器102的相位φ之關係,其利用ω0 Td +φ=π/2被表示。這情況需要輸入至混合器103之輸入,那是延遲測試信號111以及移相測試信號112,是相位正交之方式。混合器103提供一混合信號113,其被輸入至低通濾波器104,該低通濾波器104提供一低通濾波之輸出信號u(t)。
低通濾波輸出信號u(t)可以具有信號u(t)=Φ(t)-Φ(t-Td )形式。低通濾波輸出信號u(t)之一功率頻譜密度利用Pu (f)=|H(f)|2 PΦ (f)表示低通濾波輸出信號之功率,其中PΦ (f)是相位雜訊Φ(t)之功率頻譜密度並且|H(f)|2 是用於相位雜訊之功率頻譜密度對低通濾波輸出信號u(t)之功率頻譜密度的發送之功率發送係數。f 描述,例如,來自載波頻率ω0 之一頻率偏移量。自相位雜訊Φ(t)至低通濾波輸出信號u(t)之轉換函數對應至H(f )=1-exp(-j2πf Td )。
由於延遲測試信號111以及移相測試信號112之性質將成為相位正交,低通濾波輸出信號u(t)中之混合的餘弦以及正弦數項被消除。低通濾波輸出信號u(t)之功率頻譜密度成為無關於測試信號110之角頻率(或載波頻率)ω0 。為提供延遲測試信號111以及移相測試信號112之這相位正交性質,需要一可調移相器102。該可調移相器102必須對於測試信號110之各輸入頻率(或載波頻率ω0 )被調整,而使得校正處理時間於自動測量中消耗並且不是充分指示。由於在相位雜訊Φ(t)以及相位雜訊的延遲形式Φ(t-Td )間之統計相關性,延遲線鑑別器100展示對於迫近相位雜訊測量之一低敏感性。統計相關性是依據於延遲線101之延遲時間Td 並且當增加延遲時間Td 時可被減低。藉由增加延遲時間Td ,功率發送係數|H(f)|2 被增加,導致相位雜訊測量有較高的敏感性。但是,由於長的延遲線是昂貴且製作複雜,當使用類比信號時,延遲時間Td 之增加將被限定。
第1b圖展示依據一習見實作例之類比延遲線鑑別器的方塊圖。延遲線鑑別器130包含一分離器131、一延遲線132、一移相器133、一混合器134、一低通濾波器135以及一類比至數位轉換器136。延遲線鑑別器130被組態以接收一無線電頻率信號x(t)並且被組態以提供一延遲線鑑別器輸出信號z(n),其可進一步地藉由數位信號處理器(DSP)137被評估。
分離器131被調適以分離無線電頻率發信號x(t)成為二個相等位準信號,一第一分離器輸出信號141以及一第二分離器輸出信號142。延遲線132被調適以延遲第二分離器輸出信號142而提供一延遲第二分離器輸出信號143。移相器133被調適以移相該延遲第二分離器輸出信號143而提供一移相器輸出信號w(t)。混合器134被調適以混合第一分離器輸出信號141以及移相器輸出信號w(t)而提供一混合器輸出信號144。低通濾波器135被調適以低通濾波該混合器輸出信號144而提供連續時間的延遲線鑑別器輸出信號z(t)。類比至數位轉換器143被調適以轉換該連續時間延遲線鑑別器輸出信號z(t)成為一離散時間延遲線鑑別器輸出信號z(n),其是延遲線鑑別器輸出信號。
雖直接頻譜測量以及參考來源測量依賴一純淨、低相位雜訊的無線電頻率源,第1b圖中展示之延遲線鑑別器130不需要一專用無線電頻率源參考。分離器131被使用以分離無線電頻率信號x(t)成為二個相等位準信號141、142。一個信號141直接地被施加至一混合器144,而第二信號142被引導至一延遲線132。該延遲線之輸出信號143經由一移相器133以得到一移相信號ω(t),並且接著w(t)被饋送進入混合器134中。如果移相器133被調整以至於一個90°之移相被進行,則低通濾波器輸出信號z(t)成為:
z(t)=Vz (Φ(t)-Φ(t-τ)),
其中Vz 是信號振幅,Φ(t)是無線電頻率信號x(t)之相位雜訊並且Φ(t-τ)是被延遲時間延遲τ之延遲無線電頻率信號x(t-τ)的相位雜訊。
無線電頻率信號x(t)可被表示,以如下所示之方式作為實際震盪器之一輸出:
x(t)=Vx (1+a(t))cos(ωc t+Φ(t)),
其中Vx 是信號振幅,a(t)表示振幅調變雜訊,並且Φ(t)表示相位調變雜訊,後者同時也被稱為相位雜訊。角偏移Φ(t)可涉及明定性以及隨機性成份兩者,但是通常僅隨機波動是有關的。藉由忽視振幅調變(AM)雜訊以及對於小的相位調變,亦即,|Φ(t)|<<1,則吾等可得到:
x(t)=Vx (cos(ωc t)-Φ(t)sin(ωc t)),
其中吾等使用近似值cos(Φ(t))1,以及sin(Φ(t))Φ(t)。
第1c圖展示依據一習見實作例具有如第1b圖展示之類比延遲線鑑別器的脈衝以及頻率響應之等效方塊圖。該圖形展示用以轉換相位雜訊φ(t)為連續時間延遲線鑑別器輸出信號z(t)之脈衝響應h(t),其可利用二個狄拉克(Dirac)脈衝δ(t)以及δ(t-T)被表示。兩個狄拉克脈衝具有對應至時間延遲T的一時間距離T。第1c圖進一步地展示對應至功率發送係數的頻率響應振幅之平方值|H(f)|2 ,其相位雜訊功率Pφ (f)利用其被轉換為延遲線鑑別器輸出信號之功率Pz (f)。
該功率發送係數可以下式被表示:
|H(f)|2 =2-2cos(2πfT),
其中f表示相位雜訊φ(t)之頻率並且T表示延遲線132之時間延遲。適當之T數值是數奈秒之級數,同時在一些情況中,適當之f數值是較小於1MHz。
第2a圖展示依據本發明一實施例之包含一遞迴延遲器裝置的方塊圖。裝置200包含一遞迴延遲器201、一組合器202以及一相位雜訊測定器203。裝置200被調適以接收一測試信號210並且提供相位雜訊資訊211。該遞迴延遲器201被組態以依據測試信號210提供一延遲信號212。組合器202被組態以組合一第一信號213與一第二信號214,其中第一信號213是依據於該測試信號210或是相同於測試信號210,而其中第二信號214是依據於該延遲信號212或是相同於延遲信號212,以得到一組合器輸出信號215。相位雜訊測定器203被組態以依據組合器輸出信號215而提供相位雜訊資訊211。
本發明這實施例中,第一信號213是等於測試信號210,並且第二信號214是等於延遲信號212。該第一信號213同時也可基於測試信號210,或可以是自測試信號210被導出或可以是依據於測試信號210。第二信號214同時也可基於延遲信號212,可以是自延遲信號212被導出或可依據延遲於信號212。測試信號210可以是電氣或光源的類比或數位信號。第一信號213可以(例如)是一放大的、衰減的、移相的、時移的、頻移的、過濾的、等化的、受雜訊影響的、數位取樣的或方波形式的測試信號210。第二信號214可以(例如)是一放大的、衰減的、移相的、時移的、頻移的、過濾的、等化的、受雜訊影響的、數位取樣的或方波形式之延遲信號212。
遞迴延遲器201被組態以依據測試信號210而提供延遲信號212,以至於延遲信號212包含複數個時移信號成份之疊合,該等信號成份是依據於測試信號210,並且該等信號成份彼此相對地在時間上被移位。遞迴延遲器201被調適以依據測試信號210或相同於測試信號210的一信號而遞迴地延遲一信號,以提供對應至延遲信號212的一遞迴延遲信號。遞迴延遲器201被組態以依據測試信號210而提供延遲信號212,以至於複數個時移信號成份對應至一序列之連續的時移信號成份。
遞迴延遲器201包含用以延遲測試信號210或依據測試信號210之信號的一時間延遲。
例如,遞迴延遲器可被組態以遞迴地延遲測試信號,以至於該延遲測試信號包含複數個時移形式之測試信號210(或依據該測試信號210之信號)的一疊合。換言之,遞迴延遲器可包含一回授,以至於一延遲線之輸出信號被饋送回至延遲線之輸入以得到遞迴延遲。因此,延遲線之輸出信號包含測試信號210之複數個時移形式。
例如,如果測試信號(或依據該測試信號的一信號)之一短部份被考慮,則該短部份(較短於該延遲線之延遲時間)將在某一延遲時間之後,發生在該延遲線之輸出,作為延遲線輸出信號之一成份。如果這測試信號210(或依據該測試信號210之信號)的一次延遲部份再次被饋送回至延遲線之輸入,則測試信號210(或依據測試信號210之信號)的該部份之一個二次延遲形式,在一進一步的時間週期之後將出現在延遲線之輸出(作為該延遲線輸出信號之一“成份”)。因此,測試信號210(或依據測試信號210之信號)部份之不同的複數次時間延遲形式將出現在延遲線之輸出。測試信號210部份之不同的時間延遲形式可能,例如,隨著疊代而在振幅衰減。
採取測試信號210作為一整體,可以說測試信號之不同時移形式可被疊置於延遲線之輸出,當比較於已較少延遲(或僅一次)的測試信號210部份時,其中已遞迴延遲複數次之測試信號210部份可能已被衰減。
該測試信號210可引起複數個時間延遲以多次延遲遞迴延遲器201(或依據該測試信號210之信號)。遞迴延遲器之輸出信號,例如,可使用測試信號之時移形式的信號成份之一序列(或疊合)的信號成份而被形成。遞迴延遲器201可被組態以藉由時間延遲或組合時間延遲(該組合時間延遲是複數個時間延遲之組合)而時間-延遲測試信號210(或依據測試信號210之信號)以得到信號成份序列之一信號成份。
遞迴延遲器201可被組態以藉由時間延遲複數個時間延遲之一第一時間延遲的第一信號成份而得到信號成份序列之一第二信號成份,其中第二信號成份是連續於信號成份序列之第一信號成份。遞迴延遲器201可進一步地被組態以藉由時間延遲複數個時間延遲之一第二時間延遲之第二信號成份或藉由時間延遲第一時間延遲以及第二時間延遲總和之第一信號成份,而得到信號成份序列之一第三信號成份,其中第三信號成份是連續於第二信號。第一信號成份利用第一時間延遲被延遲以得到第二信號成份,第二信號成份利用第二時間延遲被延遲以得到第三信號成份。第三信號成份藉由延遲第一時間延遲以及第二時間延遲的第一信號成份而可被得到。第一時間延遲以及第二時間延遲可以是相同的或可以是不同的。但是,遞迴延遲器201也可將信號成份延遲複數個時間延遲。一分別的信號成份可利用複數個時間延遲被延遲以得到延遲信號212。
遞迴延遲器201,例如,可被組態以形成複數次衰減。遞迴延遲器201可藉由一個或多個複數次衰減處理而衰減測試信號210(或依據測試信號之信號)以得到信號成份序列的信號成份之一者。信號成份序列之信號成份可以首先被衰減,接著被時間延遲或可以首先時間延遲並且接著被衰減。
複數個時移信號成份(或信號形式)可被相加以得到延遲信號212。
第一信號213以及第二信號214可以是對應至一90°移相或一個90°加上複數個180°之整數倍移相的相位正交。遞迴延遲器201可被組態以提供延遲信號212,以至於複數個信號成份(或複數個測試信號210之時移形式)的信號成份(或測試信號210之時移形式)是彼此同相位,其對應至0°加上複數個360°之整數倍移相。如果複數個信號成份之信號成份是彼此同相位,則複數個信號成份之各信號成份對於第一信號213可以是相位正交。
相位正交信號之範例是一正弦信號以及一餘弦信號。正弦信號與餘弦信號之相乘以及隨後之積分、低通過濾或相乘信號總和導致得到一補償信號之兩個相位正交信號之補償,其在一理想情況中可以是零。第一信號213以及第二信號214同時也可以是彼此相對地被移相90°或90°加上複數個180°之整數倍的週期性(或如果相位雜訊被考慮,則至少大約近似)矩形信號或週期性方波信號,以至於第一信號213與第二信號214之一乘法運算(或XOR組合運算)以及一隨後之總和、低通過濾或積分也導致一補償。隨後之總和、低通過濾或積分可利用相位雜訊測定器203被進行。相位雜訊測定器203可包含一低通濾波器以供低通過濾該組合器輸出信號215以得到補償信號。
測試信號210之一相位調變(或相位雜訊)可導致第一信號213以及第二信號214之一相位調變(或相位雜訊)。於測試信號210之相位雜訊或相位調變(或藉由相位調變該測試信號210)存在時,第一信號213以及第二信號214之一相位調變(或相位雜訊)可“通過”相乘運算以及隨後的積分,以至於相位調變之功率是可利用相位雜訊測定器203檢測而提供相位雜訊資訊211。相位調變提供自其之相位正交偏離的第一信號213以及第二信號214。這是,例如,由於下列事實,第一以及第二信號之相位調變(或移相)作用是因作用於第一信號213上以及作用於第二信號214上之不同族群延遲而離開正交。自相位正交之偏移(或自這偏移產生的混合器輸出信號)可利用隨後的積分器或低通濾波器被積分。偏移之功率對應至相位雜訊功率或相位調變功率。
包含組合器(例如,混合器或XOR運算-組合器)202以及相位雜訊測定器203之裝置也可藉由進行第一信號213以及第二信號214之一相關性的一相關裝置被表示。相關性結果對應至相位雜訊資訊211並且可表示相位雜訊功率。包含組合器202以及相位雜訊測定器203之裝置可以是用於計算在第一信號213以及第二信號214之間的相互相關性之一相互相關性裝置。
裝置200可表示一自相關性裝置,其計算測試信號210之自相關性並且提供相位雜訊資訊211作為相位雜訊功率之一測量。遞迴延遲器201可提供表示測試信號210之時移數值之信號成份。組合器202可進行包含測試信號210之時移形式的測試信號210與延遲測試信號212之一乘法運算。對應至延遲測試信號212的第二信號214包含信號成份序列,其可以是測試信號210之時移形式。組合器202可提供組合器輸出信號215以至於相同信號包含測試信號210之自相關性數值之一疊合。相位雜訊測定器203可對測試信號210之疊合自相關性數值進行積分以提供相位雜訊資訊211或相位雜訊功率。裝置200可代表對測試信號210之自相關性數值進行積分的一自相關性積分器。藉由對測試信號210之自相關性數值進行積分,當比較於藉由一個單一延遲而延遲測試信號210之一習見的延遲線時,相位雜訊功率之一測量敏感性可被增加。一個單一延遲對應至測試信號210之自相關性函數之一個單一信號數值,其是對於該單一延遲之測試信號210的自相關性函數。依據測試信號210之自相關性函數之形式,相位雜訊資訊211之敏感性可被改進。
測試信號210可以是一雜訊信號,例如,一白色雜訊或藉由測試信號210之一相位調變而輸送數碼資訊之一數碼序列。裝置200被組態以檢測被攜帶在測試信號210之內的相位雜訊資訊211。該裝置可以是一解相關接收器,其用以解除被攜帶在測試信號210之內的相位調變資訊之相關性。測試信號210可攜帶一數碼,其可藉由裝置200被解碼而提供對應於被解碼之資訊的相位雜訊資訊211。測試信號210可提供相位及/或振幅調變(例如,以雜訊形式)的一載波。該載波最好可以是一正弦或餘弦形式信號。另外地,於一些實施例中,該載波可以是一雜訊、假性隨機雜訊、數碼序列,例如,黃金代碼、一個m序列或可包含一不同的信號形式。包含一遞迴延遲器201之裝置200的實施例被展示於隨後的圖形中。
第2b圖展示依據本發明另一實施例之包含一遞迴延遲器的裝置之方塊圖。裝置200包含一遞迴延遲器201、一組合器202以及一相位雜訊測定器203,其對應於如第2a圖所展示之分別的裝置。裝置200被調適以接收可利用一待測源220被提供之一測試信號210。裝置200被調適以提供一相位雜訊資訊211。
遞迴延遲器201包含一第一延遲線221、一第二延遲線222、一第一相加裝置223、一第二相加裝置224以及一衰減器225。第一延遲線221被調適以將測試信號210延遲一個第一延遲時間τ而提供測試信號210之一個第一延遲形式230。第二延遲線222被調適以將一衰減疊合信號231延遲一個第二延遲時間δ而提供一個第二疊合信號232。第一相加裝置223被調適以進行測試信號210之第一延遲形式230以及第二疊合信號232的相加式疊合以提供一個第一疊合信號233。衰減器225被調適以衰減第一疊合信號233而提供衰減疊合信號231。第二相加裝置224被調適以進行測試信號210之第一延遲形式230以及第二疊合信號232之一相加式疊合而提供延遲信號212。於這實施例中,第二信號214對應至延遲信號212並且第一信號213對應至測試信號210。
組合器202包含一乘法混合器240,其被調適以利用一乘法運算而混合第一信號213以及第二信號214以提供組合器輸出信號215。相位雜訊測定器203包含一低通濾波器241,其被調適以低通濾波組合器輸出信號215而提供低通濾波輸出信號u(t)。該低通濾波輸出信號u(t)可表示相位雜訊資訊211。另外地,相位雜訊測定器203可包含一選擇的類比至數位轉換器242,其被組態以將低通濾波器輸出信號之連續的時間表示u(t)轉換為可表示相位雜訊資訊211之低通濾波器輸出信號的一離散時間表示u(k)。
第3a圖展示依據本發明一實施例如第2b圖展示之有關相位雜訊發送的裝置之等效方塊圖。如第2b圖展示之不具有選擇性類比至數位轉換器242的裝置200之方塊圖,表示當被施加相位雜訊Φ(t)時提供低通濾波輸出信號u(t)之脈衝響應h(t)的方塊圖。脈衝響應h(t)之一數學式描述可藉由設定第一延遲線221之第一延遲時間為τ‧Td 、藉由設定衰減器225之衰減為A並且藉由設定第二延遲線222之第二延遲時間為δ‧Td 而被導出。頻率領域中之脈衝響應h(t)的描述被展示在第3b圖中。
第3b圖展示依據本發明一實施例展示如第3a圖描述之頻率響應的裝置之等效方塊圖。等效方塊圖301可具特徵(或被表示)於下列公式:
頻率響應H(f)對應於脈衝響應h(t)之傅立葉轉換。頻率響應H(f)描述頻率領域中相位雜訊Φ(f),其是Φ(t)之傅立葉轉換,至低通濾波器輸出信號u(f),其是u(t)之傅立葉轉換,的轉換。例如,當考慮相位雜訊之一頻率下行轉換時,變量f可自測試信號210中之載波,以及低通濾波器輸出信號u(f)之基帶頻率而決定相位雜訊之頻率偏移。頻率響應H(f)之絕對值平方|H(f)|2 描述在頻率領域中表示相位雜訊之功率PΦ (f)對頻率領域中表示低通濾波器輸出信號的功率Pu(f)之功率傳送。其關係是Pu (f)=|(H(f)|2 PΦ (f)。
對於具有接近於0之f以及τ‧Td 乘積之迫近相位雜訊(並且也針對非迫近相位雜訊),一遞迴延遲提供具有另外的延遲nδTd (具有頻率-延遲-乘積f‧nδ‧Td )之另外的信號成份,其由於第二延遲時間δ‧Td 之遞迴相加而導致頻率響應之一較高的敏感性。頻率響應H(f)之敏感性被改進。相位雜訊之功率PΦ (f)可利用功率發送係數|H(f)|2 被衰減或被放大,以至於相位雜訊之功率PΦ (f)在噪聲基底上面被轉移並且成為可檢測。雜訊功率(例如,可使用裝置200被測量之雜訊功率)將具有一較高的動態範圍。測量已展示,遞迴延遲器相對於一習見延遲器大約地具有40dB的增益是可能的。換言之,於一些情況中,裝置201之一雜訊敏感性可使用遞迴延遲器被改進40dB。
第4圖展示依據本發明一實施例展示如第2b圖所示之具有相位調變的一餘弦形式測試信號發送之方塊圖。測試信號210可利用一餘弦形式信號cos(ω0 t+Φ(t))被表示,其中ω0 指示一載波之角頻率並且Φ(t)指示該載波之相位調變或相位雜訊。測試信號110可不同地具有一矩形狀,其中諧波信號成份利用一(低通)濾波器被過濾,因而測試信號110可被處理作為一餘弦形狀信號或作為一正弦形狀信號。通常,測試信號110可以是任何至少大約週期性的信號,一載波之波形可利用一餘弦形狀(或一正弦形狀)信號被表示。因此,測試信號甚至可具有一個三角形之形狀或任何其他大約為週期性之形狀。測試信號210之第一延遲形式230利用第一延遲線221被提供,該第一延遲線221被調適而將測試信號210延遲第一延遲時間τ。第一延遲時間τ被調整以至於餘弦形狀測試信號210被轉換成為測試信號210之一正弦形狀的第一延遲形式230。第一延遲時間τ被調整以將測試信號210延遲測試信號210(或其之一基礎頻率)之四分之一週期或一四分之一週期加上測試信號210之複數個數目的半週期以至於餘弦形狀測試信號210被轉換為測試信號210之一正弦形狀之第一延遲形式230。測試信號210之第一延遲形式230可被表示如sin(ω0 t+Φ(t-τ))。
第二延遲線222被調適以將衰減疊合信號231延遲一時間延遲δ而提供第二疊合信號232。第二延遲時間δ被調整以至於信號成份序列之信號成份具有一正弦形狀信號形式。衰減疊合信號231以及第二疊合信號232兩者皆具有正弦形狀信號形式(或是具有相對於一基礎頻率之測試信號210的第一延遲形式230之同相位)。第二延遲時間被調適以將衰減疊合信號231延遲一半信號週期或複數個半信號週期以至於具有一正弦形狀信號形式之衰減疊合信號231在第二疊合信號232中被轉換而成為具有一正弦形狀或一反正弦形狀信號形式。換言之,第二延遲時間δ可被調整,以至於第二疊合信號232是具有測試信號210之第一延遲形式230之同相位(±10°相位)或相對於測試信號之第一延遲形式的180°之不同相位(±10°相位)。第二相加裝置224被調適以進行具有正弦形狀信號形式之測試信號210的第一延遲形式230以及具有正弦形狀信號形式之第二疊合信號232的相加式疊合以提供第二信號214。第二信號214之信號形式可利用正弦形狀信號形式之一疊合被表示。第二信號可被表示如下式:
藉由相乘對應至第一信號213之大約至少地餘弦形狀(相位-雜訊影響)測試信號與對應至第二信號214的信號成份序列(或疊合)之至少大約地正弦形狀信號成份,混合器240提供混合器輸出信號215。混合器輸出信號215藉由低通濾波器241被低通濾波而提供低通濾波器輸出信號,該低通濾波器輸出信號可被表示如下式:
低通濾波輸出信號u(t)分別地取決於相位雜訊Φ(t)、取決於相位雜訊之延遲形式Φ(t-τ)或Φ(t-τ-nδ)、並且取決於衰減器225之衰減A。其中n指示對應至一遞迴指標之信號成份序列的序列數目。低通濾波輸出信號u(t)並不依據於測試信號210之載波(或基礎)的載波頻率ω0 。低通濾波輸出信號u(t)或低通濾波器輸出信號u(k)之一選擇的離散時間表示對應於相位雜訊資訊211。
第5圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖。裝置500包含一遞迴延遲器501,其被組態以依據測試信號210而提供一延遲信號512。於這實施例中,遞迴延遲器501被調適以接收測試信號210並且提供延遲信號512。裝置500進一步地包含對應至如第2b圖展示之組合器202的一組合器202以及對應至如第2b圖展示之相位雜訊測定器203的一相位雜訊測定器203。組合器202被組態以組合一第一信號513與一第二信號514,第一信號513是依據測試信號210,而第二信號514是相同於延遲信號512,以得到一組合器輸出信號515。第一信號513是測試信號210之一延遲形式,其被延遲一第一延遲時間τ。裝置500包含一第一延遲線521,其被調適以將測試信號210延遲第一延遲時間τ以提供第一信號513。因此,相位雜訊測定器503對應至如第2b圖展示之相位雜訊測定器203。
遞迴延遲器501包含一第一相加裝置523、一第二相加裝置524、一衰減器525以及一第二延遲線522。第一衰減裝置523被調適以進行測試信號210以及一第二疊合信號532之一相加式疊合而提供一第一疊合信號533。衰減器525被調適以將第一疊合信號533衰減一個A衰減量而提供一衰減疊合信號531。第二延遲線522被調適以將衰減疊合信號531延遲一延遲時間δ而提供第二疊合信號532。第二相加裝置524被調適以進行測試信號210以及第二疊合信號532之相加式疊合以提供延遲信號512,其是相同於第二信號514。
於本發明這實施例中,測試信號210具有一至少大約為餘弦形狀信號形式並且可被表示如cos(ω0 t+Φ(t))。第一延遲線521被調適以延遲測試信號210以至於第一信號513具有信號形式sin(ω0 t+Φ(t-τ))。第一信號513(或其載波)相對於測試信號210是同相位地正交。第一延遲時間被調適以提供相對於測試信號210之第一信號513的相位正交性質。第一延遲時間τ可以是測試信號210載波的一個四分之一週期或一個四分之一週期加上複數個數目之半週期。載波的頻率利用角頻率ω0 被表示。遞迴延遲器501被組態以提供包含複數個時移信號成份之一疊合的一延遲信號512以至於延遲測試信號512之信號成份相對於測試信號210是同相位(或反相位)。第二延遲線522包含一第二延遲時間δ,其被調整以提供同相位的該等信號成份。第二延遲時間δ可以是測試信號210之載波頻率ω0 之一半週期或複數個數目之半週期。
包含複數個時移信號成份之疊合的延遲信號512,具有以下式被表示之一信號形式:
第6圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖。裝置700包含一遞迴延遲器701、對應至如第2b圖展示之組合器202的組合器202、對應至如第2b圖展示之相位雜訊測定器203而無選擇性類比至數位轉換器242的相位雜訊測定器203以及進一步地包含一移相器710。遞迴延遲器701被調適以遞迴地延遲測試信號210而提供相同於第二信號714的一延遲信號712。移相器710被調適以將測試信號210移相而提供第一信號713。移相器710將測試信號210移位一相位φ。
遞迴延遲器701包含被調適以進行測試信號210以及延遲信號712之相加式疊合以提供一第一疊合信號733的一相加裝置723。遞迴延遲器701進一步地包含一衰減器725,該衰減器被調適以將第一疊合信號733衰減一個A衰減量而提供一衰減疊合信號731。遞迴延遲器701進一步地包含一延遲線722,其被調適以將衰減疊合信號731延遲一時間延遲δ而提供延遲信號712。
測試信號210包含分別地具有一角頻率ω0 以及具有一相位調變或相位雜訊Φ(t)而具有信號形式cos(ω0 t+Φ(t))之一載波。第一信號713,其是將測試信號210移位一相位φ之移相器710的一輸出信號,可利用cos(ω0 t+Φ(t)+φ)被表示。延遲信號712可利用下式被表示
低通濾波器輸出信號之連續的時間表示u(t)可被表示如下式:
第7圖展示依據本發明一實施例包含一遞迴數位延遲器之裝置的方塊圖。裝置1000包含一遞迴數位延遲器1001、組合器1002以及一相位雜訊測定器1003。遞迴數位延遲器1001被組態以依據一數位測試信號1010而提供一延遲數位信號1012。組合器1002被調適以組合一第一信號1013與一第二信號1014而得到一組合器輸出信號1015,其中第一信號1013是相同於數位測試信號1010或選擇性地相同於(類比)測試信號210;且其中第二信號1014是相同於延遲數位信號1012。相位雜訊測定器1003被組態以依據組合器輸出信號1015而提供一相位雜訊資訊u(k)。
數位測試信號1010可表示利用一待測源220提供之測試信號210的一離散時間形式。測試信號210之離散時間形式可利用一類比至數位轉換器1042被提供,該類比至數位轉換器1042被調適以將測試信號210轉換為數位測試信號1010。於這實施例中,裝置1000不包含類比至數位轉換器1042。於其他實施例中,裝置1000包含類比至數位轉換器1042。組合器1002可以是一類比組合器(例如,一乘法器或混合器),其被調適以進行第一信號1013以及第二信號1014之一類比組合而提供一類比組合器輸出信號1015。組合器1002也可以是一數位組合器(例如,一XOR運算組合器),其被調適以數位地組合第一信號1013與第二信號1014而提供一數位組合器輸出信號1015(例如,一個二進制信號)。相位雜訊測定器1003包含一低通濾波器,其被調適以低通濾波組合器輸出信號1015而提供對應至相位雜訊資訊之一低通濾波器輸出信號u(k)。低通濾波器1041最好是可提供一類比低通濾波輸出信號u(t)之類比低通濾波器。該類比濾波器可以,例如,使用一RC-電路被實作。但是,其他的實作也是可能的。第一信號1013及/或第二信號1014亦可以是類比或數位信號。低通濾波器1041可以是用於類比低通過濾一數位(例如,二進制)組合器輸出信號1015之一類比濾波器。後者的情況可以是有利於自數位組合器輸出信號1015移除膺頻成份,而使對應至相位雜訊資訊u(k)的相位雜訊功率具有一較佳的檢測。
類比至數位轉換器1042也可提供一方波測試信號作為數位測試信號1010。一方波測試信號包含二個信號狀態,第一信號狀態對應至測試信號210之一正信號數值,並且一第二信號狀態對應至測試信號210之一負信號數值。兩個信號數值皆表示邏輯數值,其可利用一數位組合器被處理,例如,一XOR運算閘或XNOR運算閘。
數位測試信號1010可以,例如,具有一矩形之形狀(或大約地矩形之形狀)的信號形式。該矩形形狀之信號形式可以,例如,使用一臨界比較器自類比信號210被導出,其中該臨界比較器可作用如同,例如,一單一位元類比至數位轉換器(取代類比至數位轉換器1042之功能)。
另外地,藉由一數位電路(例如,一數位震盪器)被提供之一信號可被作為一數位測試信號1010。
例如,數位測試信號1010可使用一臨界比較器,而自一餘弦形狀信號形式cos(ω0 t+Φ(t))被導出。因此,數位測試信號1010可以,例如,描述類比測試信號210之一符號。
數位測試信號之一基礎頻率信號因此可以是接近於cos(ω0 n+Φ(n))形式(或sin(ω0 n+Φ(n))、或任何其時移形式)之一信號成份。當然,數位測試信號1010可包含諧波成份,但是其在此處揭示之電路功能上不具有主要衝擊(或擾亂性衝擊)。
另外地,類比測試信號210可以較高的精確度(較高於單一位元精確度)被取樣。因此,由於改進的精確度,數位測試信號1010可接近於類比測試信號210。例如,數位測試信號1010可包含cos(ω0 n+Φ(n))形式,其中n指示其中測試信號210被取樣的離散取樣時間。
假設數位測試信號1210之一單一位元類比至數位轉換具有cos(ω0 n+Φ(n))形式之一基礎成份,則數位測試信號1010可採用sign(cos(ω0 n+Φ(n)))形式,其中sign(x)(也被指示為sign{x})指示產生變量x之符號的一函數。同樣地,數位測試信號1010之一時移形式可採用sign{cos(ω0 (n-d)+Φ(n-d))}形式。數位測試信號1010之一相位形式可採用sign(sin(ω0 n+Φ(n)))形式。
此處使用之符號函數“sign(x)”對於正輸入數值提供1之輸出數值(或邏輯“高”數值)並且對於負輸入數值提供-1之一輸出數值(或邏輯“低”數值)。進一步地,此處使用之符號函數,例如,可對於一輸入數值0提供數值+1或-1。
因此,此處使用之符號函數可脫離數學上定義的符號函數而具有三個可能輸出位準{-1,0,+1),因為數學上定義之符號函數未能精確地描述轉換成為具有二個位準之數位信號的轉換。
遞迴數位延遲器1001之結構大致對應至如第2b圖展示之遞迴延遲器201的結構,而具有差異於遞迴數位延遲器1001之內部構件被調適以處理數位信號。遞迴數位延遲器1001包含一第一數位延遲線1021、一第二數位延遲線1022、一第一相加裝置1023、一第二相加裝置1024以及一衰減器1025。第一數位延遲線1021被調適以數位地延遲數位測試信號1010經一第一數位延遲時間τ而提供數位測試信號1010之第一延遲形式1030。第一相加裝置1023被調適以進行數位測試信號1010之第一延遲形式1030以及一第二疊合信號1032之相加式疊合以提供一第一疊合信號1033。衰減器1025被調適以將第一疊合信號1033衰減一個A衰減量而提供一衰減疊合信號1031。第二數位延遲線1022被調適以數位地延遲該衰減疊合信號1031經一第二數位延遲時間δ而提供第二疊合信號1032。第二相加裝置1024被調適以進行數位測試信號1010之第一延遲形式1030以及第二疊合信號1032之相加式疊合以提供對應至第二信號1014之延遲數位信號1012。
第一以及第二數位延遲線1021、1022可包含緩衝器或可利用該緩衝器而提供對應至緩衝器的一輸入被緩衝之時間的一數位延遲。該等緩衝器可選擇性地利用一控制信號被控制,例如,利用一時脈信號。衰減器1025可利用一數位相乘被實現。第一以及第二數位延遲線1021、1022同時也可包含希爾伯特轉換器,其提供相對於它們輸入信號之90°的移相輸出信號。於這實施例中,第一數位延遲線1021提供數位測試信號1010之第一延遲形式1030,以至於其是相位正交於數位測試信號1010。第二數位延遲線1022提供第二疊合信號1032,以至於其是與第一疊合信號1033同相位或反相位,並且與數位測試信號1010之第一延遲形式1030同相位或反相位。第二數位延遲線1022可被實現,例如,藉由串聯連接二個緩衝器(或二個希爾伯特轉換器),而提供相對於第一疊合信號1033有180°移相之第二疊合信號1032。第一數位延遲線1021可利用一單一緩衝器(或一單一希爾伯特轉換器)被實現,而提供相位正交於數位測試信號1010之數位測試信號1010的第一延遲形式1030。
遞迴數位延遲器1001可利用數位電子電路被實作,例如,利用ASIC、利用場式可程控閘陣列或利用可程控邏輯裝置。於一些情況中,遞迴延遲器甚至可使用微型晶片或微處理機被實作或可在電腦系統上被實作。同時裝置1000也可利用電子電路被實作,例如,積體電路、微處理機或邏輯裝置。裝置1000可被組態以接收具有sign{cos(ω0 k+Φ(k))}信號形式之一數位測試信號1010。遞迴數位延遲器1001可被調適以提供第二信號1014,以至於第二信號1014是與相位正交於對應至數位測試信號1010之第一信號1013。
數位測試信號1010是具有對應至含角頻率ω0 以及相位調變或相位雜訊Φ(t)之一載波的sign{cos(ω0 t+Φ(t))}信號形式之測試信號210的離散時間表示。
第8圖展示依據本發明另一實施例,包含一遞迴數位延遲器之裝置的方塊圖。裝置1100包含一遞迴數位延遲器1101、一組合器1102以及一相位雜訊測定器1103。相位雜訊測定器1103包含一低通濾波器1141以及一類比至數位轉換器1142。裝置1100被調適以接收一測試信號x(t),並且被調適以提供一相位雜訊資訊1111。遞迴延遲器1101被組態以依據測試信號x(t)而提供一延遲信號xD (t-τ)。組合器1102被組態以組合一第一信號1113與一第二信號1114,其中第一信號1113是相同於測試信號x(t),且其中第二信號1114是相同於延遲信號xD (t-τ),以得到一組合器輸出信號m。相位雜訊測定器1103被組態以依據組合器輸出信號m而提供一相位雜訊資訊1111。遞迴數位延遲器1101包含一數位延遲時間τ,遞迴數位延遲器1101將測試信號x(t)遞迴地延遲一延遲時間τ以得到延遲測試信號xD (t-τ)。遞迴數位延遲器1101被組態以依據測試信號x(t)而提供延遲信號xD (t-τ),以至於延遲信號xD (t-τ)包含複數個時移信號成份之一疊合,其中信號成份是依據於測試信號x(t),並且其信號成份彼此相對在時間上移位。遞迴數位延遲器1101可選擇地包含不被展示在第8圖中之一類比至數位轉換器(例如,1位元量化器)以將測試信號x(t)轉換為其之離散時間表示xD (t)。遞迴數位延遲器1001可進一步地包含一遞迴延遲線,以供用於遞迴地延遲測試信號x(t)之離散數值(或離散時間)表示並且提供延遲信號xD (t-τ)。
延遲數位信號xD (t-τ)的分別信號成份未明確地被展示在第8圖中,它們藉由延遲數位信號xD (t-τ)被總計。遞迴數位延遲器1101可對應至如第7圖展示之遞迴數位延遲器1001。遞迴數位延遲器1101可另外地對應至如第2a至10圖之一者所展示的延遲器之一者,其中延遲器構件被調適以處理數位信號並且可包含,例如,用於一延遲線之緩衝器、用於一衰減器之乘法運算、用於一移相器之RC-電路(或希爾伯特轉換器)或用於一移相器之複數乘法運算。
第9圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖。裝置1200包含一遞迴數位延遲器1201、一組合器1202以及一相位雜訊測定器1203。裝置1200被調適以接收一測試信號x(t)並且提供一相位雜訊資訊1211。裝置1200進一步地包含一比較器1230,其被調適以轉換測試信號x(t)為一方波測試信號xD (t),其中該方波測試信號xD (t)包含用於測試信號x(t)之一正信號數值之一第一數位數值,並且包含用於測試信號x(t)之一負信號數值之一第二數位數值。
數位延遲器1201,其可以是一遞迴數位延遲器,包含一數位延遲時間τ並且可被調適以遞迴地延遲方波測試信號xD (t)以提供一延遲方波信號xD (t-τ)。延遲方波信號xD (t-τ)可包含複數個被移位數位延遲時間τ、或複數個數位延遲時間τ之時移信號成份的一疊合,其中該等信號成份是依據於測試信號x(t)或依據於方波測試信號xD (t-τ),並且其信號成份彼此相對在時間上被移位數位延遲時間τ或複數個數位延遲時間τ。組合器1202被組態以組合一第一信號1013與一第二信號1214,其中第一信號1013是依據於測試信號x(t)並且其中第一信號1013是相同於方波測試信號xD(t),與一第二信號1214,且其中第二信號1214是相同於延遲數位信號xD (t-τ),以得到一組合器輸出信號m(t)。
組合器1202包含一數位XOR運算閘,其被調適以進行對於第一信號1213以及第二信號1214之一邏輯XOR運算以提供組合器輸出信號m(t)。另外地,組合器1202可包含一數位XNOR運算閘,以進行對於第一以及第二信號1213、1214之一邏輯XNOR運算以提供組合器輸出信號m(t)。相位雜訊測定器1203包含被調適以儲存組合器輸出信號m(t)之一鎖定器或正反器1232而提供相位雜訊資訊1211。
比較器1230之數位輸出xD (t)可取代(0,1)而表示為數值(-1,+1)。先前說明之類比混合器1102,如第8圖之展示,可以一數位XOR運算閘1231取代。如第11圖展示之省略的低通濾波器1141,其不明顯地具有簡單數位對應者,而引起涉及有害的膺頻效應之煩惱。但是,於一些實施例中,膺頻效應是可以忽視的。啟始比較器級1230增加高頻率諧波至信號x(t),例如,高至第N個諧波,其接著利用正反器1232(次取樣)被取樣,引入膺頻。更進一步地,將有更多的互調變自平方處理程序產生,其可能混亂辨認來自不同頻率的相位雜訊作用之能力。比較器1230被調適以移除振幅調變。XOR運算閘1231進行供用於二進制信號表示(-1,+1)的一混和函數以提供包含互調變項目之組合器輸出信號m(t),因無移除高頻率成份之濾波器出現。在直流附近之互調變項目接近相位雜訊差量φ(t)-φ(t-nτ),其中n指示利用遞迴數位延遲器1201所提供之信號成份的一序列數目。遺憾地,其他有關高頻率之互調變乘積可能混頻於低頻率並且因此可能混亂辨别相位雜訊頻譜之頻率的能力。然而,於一些情況中(例如,對於具有窄相位雜訊分布的信號),膺頻是可容忍的。
如第10圖所展示之本發明另一實施例引介追隨於XOR運算閘以消除膺頻信號成份的一類比濾波器。
第10圖展示依據本發明之另一實施例,包含一遞迴數位延遲器之裝置的方塊圖。裝置1300包含對應至如第9圖展示之遞迴數位延遲器1201的一遞迴數位延遲器1201、對應至如第9圖展示之組合器1202的一組合器1202、對應至如第9圖展示之比較器1230的一比較器1230以及一相位雜訊測定器1303。本發明如第10圖展示的實施例不同於本發明如第9圖展示之實施例之處在於相位雜訊測定器1303。相位雜訊測定器1303包含一類比濾波器1341以及一選擇性類比至數位轉換器1342。類比濾波器1341被調適以過濾組合器輸出信號m(t),其表示一數位信號,以提供一類比濾波器輸出信號d。類比濾波器1341可過濾數位信號以提供一類比信號。類比濾波器輸出信號d可代表類比相位雜訊資訊1311。類比濾波器輸出信號d可利用選擇性類比至數位轉換器1342選擇地被轉換為一離散時間表示而提供以數位表示之相位雜訊資訊1311。類比濾波器1341被調適以移除混頻於低頻率之較高階的互調變頻率,以至於類比濾波器輸出信號d具有用以表示輸入信號x(t)之相位雜訊的高動態範圍。
第11圖展示依據本發明一實施例,包含一可調整遞迴延遲器之裝置的方塊圖。裝置1400包含一可調整遞迴延遲器1401、一組合器1402以及一移相器1403。裝置1400被調適以接收測試信號1410並且提供一相位雜訊資訊1411,其可以是相同於組合器輸出信號1415。組合器被組態以組合一第一信號1413與一第二信號1414,其中第一信號1413是依據於測試信號1410,且其中第二信號1414可以是相同於延遲信號1412,以得到組合器輸出信號1415。移相器1403被調適以將測試信號1410之相位移位一個相位p1以得到第一信號1413。可調整遞迴延遲器1401被調適以遞迴地延遲測試信號1410而提供延遲信號1412。可調整遞迴延遲器1401包含一相加裝置1423、一第一衰減器1425、一第二衰減器1426、一第二移相器1427、一選擇控制器1428以及一選擇功率感測器1429。
相加裝置1423被調適以進行測試信號1410以及一衰減第二疊合信號1434之一相加式疊合以提供一第一疊合信號1432。第一衰減器1425被調適以將第一疊合信號1432衰減一A1衰減量而提供對應至第二信號1414的延遲信號1412。第二移相器1427被調適以將延遲信號1412移相一個相位p2而提供一第二疊合信號1433。第二衰減器1426被調適以將第二疊合信號1433衰減一個A2衰減量而提供衰減第二疊合信號1434。p1、p2、A1及/或A2可以是預定參數或可調整參數,例如,利用一(適應式)控制演算法被調整。
選擇性功率感測器1429被調適以檢測延遲信號1412之功率而提供一功率控制信號1435。選擇控制器1428被調適以接收該功率控制信號1435,以依據功率控制信號1435而處理控制演算法並且依據控制演算法而提供一第一衰減器控制信號1436、一第二衰減器控制信號1437及/或一第二移相器控制信號1438。第一衰減器1425可選擇地被組態以回應於第一衰減器控制信號1436而調整衰減量A1。第二衰減器1426可選擇地被組態以回應於第二衰減器控制信號1437而調整衰減量A2。第二移相器1427可選擇地被組態以回應於第二移相器控制信號1438而調整相位移p2。
選擇控制器1428可被組態以提供第二移相器控制信號1438,以至於第二移相器1427對於延遲信號1412調整最大功率的相位p2。選擇控制器1428可被組態以提供第一衰減器控制信號1436以及第二衰減器控制信號1437,以至於第一衰減器1425以及第二衰減器1426調整它們分別的衰減量A1及/或A2成為相對於延遲信號1412而稍微地低於不穩定性之一數值。
裝置1400可包含一類比第一移相器1403及/或一類比第二移相器1427。但是,裝置1400同時也可包含數位移相器1403及/或數位第二移相器1427。數位移相器可以是,例如,希爾伯特轉換器或複數乘法單元。藉由檢測延遲信號1412之功率,其包含複數個時移信號成份之一疊合,其中信號成份是依據於測試信號1410,並且其信號成份彼此相對地在時間上被移位,控制器1428可控制延遲信號1412功率以至於可調整遞迴延遲器1404之不穩定性可被避免。移相器1403可處理一類比測試信號1410並且可調整遞迴延遲器1401可處理一數位形式之測試信號1410。另外地,可調整遞迴延遲器1401可處理一類比測試信號1410並且移相器1403可處理一數位形式之測試信號1410。當然,類比信號可在第一移相器1403之內以及在遞迴延遲器1401中被處理。
本發明進一步的一實施例包含可調整遞迴延遲器1401,而不需選擇控制器1428並且不需功率感測器1429。第一衰減量A1、第二衰減量A2以及相位移p2可利用一離線程序被調整,例如,以至於對於三個參數之最佳數值被決定。可調整遞迴延遲器1401可藉由將第一衰減量A1、第二衰減量A2以及相位移p2固定為預定的最佳數值而成為非可調整。一非可調整遞迴延遲器1401由於一降低之複雜性而較容易地實作,其同時也可減低成本。
一可調整遞迴延遲器1401,但是,可被使用於一自動測試設備上,其中選擇性控制器1428以及選擇性功率感測器1429可自動地調整對於最大功率的相位p2並且其中選擇性控制器1428以及選擇性功率感測器1429可驅動第二移相器1427以(自動地)調整A1及/或A2為稍微地在可調整遞迴延遲器1401之不穩定性下的一數值。
第12圖展示依據本發明另一實施例,包含一遞迴延遲器之裝置的方塊圖。裝置1500包含一遞迴延遲器1501、組合器1502、相位雜訊測定器1503以及移相器1504。裝置1500被調適以接收測試信號1510並且提供相位雜訊資訊z(n)。遞迴延遲器1501被調適以依據測試信號1510而提供延遲信號w(t)。組合器1502被組態以組合一第一信號1513與一第二信號w(t),其中第一信號1513是依據於測試信號1510,且其中第二信號w(t)是相同於一延遲信號w(t),以得到一組合器輸出信號1515。相位雜訊測定器1503被組態以依據組合器輸出信號1515而提供一相位雜訊資訊z(n)。移相器1504被調適以同相位地移位測試信號1510而提供被輸入至組合器1502的第一信號1513。
遞迴延遲器1501包含一相加裝置1505、一延遲線1506以及一第二移相器1507。相加裝置1505被調適以進行測試信號1510以及一移相第二信號1534之一相加式疊合而提供一疊合信號1532。延遲線1506被調適以將疊合信號1532延遲一個延遲時間T而提供第二信號w(t)。第二移相器1507被調適以同相位地移位第二信號w(t)以提供移相第二信號1534。相位雜訊測定器1503包含一帶通濾波器1541以及一(選擇性)類比至數位轉換器1542。帶通濾波器1541被調適以帶通過濾組合器輸出信號1515而提供一帶通濾波器輸出信號z(t)。該(選擇性)類比至數位轉換器1542被調適以將帶通濾波器輸出信號之連續時間表示z(t)轉換為對應至相位雜訊資訊之一離散時間表示z(n)。
第13圖展示依據本發明另一實施例,包含一遞迴延遲器之裝置的方塊圖。裝置1600分別地包含一遞迴延遲器1601、一組合器或一混合器1602以及一相位雜訊測定器1603。遞迴延遲器1601被調適以依據該測試信號1610而提供一延遲信號w(t)。組合器1602被組態以組合一第一信號1613與一第二信號1614,其中第一信號1613是依據於測試信號1610,且其中第二信號1614是相同於延遲信號w(t),以得到一組合器輸出信號1615。相位雜訊測定器1603被組態以依據組合器輸出信號1615而提供一相位雜訊資訊z(n)1611。
裝置1600進一步地包含一功率分離器1630、一第一移相器1631、一第二移相器1632以及一第一放大器1633。測試信號1610可利用波形產生器1640被提供,該波形產生器被調適以依據可利用一MATLAB裝置1642被預先組態的一任意的I、Q(同相位、正交)信號1641而提供測試信號1610。該MATLAB裝置可以是執行MATLAB軟體的電腦,MATLAB軟體是由“MATHWORKS”公司提供用於數學計算的軟體。其他數學計算以及其他公司提供的設計軟體也可被使用。I、Q信號1641描述利用波形產生器1640提供之測試信號1610的同相位成份I以及相位正交成份Q。
相位雜訊測定器1603包含一第二放大器1643,其被調適以放大組合器輸出信號1615而提供相位雜訊資訊z(t)之連續時間表示。相位雜訊測定器1603可選擇地包含對應至一類比至數位轉換器的一示波器1644以轉換相位雜訊資訊1611之連續時間表示z(t)為離散時間表示z(n)。相位雜訊資訊1611可利用MATLAB裝置1642被分析。
遞迴延遲器1601包含一第一固定衰減器1650、一功率組合器1651、一第一延遲線1652、一帶通濾波器1653、一第二延遲線1654、一第二固定衰減器1655、一第三放大器1656以及一功率分配器1657。
功率分離器1630被調適以將測試信號1610之功率分離以提供第一功率分離器輸出信號1660以及第二功率分離器輸出信號1661。功率分離器1630被調適以提供具有大約地相同功率之第一以及第二功率分離器輸出信號1660、1661。第一移相器1631被調適以移位第一功率分離器輸出信號1660之相位而提供第一移相信號1662。第一放大器1633被調適以放大第一移相信號1662而提供第一放大移相信號1663。第二移相器1632被調適以將第一放大移相信號1663移相而提供以一第一“LO”輸入被輸入至組合器1602之第一信號1613。
第一固定衰減器1650被調適以衰減第二功率分離器輸出信號1661而提供第一功率組合器輸入信號1664。功率組合器1651被調適以組合第一功率組合器輸入信號1664以及一遞迴迴路信號1665的功率而提供功率組合器輸出信號1666。第一延遲線1652被調適以將功率組合器輸出信號1666延遲一個第一延遲時間而提供第一延遲組合信號1667。帶通濾波器1653被調適以將第一延遲組合信號1667帶通濾波而提供帶通濾波器輸出信號1668。第二延遲線1654被調適以將該帶通濾波器輸出信號1668延遲一個第二延遲時間而提供第二延遲組合信號1669。第二固定衰減器1655被調適以將該第二延遲組合信號1669衰減而提供第二固定衰減器輸出信號1670。第三放大器1656被調適以放大該第二固定衰減器輸出信號1670而提供功率分配器輸入信號1671。功率分配器1657被調適以將功率分配器輸入信號1671加以分配而提供遞迴迴路信號1665以及第二信號w(t)1614,其是在組合器1602之一第二“RF"輸入被輸入至組合器1602。功率分配器1657可被被組態以分配功率分配器輸入信號之功率,以至於第二信號1614以及遞迴迴路信號1665具有大約地相同功率。
第14圖展示依據如第16圖展示之本發明一實施例的裝置之等效方塊圖。第一移相器1631、第二移相器1632以及第一放大器1633之分別的增益或衰減(一附加之非理想性以及電纜線與真正硬體構件的衰減)可以第一增益/衰減裝置1701取代,該第一增益/衰減裝置1701被調適以放大/衰減第一功率分離器輸出信號1660而提供第一信號1613。自波形產生器1640至功率分離器1630之輸入的增益或衰減可以第二增益/衰減裝置1702取代,該第二增益/衰減裝置1702被調適以放大或衰減測試信號1610而提供功率分離器輸入信號1710。第一固定衰減器1650(以及另外的電纜線和連接構件)之增益或衰減可以第三增益/衰減裝置1703取代,該第三增益/衰減裝置1703被調適以衰減或放大第二功率分離器輸出信號1661而提供功率組合器輸入信號1664。第一延遲線1652、帶通濾波器1653、第二延遲線1654、第二固定衰減器1655以及第三放大器1656(以及另外的電纜線和連接構件)之增益或衰減可以第四增益/衰減裝置1704取代,第四增益/衰減裝置1704被調適以放大/衰減功率組合器輸出信號1666而提供功率分配器輸入信號1671。用以連接功率分配器1657之第二輸出與功率組合器1651之第二輸入(包含電纜線以及連接構件)的遞迴迴路之增益或衰減可以第五增益/衰減裝置1705取代,該第五增益/衰減裝置1705被調適以放大/衰減第二功率分配器輸出信號1711以提供第二功率組合器輸入信號1712。如第16圖展示之遞迴迴路信號1665,對應至第二功率分配器輸出信號1711並且對應至第二功率組合器輸入信號1712,如第16圖中,在功率分配器1657之第二輸出以及功率組合器1651之第二輸入之間沒有展示明確之裝置。
第二放大器1643之增益或衰減可以第六增益/衰減裝置1706取代,該第六增益/衰減裝置1706被調適以放大/衰減組合器輸出信號1615以提供第二放大器輸出信號z(t)。
第一增益/衰減裝置1701包含一增益或一衰減Ax 。第二增益/衰減裝置1702包含一增益或一衰減Ao 。第三增益/衰減裝置1703包含一增益或一衰減Aw 。第四增益/衰減裝置1704包含一增益或一衰減AT 。第五增益/衰減裝置1705包含一增益或一衰減Af 。第六增益/衰減裝置1706包含一增益或一衰減GV
第15圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖。裝置1800包含一遞迴延遲器1801、對應至如第13圖展示之組合器1602的一組合器1602、對應至如第13圖展示之相位雜訊測定器1603的一相位雜訊測定器1603、對應至如第13圖展示之功率分離器1630的一功率分離器1630以及對應至如第13圖展示之裝置1631、1632、1633的一第一移相器1631、一第二移相器1632以及一第一放大器1633。遞迴延遲器1801是相似於如第13圖展示之遞迴延遲器1601。遞迴延遲器1801不同於如第13圖展示之遞迴延遲器1801迴路中之遞迴延遲器1601。遞迴延遲器1801被調適以連接功率分配器1657之第二輸出,其藉由,例如,50歐姆之參考阻抗而攜帶第二功率分配器輸出信號1711至電氣接地。遞迴延遲器1801進一步地被調適以連接功率組合器1651之第二輸入,其藉由50歐姆的參考阻抗,例如,而攜帶第二功率組合器輸入信號1712至電氣接地。遞迴數位延遲器1801可藉由經由接地的一電氣迴路以連接第二功率分配器輸出信號1711至第二功率組合器輸入信號1712而實作遞迴迴路。
第16a圖展示對於多音頻調變如第14圖所展示之載波信號的裝置1600之功率發送,該功率發送被應用作為發送至裝置1600之輸入信號,該多音頻調變具有-56dBm之功率。
第16b圖展示對於如第16a圖展示之輸入信號之如第14圖所示裝置1600之功率發送,該多音頻調變具有-76dBm之功率。
第一組測量結果涉及遞迴延遲線結構,並且被標繪在第16a/b圖中。當Pk =-46dBc/Hz時,如第16a圖之展示,以及當Pk =-66dBc/Hz時,如第19b圖之展示,在頻率為1MHz以及100KHz之兩音調皆清楚地可見。對於Pk =-46dBc/Hz時,在頻率為10KHz之音調仍然是可見的,並且當Pk =-66dBc/Hz時,則其被隱藏在雜訊中。反而,對於f =1KHz之頻率響應|H(f )|2 的數值不是大的足以允許指標k=0之音調的檢測。如所預期的,當Pk 被減少20dB時,同時Sz (f k ),k=0,1,…,3,依據系統假設的線性行為,也展示相同的減少。有趣地,吾等可注意到功率頻譜斜率,並且因此相同地,|H(f )|2 斜率,是非常接近於頻域中每十倍20dB之理論值,並且精確地等於18.95dB。這1dB變化可被歸因為RF成份之非線性的行為,並且尤其是歸因為最後基頻放大器之非完美地頻率平坦增益。
第17a圖展示對於如第16a圖展示之輸入信號而如第1b圖展示之習見延遲線鑑別器130的功率發送,該多音頻調變具有-56dBm之功率。
第17b圖展示對於如第16a圖展示之輸入信號而如第1b圖展示之習見延遲線鑑別器130的功率發送,該多音頻調變具有-76dBm之功率。
如第16a圖描述之相同輸入信號被施加至習見的延遲線中,並且信號輸出PSD之測量結果被繪製於第17a/b圖中。吾等可自這些結果得到之最有趣的結論是,遞迴延遲線之頻率響應展示比習見延遲線鑑別器有多幾乎40dB之增益。
第18a圖展示如第14圖展示裝置1600之信號-對-雜訊比圖形。
第18b圖展示如第1b圖展示習見延遲線鑑別器130之信號-對-雜訊比圖形。
遞迴延遲線之雜訊數量是較大於單一延遲線接收器雜訊數量。當細看第16a/b圖以及第17a/b圖之雜訊本底以及第18a/b圖中更詳細之展示時,這可被觀察到。另一方面,連續線標繪,當x(t)=0時,信號z(t)之PSD,並且因此僅雜訊出現在接收器之輸入。另一方面,虛線標繪當多音調變被關掉時之信號z(t)頻譜,並且因此僅載波出現在延遲線之輸入中。雖然吾等可看出在第18b圖中二曲線之間的差異不是顯著的,第18a圖中可看到一更大的差異,其繪製對於遞迴延遲線結構之信號頻譜。基本上,吾等可推斷出在LO混合器輸入之雜訊與在RF混合器輸入之載波信號的乘積(並且反之亦然)是不可忽略的,並且對於系統的雜訊數量之更精確的評估,其必須被增加至雜訊£之雜訊項目中。因此,吾等可概略地估計對於遞迴以及習見延遲線結構之在f =1MHz的SNR為56dB以及27dB,而導致大約在30dB之最終的性能改進。
第19圖展示依據本發明一實施例用於測量一測試信號之相位雜訊的方法流程圖。方法10包含下列步驟:第一步驟11“遞迴地延遲依據該測試信號之一信號以得到一延遲信號”;第二步驟12“組合一第一信號與一第二信號,該第一信號是依據該測試信號或相同於該測試信號,而該第二信號是依據該延遲信號或相同於該延遲信號者,以得到一組合信號”;並且第三步驟13“依據該組合信號而提供一相位雜訊資訊”。
依據本發明方法之某些實作需求,本發明方法可以硬體或軟體被實作。該實作可使用數位儲存媒體被進行,尤其是具有電子式可讀取控制信號被儲存在其上之磁碟、DVD或CD,其配合一可程控電腦系統,以至於本發明之方法可被進行。因此,一般而言,本發明可以是電腦程式產品,其具有儲存在機器-可讀取載體上之程式碼,當電腦程式產品在電腦上執行時,該程式碼可操作以進行本發明之方法。換言之,當電腦程式在電腦上執行時,本發明之方法,因此,可以是具有用以進行本發明方法之至少一者的程式碼之電腦程式。
總結以上之敘述,延遲線鑑別器提供一相對容易且低成本之相位雜訊測量的方式。但是,它們習知會在迫近相位雜訊測量上遭受嚴重敏感性損失。一新穎的延遲線為主結構之性能被加以研究,其利用一反饋路線以提高測量敏感性。首先,一理論上推導以及分析結果被呈現以展示新結構概念,並且接著利用原型儀器所進行依據於真實世界測量的一簡單試驗被展示並且被討論。測量資料展示比習見延遲線鑑別器大約高40dB之顯著增益,但是由於回授線路,其增益因新穎結構之大約10dB的雜訊數量而稍微地被衰減。對於單一頻率之結果被得到,並且需要進一步研究以延伸其之測量性能至寬帶體制。尤其是,在大的帶寬上之可調移相器的設計被預期是為一困難之挑戰。
實際震盪器之輸出可如下所示:
其中V x 是信號振幅,a (t)代表AM雜訊,並且(t)是PM雜訊,後者同時也被稱為相位雜訊。角偏移A(t)可包含決定性以及隨機性成份兩者,但是通常僅隨機性變動是有關的。藉由忽略AM雜訊,吾等可如下所示地改寫(1)式:
並且,對於小的相位調變,亦即,|Φ(t)|<<1,吾等可得到:
其中吾等使用近似值cos[Φ(t)]1以及sin[Φ(t)]Φ(t)。
雖然直接頻譜測量以及參考源測量依據於乾淨的、低的相位雜訊RF源,第13圖展示之延遲線鑑別器則不需要特定之RF源參考。分離器被使用以分配RF信號成為二個相等位準信號。一個直接地被施加至一混合器,而第二個則被引導至一延遲線,接著通過一移相器,並且接著被饋送進入混合器。
假設定義w(t)是在通過延遲線之後在移相器的輸出之信號。其將得到如下所示之方程式:
其中α是利用移相器所引介之可調整相位移,並且τ是延遲線之遲滯量。接著,在混合器的輸出以及在低通濾波hLPF (t)之後的信號如下所示:
其中θ≡2πf c τ+α是在混合器之輸入的二個信號之間的相位移,並且V z 是信號振幅,其可被寫為:
A sys 是系統之全部增益(衰減)。吾等將不確定地使用增益以及衰減名稱,其兩者皆被定義作為在輸出以及輸入信號功率之間的比率。通常如果比率是較大於一,則吾等將使用增益名稱,否則則使用衰減名稱。如果移相器α被調整,以至於θ≡π/2,則輸出信號成為:
其可被視為LTI濾波器h (t)至輸入φ(t)之回應,如第1c圖之展示,並且被寫為:
其中*指示迴旋運算,並且
使用(8)式,吾等可如下所示地計算輸出信號z(t)之(標準化)功率頻譜密度(PSD):
其中Sz (f )、SΦ (f )分別地表示信號z(t)、Φ(t)之功率頻譜密度,並且H(f)是具有脈衝響應h(t)之濾波器的頻率響應,H(f )=1-exp(-j2πf τ)。接著吾等得到
吾等考慮越過1歐姆電阻器之電壓,因而瞬間功率是p(t)=v(t)i(t)=v2 (t)以及S(f )={Rv (τ)}被給予,其中{.}是傅立葉轉換運算器,並且Rv (τ)=E{v(t)v(t+τ)}是電壓自相關函數。
因為τ合理數值是在數奈秒之級數,對於小的頻率之數值(一般對於f <1MHz),其保持f τ<<1並且|H(f )|可精確地接近於
並且因此
上面方程式展示相位雜訊PSD,SΦ (f )可經由輸出信號z(t)之PSD測量而被得到,假設頻率響應之振幅|H(f )|及系統衰減Asys 是已知的。使用dB刻度,於[dBm/Hz]之輸出信號z(t)的PSD成為:
其中τ[dB]≡20log10 (τ/1ns)、f [dB]≡20log10 (f /1Hz)、Px [dBm]=10log10 ((Vx )2 /1mV)是dB表示的載波功率(跨過1個電阻器),並且Asys [dB]=20log10 (Asys )。
方程式(13)展示功率頻譜密度Pz (f ):
- 在頻率(偏移)領域中對於每十倍之頻率增加20dB;
- 延遲領域中對於每十倍之頻率增加20dB;
- 此外,其明顯地取決於相位雜訊PSD、載波功率以及系統衰減。
為了得到所涉數量之振幅上的易感性,假設吾等考慮GSM應用的一般來源,具有SΦ =[-60,-80,-110,-130,-140]T dBc/Hz,在下列頻率偏移所測量:
[1KHz,10KHz,100KHz,1MHz,10MHz]. (15)
此外,假設吾等考慮一載波功率Px =0dBm,一具有τ=1ns之延遲線,以及一具有Asys =0dB之理想系統。接著吾等得到:
S z (f )[dBm/Hz]=(-164+f )[dB]+S Φ (f )[dBm/Hz]. (16)
當在相關頻率估計時,其提供向量:
Sz =-164+[60,80,100,120,140] T +S Φ =[-164,-164,-174,-174,-164] T [dBm/Hz]. (17)
上列方程式展示延遲線鑑別器方法相當地衰減對於接近載波的頻率之相位雜訊的功率頻譜密度,並且因此對於迫近相位雜訊測量遭受降低的敏感性。但是低頻率強烈衰減具有顯著地減低在ADC之輸入的信號動態範圍之優點,就量化雜訊而論具有重要的優勢。尤其是,對於所檢視情況,信號功率將極有可能降低至雜訊基底之下,並且測量將是不可能。
二種之改進測量方式藉由(14)被建議,亦即:a)吾等可要求DUT(待測裝置)增加載波Px 之功率;b)吾等可使用較長的延遲線。但是,這兩種方法皆受技術條件之限制,因為功率Px 或延遲τ兩者皆不可能任意地大。實際數值可帶來30dB之增益(例如,P=10dBm,τ=10ns),其可能尚不足以將信號頻譜自雜訊基底升高。
延遲線鑑別器結構最大的關係是對於迫近相位測量之不良性能,其是由於當通過延遲線鑑別器時低頻成份遭受強烈的衰減。這衰減可以是如此的強故信號降至雜訊基底之下,使得相位雜訊測量簡直是不可能的。反而於這小節中,吾等提出一新穎的接收器結構,展示在第3圖中,其減低信號衰減,亦即,其提高頻率響應|H(f )|2
其是相似於呈現在先前部份中的接收器結構,顯著的差異是在延遲線之後,信號被分離成二個部份:一個部份被引導至混合器,並且另一部份首先通過一移相器,並且接著被饋送回至延遲線。吾等稱呼這結構為遞迴延遲線,因為在各疊代累積的延遲被增加τ奈秒。移相器是最主要的構件,由於其必須被規劃以相位對齊於來自回授路線之信號,而該信號來自直接路線。照例,吾等以x(t)表示待測信號,並且以w(t)表示在(遞迴)延遲線之後的信號。藉由以Aτ 以及A f ,分別地表示對應至直接路線的衰減(亦即,由於延遲線之衰減)以及對應至回授路線的衰減,吾等可寫出
並且因此
如果在二個混合器的輸入信號之間的相位差量被調整為90度,則吾等得到
忽略(不相關的)符號,脈衝遞迴延遲線響應可如下所示:
並且頻率響應如下所示:
其可被寫為:
而吾等回顧習見的延遲線之頻率響應如下所示:
具有近似值
吾等最後得到:
以[dBm/Hz]表示之輸出信號z(t)的PSD成為:
其中
代表遞迴延遲線結構優於習見結構之增益,如比較方程式(25)與方程式(14)可見。
清楚地,自方程式(26)可見,當衰減Aτ 以及Aτ A f 是最小的可能時,最大增益被得到。吾等可實際地考慮Aτ =-1dB以及A f =-0.5dB,其理想地對應一優異的G=62dB增益。雖然延遲線有可能具有較大於1dB之衰減,吾等亦可增加一放大器以使得全部的開迴路增益儘可能地接近0dB。
繪製在第13圖中之方塊圖說明被使用以建構一遞迴延遲線原型之構件,其中所有的構件以SMA電纜線連接。首先,吾等需要具有可控制相位雜訊之一信號源。為這目的,吾等使用由安捷倫(Agilent)E4438C向量信號產生器提供之IQ任意波形產生器功能。因為通常利用實際震盪器產生的信號可被寫為:
具有任意PSD的一相位雜訊波形Φ(t)可藉由提供分別地計算為cos(Φ(t))和sin(Φ(t))之I以及Q樣本給安捷倫儀器而被合成。一旦所需的PSD被選擇,則一個隨機程序Φ(t)之單一實作可利用Matlab實作之演算法被產生,並且I以及Q樣本被計算並且使用一GPIB界面被下載至儀器上。該儀器可使用在Matlab中提供的儀器控制工具箱(Toolbox)、以及使用可自安捷倫網站提供的一專用IVI-COM驅動器被控制。
如先前部份中所指出,習見延遲線鑑別器上之遞迴延遲線的增益主要地取決於開迴路以及反饋線路之衰減,其分別地以Aτ 以及A f 在第14圖中圖解式地被指示。第14圖是繪製在第13圖中之真實硬體設定的等效說明圖,其中電纜以及真實構件的非理想性以及衰減依據原型中的實際位置被群聚在一起。因此,例如,由於連接安捷倫來源與功率分離器之電纜線的衰減,以及由於功率分離器它本身之損失,與增益(衰減)Ao 被群聚在區塊中。同樣地,在混合器之前的功率組合器之非理想性、延遲線之損失、衰減器、放大器之增益以及功率分配器之損失,被群聚在開迴路增益之Aτ 項目中。Ax 代表遭受自第一功率分離器之輸出至混合器之輸入的行進信號之衰減,Aw 是在實作遞迴延遲線之閉迴路之前被塞入的固定衰減器,A f 是經由回授線路傳送的信號衰減,並且Gv 是基頻放大器之增益,其是提昇信號位準至適用於示波器之數值所需的。第14圖中之構件的選擇以及定位被要求有下面的考慮:
1) 對於所有的頻率,必須保持Aτ <0dB並且A f <0dB,以避免非必要之震盪。同時,它們必須是儘可能地接近0dB,以便確保優於習見延遲線所需求的增益(26)。
2) 在LO混合器之輸入所建議的信號功率是7dBm,並且輸入1dB壓縮點是等於1dBm。
為了滿足第一條件,具有理想增益稍微地較小於由於RF被動構件而衰減之放大器應剛好被安置在功率組合器之後。遺憾的是,可用的放大器之增益大大地超出延遲線以及功率分割器/組合器之衰減,因此一外加之衰減器必須被安置於迴路之直接路線中。此外,必須小心地確認放大器在線性型式中操作,其需要在第一分離器以及功率組合器之間插入另一衰減器(Aw )。此些衰減器之插入具有相當地增加全部系統之雜訊數量與隨後之測量敏感性損失的顯著缺點。這些考慮導致第16圖展示之結構選擇,其中第一衰減器之數值是-8dB,並且置放在延遲線以及放大器之間的第二衰減器數值是-10dB。
第14圖等效表示圖中之參數的數值如下列所示地被測量:Ao =-4.6dB,Ax =+21dB,Aw =-8dB,Aτ =-0.35dB,並且A f =-0.42dB。輸入信號x(t)之功率被選擇而等於-10dBm,並且因此LO信號之功率是接近等於6.5dBm,而RF信號之功率則是接近等於-5dBm。
最後的考慮關於遞迴延遲線之回授路線中移相器之缺乏。為了展示這新穎結構的概念,吾等集中在一個單一頻率上,並且因此吾等選擇在回授路線之後的信號是相位對齊於直接地進入該遞迴延遲線的信號之頻率。符合這條件的一個頻率被發現等於3.226027GHz。
如先前所預期的,(至少在理論上)非必要的衰減器之插入大大地增加系統之雜訊數量,使得原型之目前形式不適合於具有良好相位雜訊性質之來源的絕對測量。但是,畢竟,這試驗之主要重點是比習見延遲線鑑別器符合並且量化遞迴延遲線結構的增益。這比較是下面之主題。
回觀對於兩個結構,其保持:
其中對於習見延遲線鑑別器,頻率響應的絕對值如下所示地被解析式評估
並且對於遞迴延遲線,如下所示:
吾等之目的是測量並且比較二個對照結構之頻率響應。遞迴延遲線之硬體設置是第13圖展示之一者,而習見延遲線鑑別器之硬體組態則被展示在第15圖中。由於這選擇,對於兩個結構之Vz 數值是相同,並且因此二個測量系統之性能可藉由簡單地測量輸出信號z(t)之PSD,亦即,Sz (f )而被比較。在進行PSD測量之前,吾等假設對於兩個結構之Vz 是相同的簡單確認。對於習見以及遞迴延遲線結構,藉由以θ=0之方式調整移相器,吾等可分別地自方程式(5)以及方程式(19)得到:
在示波器(無放大器Gv ,其是固有地通帶)之兩種情況中的測量z(t),吾等得到z(t)(c) =13.74mV並且z(t)(r) =146mV。它們dB比率是接近於20.5dB,其與利用在先前表示式中替代測量數值Aτ =-0.35dB和A f =-0.42dB而被計算之理論數值20log10 (Aτ /1-Aτ A f )=20.74dB有極佳之一致性。
在這確認之後,吾等可對相同輸入信號x(t)藉由測量對於θ=π/2之z(t)之PSD,而比較二個結構之性能。對於所有的測量,示波器取樣頻率被設定為10Msa/s。該數值使用安捷倫VEE軟體被讀取,並且接著被輸出至Matlab,其中樣本z[n]之PSD使用韋爾奇(Welch)的演算法被計算,其中電壓被標準化至50Ω之參考阻抗。示波器之記憶體是等於32768個樣本,並且樣本之15個區塊被取得並且被使用以估計PSD。因此,吾等總共具有對應至49.2毫秒的觀察窗口之32768×15=491520個樣本。
為了強調頻率響應,吾等選擇藉由多音調輸入信號以激勵系統,其中:對於k=0,1,…,3,音調具有下面自載波f c =3.226027GHz的頻率偏移:
f k =10(3+ k ) Hz (33)
輸入載波功率被設定為-10dBm,並且多音調功率首先被設定為-56dBm,並且接著被設定為-76dBm。因此,PSD值SΦ (f )利用下列方程式被給予:
其中Pk ={-56,-76}+10={-46,-66}dBc/Hz。
第一組測量結果關聯於遞迴延遲線結構,並且被繪製在第16a/b圖中。當Pk =-46dBc/Hz時,在頻率1MHz以及100KHz之兩音調是清楚地可見到,如於第16a圖之展示,並且同時當Pk =-66dBc/Hz時,如於第16b圖之展示。對於Pk =-46dBc/Hz,在頻率10KHz之音調仍然是可見到的,並且對於Pk =-66dBc/Hz,其被隱藏在雜訊中。反而,對於f =1KHz之頻率響應|H(f )|2 的數值不是大的足以允許指標k=0時之音調檢測。如所預期的,當Pk 被減少20dB時,依據系統要求的線性之性能,Sz (f k ),k=0,1,...,3也展示相同的減少。有趣地,吾等可注意到功率頻譜之斜率,以及因此等效地為|H(f )|2 之斜率,是非常接近於頻率領域之每十倍頻率有20dB的理論數值,並且精確地是等於18.95dB。這1個dB變化可以歸因於RF成份之非線性的性能,並且尤其是可歸因於最後基頻放大器之非完美的平坦頻率增益。
相同的輸入信號被施加至習見的延遲線,並且信號輸出PSD之測量結果被繪製在第17a/b圖中。最有趣之結論是吾等可自這些結果引導出,遞迴延遲線之頻率響應展示比習見延遲線鑑別器優越幾乎40dB之增益!
但是,遞迴延遲線之雜訊數量是較大於單一延遲線接收器雜訊數量。這可藉由注意第16a/b圖以及第17a/b圖中之雜訊基底而觀察到,並且在第18a/b圖中更詳細。另一方面,連續線繪出當x(t)=0時之信號z(t)的PSD,並且因此僅雜訊呈現在接收器之輸入。另一方面,虛線繪出當多音頻調變被關閉時之信號z(t)的頻譜,並且因此僅載波呈現在延遲線之輸入。雖然吾等可在第18b圖中看見,在二個曲線之間的差異是不是顯著的,第18a圖中可看見更大的差異,其繪出對於遞迴延遲線結構之信號頻譜。根本上,吾等可推斷出,LO混合器之輸入的雜訊與RF混合器之輸入的載波信號的乘積(並且反之亦然)不是可忽略的,並且其必須被增加至雜訊項目以得到對於系統之雜訊數量更精確的評估。因此,吾等可概略地估計遞迴以及習見延遲線結構之SNR,在f =1MHz時分別為56dB以及27dB,而導致大約30dB之最終的性能改進。
100,130...延遲線鑑別器
101,132,722,1506...延遲線
102,133,710,1403,1504...移相器
103,134...混合器
104,135,241,1041,1141...低通濾波器
105,220...待測源
110,210,1510,1610...測試信號
111...延遲測試信號
112...移相測試信號
113...混合信號
131...分離器
136,242,1042,1142,1342,1542...類比至數位轉換器
137...數位信號處理器(DSP)
141...第一分離器輸出信號
142...第二分離器輸出信號
143...延遲第二分離器輸出信號
144...混合器輸出信號
200,500,700,1000,1100,1200,1300,1400,1500,1600,1800...裝置
201,501,701,1501,1601...遞迴延遲器
202,1002,1102,1202,1402,1502,1602...組合器
203,1003,1103,1203,1303,1503,1603...相位雜訊測定器
211,1111,1211,1411,1611...相位雜訊資訊
212,512,712,1412...延遲信號
213,513,713,1013,1113,1213,1413,1513,1613...第一信號
214,514,714,1014,1114,1214,1414,1614...第二信號
215,515,1015,1415,1515,1615...組合器輸出信號
221,521,1652...第一延遲線
222,522,1654...第二延遲線
223,523,1023...第一相加裝置
224,524,1024...第二相加裝置
225,525,725,1025,1425...衰減器
230,1030...第一延遲形式
231,531,731,1031...衰減疊合信號
232,532,1032,1433...第二疊合信號
233,533,733,1033,1432...第一疊合信號
240...乘法混合器
300...頻率響應裝置
301...頻率響應裝置之等效方塊圖
723,1423,1505...相加裝置
1001,1101,1201...遞迴數位延遲器
1010...數位測試信號
1012...延遲數位信號
1021...第一數位延遲線
1022...第二數位延遲線
1230...比較器
1231...數位XOR運算閘
1232...正反器
1311...類比相位雜訊資訊
1341...類比濾波器
1401...可調整遞迴延遲器
1410...接收測試信號
1426...第二衰減器
1427,1507,1632...第二移相器
1428...選擇控制器
1429...選擇功率感測器
1434...衰減第二疊合信號
1435...功率控制信號
1436...第一衰減器控制信號
1437...第二衰減器控制信號
1438...第二移相器控制信號
1532...疊合信號
1534...移相第二信號
1541,1653...帶通濾波器
1630...功率分離器
1631...第一移相器
1633...第一放大器
1640...波形產生器
1641‧‧‧I、Q信號
1642‧‧‧MATLAB裝置
1643‧‧‧第二放大器
1644‧‧‧示波器
1650‧‧‧第一固定衰減器
1651‧‧‧功率組合器
1655‧‧‧第二固定衰減器
1656‧‧‧第三放大器
1657‧‧‧功率分配器
1660,1661‧‧‧功率分離器輸出信號
1662‧‧‧第一移相信號
1663‧‧‧第一放大移相信號
1664‧‧‧功率組合器輸入信號
1665‧‧‧遞迴迴路信號
1666‧‧‧功率組合器輸出信號
1667‧‧‧第一延遲組合信號
1668‧‧‧帶通濾波器輸出信號
1669‧‧‧第二延遲組合信號
1670‧‧‧固定衰減器輸出信號
1671‧‧‧功率分配器輸入信號
1701‧‧‧第一增益/衰減裝置
1702‧‧‧第二增益/衰減裝置
1703‧‧‧第三增益/衰減裝置
第1a圖展示依據一習見實作例之一延遲線鑑別器的方塊圖;
第1b圖展示依據一習見實作例之一類比延遲線鑑別器的方塊圖;
第1c圖展示依據一習見實作例具有如第1b圖展示之類比延遲線鑑別器的脈衝以及頻率響應之等效方塊圖;
第2a圖展示依據本發明一實施例包含一遞迴延遲器之裝置的方塊圖;
第2b圖展示依據本發明一實施例包含一遞迴延遲器之另一裝置的方塊圖;
第3a圖展示依據本發明一實施例如第2b圖所示關於相位雜訊發送之裝置的等效方塊圖;
第3b圖展示依據本發明一實施例如第3a圖所示之展示頻率響應的裝置之等效方塊圖;
第4圖展示依據本發明一實施例如第2b圖所示之展示相位調變的餘弦形狀測試信號之發送的方塊圖;
第5圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;
第6圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;
第7圖展示依據本發明一實施例包含一遞迴數位延遲器之裝置的方塊圖;
第8圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;
第9圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;
第10圖展示依據本發明另一實施例包含一遞迴數位延遲器之裝置的方塊圖;
第11圖展示依據本發明一實施例包含一可調整遞迴延遲器之裝置的方塊圖;
第12圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;
第13圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;
第14圖展示依據本發明一實施例如第13圖所示之裝置的等效方塊圖;
第15圖展示依據本發明另一實施例包含一遞迴延遲器之裝置的方塊圖;
第16a圖展示如第14圖所示用於以多音調變之一載波信號裝置之功率發送的圖形,該載波信號作為被施加至裝置之輸入信號,該多音調變具有-56dBm之功率;
第16b圖展示如第14圖所示對於如第16a圖所示之輸入信號的裝置之功率發送圖形,該多音調變具有-76dBm之功率;
第17a圖展示如第1b圖所示對於如第16a圖所示之輸入信號的習見延遲線鑑別器之功率發送圖形,該多音調變具有-56dBm之功率;
第17b圖展示如第1b圖所示對於如第16a圖所示之輸入信號的習見延遲線鑑別器之功率發送圖形,該多音調變具有-76dBm之功率;
第18a圖展示如第14圖所示之裝置的信號對雜訊比之圖形;
第18b圖展示如第1b圖所示之習見延遲線鑑別器的信號對雜訊比之圖形;以及
第19圖展示依據本發明一實施例用以測量一測試信號相位雜訊之方法的流程圖。
200...裝置
201...遞迴延遲器
202...組合器
203...相位雜訊測定器
210...測試信號
211...相位雜訊資訊
212...延遲信號
213...第一信號
214...第二信號
215...組合器輸出信號

Claims (39)

  1. 一種用以測量一測試信號之相位雜訊的裝置,該裝置包含:一遞迴延遲器,其被組態以依據該測試信號提供一延遲信號;一組合器,其被組態以組合一第一信號與一第二信號,該第一信號是依據該測試信號或相同於該測試信號,而該第二信號是依據該延遲信號或相同於該延遲信號,以得到一組合器輸出信號;以及一相位雜訊測定器,其被組態以依據該組合器輸出信號而提供一相位雜訊資訊。
  2. 依據申請專利範圍第1項之裝置,其中該組合器被組態以將該第一信號與該第二信號相乘而得到該組合器輸出信號,或其中該組合器被組態以將該第一信號與該第二信號進行XOR組合而得到該組合器輸出信號。
  3. 依據申請專利範圍第1項之裝置,其中該遞迴延遲器被組態以依據該測試信號而遞迴地延遲一信號以提供對應於該延遲信號之一遞迴延遲信號。
  4. 依據申請專利範圍第1項的裝置,其中該遞迴延遲器被組態以依據該測試信號提供該延遲信號,以至於該延遲信號包含複數個時移信號成分之一疊合,該等信號成分是依據於該測試信號,並且該等信號成分彼此相對在時間上移位。
  5. 依據申請專利範圍第4項之裝置,其中該遞迴延遲器被 組態以提供該延遲信號以至於該延遲信號包含該等複數個時移信號成分之一相加式疊合。
  6. 依據申請專利範圍第1項的裝置,其中該遞迴延遲器被組態以依據該測試信號提供該延遲信號,以至於該延遲信號包含該測試信號之複數個時移形式。
  7. 依據申請專利範圍第1項的裝置,其中該裝置包含一接收器,該接收器被組態以接收具有在3kHz及300THz間之一載波頻率的一無線電頻率(RF)信號。
  8. 依據申請專利範圍第1項的裝置,其中該裝置被組態以提供該第二信號,以至於該第二信號之一載波是在相位±10°容限範圍內正交於該第一信號之一載波。
  9. 依據申請專利範圍第4項的裝置,其中該遞迴延遲器被組態以提供該延遲信號,以至於該等複數個時移信號成分之載波是在相位±10°容限範圍內彼此同相。
  10. 依據申請專利範圍第4項的裝置,其中該遞迴延遲器被組態以在該遞迴延遲器之一反饋路線中衰減該等信號成分,以至於該等信號成分衰減並且使得該第二信號之功率受限定。
  11. 依據申請專利範圍第4項的裝置,其中該遞迴延遲器被調適以提供該延遲信號以至於該等時移信號成分相對於該測試信號在時間上被移位該測試信號之一載波的四分之一週期或該測試信號之該載波的四分之一週期加上一整數倍的全週期或該測試信號之該載波的四分之一週期加上一整數倍的半週期。
  12. 依據申請專利範圍第1項的裝置,其中該相位雜訊測定器被組態以依據該組合器輸出信號而提供描述一相位雜訊功率之資訊。
  13. 依據申請專利範圍第1項的裝置,其中該相位雜訊測定器包含一低通濾波器,該低通濾波器被組態以低通過濾該組合器輸出信號而得到一低通濾波器輸出信號(u(t))。
  14. 依據申請專利範圍第13項之裝置,其中該相位雜訊測定器包含一功率檢測器,該功率檢測器被組態以得到描述該相位雜訊功率之一信號。
  15. 依據申請專利範圍第13項的裝置,其中該相位雜訊測定器被組態以依據該低通濾波器輸出信號(u(t))之一功率而提供該相位雜訊功率資訊。
  16. 依據申請專利範圍第13項的裝置,其中該相位雜訊測定器包含一類比至數位轉換器,該類比至數位轉換器被組態以將該低通濾波器輸出信號之一連續時間表示(u(t))轉換為該低通濾波器輸出信號之一離散時間表示(u(k))。
  17. 依據申請專利範圍第1項的裝置,其中該裝置包含:一第一延遲線,該第一延遲線被組態以在時間上延遲該測試信號而提供該第一信號;並且其中該遞迴延遲器包含:一第一相加裝置,其被調適以將該測試信號相加至一第二疊合信號,而得到一第一疊合信號; 一衰減器,其被調適以衰減該第一疊合信號,而得到一衰減的第一疊合信號;一第二延遲線,其被調適以在時間上延遲該衰減的第一疊合信號而得到該第二疊合信號;以及一第二相加裝置,其被調適以將該測試信號相加至該第二疊合信號而得到該延遲測試信號。
  18. 依據申請專利範圍第17項之裝置,其中該第一延遲線被調適以將該測試信號延遲該測試信號之載波的四分之一週期(τ)或四分之一週期(τ)加上該測試信號之該載波的複數個半週期;其中該第二延遲線被調適以將該衰減的第一疊合信號延遲該測試信號之該載波的半個週期或該測試信號之該載波的複數個全週期。
  19. 依據申請專利範圍第1項的裝置,其中該遞迴延遲器包含:一相加裝置,其被調適以將該測試信號相加至該第二信號,而得到一疊合信號;一衰減器,其被調適以衰減該疊合信號而得到一衰減的疊合信號;以及一延遲線,其被調適以延遲該衰減的疊合信號而得到該第二信號。
  20. 依據申請專利範圍第19項之裝置,其進一步地包含一移相器,該移相器被調適以移相(φ)該測試信號而得到該第一信號。
  21. 依據申請專利範圍第1項的裝置,其中該裝置被組態以接收該測試信號之一數位量化形式。
  22. 依據申請專利範圍第21項之裝置,其中該測試信號之該數位量化形式是一個二進制邏輯信號。
  23. 依據申請專利範圍第21項的裝置,其中該遞迴延遲器包含一緩衝器,該緩衝器被組態以延遲該測試信號之該數位量化形式;其中該遞迴延遲器被調適以輸出該緩衝器之內容以依據一控制信號(τ)而提供該延遲信號。
  24. 依據申請專利範圍第21項的裝置,其包含:一第一延遲線,其被調適以延遲該測試信號之該數位量化形式而得到一第一數位延遲測試信號;一第一相加裝置,其被調適以相加該第一數位延遲測試信號以及一第二數位延遲測試信號而得到一數位疊合信號;一衰減器,其被調適以衰減該數位疊合信號而得到一衰減的數位疊合信號;一第二延遲線,其被調適以延遲該衰減的數位疊合信號而得到該第二數位延遲測試信號;以及一第二相加裝置,其被調適以相加該第二數位延遲測試信號以及該第一數位延遲測試信號而得到該延遲測試信號。
  25. 依據申請專利範圍第24項之裝置,其中該第一以及該第二延遲線包含緩衝器或希爾伯特(Hilbert)轉換器以延遲 分別的延遲線輸入信號而得到分別的延遲線輸出信號。
  26. 依據申請專利範圍第21項的裝置,其中該組合器被組態以數位地組合該第一信號與該第二信號。
  27. 依據申請專利範圍第21項的裝置,其中該組合器被調適以數位地組合該第一信號與該第二信號並且包含一EXOR運算閘,該閘被組態以對於該第一信號以及該第二信號進行一邏輯EXOR運算。
  28. 依據申請專利範圍第1項的裝置,其中該裝置包含:一第一移相器,其被調適以轉移該測試信號之一相位而提供該第一信號;其中該遞迴延遲器包含:一功率組合器,其被調適以藉由一相加式疊合而組合該測試信號之一功率以及一衰減的移相第二信號之一功率而得到一疊合信號;一第一衰減器,其被調適以衰減該疊合信號而得到該延遲測試信號;一第二移相器,其被調適以轉移該延遲測試信號之一相位而得到一移相第二信號;以及一第二衰減器,其被調適以衰減該移相第二信號而得到該衰減的移相第二信號。
  29. 依據申請專利範圍第28項之裝置,其中該遞迴延遲器進一步地包含:一功率感測器,其被調適以感測該第二信號之一功率以依據該第二信號之該功率而提供一功率感測器輸 出信號;一控制器,其被調適以提供一第一衰減器控制信號、一第二衰減器控制信號以及一第二移相器控制信號,該等三個控制信號取決於該功率感測器輸出信號;其中該第一衰減器被調適以回應於該第一衰減器控制信號而衰減該疊合信號;其中該第二衰減器被調適以回應於該第二衰減器控制信號而衰減該移相第二信號;其中該第二移相器被調適以回應於該第二移相器控制信號而轉移該延遲測試信號之相位。
  30. 依據申請專利範圍第29項之裝置,其中該控制器被調適以提供該等三個控制信號以至於該第二信號之功率相對於該裝置之一穩定範圍而被最大化。
  31. 依據申請專利範圍第1項的裝置,其包含:一第一移相器,其被調適以轉移該測試信號之相位而提供該第一信號;其中該遞迴延遲器包含:一功率組合器,其被調適以組合該測試信號之一功率以及一移相第二信號之一功率而提供一疊合信號;一延遲線,其被調適以延遲該疊合信號而提供該第二信號(w(t));以及一第二移相器,其被調適以轉移該第二信號(w(t))之相位而得到該移相第二信號; 其中該相位雜訊測定器包含一帶通濾波器,該帶通濾波器被調適以帶通過濾該組合器輸出信號而提供描述該相位雜訊資訊之一帶通濾波器輸出信號(z(t))。
  32. 依據申請專利範圍第1項的裝置,其進一步地包含:一功率分離器,其被調適以分離該測試信號為一第一功率分離器輸出信號以及一第二功率分離器輸出信號,以至於該第一功率分離器輸出信號之一功率對應於該第二功率分離器輸出信號之一功率;一第一移相器,其被調適以移相該第一功率分離器輸出信號而得到一第一移相器輸出信號;一第一放大器,其被調適以放大該第一移相器輸出信號而得到一第一放大器輸出信號;一第二移相器,其被調適以移相該第一放大器輸出信號而得到該第一信號;其中該相位雜訊測定器包含一基頻放大器,該基頻放大器被調適以相對於基頻頻率放大該組合器輸出信號而得到描述該相位雜訊資訊的一連續時間表示之一基頻放大器輸出信號(z(t));其中該遞迴延遲器包含:一第一固定衰減器,該固定衰減器被調適以衰減該第二功率分離器輸出信號而得到一第一功率組合器輸入信號;一功率組合器,其被調適以組合該第一功率組合器輸入信號以及一第二功率組合器輸入信號之 功率而得到一功率組合器輸出信號,其中該功率組合器輸出信號之一功率對應於該等第一以及第二功率組合器輸入信號的功率之一相加疊合;一第一延遲線,其被調適以在時間上延遲該功率組合器輸出信號而得到一第一延遲線輸出信號;一帶通濾波器,其被調適以帶通過濾該第一延遲線輸出信號而得到一帶通濾波器輸出信號;一第二延遲線,其被調適以在時間上延遲該帶通濾波器輸出信號而得到一第二延遲線輸出信號;一第二固定衰減器,其被調適以衰減該第二延遲線輸出信號而得到一第二固定衰減器輸出信號;一第三放大器,其被調適以放大該第二固定衰減器輸出信號而得到一功率分配器輸入信號;一功率分配器,其被調適以分配該功率分配器輸入信號之一功率而得到一第一功率分配器輸出信號(w(t))以及一第二功率分配器輸出信號,以至於該第一功率分配器輸出信號(w(t))之一功率對應於該第二功率分配器輸出信號之一功率,其中該第一功率分配器輸出信號(w(t))對應於該第二信號並且該第二功率分配器輸出信號對應於該第二功率組合器輸入信號。
  33. 依據申請專利範圍第32項之裝置,其中該第二功率組合器輸入信號經由一參考阻抗連接到接地;並且其中該第二功率分配器輸出信號經由一參考阻抗 連接到接地。
  34. 依據申請專利範圍第1項的裝置,其進一步地包含:一第一放大器,其被調適以放大該測試信號而得到一功率分離器輸入信號;一功率分離器,其被調適以分離該功率分離器之輸入信號成為一第一功率分離器輸出信號以及一第二功率分離器輸出信號,以至於該第一功率分離器輸出信號之一功率對應於該第二功率分離器輸出信號之一功率;一第二放大器,其被調適以放大該第一功率分離器輸出信號而得到該第一信號;其中該遞迴延遲器包含:一第三放大器,其被調適以放大該第二功率分離器輸出信號而得到一第三放大器輸出信號;一功率組合器,其被調適以組合該第三放大器輸出信號以及一第五放大器輸出信號而得到一功率組合器輸出信號,以至於該功率組合器輸出信號之一功率對應於該第三放大器輸出信號以及該第五放大器輸出信號之功率的一相加疊合;一第四放大器,其被調適以放大該功率組合器輸出信號而得到一第四放大器輸出信號;一功率分配器,其被調適以分配該第四放大器輸出信號成為一第一功率分配器輸出信號(w(t))以及一第二功率分配器輸出信號,以至於該第一功率分配器輸出信號(w(t))之一功率對應於該第二功率 分配器輸出信號之一功率,其中該第一功率分配器輸出信號(w(t))對應於該第二信號;一第五放大器,其被調適以放大該第二功率分配器輸出信號而得到該第五放大器輸出信號。
  35. 依據申請專利範圍第34項之裝置,其中該相位雜訊測定器包含一第六放大器,該第六放大器被調適以放大該組合器輸出信號而得到描述該相位雜訊資訊之一連續時間表示的一第六放大器輸出信號(z(t));以及波形數位化裝置,其被調適以轉換該相位雜訊資訊的連續時間表示(z(t))為該相位雜訊資訊之一離散時間表示(z(n))。
  36. 依據申請專利範圍第34項的裝置,其中該第一放大器、該第二放大器、該第三放大器、該第四放大器以及該第五放大器被調適以放大或衰減它們分別的輸入信號,以至於該組合器輸出信號被最大化並且存在於該裝置之一穩定限度之下的20%範圍內。
  37. 依據申請專利範圍第34項的裝置,其中該組合器輸出信號之一功率,相對於具有在該第二功率分配器輸出信號以及該第二功率組合器輸入信號之間的一耦合為開路之裝置,被增加多於10dB。
  38. 一種用以測量一測試信號之一相位雜訊的裝置,該裝置包含:一第一延遲線,其被組態以在時間上延遲該測試信號而提供一第一延遲線輸出信號; 一第一相加裝置,其被組態以相加該第一延遲線輸出信號至一第二延遲線輸出信號,而提供一第一相加裝置輸出信號;一衰減裝置,其被組態以衰減該第一相加裝置輸出信號而提供一衰減裝置輸出信號;一第二延遲線,其被組態以在時間上延遲該衰減裝置輸出信號而提供該第二延遲線輸出信號;一第二相加裝置,其被組態以相加該第一延遲線輸出信號至該第二延遲線輸出信號而提供一第二相加裝置輸出信號;一混合器,其被組態以相乘該測試信號與該第二相加裝置輸出信號,而提供一混合器輸出信號;一低通濾波器,其被組態以低通過濾該混合器輸出信號而提供一低通濾波器輸出信號(u(t));以及一類比至數位轉換器,其被組態以轉換該低通濾波器輸出信號的一連續時間表示(u(t))成為該低通濾波器輸出信號之一離散時間表示(u(k)),而提供一裝置輸出信號。
  39. 一種用以測量一測試信號之一相位雜訊的方法,該方法包含下列步驟:遞迴地延遲該測試信號或依據該測試信號之一信號,以得到一延遲信號;組合一第一信號與一第二信號,以得到一組合信號,而該第一信號是依據該測試信號或相同於該測試信 號,而該第二信號是依據該延遲信號或相同於該延遲信號者;並且依據該組合信號而提供一相位雜訊資訊。
TW099134723A 2009-10-21 2010-10-12 包含遞迴延遲器之裝置及用以測量相位雜訊之方法 TWI441489B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/007545 WO2011047698A1 (en) 2009-10-21 2009-10-21 Apparatus comprising a recursive delayer and method for measuring a phase noise

Publications (2)

Publication Number Publication Date
TW201125321A TW201125321A (en) 2011-07-16
TWI441489B true TWI441489B (zh) 2014-06-11

Family

ID=42269957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099134723A TWI441489B (zh) 2009-10-21 2010-10-12 包含遞迴延遲器之裝置及用以測量相位雜訊之方法

Country Status (3)

Country Link
US (1) US9140750B2 (zh)
TW (1) TWI441489B (zh)
WO (1) WO2011047698A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249017A (zh) * 2015-06-12 2016-12-21 特克特朗尼克公司 循环重采样数字化仪
TWI571641B (zh) * 2016-06-14 2017-02-21 國立交通大學 相位雜訊量測電路

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128632B2 (en) * 2009-07-16 2015-09-08 Netlist, Inc. Memory module with distributed data buffers and method of operation
US8907681B2 (en) 2011-03-11 2014-12-09 Taiwan Semiconductor Manufacturing Company, Ltd. Timing skew characterization apparatus and method
US8525562B1 (en) * 2012-08-28 2013-09-03 DS Zodiac, Inc. Systems and methods for providing a clock signal using analog recursion
US9568526B2 (en) * 2012-09-13 2017-02-14 Microchip Technology Incorporated Noise detection and correction routines
WO2015017356A1 (en) 2013-07-27 2015-02-05 Netlist, Inc. Memory module with local synchronization
EP2863234A1 (en) * 2013-10-17 2015-04-22 Nxp B.V. Method and apparatus for measuring phase noise
US9952297B2 (en) * 2014-05-08 2018-04-24 Auburn University Parallel plate transmission line for broadband nuclear magnetic resonance imaging
CN106301605B (zh) 2015-05-12 2021-08-03 是德科技股份有限公司 用于多信道射频通信设备的测试和/或校准的系统和方法
US9338041B1 (en) * 2015-07-24 2016-05-10 Tm Ip Holdings, Llc Extracting carrier signals from modulated signals
US9860054B1 (en) * 2015-11-13 2018-01-02 Anritsu Company Real-time phase synchronization of a remote receiver with a measurement instrument
US9780815B2 (en) * 2016-01-11 2017-10-03 Nxp B.V. Multi-tones narrow band RF noise elimination through adaptive algorithm
CN107026695B (zh) 2016-02-02 2021-06-01 是德科技股份有限公司 测试校准包括数字接口的多入多出天线阵列的系统和方法
CN106569046B (zh) * 2016-10-17 2017-09-01 西安科技大学 改进的基于中频延迟线鉴频法的相位噪声测试装置及方法
US9923647B1 (en) * 2016-12-16 2018-03-20 Litepoint Corporation Method for enabling confirmation of expected phase shifts of radio frequency signals emitted from an antenna array
JP7558642B2 (ja) * 2018-02-05 2024-10-01 テクトロニクス・インコーポレイテッド ノイズ・フィルタ及びノイズ低減方法
US10608851B2 (en) * 2018-02-14 2020-03-31 Analog Devices Global Unlimited Company Continuous-time sampler circuits
EP3557786A1 (en) 2018-04-16 2019-10-23 Samsung Electronics Co., Ltd. Method of testing rf integrated circuit
US10432325B1 (en) 2018-06-07 2019-10-01 Globalfoundries Inc. Testing phase noise in output signal of device under test using transformable frequency signals
US11047898B2 (en) * 2019-02-12 2021-06-29 Bae Systems Information And Electronic Systems Integration Inc. Vector processing using amplitude or power detectors
US10897316B1 (en) * 2019-09-24 2021-01-19 Rohde & Schwarz Gmbh & Co. Kg Test system and method for determining a response of a transmission channel
US11424841B1 (en) * 2021-07-24 2022-08-23 Keysight Technologies, Inc. System and method for measuring phase noise

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101506A (en) 1989-03-06 1992-03-31 United States Of America, As Represented By The Secretary Of Commerce Frequency calibration standard using a wide band phase modulator
US5412325A (en) * 1993-12-23 1995-05-02 Hughes Aircraft Company Phase noise measurement system and method
US7298464B1 (en) * 2005-04-27 2007-11-20 Northrop Grumman Corporation System and method for measuring the phase noise of very long fiber optic links
DE102007012122A1 (de) * 2007-03-13 2008-09-18 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Vorrichtung zum Messen des Phasenrauschens
DE102007056490A1 (de) * 2007-11-22 2009-05-28 Micronas Gmbh Verfahren und Schaltungsanordnung zum Entscheiden eines Symbols beim Empfang von mit einem Quadratursignalpaar gekoppelten empfangenen Symbolen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249017A (zh) * 2015-06-12 2016-12-21 特克特朗尼克公司 循环重采样数字化仪
TWI571641B (zh) * 2016-06-14 2017-02-21 國立交通大學 相位雜訊量測電路

Also Published As

Publication number Publication date
US9140750B2 (en) 2015-09-22
US20120256639A1 (en) 2012-10-11
WO2011047698A1 (en) 2011-04-28
TW201125321A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
TWI441489B (zh) 包含遞迴延遲器之裝置及用以測量相位雜訊之方法
TWI464425B (zh) 用以測量測試信號的相位雜訊之測試裝置及測試方法
Mishali et al. Xampling: Analog to digital at sub-Nyquist rates
US6636816B1 (en) Vector signal analysis method and apparatus therefor
Sherman et al. Oscillator metrology with software defined radio
US8842771B2 (en) Amplitude flatness and phase linearity calibration for RF sources
CN1968161B (zh) 一种模拟信号通道的滤波均衡的方法
Remley et al. A precision millimeter-wave modulated-signal source
Scott et al. Group-delay measurement of frequency-converting devices using a comb generator
US20060223440A1 (en) Low frequency noise source and method of calibration thereof
US10404422B2 (en) Measuring amplitude and phase response of measurement instrument with binary phase shift keying test signal
US8355884B2 (en) Signal quality measurement device, spectrum measurement circuit, and program
Angrisani et al. A digital signal-processing approach for phase noise measurement
Komuro et al. Total harmonic distortion measurement system of electronic devices up to 100 MHz with remarkable sensitivity
Hale et al. A compact millimeter-wave comb generator for calibrating broadband vector receivers
Herselman et al. A digital instantaneous frequency measurement technique using high-speed analogue-to-digital converters and field programmable gate arrays: the csir at 60
US10768221B2 (en) Test equipment, method for operating a test equipment and computer program
Remley et al. Absolute magnitude and phase calibrations
Cárdenas-Olaya et al. Simple method for ADC characterization under the frame of digital PM and AM noise measurement
Frykskog et al. Construction of RF-link budget template for transceiver modelling
Cho et al. A coherent subsampling test system arrangement suitable for phase domain measurements
US11695424B2 (en) Distortion reduction circuit
Daponte et al. Characterization of the A/D conversion section in software defined radios
Yamaguchi et al. A new method for measuring aperture jitter in ADC output and its application to ENOB testing
Vael et al. Comparison of calibrated S-parameters measured under CW and pulsed RF excitation with a nonlinear vectorial network analyzer