TWI440175B - Semiconductor device having zinc oxide film - Google Patents

Semiconductor device having zinc oxide film Download PDF

Info

Publication number
TWI440175B
TWI440175B TW99137581A TW99137581A TWI440175B TW I440175 B TWI440175 B TW I440175B TW 99137581 A TW99137581 A TW 99137581A TW 99137581 A TW99137581 A TW 99137581A TW I440175 B TWI440175 B TW I440175B
Authority
TW
Taiwan
Prior art keywords
zinc oxide
type
thin film
oxide thin
film according
Prior art date
Application number
TW99137581A
Other languages
Chinese (zh)
Other versions
TW201220495A (en
Inventor
Li Wen Lai
Chun Hao Chang
kun wei Lin
chun ting Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99137581A priority Critical patent/TWI440175B/en
Priority to US13/169,424 priority patent/US20120104383A1/en
Publication of TW201220495A publication Critical patent/TW201220495A/en
Application granted granted Critical
Publication of TWI440175B publication Critical patent/TWI440175B/en

Links

Description

具有氧化鋅薄膜之半導體元件Semiconductor component having a zinc oxide film

本發明係關於具有氧化鋅薄膜之半導體元件,且特別是一種局部具有不同載子型態之氧化鋅薄膜之半導體元件。The present invention relates to a semiconductor component having a zinc oxide thin film, and more particularly to a semiconductor component having a zinc oxide thin film having a different carrier type.

純的氧化鋅具有低的導電度,其原因在於薄膜內的電子密度低,而無法做為一良導體。但是當摻雜雜質於其中時,則在電氣性質和光學性質上可獲得改善。氧化鋅是一種常見的透明N型半導體物質,其具有寬的能隙(band gap;E g),約為3.3 eV左右。氧化鋅已被做為薄膜電極,而用在不同的光電元件應用上,例如:太陽能電池或發光二極體等。當氧化鋅摻雜雜質後,薄膜電阻的範圍降低,其也可以應用在眾所周知半導體製程技術中透明導電薄膜,當與其他透明氧化物膜例如銦錫氧化物(indium tin oxide;ITO)或二氧化錫(tin oxide)相較時,其成本較為低廉。Pure zinc oxide has a low electrical conductivity because the electron density in the film is low and cannot be used as a good conductor. However, when impurities are doped therein, an improvement in electrical properties and optical properties can be obtained. Zinc oxide is a common transparent N-type semiconductor material having a wide band gap (Eg) of about 3.3 eV. Zinc oxide has been used as a thin film electrode for different optoelectronic component applications, such as solar cells or light-emitting diodes. When zinc oxide is doped with impurities, the range of sheet resistance is lowered, and it can also be applied to a transparent conductive film in a well-known semiconductor process technology, when combined with other transparent oxide films such as indium tin oxide (ITO) or dioxide. When tin oxide is compared, the cost is relatively low.

但由於氧化鋅薄膜對P型摻質溶解度不佳,使得摻質不易進入薄膜內,加上氧化鋅薄膜本身缺陷使得薄膜特性易偏向N型,以致仍未能製作出高穩定與高電洞載子濃度之P型氧化鋅薄膜應用於市面。因此若能開發出穩定P型的氧化鋅透明電極,則可以與N型電極形成PN接面,其可應用之領域極廣,如形成具有PN接面之透明光電元件。亦即可取代目前有機發光二極體(OLED)之P型電洞注入層或太陽能電池之電極製作等應用,更進一步可以製作藍光與紫光發光二極體的薄膜材料,未來可應用於白光發光二極體之激發光源或短波長之半導體雷射,由此可知氧化鋅薄膜在短波長之光電元件領域有著極大之應用潛力。However, due to the poor solubility of the zinc oxide film on the P-type dopant, the dopant is not easy to enter the film, and the defect of the zinc oxide film itself makes the film property tend to be biased toward the N-type, so that high stability and high hole load cannot be produced. The sub-concentration P-type zinc oxide film is applied to the market. Therefore, if a stable P-type zinc oxide transparent electrode can be developed, a PN junction can be formed with the N-type electrode, which can be applied to a wide range of fields, such as forming a transparent photovoltaic element having a PN junction. It can also replace the current P-type hole injection layer of organic light-emitting diode (OLED) or the electrode fabrication of solar cells, and further can make a film material of blue light and violet light-emitting diode, and can be applied to white light in the future. The excitation source of the diode or the semiconductor laser of short wavelength, it is known that the zinc oxide film has great application potential in the field of short-wavelength photovoltaic elements.

目前在製作P型氧化鋅大多使用五族元素的氮(N)元素摻雜物到氧化鋅薄膜中填補氧化鋅薄膜中的氧缺位(oxygen vacancy)來使電洞的濃度增加,但由於氮(N)元素摻雜物在氧化鋅的溶解度低,因而傳統的成膜方式無法製作出穩定且高濃度的P型氧化鋅,氮原子不易溶於氧化鋅薄膜內,使得P型氧化鋅薄膜製作不易。且活化過程採用高溫爐,在長時間升溫成長或熱活化處理將產生熱積存(thermal budget)效應使得氧化鋅薄膜中氧缺位密度增加,造成電洞濃度下降或不易製作穩定之P型氧化鋅,又美國專利公開案US200900011363及US20080164466係採高溫爐或加熱實施退火步驟。At present, in the production of P-type zinc oxide, most of the nitrogen (N) element dopants of the five elements are used in the zinc oxide film to fill the oxygen vacancy in the zinc oxide film to increase the concentration of the hole, but due to the nitrogen The solubility of (N) elemental dopants in zinc oxide is low, so the conventional film formation method cannot produce stable and high concentration of P-type zinc oxide, and the nitrogen atoms are not easily dissolved in the zinc oxide film, so that the P-type zinc oxide film is fabricated. Not easy. And the activation process uses a high-temperature furnace, which will cause a thermal budget effect during long-term temperature rise or heat activation treatment to increase the oxygen vacancy density in the zinc oxide film, resulting in a decrease in hole concentration or difficulty in producing a stable P-type zinc oxide. U.S. Patent Publication Nos. US200900011363 and US20080164466 are subjected to a high temperature furnace or a heating annealing step.

美國專利US6,624,442係以脈衝雷射蒸鍍(PLD)法在基板11上成長N型氧化鋅層12,在N型氧化鋅層12上鍍Zn3 P2 薄膜13,如圖1所示。再利用雷射14照射Zn3 P2 薄膜13,將Zn3 P2 之弱鍵結以熱解離形成Zn與P原子,P原子擴散入進N型氧化鋅層12中形成P型氧化鋅與PN接面,以此法可製作半導體元件。然而,此方法中使用之雷射無法完全將N型氧化鋅層12上之Zn3 P2 薄膜13完整分解,且均勻的被擴散入N型氧化鋅層12中來形成P型氧化鋅,仍會有殘存的Zn3 P2 薄膜13於氧化鋅層12上,此外Zn3 P2 擴散之深度無法有效控制,上述不穩定因素將影響半導體元件之效能。U.S. Patent No. 6,624,442, the N-type zinc oxide layer 12 is grown on the substrate 11 by pulsed laser evaporation (PLD), and the Zn 3 P 2 film 13 is plated on the N-type zinc oxide layer 12, as shown in FIG. The Zn 3 P 2 film 13 is irradiated by the laser 14, the weak bond of Zn 3 P 2 is thermally dissociated to form Zn and P atoms, and the P atoms are diffused into the N-type zinc oxide layer 12 to form P-type zinc oxide and PN. The junction can be used to fabricate semiconductor components. However, the laser used in this method cannot completely decompose the Zn 3 P 2 film 13 on the N-type zinc oxide layer 12 and is uniformly diffused into the N-type zinc oxide layer 12 to form P-type zinc oxide. There is a residual Zn 3 P 2 film 13 on the zinc oxide layer 12, and the depth of diffusion of Zn 3 P 2 cannot be effectively controlled, and the above-mentioned unstable factors will affect the performance of the semiconductor element.

本發明一實施例揭示一種具有氧化鋅薄膜之半導體元件,其包含一基板及一含摻雜物之氧化鋅薄膜。該氧化鋅薄膜係設於該基板上,又該氧化鋅薄膜係包括至少兩個具有不同載子型態之區域。One embodiment of the invention discloses a semiconductor device having a zinc oxide thin film comprising a substrate and a dopant-containing zinc oxide film. The zinc oxide film is disposed on the substrate, and the zinc oxide film includes at least two regions having different carrier types.

本發明一實施例揭示一種具有氧化鋅薄膜之半導體元件,其包含一基板及一含摻雜物之氧化鋅薄膜。該氧化鋅薄膜係設於該基板上,又局部包括至少一被活化摻雜物之區域。One embodiment of the invention discloses a semiconductor device having a zinc oxide thin film comprising a substrate and a dopant-containing zinc oxide film. The zinc oxide film is disposed on the substrate and partially includes at least one region of the activated dopant.

上文已經概略地敍述本揭露之技術特徵,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵將描述於下文。本揭露所屬技術領域中具有通常知識者應可瞭解,下文揭示之概念與特定實施例可作為基礎而相當輕易地予以修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應可瞭解,這類等效的建構並無法脫離後附之申請專利範圍所提出之本揭露的精神和範圍。The technical features of the present disclosure have been briefly described above, so that a detailed description of the present disclosure will be better understood. Other technical features that form the subject matter of the claims of the present disclosure will be described below. It is to be understood by those of ordinary skill in the art that the present invention disclosed herein may be It is also to be understood by those of ordinary skill in the art that this invention is not limited to the spirit and scope of the disclosure disclosed in the appended claims.

圖2例示本發明一實施例之形成氧化鋅薄膜之濺鍍系統。在濺鍍系統20之真空腔體21中,係設置有兩個濺鍍源22及23,該兩個濺鍍源22及23分別使用氮化鋁(AlN)靶材221與氧化鋅靶材231。分別控制該兩個濺鍍源22及23之功率,可用來調配濺鍍後形成於一基板24上薄膜中氧化鋅與氮化鋁之成份比例。另外可固定該氮化鋁靶材221之瓦數,並於氮氣氣氛下進行該基板24上氧化鋅薄膜成長,以有效控制III族相對於V族之成份比例。又該基板24係固定於該濺鍍系統20之試片夾持座25,以氮化鋁靶材221與氧化鋅靶材231之雙靶材,在基板不升溫的條件下成長摻雜氮化鋁之氧化鋅(ZnO:AlN)薄膜26於基板24上。Fig. 2 illustrates a sputtering system for forming a zinc oxide thin film according to an embodiment of the present invention. In the vacuum chamber 21 of the sputtering system 20, two sputtering sources 22 and 23 are provided, and the two sputtering sources 22 and 23 respectively use an aluminum nitride (AlN) target 221 and a zinc oxide target 231. . The power of the two sputtering sources 22 and 23 is separately controlled, and the ratio of the composition of zinc oxide to aluminum nitride in the film formed on the substrate 24 after sputtering can be adjusted. In addition, the wattage of the aluminum nitride target 221 can be fixed, and the growth of the zinc oxide film on the substrate 24 can be performed under a nitrogen atmosphere to effectively control the ratio of the group III to the group V. Further, the substrate 24 is fixed to the test piece holder 25 of the sputtering system 20, and the double target of the aluminum nitride target 221 and the zinc oxide target 231 is grown and doped nitridation without heating the substrate. An aluminum zinc oxide (ZnO:AlN) film 26 is on the substrate 24.

除了上述III-V族元素化合物之氮化鋁(AlN)作為摻雜物之靶材,氮化鎵(GaN)或氮化銦(InN)亦可作為摻雜物之靶材。此外,摻雜物亦可採IA族元素鋰(Li)、鈉(Na)或鉀(K);IB族元素金(Au)、銀(Ag)、銅(Cu);I-V族元素化合物之氮化鋰(LiN)、氮化銀(NAg)或氮化磷(NP);或II-V族元素化合物之氮化鎂(MgN)。In addition to the aluminum nitride (AlN) of the above III-V element compound as a target of the dopant, gallium nitride (GaN) or indium nitride (InN) can also be used as a target for the dopant. In addition, the dopant may also be lithium (Li), sodium (Na) or potassium (K) of the group IA; gold (Au), silver (Ag), copper (Cu) of the group IB element; nitrogen of the compound of the group IV element Lithium nitride (LiN), silver nitride (NAg) or phosphorus nitride (NP); or magnesium nitride (MgN) of a Group II-V element compound.

本實施例係以濺鍍方法形成摻雜氮化鋁之氧化鋅薄膜26,亦可以採原子層沉積(Atomic Layer Deposition;ALD)方法或有機金屬化學氣相磊晶(MOCVD)方法形成該薄膜。In this embodiment, a zinc oxide film 26 doped with aluminum nitride is formed by a sputtering method, and the film may be formed by an Atomic Layer Deposition (ALD) method or an Organometallic Chemical Vapor Deposition (MOCVD) method.

圖3例示本發明一實施例之活化氧化鋅薄膜之系統。由於初鍍成長之氧化鋅薄膜26,會因摻雜物-氮化鋁造成結晶結構較散亂排列,而使得該氧化鋅薄膜26呈現結晶性不好且存在著氧缺位。活化氧化鋅薄膜之系統30可選用波長為355nm(或不同波長亦可採用)之雷射產生器31來活化摻雜氮化鋁之氧化鋅薄膜26,該雷射產生器31之雷射光經過擴張器(expander)32及反射鏡33改變光束大小及方向,並利用均勻器(homogenizer)34及聚焦透鏡(focusing lens)35將強度為高斯分佈之雷射光束整型成平頂分佈之光束,並將均化後的雷射光投射在具有氧化鋅薄膜26之基板24上。該能量均勻之雷射平頂光束可均勻活化摻雜氮化鋁之氧化鋅薄膜26,雷射活化後使摻雜的氮化鋁與氮填補氧化鋅的氧缺位。Fig. 3 illustrates a system for activating a zinc oxide thin film according to an embodiment of the present invention. Since the zinc oxide film 26 which is initially plated and grown is arranged in a disorderly manner due to the dopant-aluminum nitride, the zinc oxide film 26 exhibits poor crystallinity and oxygen deficiency. The system 30 for activating the zinc oxide thin film may employ a laser generator 31 having a wavelength of 355 nm (or a different wavelength may also be used) to activate the zinc oxide thin film 26 doped with aluminum nitride, and the laser light of the laser generator 31 is expanded. The expander 32 and the mirror 33 change the beam size and direction, and use a homogenizer 34 and a focusing lens 35 to shape the laser beam having a Gaussian distribution into a flat-topped beam, and The homogenized laser light is projected onto a substrate 24 having a zinc oxide film 26. The energy uniform laser flat-top beam can uniformly activate the zinc oxide film 26 doped with aluminum nitride, and the activated aluminum nitride and nitrogen fill the oxygen deficiency of the zinc oxide.

經活化後氮化鋁之氧化鋅薄膜26,其內部晶格重整與摻質定位,圖4A顯示雷射活化處理前後氧化鋅薄膜之X光繞射(XRD)分析之強度分佈圖形,經活化處理之氧化鋅薄膜因晶格重整而使得結晶性變佳,亦即活化後之氧化鋅結晶在C軸分向(ZnO(002))之強度增加很多。此外,圖4B顯示雷射活化處理前後氧化鋅薄膜之光穿透率量測結果,在可見光之波段,經活化處理之氧化鋅薄膜之穿透率明顯約提升10%。After activation, the zinc oxide film 26 of aluminum nitride has internal lattice reforming and dopant positioning. FIG. 4A shows the intensity distribution pattern of the X-ray diffraction (XRD) analysis of the zinc oxide film before and after the laser activation treatment, and is activated. The treated zinc oxide film is improved in crystallinity due to lattice reforming, that is, the zinc oxide crystal after activation has a large increase in the strength of the C-axis (ZnO (002)). In addition, FIG. 4B shows the measurement results of the light transmittance of the zinc oxide film before and after the laser activation treatment, and the transmittance of the activated zinc oxide film is remarkably improved by about 10% in the visible light band.

可經由調整雷射之功率及發數來改變摻雜氮化鋁之氧化鋅薄膜26之活化結果,從而可控制其電特性之載子型態(N型或P型)及載子濃度。表一顯示不同雷射參數活化摻雜氮化鋁之氧化鋅薄膜之各種特性。當雷射功率在0.2W,發數為100發時,活化後摻雜氮化鋁之氧化鋅薄膜其載子型態呈現P型型態,載子濃度為約為1.04×1016 /cm3 。當雷射發數增加到200發時,氧化鋅薄膜之電洞濃度增加至3.67×1017 /cm3 。此外,當雷射功率在0.15W,發數為100發時,活化後摻雜氮化鋁之氧化鋅薄膜其載子型態呈現高電阻值(約1757.167 Ω-cm)之類似I型型態,載子濃度為約為1.37×1015 /cm3 。又加大雷射功率在0.25W以上,發數同樣為100發時,活化後摻雜氮化鋁之氧化鋅薄膜其載子型態呈現N型型態,氧化鋅薄膜之載子濃度大於2.66×1018 /cm3 。因此可以調整雷射之功率及發數來改變摻雜氮化鋁之氧化鋅薄膜26之載子型態(I型、N型或P型)及載子濃度。The activation result of the aluminum nitride-doped zinc oxide film 26 can be changed by adjusting the power and number of lasers, thereby controlling the carrier type (N-type or P-type) and carrier concentration of the electrical characteristics. Table 1 shows the various properties of the zinc oxide film doped with aluminum nitride by different laser parameters. When the laser power is 0.2W and the number of hair is 100 rounds, the zinc oxide film doped with aluminum nitride after activation has a P-type, and the carrier concentration is about 1.04×10 16 /cm 3 . . When the number of laser shots was increased to 200 rounds, the hole concentration of the zinc oxide film was increased to 3.67 × 10 17 /cm 3 . In addition, when the laser power is 0.15W and the number of hair is 100 rounds, the zinc oxide film doped with aluminum nitride after activation has a similar type I type with a high resistance value (about 1757.167 Ω-cm). The carrier concentration was about 1.37 × 10 15 /cm 3 . When the laser power is increased above 0.25W and the number of shots is also 100 rounds, the zinc oxide film doped with aluminum nitride after activation has an N-type carrier type, and the carrier concentration of the zinc oxide film is greater than 2.66. ×10 18 /cm 3 . Therefore, the power and number of lasers can be adjusted to change the carrier type (type I, N or P type) and carrier concentration of the zinc oxide film 26 doped with aluminum nitride.

表一:不同雷射參數活化摻雜氮化鋁之氧化鋅薄膜之各種特性Table 1: Various characteristics of activated zinc oxide film doped with aluminum nitride with different laser parameters

以低溫光致螢光(PL)頻譜分析摻雜氮化鋁之氧化鋅薄膜被活化前後之差異,於圖5頻譜中在3.342eV出現了A0 X之訊號,代表摻雜活化後氮化鋁中之N會填補氧化鋅的氧缺位,從而形成電洞。所形成P型氧化鋅薄膜中之氧缺位也有明顯的抑制,因此在摻質活化後形成更穩定之P型氧化鋅薄膜,其薄膜中氧缺位濃度的降低是關鍵因素。另外,上表一中雷射功率增加至0.25W時,活化處理後之氧化鋅薄膜其載子型態轉變為N型型態。若雷射功率持續增加時,其電子濃度也跟著微幅增加,其原因為雷射活化能量過高時,造成氧化鋅薄膜內氧原子向外擴散形成氧缺位,使電子濃度增加。The difference between before and after activation of the zinc oxide film doped with aluminum nitride was analyzed by low-temperature photoluminescence (PL) spectrum. A 0 X signal appeared at 3.342 eV in the spectrum of Fig. 5, which represents the aluminum nitride after doping activation. N in the middle will fill the oxygen deficiency of zinc oxide, thus forming a hole. The oxygen vacancy in the formed P-type zinc oxide film is also significantly inhibited, so that a more stable P-type zinc oxide film is formed after the activation of the dopant, and the decrease of the oxygen vacancy concentration in the film is a key factor. In addition, when the laser power in Table 1 above is increased to 0.25 W, the zinc oxide film after activation treatment changes its carrier type to the N type. If the laser power continues to increase, the electron concentration also increases slightly. The reason is that when the laser activation energy is too high, the oxygen atoms in the zinc oxide film diffuse outward to form oxygen vacancies, which increases the electron concentration.

圖6A~6F係藉由調整雷射活化之參數在基板上形成具不同載子型態或載子濃度之氧化鋅薄膜之半導體元件。圖6A係於一基板61上以共濺鍍技術形成摻雜氮化鋁之氧化鋅薄膜,再將雷射光調整至合適之功率及發數等參數以照射該氧化鋅薄膜整個面積,從而形成一整層之P型氧化鋅薄膜62。在該P型氧化鋅薄膜62上以同樣方式形成另一摻雜氮化鋁之氧化鋅薄膜,又以不同之雷射光功率及發數照射,而形成一整層之N型氧化鋅薄膜63,如圖6B所示。該P型氧化鋅薄膜62和N型氧化鋅薄膜63上下堆疊在一起形成,從而形成具有PN接面(junction)之半導體元件。此等半導體結構可以應用於發光二極體、光電元件及太陽能電池。6A to 6F are semiconductor elements in which zinc oxide thin films having different carrier types or carrier concentrations are formed on a substrate by adjusting parameters of laser activation. 6A is a zinc oxide film doped with aluminum nitride by a common sputtering method on a substrate 61, and then adjusting the laser light to a suitable power and number of rays to irradiate the entire area of the zinc oxide film to form a film. A whole layer of P-type zinc oxide film 62. Another zinc oxide film doped with aluminum nitride is formed on the P-type zinc oxide film 62 in the same manner, and irradiated with different laser light powers and hair waves to form an entire layer of N-type zinc oxide film 63. As shown in Figure 6B. The P-type zinc oxide film 62 and the N-type zinc oxide film 63 are stacked on top of each other to form a semiconductor element having a PN junction. These semiconductor structures can be applied to light emitting diodes, photovoltaic elements, and solar cells.

圖6C係將雷射光調整至合適之功率及發數等數組參數,依序局部照射未活化之氧化鋅薄膜62c,從而形成P型氧化鋅區域631及N型氧化鋅區域632。同樣利用合適之雷射光照射參數改變未活化之氧化鋅薄膜62d之局部區域之載子濃度,可以形成相鄰接之P型氧化鋅區域641、I型氧化鋅區域642及N型氧化鋅區域643,亦即得到PIN元件,如圖6D所示。或利用合適之雷射光照射參數改變未活化之氧化鋅薄膜62e之局部區域之載子濃度,可以形成相鄰接之P型氧化鋅區域651、N型氧化鋅區域652及P型氧化鋅區域653,亦即得到PNP元件,如圖6E所示。若要得到NPN元件,則可如圖6F於未活化之氧化鋅薄膜62f上形成相鄰接之N型氧化鋅區域661、P型氧化鋅區域662及N型氧化鋅區域663。FIG. 6C adjusts the laser light to an array parameter such as a suitable power and the number of shots, and sequentially irradiates the unactivated zinc oxide film 62c to form a P-type zinc oxide region 631 and an N-type zinc oxide region 632. Similarly, by changing the carrier concentration of the local region of the unactivated zinc oxide film 62d by a suitable laser light irradiation parameter, an adjacent P-type zinc oxide region 641, a type I zinc oxide region 642, and an N-type zinc oxide region 643 may be formed. That is, the PIN element is obtained, as shown in Fig. 6D. Or by using a suitable laser light irradiation parameter to change the carrier concentration of the local region of the unactivated zinc oxide film 62e, an adjacent P-type zinc oxide region 651, an N-type zinc oxide region 652, and a P-type zinc oxide region 653 may be formed. That is, a PNP element is obtained, as shown in Fig. 6E. To obtain the NPN element, an adjacent N-type zinc oxide region 661, a P-type zinc oxide region 662, and an N-type zinc oxide region 663 can be formed on the unactivated zinc oxide film 62f as shown in FIG. 6F.

利用此技術在氧化鋅薄膜上直接形成透明之半導體元件圖型,可減少光罩使用及蝕刻製程,進一步簡化半導體元件之製程以降低成本及縮短製程時間。The use of this technology to directly form a transparent semiconductor device pattern on the zinc oxide film can reduce the use of the mask and the etching process, and further simplify the process of the semiconductor device to reduce the cost and shorten the processing time.

本揭露之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本揭露之教示及揭示而作種種不背離本揭露精神之替換及修飾。因此,本揭露之保護範圍應不限於實施例所揭示者,而應包括各種不背離本揭露之替換及修飾,並為以下之申請專利範圍所涵蓋。The technical content and technical features of the present disclosure have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of the present disclosure is not to be construed as being limited by the scope of

11...基板11. . . Substrate

12...N型氧化鋅層12. . . N-type zinc oxide layer

13...Zn3 P2 薄膜13. . . Zn 3 P 2 film

20...濺鍍系統20. . . Sputtering system

21...真空腔體twenty one. . . Vacuum chamber

22、23...濺鍍源22, 23. . . Sputter source

24...基板twenty four. . . Substrate

25...夾持座25. . . Clamping seat

26...摻雜氮化鋁之氧化鋅薄膜26. . . Zinc oxide film doped with aluminum nitride

30...活化氧化鋅薄膜之系統30. . . System for activating zinc oxide film

31...雷射產生器31. . . Laser generator

32...擴張器32. . . Expander

33...反射鏡33. . . Reflector

34...均勻器34. . . Uniformizer

35...聚焦透鏡35. . . Focusing lens

61...基板61. . . Substrate

62...P型氧化鋅薄膜62. . . P-type zinc oxide film

63...N型氧化鋅薄膜63. . . N-type zinc oxide film

62c~62f...未活化之氧化鋅薄膜62c~62f. . . Unactivated zinc oxide film

221...氮化鋁靶材221. . . Aluminum nitride target

231...氧化鋅靶材231. . . Zinc oxide target

631、641、651、653、662...P型氧化鋅區域631, 641, 651, 653, 662. . . P-type zinc oxide region

632、643、652、661、663...N型氧化鋅區域632, 643, 652, 661, 663. . . N-type zinc oxide region

642...I型氧化鋅區域642. . . Type I zinc oxide region

圖1係美國專利案US6,624,442號之形成P型氧化鋅膜層之示意圖;Figure 1 is a schematic view showing the formation of a P-type zinc oxide film layer in U.S. Patent No. 6,624,442;

圖2例示本發明一實施例之形成氧化鋅薄膜之濺鍍系統;2 illustrates a sputtering system for forming a zinc oxide film according to an embodiment of the present invention;

圖3例示本發明一實施例之活化氧化鋅薄膜之系統;3 illustrates a system for activating a zinc oxide film according to an embodiment of the present invention;

圖4A顯示雷射活化處理前後氧化鋅薄膜之X光繞射分析之強度分佈圖形;4A is a graph showing the intensity distribution pattern of the X-ray diffraction analysis of the zinc oxide film before and after the laser activation treatment;

圖4B顯示雷射活化處理前後氧化鋅薄膜之光穿透率量測結果;4B shows the measurement results of the light transmittance of the zinc oxide film before and after the laser activation treatment;

圖5顯示低溫光致螢光(PL)頻譜分析摻雜氮化鋁之氧化鋅薄膜被活化前後之頻譜圖;以及Figure 5 shows the low-temperature photoluminescence (PL) spectrum analysis before and after the activation of the zinc oxide film doped with aluminum nitride Spectrogram; and

圖6A~6F係藉由調整雷射活化之參數在基板上形成具不同載子型態或載子濃度之氧化鋅薄膜之半導體元件。6A to 6F are semiconductor elements in which zinc oxide thin films having different carrier types or carrier concentrations are formed on a substrate by adjusting parameters of laser activation.

61...基板61. . . Substrate

62e...未活化之氧化鋅薄膜62e. . . Unactivated zinc oxide film

651...P型氧化鋅區域651. . . P-type zinc oxide region

652...N型氧化鋅區域652. . . N-type zinc oxide region

653...P型氧化鋅區域653. . . P-type zinc oxide region

Claims (22)

一種具有氧化鋅薄膜之半導體元件,包含:一基板;以及一含摻雜物之氧化鋅薄膜,係設於該基板上,又該氧化鋅薄膜之部分區域包含至少兩個具有不同載子型態之區域。 A semiconductor device having a zinc oxide film, comprising: a substrate; and a dopant-containing zinc oxide film disposed on the substrate, wherein a portion of the zinc oxide film comprises at least two different carrier types The area. 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係氮化鋁(AlN)、氮化鎵(GaN)或氮化銦(InN)。 A semiconductor element having a zinc oxide thin film according to claim 1, wherein the dopant is aluminum nitride (AlN), gallium nitride (GaN) or indium nitride (InN). 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係鋰(Li)、鈉(Na)、鉀(K)、金(Au)、銀(Ag)或銅(Cu)。 A semiconductor device having a zinc oxide thin film according to claim 1, wherein the dopant is lithium (Li), sodium (Na), potassium (K), gold (Au), silver (Ag) or copper (Cu). . 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係氮化鋰(LiN)、氮化銀(NAg)、氮化磷(NP)或氮化鎂(MgN)。 A semiconductor element having a zinc oxide thin film according to claim 1, wherein the dopant is lithium nitride (LiN), silver nitride (NAg), phosphorus nitride (NP) or magnesium nitride (MgN). 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該兩個區域之載子型態分別係N型、P型及I型中任兩個型態。 The semiconductor device having a zinc oxide thin film according to claim 1, wherein the carrier types of the two regions are respectively two of the N-type, the P-type, and the I-type. 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該兩個區域之載子型態分別係N型型態及P型型態,該兩個區域形成一PN接面之元件。 A semiconductor device having a zinc oxide thin film according to claim 1, wherein the carrier patterns of the two regions are respectively an N-type and a P-type, and the two regions form a PN junction. 根據請求項6所述之具有氧化鋅薄膜之半導體元件,其另包含一具P型載子型態之區域,該三個區域形成一PNP接面之元件。 The semiconductor device having a zinc oxide thin film according to claim 6, further comprising a P-type carrier type region, the three regions forming a PNP junction element. 根據請求項6所述之具有氧化鋅薄膜之半導體元件,其另包含一具N型載子型態之區域,該三個區域形成一NPN接面之元件。 The semiconductor device having a zinc oxide thin film according to claim 6, further comprising an N-type carrier type region, the three regions forming an NPN junction element. 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該兩個區域之載子型態分別係N型型態及P型型態,另包含一於前述該兩個區域中間之具I型載子型態之區域,該三個區域形成一PIN接面之元件。 The semiconductor device having a zinc oxide thin film according to claim 1, wherein the carrier patterns of the two regions are respectively an N-type and a P-type, and further comprising an I in the middle of the two regions. A region of the type of carrier that forms a component of a PIN junction. 根據請求項1所述之具有氧化鋅薄膜之半導體元件,其中該活化處理係以雷射光照射該局部面積而改變載子型態及載子濃度。 A semiconductor element having a zinc oxide thin film according to claim 1, wherein the activation treatment changes the carrier type and the carrier concentration by irradiating the partial area with laser light. 一種具有氧化鋅薄膜之半導體元件,包含:一基板;以及一含摻雜物之氧化鋅薄膜,係設於該基板上,又局部包括至少一被活化摻雜物之區域。 A semiconductor device having a zinc oxide thin film, comprising: a substrate; and a dopant-containing zinc oxide film disposed on the substrate and partially including at least one activated dopant region. 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係氮化鋁(AlN)、氮化鎵(GaN)或氮化銦(InN)。 A semiconductor element having a zinc oxide thin film according to claim 11, wherein the dopant is aluminum nitride (AlN), gallium nitride (GaN) or indium nitride (InN). 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係鋰(Li)、鈉(Na)、鉀(K)、金(Au)、銀(Ag)或銅(Cu)。 A semiconductor element having a zinc oxide thin film according to claim 11, wherein the dopant is lithium (Li), sodium (Na), potassium (K), gold (Au), silver (Ag) or copper (Cu). . 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該摻雜物係氮化鋰(LiN)、氮化銀(NAg)、氮化磷(NP)或氮化鎂(MgN)。 A semiconductor element having a zinc oxide thin film according to claim 11, wherein the dopant is lithium nitride (LiN), silver nitride (NAg), phosphorus nitride (NP) or magnesium nitride (MgN). 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該被活化摻雜物之區域係N型、P型或I型型態。 A semiconductor element having a zinc oxide thin film according to claim 11, wherein the region of the activated dopant is in an N-type, P-type or I-type. 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該被活化摻雜物之區域係N型型態,另包含一具P型載子型態之區域,該兩個區域形成一PN接面之元件。 A semiconductor device having a zinc oxide thin film according to claim 11, wherein the region of the activated dopant is an N-type region, and further includes a region having a P-type carrier type, the two regions forming a PN The components of the junction. 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中 該被活化摻雜物之區域係N型型態,另包含一具P型載子型態之區域,該兩個區域形成一PN接面之元件。 A semiconductor element having a zinc oxide thin film according to claim 11, wherein The region of the activated dopant is an N-type, and further comprises a region of a P-type carrier type, the two regions forming a component of a PN junction. 根據請求項17所述之具有氧化鋅薄膜之半導體元件,其另包含一具P型載子型態之區域,該三個區域形成一PNP接面之元件。 The semiconductor device having a zinc oxide thin film according to claim 17, further comprising a P-type carrier type region, the three regions forming a PNP junction element. 根據請求項17所述之具有氧化鋅薄膜之半導體元件,其另包含一具N型載子型態之區域,該三個區域形成一NPN接面之元件。 A semiconductor device having a zinc oxide thin film according to claim 17, further comprising a region having an N-type carrier type, the three regions forming an NPN junction element. 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該被活化摻雜物之區域係N型型態,另包含兩分別具I型及P型載子型態之區域,該兩個區域形成一PIN接面之元件。 The semiconductor device having a zinc oxide thin film according to claim 11, wherein the region of the activated dopant is an N-type region, and further comprises two regions each having an I-type and a P-type carrier type, the two The area forms a component of a PIN junction. 根據請求項11所述之具有氧化鋅薄膜之半導體元件,其中該區域係該含摻雜物之氧化鋅薄膜經活化處理之局部面積。 A semiconductor device having a zinc oxide thin film according to claim 11, wherein the region is a partial area of the dopant-containing zinc oxide film subjected to activation treatment. 根據請求項21所述之具有氧化鋅薄膜之半導體元件,其中該活化處理係以雷射光照射該局部面積而改變載子型態及載子濃度。 A semiconductor element having a zinc oxide thin film according to claim 21, wherein the activation treatment changes the carrier type and the carrier concentration by irradiating the partial area with laser light.
TW99137581A 2010-11-02 2010-11-02 Semiconductor device having zinc oxide film TWI440175B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99137581A TWI440175B (en) 2010-11-02 2010-11-02 Semiconductor device having zinc oxide film
US13/169,424 US20120104383A1 (en) 2010-11-02 2011-06-27 Semiconductor device having zinc oxide thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137581A TWI440175B (en) 2010-11-02 2010-11-02 Semiconductor device having zinc oxide film

Publications (2)

Publication Number Publication Date
TW201220495A TW201220495A (en) 2012-05-16
TWI440175B true TWI440175B (en) 2014-06-01

Family

ID=46553164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137581A TWI440175B (en) 2010-11-02 2010-11-02 Semiconductor device having zinc oxide film

Country Status (1)

Country Link
TW (1) TWI440175B (en)

Also Published As

Publication number Publication date
TW201220495A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5033279B2 (en) Zinc oxide film containing P-type dopant and method for producing the same
Chen et al. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition
US8546797B2 (en) Zinc oxide based compound semiconductor device
Lee et al. Point defects controlling non-radiative recombination in GaN blue light emitting diodes: Insights from radiation damage experiments
TW201511327A (en) Light emitting diode
JP2004221132A (en) Oxide semiconductor light emitting element
Tüzemen et al. Principal issues in producing new ultraviolet light emitters based on transparent semiconductor zinc oxide
Murali et al. Gallium-nitride-based light-emitting diodes: 2014 Nobel Prize in Physics
CN104659174B (en) It is a kind of to use laser to irradiate the method that gallium nitride epitaxial slice improves the LED luminescent properties with it as substrate
CN103956319A (en) Method for improving electrical properties and optical properties of gallium nitride through laser irradiation on gallium nitride epitaxial wafer
TW200541070A (en) Semiconductor material and semiconductor element using the same
TWI440175B (en) Semiconductor device having zinc oxide film
Chen et al. Structure and Ultraviolet Electroluminescence of $ n\hbox {-ZnO/SiO} _ {2}\hbox {-ZnO} $ Nanocomposite/$ p $-GaN Heterostructure Light-Emitting Diodes
JP3834658B2 (en) Thin film and p-type zinc oxide thin film manufacturing method and semiconductor device
KR100745811B1 (en) Formation Method of p-type ZnO Thin Film and Fabrication Method of Opto-Electronic Device Using the Same
JP5451320B2 (en) ZnO-based compound semiconductor device
WO2012005215A1 (en) Epitaxial wafer for light-emitting diodes
JP6984571B2 (en) Manufacturing method of semiconductor device
Bet et al. Laser Doping of Chromium and Selenium in p-type 4H-SiC
CN105977138B (en) It is grown in GaN film on yttrium-aluminium-garnet substrate and preparation method thereof, application
TW201225185A (en) Method of manufacturing semiconductor device having zinc oxide film
TW201405857A (en) Method for manufacturing a photovoltaic device using laser irradiation
US20120104383A1 (en) Semiconductor device having zinc oxide thin film and manufacturing method thereof
Munthali Current status of the technology of silicon carbide as a light conversion medium for nitride LEDs
CN108054247A (en) A kind of improvement GaN epitaxy piece property simultaneously enhances the method for GaN base LED luminescent properties