TWI440696B - Method of preparing oxynitride-based phosphor powder and structure of light emitting diode - Google Patents

Method of preparing oxynitride-based phosphor powder and structure of light emitting diode Download PDF

Info

Publication number
TWI440696B
TWI440696B TW100116863A TW100116863A TWI440696B TW I440696 B TWI440696 B TW I440696B TW 100116863 A TW100116863 A TW 100116863A TW 100116863 A TW100116863 A TW 100116863A TW I440696 B TWI440696 B TW I440696B
Authority
TW
Taiwan
Prior art keywords
oxynitride
phosphor
oxynitride phosphor
emitting diode
powder
Prior art date
Application number
TW100116863A
Other languages
Chinese (zh)
Other versions
TW201245414A (en
Inventor
Tzu Chen Liu
Ru Shi Liu
Chih Min Lin
yu huan Liu
Yi Jung Chen
Original Assignee
Everlight Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Everlight Electronics Co Ltd filed Critical Everlight Electronics Co Ltd
Priority to TW100116863A priority Critical patent/TWI440696B/en
Priority to CN2012101461167A priority patent/CN102775986A/en
Publication of TW201245414A publication Critical patent/TW201245414A/en
Application granted granted Critical
Publication of TWI440696B publication Critical patent/TWI440696B/en

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

氮氧化物螢光粉的製備方法及發光二極體結構 Preparation method of oxynitride fluorescent powder and structure of light emitting diode

本發明是有關於一種螢光粉的製備方法及發光二極體結構,且特別是有關於一種紅色氮氧化物螢光粉的製備方法以及包含此紅色氮氧化物螢光粉的發光二極體結構。 The invention relates to a method for preparing a phosphor powder and a structure of a light emitting diode, and particularly to a method for preparing a red oxynitride phosphor powder and a light emitting diode comprising the red nitrogen oxide phosphor powder structure.

基於節能減碳以及永續發展之環保意識,目前世界先進各國均逐步將傳統照明淘汰,進而選擇白光發光二極體(white LED)。白光發光二極體的優點是體積小,可以配合應用設備來調整。而且白光發光二極體的耗電量低,僅有傳統燈泡的1/8至1/10,日光燈的1/2,並且其壽命長,可達10萬小時以上。此外,白光發光二極體的發熱量低且反應速度快,因此非常適合高頻操作。白光發光二極體可以解決白熾燈泡難以克服的問題,其可做為21世紀的照明以及顯示光源,並且兼具省電與環保概念,因此,被喻為「綠色照明光源」。 Based on the environmental awareness of energy saving, carbon reduction and sustainable development, the world's advanced countries are gradually eliminating traditional lighting, and then choosing white LEDs (white LED). The advantage of the white light emitting diode is that it is small in size and can be adjusted with the application equipment. Moreover, the white light emitting diode has low power consumption, which is only 1/8 to 1/10 of the conventional light bulb, 1/2 of the fluorescent lamp, and has a long life of more than 100,000 hours. In addition, the white light emitting diode has a low heat generation rate and a fast reaction speed, so it is very suitable for high frequency operation. White light-emitting diodes can solve the problem that incandescent light bulbs are difficult to overcome. They can be used as lighting and display light sources in the 21st century, and they have both power saving and environmental protection concepts. Therefore, they are called "green lighting sources."

1996年美國專利第5998925號提出第一顆白光發光二極體,其係藉由藍光發光二極體(blue LED)激發鈰摻雜之釔鋁石榴石(Y3Al5O12:Ce3+;YAG)螢光粉而產生黃色螢光,此黃色螢光粉所發出的黃光可與藍光混合而產生白光。然而,此白色發光二極體因缺乏紅色部分導致演色性不高。此外,已知市購的紅色螢光粉在溫度升高至150℃以上時,其放射強度會急速衰退。 1996, U.S. Patent No. 5,998,925 proposes a first white light-emitting diodes, which by blue-based light-emitting diode (blue LED) excitation of cerium-doped yttrium aluminum garnet (Y 3 Al 5 O 12: Ce 3+ YAG) phosphor powder produces yellow fluorescence, and the yellow light emitted by the yellow phosphor can be mixed with blue light to produce white light. However, this white light-emitting diode is inferior in color rendering due to the lack of a red portion. Further, it is known that commercially available red phosphors rapidly degrade in radiation intensity when the temperature is raised above 150 °C.

有鑑於此,本發明提供一種熱穩定性佳的紅色氮氧化物螢光粉的製備方法及包含此紅色氮氧化物螢光粉的發光二極體結構。 In view of the above, the present invention provides a method for preparing a red oxynitride phosphor having excellent thermal stability and a light emitting diode structure comprising the red oxynitride phosphor.

本發明提供一種氮氧化物螢光粉的製備方法。首先,將氮化矽(Si3N4)、氮化鋁(AlN)、氧化鋁(Al2O3)與三氧化二鐠(Pr2O3)混合並研磨成混合物。然後,對混合物進行燒結,以形成由式(1)表示的氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%。 The invention provides a preparation method of nitrogen oxide fluorescent powder. First, tantalum nitride (Si 3 N 4 ), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and antimony trioxide (Pr 2 O 3 ) are mixed and ground into a mixture. Then, the mixture is sintered to form an oxynitride phosphor represented by the formula (1), Si 6-z Al z O z N 8-z : xPr 3 + formula (1), wherein 鐠 is an activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%.

在本發明之一實施例中,上述燒結為固態合成法,係在氮氣或惰性氣體的氣氛下進行,燒結溫度為攝氏1,500度至2,100度,燒結時間為1小時至10小時,壓力為0.5MPa至1MPa。 In an embodiment of the present invention, the sintering is a solid state synthesis method performed under an atmosphere of nitrogen or an inert gas, the sintering temperature is 1,500 degrees Celsius to 2,100 degrees Celsius, the sintering time is 1 hour to 10 hours, and the pressure is 0.5 MPa. Up to 1 MPa.

在本發明之一實施例中,上述燒結係在氮氣的氣氛下進行,燒結溫度為攝氏1,950度,燒結時間為2小時,壓力為0.92MPa。 In one embodiment of the invention, the sintering is carried out under a nitrogen atmosphere at a sintering temperature of 1,950 degrees Celsius, a sintering time of 2 hours, and a pressure of 0.92 MPa.

在本發明之一實施例中,上述氮氧化物螢光粉具有一最小不低於600nm,最大不高於700nm的放射波長,且氮氧化物螢光粉適合以發光二極體晶片之440~480nm波長的光激發。 In an embodiment of the invention, the oxynitride phosphor has a radiation wavelength of at least 600 nm and a maximum of not more than 700 nm, and the oxynitride fluoro powder is suitable for 440~ of a light-emitting diode chip. Light excitation at 480 nm wavelength.

在本發明之一實施例中,上述氮氧化物螢光粉的主要放射波長為622nm,且半高寬小於30nm。 In an embodiment of the invention, the NOx phosphor powder has a main emission wavelength of 622 nm and a full width at half maximum of less than 30 nm.

在本發明之一實施例中,上述氮氧化物螢光粉於300℃之亮度仍維持其於25℃之亮度的至少80%。 In one embodiment of the invention, the oxynitride phosphor maintains at least 80% of its brightness at 25 ° C at 300 ° C.

本發明另提供一種發光二極體結構,包括發光二極體晶片與螢光粉層。發光二極體晶片具有400~480nm波長的光。螢光粉層覆蓋發光二極體晶片上,且包括由式(1)表示的氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%,且其中氮氧化物螢光粉為紅色螢光粉且氮氧化物螢光粉的半高寬小於30nm。 The invention further provides a light emitting diode structure comprising a light emitting diode chip and a phosphor powder layer. The light-emitting diode wafer has light having a wavelength of 400 to 480 nm. The phosphor layer covers the light-emitting diode wafer and includes an oxynitride phosphor represented by the formula (1), Si 6-z Al z O z N 8-z : xPr 3+ (1), wherein鐠 is the activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%, and wherein the oxynitride fluorescein is a red fluorescing powder and the oxynitride fluorotic powder has a full width at half maximum of less than 30 nm.

在本發明之一實施例中,上述氮氧化物螢光粉的放射波長為600~700nm,且半高寬小於30nm。 In an embodiment of the invention, the oxynitride phosphor has a radiation wavelength of 600 to 700 nm and a full width at half maximum of less than 30 nm.

在本發明之一實施例中,上述氮氧化物螢光粉的主要放射波長為622nm。 In an embodiment of the invention, the NOx oxide phosphor has a main emission wavelength of 622 nm.

在本發明之一實施例中,上述氮氧化物螢光粉於300℃之亮度仍維持其於25℃之亮度的至少80%。 In one embodiment of the invention, the oxynitride phosphor maintains at least 80% of its brightness at 25 ° C at 300 ° C.

基於上述,本發明之紅色氮氧化物螢光粉的製備方法簡單,適合量產,且合成之紅色氮氧化物螢光粉較市購之紅色螢光粉的熱穩定佳,加熱至300℃時仍有超過八成亮度,故極具產業應用價值。 Based on the above, the preparation method of the red oxynitride fluorescent powder of the present invention is simple, and is suitable for mass production, and the synthesized red oxynitride fluorescent powder is better in heat stability than the commercially available red fluorescent powder, and is heated to 300 ° C. There are still more than 80% brightness, so it has great industrial application value.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

圖1為根據本發明一實施例所繪示之紅色氮氧化物螢光粉的製備流程圖。 FIG. 1 is a flow chart showing the preparation of red oxynitride phosphor according to an embodiment of the invention.

請參照圖1,首先,進行步驟S100,將氮化矽(Si3N4)、氮化鋁(AlN)、氧化鋁(Al2O3)與三氧化二鐠(Pr2O3)混合並研磨成混合物。接著,進行步驟S110,對混合物進行燒結,以形成由式(1)表示的紅色氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心(或放光中心),0z4.2,且原子比例x範圍為0.05~2%。 Referring to FIG. 1, first, step S100 is performed to mix tantalum nitride (Si 3 N 4 ), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ) and antimony trioxide (Pr 2 O 3 ). Grind into a mixture. Next, proceeding to step S110, the mixture is sintered to form a red oxynitride phosphor represented by the formula (1), Si 6-z Al z O z N 8-z : xPr 3+ (1), wherein鐠 is the activation center (or illuminating center), 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%.

上述燒結為固態合成法,係在氮氣或惰性氣體進行。惰性氣體例如是氦氣、氖氣或氬氣。燒結溫度例如是攝氏1,500度至2,100度。燒結時間例如是1小時至10小時。壓力例如是0.5MPa至1MPa。 The above sintering is a solid state synthesis method, which is carried out under nitrogen or an inert gas. The inert gas is, for example, helium, neon or argon. The sintering temperature is, for example, 1,500 degrees Celsius to 2,100 degrees Celsius. The sintering time is, for example, 1 hour to 10 hours. The pressure is, for example, 0.5 MPa to 1 MPa.

本發明之紅色氮氧化物螢光粉可被藍色發光二極體晶片之440~480nm波長的光激發,其放射波長為600~700nm。具體言之,本發明之紅色氮氧化物螢光粉具有最小不低於600nm,最大不高於700nm的放射波長,且此紅色氮氧化物螢光粉適合以發光二極體晶片之440~480nm波長的光激發。在一實施例中,紅色氮氧化物螢光粉的主要放射波長為622nm,且半高寬小於30nm。此外,紅色氮氧化物螢光粉於300℃之亮度仍維持其於25℃之亮度的至少80%。 The red oxynitride phosphor of the present invention can be excited by light of a wavelength of 440 to 480 nm of a blue light-emitting diode wafer, and has a radiation wavelength of 600 to 700 nm. Specifically, the red oxynitride phosphor of the present invention has a radiation wavelength of at least 600 nm and a maximum of not more than 700 nm, and the red oxynitride phosphor is suitable for 440-480 nm of a light-emitting diode wafer. The wavelength of light is excited. In one embodiment, the red oxynitride phosphor has a major emission wavelength of 622 nm and a full width at half maximum of less than 30 nm. In addition, the red oxynitride phosphor maintains at least 80% of its brightness at 25 ° C at 300 ° C.

本發明之紅色氮氧化物螢光粉可以應用在藍色發光二極體晶片而製作出白光發光二極體。圖2為根據係本發 明一實施例所繪示之發光二極體結構的剖面示意圖。 The red oxynitride phosphor of the present invention can be applied to a blue light-emitting diode wafer to produce a white light-emitting diode. Figure 2 is based on the system A schematic cross-sectional view of the structure of the light-emitting diode shown in the embodiment.

請參照圖2,發光二極體結構200包括基材210、藍色發光二極體晶片220以及螢光粉層230。基材210為承載藍色發光二極體晶片220之底座。藍色發光二極體晶片220附著於基材210上。藍色發光二極體晶片220具有400~480nm波長的光,其可由半導體材料所構成,例如VA族之多元複合化合物,包括氮銦化鎵(InGaN)、氮化鎵/碳化矽(GaN/SiC)或上述之任意組合。藍色發光二極體晶片220係透過銲線240與支架引腳250電性連接。螢光粉層230配置在藍色發光二極體晶片220上。具體言之,螢光粉層230配置在包覆於藍色發光二極體晶片220的表面及周圍上,更包覆兩銲線的一部份。 Referring to FIG. 2 , the LED structure 200 includes a substrate 210 , a blue LED wafer 220 , and a phosphor layer 230 . The substrate 210 is a base that carries the blue light emitting diode wafer 220. The blue light emitting diode wafer 220 is attached to the substrate 210. The blue light-emitting diode chip 220 has light of a wavelength of 400 to 480 nm, and may be composed of a semiconductor material such as a multi-component compound of the VA group, including gallium nitride (InGaN), gallium nitride/germanium carbide (GaN/SiC). ) or any combination of the above. The blue light emitting diode chip 220 is electrically connected to the holder pin 250 through the bonding wire 240. The phosphor layer 230 is disposed on the blue LED chip 220. Specifically, the phosphor layer 230 is disposed on the surface and the periphery of the blue light-emitting diode wafer 220, and further covers a part of the two bonding wires.

螢光粉層230可以是單一種螢光粉,或是混合有兩種以上之螢光粉,且這些螢光粉係均勻分散於此螢光粉層230中。當螢光粉層230是單一種螢光粉時,螢光粉例如是具有石榴石結構(garnet)的螢光粉或是矽酸鹽(silicate)螢光粉。當螢光粉層230是包含兩種以上的螢光粉時,螢光粉至少包含第一螢光粉231及第二螢光粉232。在一實施例中,第一螢光粉231例如為本發明之由式(1)表示的紅色氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%。 The phosphor layer 230 may be a single type of phosphor powder or a mixture of two or more kinds of phosphor powders, and these phosphor powders are uniformly dispersed in the phosphor powder layer 230. When the phosphor powder layer 230 is a single type of phosphor powder, the phosphor powder is, for example, a phosphor powder having a garnet or a silicate phosphor powder. When the phosphor powder layer 230 contains two or more types of phosphor powder, the phosphor powder includes at least the first phosphor powder 231 and the second phosphor powder 232. In one embodiment, the first phosphor powder 231 is, for example, a red oxynitride phosphor represented by the formula (1) of the present invention, Si 6-z Al z O z N 8-z : xPr 3+ ( 1), where 鐠 is the activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%.

特別要說明的是,本發明之紅色氮氧化物螢光粉可被 藍色發光二極體晶片210之400~480nm波長的光激發,其放射波長為600~700nm。 In particular, the red oxynitride phosphor of the present invention can be The blue light-emitting diode wafer 210 is excited by light of a wavelength of 400 to 480 nm, and has a radiation wavelength of 600 to 700 nm.

此外,第二螢光粉232例如為黃色螢光粉及/或綠色螢光粉,綠色螢光粉例如是鈧酸鹽螢光粉,其化學式為CaSc2O4:Re,Re是Eu3+或Ce3+。因此,本發明之螢光粉層230經由藍色發光二極體晶片210所放射的藍光並轉換成其他較長波長之後,與藍色晶片的放射波長混合產生白光的發光二極體結構200。 In addition, the second phosphor powder 232 is, for example, yellow phosphor powder and/or green phosphor powder, and the green phosphor powder is, for example, a niobate phosphor powder having a chemical formula of CaSc 2 O 4 :Re, and Re is Eu 3+ Or Ce 3+ . Therefore, the phosphor layer 230 of the present invention is converted into a longer wavelength by the blue light emitted from the blue light-emitting diode wafer 210, and then mixed with the emission wavelength of the blue wafer to generate a white light emitting diode structure 200.

接下來,將描述本發明之紅色氮氧化物螢光粉的製備實例。 Next, an example of the preparation of the red oxynitride phosphor of the present invention will be described.

實例1Example 1

請參照表1,將氮化矽、氮化鋁、氧化鋁與三氧化二鐠各秤取適當重量後於研缽均勻混合研磨成混合物。然後,將混合物製於溫度1,950℃,氮氣壓力為0.92MPa下鍛燒2小時,可得紅色產物Si5.8Al0.2O0.2N7.8:Pr3+,其中Pr3+的原子比例x為0.103%。 Referring to Table 1, each of the tantalum nitride, aluminum nitride, aluminum oxide, and antimony trioxide was weighed to a suitable weight and then uniformly mixed and ground into a mixture in a mortar. Then, the mixture was calcined at a temperature of 1,950 ° C and a nitrogen pressure of 0.92 MPa for 2 hours to obtain a red product Si 5.8 Al 0.2 O 0.2 N 7.8 :Pr 3+ , wherein the atomic ratio x of Pr 3+ was 0.103%.

圖3為實例1所形成之紅色氮氧化物螢光粉的X光粉末繞射圖。如圖3所示,本發明之實例1所製備之紅色氮 氧化物螢光粉(Si5.8Al0.2O0.2N7.8:Pr3+,其中Pr3+的原子比例x為0.103%)為純相,其晶體結構為六方晶系原始晶格(hexagonal,primitive unit cell)。 Figure 3 is a X-ray powder diffraction pattern of the red oxynitride phosphor formed in Example 1. As shown in FIG. 3, the red oxynitride phosphor (Si 5.8 Al 0.2 O 0.2 N 7.8 :Pr 3+ , wherein the atomic ratio x of Pr 3+ is 0.103%) prepared in Example 1 of the present invention is a pure phase. The crystal structure is a hexagonal (primitive unit cell).

圖4為實例1之紅色氮氧化物螢光粉的激發光譜圖(左側)及放射光譜圖(右側)。如圖4所示,本發明之紅色氮氧化物螢光粉可被460nm之藍光LED激發而產生622nm為主之紅色放光,且半高寬小於30nm,其中於440~520nm激發波段為3H43Pn(n=0,1,2)躍遷所組成,於600~650nm放射波段為1D23H43P03H63P03F2躍遷所組成。 4 is an excitation spectrum diagram (left side) and a radiation spectrum diagram (right side) of the red oxynitride phosphor of Example 1. As shown in FIG. 4, the red oxynitride phosphor of the present invention can be excited by a 460 nm blue LED to produce a red light of 622 nm, and a full width at half maximum of less than 30 nm, wherein the excitation band at 440 to 520 nm is 3 H. 43 P n (n=0,1,2) transition consisting of 1 D 23 H 4 , 3 P 03 H 6 , 3 P 03 F 2 transitions in the 600~650 nm emission band composition.

圖5為實例1之紅色氮氧化物螢光粉之升高溫度與放射強度關係圖,其中放射強度以25℃、622nm之放射為基準。圖6為實例1之紅色氮氧化物螢光粉之升降溫度與放射強度關係圖,其中放射強度以25℃、622nm之放射為基準。請參照圖5,隨著溫度從室溫25℃升高至300℃,本發明之紅色氮氧化物螢光粉之放射強度的變化不大。以放射強度於25℃、622nm之放射為基準,可看出本發明之紅色氮氧化物螢光粉於300℃之亮度仍維持其於25℃之亮度的86%,如圖6所示。 Fig. 5 is a graph showing the relationship between the elevated temperature and the radiation intensity of the red oxynitride phosphor of Example 1, wherein the radiation intensity is based on the radiation at 25 ° C and 622 nm. Fig. 6 is a graph showing the relationship between the rising temperature and the radiation intensity of the red oxynitride phosphor of Example 1, wherein the radiation intensity is based on the radiation at 25 ° C and 622 nm. Referring to FIG. 5, as the temperature is raised from room temperature of 25 ° C to 300 ° C, the change in the radiation intensity of the red oxynitride phosphor of the present invention is not large. Based on the radiation intensity at 25 ° C and 622 nm, it can be seen that the red oxynitride phosphor of the present invention maintains its brightness at 300 ° C at 86 ° C as shown in FIG. 6 .

綜上所述,本發明利用氮化矽、氮化鋁、氧化鋁與三氧化二鐠為原料,經過簡單的研磨及燒結製程,即可得到本發明之紅色氮氧化物螢光粉。製備過程簡單,可大量合成。 In summary, the present invention utilizes tantalum nitride, aluminum nitride, aluminum oxide and antimony trioxide as raw materials, and the red oxynitride phosphor of the present invention can be obtained through a simple grinding and sintering process. The preparation process is simple and can be synthesized in a large amount.

此外,本發明之紅色氮氧化物螢光粉可被藍色發光二 極體晶片的440至480nm波長的光激發,其放射波長為600至700nm,且此紅色氮氧化物螢光粉之熱穩定性佳,加熱至300℃時仍有超過八成的亮度,故極具產業應用價值。 In addition, the red oxynitride phosphor of the present invention can be illuminated by blue The polar body wafer is excited by light of 440 to 480 nm wavelength, and its emission wavelength is 600 to 700 nm, and the red oxynitride phosphor has good thermal stability, and when it is heated to 300 ° C, it still has more than 80% brightness, so it is extremely Industrial application value.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

S100、S110‧‧‧步驟 S100, S110‧‧‧ steps

200‧‧‧發光二極體結構 200‧‧‧Lighting diode structure

210‧‧‧基材 210‧‧‧Substrate

220‧‧‧發光元件 220‧‧‧Lighting elements

230‧‧‧螢光粉層 230‧‧‧Fluorescent powder layer

231‧‧‧第一螢光粉 231‧‧‧First Fluorescent Powder

232‧‧‧第二螢光粉 232‧‧‧Second Fluorescent Powder

240‧‧‧銲線 240‧‧‧welding line

250‧‧‧支架引腳 250‧‧‧ bracket pin

圖1為根據本發明一實施例所繪示之紅色氮氧化物螢光粉的製備流程圖。 FIG. 1 is a flow chart showing the preparation of red oxynitride phosphor according to an embodiment of the invention.

圖2為根據係本發明一實施例所繪示之發光二極體結構的剖面示意圖。 2 is a cross-sectional view showing a structure of a light emitting diode according to an embodiment of the invention.

圖3為實例1所形成之紅色氮氧化物螢光粉的X光粉末繞射圖。 Figure 3 is a X-ray powder diffraction pattern of the red oxynitride phosphor formed in Example 1.

圖4為實例1之紅色氮氧化物螢光粉的激發光譜圖(左側)及放射光譜圖(右側)。 4 is an excitation spectrum diagram (left side) and a radiation spectrum diagram (right side) of the red oxynitride phosphor of Example 1.

圖5為實例1之紅色氮氧化物螢光粉之升高溫度與放射強度關係圖,其中放射強度以25℃、622nm之放射為基準。 Fig. 5 is a graph showing the relationship between the elevated temperature and the radiation intensity of the red oxynitride phosphor of Example 1, wherein the radiation intensity is based on the radiation at 25 ° C and 622 nm.

圖6為實例1之紅色氮氧化物螢光粉之升降溫度與放射強度關係圖,其中放射強度以25℃、622nm之放射為基準。 Fig. 6 is a graph showing the relationship between the rising temperature and the radiation intensity of the red oxynitride phosphor of Example 1, wherein the radiation intensity is based on the radiation at 25 ° C and 622 nm.

S100、S110‧‧‧步驟 S100, S110‧‧‧ steps

Claims (16)

一種氮氧化物螢光粉的製備方法,包括:將氮化矽(Si3N4)、氮化鋁(AlN)、氧化鋁(Al2O3)與三氧化二鐠(Pr2O3)混合並研磨成一混合物;以及對該混合物進行一燒結,以形成由式(1)表示的氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%。 A method for preparing an oxynitride phosphor powder, comprising: cerium nitride (Si 3 N 4 ), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ) and antimony trioxide (Pr 2 O 3 ) Mixing and grinding into a mixture; and sintering the mixture to form an oxynitride phosphor represented by the formula (1), Si 6-z Al z O z N 8-z : xPr 3+ (1) , where 鐠 is the activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%. 如申請專利範圍第1項所述之氮氧化物螢光粉的製備方法,其中該燒結為固態合成法,係在氮氣或惰性氣體的氣氛下進行。 The method for producing an oxynitride phosphor according to claim 1, wherein the sintering is a solid state synthesis method, which is carried out under an atmosphere of nitrogen or an inert gas. 如申請專利範圍第1項所述之氮氧化物螢光粉的製備方法,其中燒結該混合物的燒結溫度為攝氏1,500度至2,100度,燒結時間為1小時至10小時,壓力為0.5MPa至1MPa。 The method for preparing an oxynitride phosphor according to claim 1, wherein the sintering temperature of the mixture is 1,500 to 2,100 degrees Celsius, the sintering time is 1 hour to 10 hours, and the pressure is 0.5 MPa to 1 MPa. . 如申請專利範圍第1項所述之氮氧化物螢光粉的製備方法,其中該燒結係在氮氣的氣氛下進行,燒結溫度為攝氏1,950度,燒結時間為2小時,壓力為0.92MPa。 The method for producing an oxynitride phosphor according to claim 1, wherein the sintering is carried out under a nitrogen atmosphere at a sintering temperature of 1,950 ° C, a sintering time of 2 hours, and a pressure of 0.92 MPa. 如申請專利範圍第1項所述之氮氧化物螢光粉的製備方法,其中該氮氧化物螢光粉具有一最小不低於600nm以及最大不高於700nm的放射波長,且該氮氧化物螢光粉適合以發光二極體晶片之440~480nm波長的光激發。 The method for preparing an oxynitride phosphor according to claim 1, wherein the oxynitride powder has a radiation wavelength of at least 600 nm and a maximum of not more than 700 nm, and the NOx The phosphor powder is suitable for excitation by light of a wavelength of 440 to 480 nm of a light-emitting diode chip. 如申請專利範圍第5項所述之氮氧化物螢光粉的 製備方法,其中該氮氧化物螢光粉的主要放射波長為622nm,且半高寬小於30nm。 The oxynitride phosphine powder as described in claim 5 The preparation method, wherein the oxynitride phosphor has a main emission wavelength of 622 nm and a full width at half maximum of less than 30 nm. 如申請專利範圍第1項所述之氮氧化物螢光粉的製備方法,其中該氮氧化物螢光粉於300℃之亮度仍維持該氮氧化物螢光粉於25℃之亮度的至少80%。 The method for preparing an oxynitride phosphor according to claim 1, wherein the oxynitride phosphor maintains at least 80 brightness of the oxynitride phosphor at 25 ° C at a brightness of 300 ° C. %. 一種發光二極體結構,包括:一發光二極體晶片,其放射波長在400~480nm;以及一螢光粉層,配置在該發光二極體晶片上,且包括由式(1)表示的一氮氧化物螢光粉,Si6-zAlzOzN8-z:xPr3+ 式(1),其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%,以及其中該氮氧化物螢光粉為紅色螢光粉且該氮氧化物螢光粉的半高寬小於30nm。 A light emitting diode structure comprising: a light emitting diode wafer having a radiation wavelength of 400 to 480 nm; and a phosphor powder layer disposed on the light emitting diode wafer, and comprising the formula (1) An oxynitride phosphor, Si 6-z Al z O z N 8-z : xPr 3+ (1), wherein 鐠 is the activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%, and wherein the oxynitride fluorescer is a red fluoresce powder and the oxynitride fluoropowder has a full width at half maximum of less than 30 nm. 如申請專利範圍第8項所述之發光二極體結構,其中該氮氧化物螢光粉的放射波長為600~700nm。 The light-emitting diode structure according to claim 8, wherein the oxynitride phosphor has a radiation wavelength of 600 to 700 nm. 如申請專利範圍第8項所述之發光二極體結構,其中該氮氧化物螢光粉的主要放射波長為622nm。 The light-emitting diode structure according to claim 8, wherein the NOx phosphor powder has a main emission wavelength of 622 nm. 如申請專利範圍第8項所述之發光二極體結構,其中該氮氧化物螢光粉於300℃之亮度仍維持該氮氧化物螢光粉於25℃之亮度的至少80%。 The light-emitting diode structure of claim 8, wherein the oxynitride phosphor maintains at least 80% of the brightness of the oxynitride phosphor at 25 ° C at a brightness of 300 ° C. 一種氮氧化物螢光粉,包括由式(1)表示的結構:Si6-zAlzOzN8-z:xPr3+ 式(1), 其中鐠為活化中心,0z4.2,且原子比例x範圍為0.05~2%。 An oxynitride phosphor comprising a structure represented by the formula (1): Si 6-z Al z O z N 8-z : xPr 3+ (1), wherein 鐠 is an activation center, 0 z 4.2, and the atomic ratio x ranges from 0.05 to 2%. 如申請專利範圍第12項所述之氮氧化物螢光粉,其中該氮氧化物螢光粉為紅色螢光粉且該氮氧化物螢光粉的半高寬小於30nm。 The oxynitride phosphor of claim 12, wherein the oxynitride phosphor is a red phosphor and the oxynitride has a full width at half maximum of less than 30 nm. 如申請專利範圍第12項所述之氮氧化物螢光粉,其中該氮氧化物螢光粉的放射波長為600~700nm。 The oxynitride fluorotic powder according to claim 12, wherein the oxynitride fluorescer has a radiation wavelength of 600 to 700 nm. 如申請專利範圍第12項所述之氮氧化物螢光粉,其中該氮氧化物螢光粉的主要放射波長為622nm。 The oxynitride phosphor according to claim 12, wherein the NOx phosphor has a main emission wavelength of 622 nm. 如申請專利範圍第12項所述之氮氧化物螢光粉,其中該氮氧化物螢光粉於300℃之亮度仍維持該氮氧化物螢光粉於25℃之亮度的至少80%。 The oxynitride phosphor of claim 12, wherein the oxynitride phosphor maintains at least 80% of the brightness of the oxynitride phosphor at 25 ° C at a brightness of 300 ° C.
TW100116863A 2011-05-13 2011-05-13 Method of preparing oxynitride-based phosphor powder and structure of light emitting diode TWI440696B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100116863A TWI440696B (en) 2011-05-13 2011-05-13 Method of preparing oxynitride-based phosphor powder and structure of light emitting diode
CN2012101461167A CN102775986A (en) 2011-05-13 2012-05-11 Preparation method of nitrogen oxide fluorescent powder and light-emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116863A TWI440696B (en) 2011-05-13 2011-05-13 Method of preparing oxynitride-based phosphor powder and structure of light emitting diode

Publications (2)

Publication Number Publication Date
TW201245414A TW201245414A (en) 2012-11-16
TWI440696B true TWI440696B (en) 2014-06-11

Family

ID=47121099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116863A TWI440696B (en) 2011-05-13 2011-05-13 Method of preparing oxynitride-based phosphor powder and structure of light emitting diode

Country Status (2)

Country Link
CN (1) CN102775986A (en)
TW (1) TWI440696B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120938A (en) * 2006-11-14 2008-05-29 Sharp Corp Phosphor, its manufacturing method, semiconductor light emitting device and image display device
CN101974324B (en) * 2010-10-20 2013-03-06 兰州大学 Ultra-long afterglow silicate long afterglow phosphors and preparation method thereof

Also Published As

Publication number Publication date
CN102775986A (en) 2012-11-14
TW201245414A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
Liang et al. Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor
TWI530550B (en) Nitrogen oxide orange-red fluorescent substance, including its light-emitting film or light-emitting sheet and light-emitting device
JP2006241249A (en) Phosphor mixture and light-emitting device
JP2011168708A (en) Fluorescent material and light-emitting device employing the same
WO2005090514A1 (en) Oxynitride phosphor and light-emitting device
JP6287268B2 (en) Light emitting device
JP6323177B2 (en) Semiconductor light emitting device
JP5752257B2 (en) Nitrogen compound luminescent material and white LED illumination light source manufactured thereby
Shao et al. Efficient violet-light-excitable blue-cyan phosphor for full-spectrum lighting
US20090289545A1 (en) Warm-White Light-Emitting Diode and Its Phosphor Powder
JP4425977B1 (en) Nitride red phosphor and white light emitting diode using the same
KR101496718B1 (en) Phosphor and light emitting device
TW200409810A (en) Method for producing white-light LED with high brightness by phosphor powder
KR101176212B1 (en) Alkali-earth Phosporus Nitride system phosphor, manufacturing method thereof and light emitting devices using the same
JP5111181B2 (en) Phosphor and light emitting device
TWI440696B (en) Method of preparing oxynitride-based phosphor powder and structure of light emitting diode
CN111138191B (en) Eu (Eu)3+Ion activated tantalate fluorescent ceramic and synthesis method and application thereof
CN108841383B (en) Blue sodium rubidium magnesium phosphate fluorescent material with high luminous efficiency and preparation method and application thereof
JP2005117057A (en) Light emitting device
TWI383036B (en) Phosphor composition, and white light emitting diode device employ the same
Zhang et al. Advances and Future of White LED Phosphors for Solid‐State Lighting
CN111088048B (en) Eu (Eu)3+Doped fluorotantalate fluorescent ceramic and synthetic method and application thereof
KR102113044B1 (en) Lithium-based garnet phosphor, preparing method of the same, and luminescent property of the same
CN102888221B (en) Fluorescent powder for LED and preparation method thereof
TWI695061B (en) Phosphors and light-emitting device including the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees