TWI439057B - Data selector used in digital-to-analog converter and the digital-to-analog converter - Google Patents

Data selector used in digital-to-analog converter and the digital-to-analog converter Download PDF

Info

Publication number
TWI439057B
TWI439057B TW100105517A TW100105517A TWI439057B TW I439057 B TWI439057 B TW I439057B TW 100105517 A TW100105517 A TW 100105517A TW 100105517 A TW100105517 A TW 100105517A TW I439057 B TWI439057 B TW I439057B
Authority
TW
Taiwan
Prior art keywords
resistor string
coupled
decoder
voltage
data selector
Prior art date
Application number
TW100105517A
Other languages
Chinese (zh)
Other versions
TW201236379A (en
Inventor
Chih Wen Lu
Ching Min Hsiao
Ping Yeh Yin
Original Assignee
House Internat Ltd C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by House Internat Ltd C filed Critical House Internat Ltd C
Priority to TW100105517A priority Critical patent/TWI439057B/en
Publication of TW201236379A publication Critical patent/TW201236379A/en
Application granted granted Critical
Publication of TWI439057B publication Critical patent/TWI439057B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

用於數位類比轉換器的資料選擇器及該數位類比轉換器Data selector for digital analog converter and the digital analog converter

本發明是有關於一種數位類比轉換器,且特別是有關於一種適用於液晶顯示器(Liquid Crystal Display,LCD)驅動電路的數位類比轉換器。The present invention relates to a digital analog converter, and more particularly to a digital analog converter suitable for a liquid crystal display (LCD) driving circuit.

液晶顯示器為平面超薄的顯示裝置,其螢幕由畫素陣列構成,畫素的結構包括兩側的透明電極與懸浮其中的液晶分子層,兩側外邊具有相互垂直的偏振過濾片。穿過一層偏振濾光片的光線偏振方向會被液晶分子層旋轉,然後透過另一層偏振濾光片。液晶分子層的偏振方向會隨著兩側電極的電壓調整,如果液晶分子層兩側沒有加上電極,那穿透過液晶分子層的光線勢必會被另一層的偏振過濾片阻擋。The liquid crystal display is a flat ultra-thin display device, and the screen is composed of a pixel array. The structure of the pixel includes transparent electrodes on both sides and a liquid crystal molecular layer suspended therein, and polarizing filters perpendicular to each other on both sides. The direction of polarization of the light passing through a layer of polarizing filters is rotated by the layer of liquid crystal molecules and then transmitted through another layer of polarizing filters. The polarization direction of the liquid crystal molecular layer is adjusted with the voltage of the electrodes on both sides. If no electrode is applied to both sides of the liquid crystal molecular layer, the light that has penetrated through the liquid crystal molecular layer is bound to be blocked by the polarizing filter of the other layer.

彩色濾光片可以形成紅(R)、綠(G)、藍(B)三種光原色,提供至液晶分子層兩側的畫素電極的電壓可以決定R、G、B三的顏色的灰階值,進而產生不同的顏色。液晶顯示器中的驅動電路就是用來提供不同的驅動電壓至畫素電極以調整液晶分子層的旋轉程度。驅動電路主要分為閘極驅動器(gate driver)與源極驅動器(source driver,也稱為column driver),兩者之間的時序控制則由時序控制器(timing controller)來控制。The color filter can form three primary colors of red (R), green (G), and blue (B), and the voltage supplied to the pixel electrodes on both sides of the liquid crystal molecular layer can determine the gray scale of the colors of R, G, and B. Values, which in turn produce different colors. The driving circuit in the liquid crystal display is used to provide different driving voltages to the pixel electrodes to adjust the degree of rotation of the liquid crystal molecular layer. The drive circuit is mainly divided into a gate driver and a source driver (also called a column driver), and the timing control between the two is controlled by a timing controller.

源極驅動器中具有數位類比轉換器,可以將數位信號轉換為不同的畫素電壓以輸出至畫素電極。源極驅動器中的數位類比轉換器目前以8位元為主,但高色彩深度(color depth)的液晶顯示器需要更高位元的源極驅動器,例如10位元。高位元的源極驅動器通常是採用兩級的電阻串來達成,例如第一級電阻串對應於權值較高的6個位元,而第二級電阻串對應於權值較低的4個位元。由於不同的通道電路可以共用同一個第一級電阻串的分壓,所以這樣的電路結構可以縮小電路面積,降低電路設計成本。然而,當第二級電阻串並聯至第一級電阻串的分壓點時,會造成電流分流至第二級電阻串,因而影響到分壓的準確性。所以第一級電阻串與第二級電阻串之間會設置有單位增益放大器(unit gain amplifier)的電路來隔離兩個電阻串,只是單位增益放大器的電路面積較大且電路設計成本較高,如果在兩級電阻串間設置單位增益放大器會讓高位元的數位類比轉換器的電路面積與成本大幅增加。The source driver has a digital analog converter that converts the digital signal to a different pixel voltage for output to the pixel electrode. Digital analog converters in source drivers are currently dominated by 8-bit, but high color depth liquid crystal displays require higher bit source drivers, such as 10-bit. The high-order source driver is usually implemented by a two-stage resistor string, for example, the first-stage resistor string corresponds to a higher-priority 6-bit, and the second-stage resistor string corresponds to a lower-weight 4-bit. Bit. Since different channel circuits can share the voltage division of the same first-stage resistor string, such a circuit structure can reduce the circuit area and reduce the circuit design cost. However, when the second-stage resistor string is connected in parallel to the voltage dividing point of the first-stage resistor string, current is shunted to the second-stage resistor string, thus affecting the accuracy of the voltage division. Therefore, a circuit of a unit gain amplifier is provided between the first-stage resistor string and the second-stage resistor string to isolate the two resistor strings, but the circuit area of the unity gain amplifier is large and the circuit design cost is high. If a unity gain amplifier is placed between the two-stage resistor strings, the circuit area and cost of the high-order digital analog converter will be greatly increased.

本發明提供一種數位類比轉換器,其具有補償電流的電路,可以用來補償第二電阻串(通道電阻串)所需的電流,讓兩級電阻串之間不需設置隔離的緩衝器,藉此降低晶片面積與功率消耗。The invention provides a digital analog converter with a circuit for compensating current, which can be used to compensate the current required by the second resistor string (channel resistor string), so that there is no need to provide an isolated buffer between the two resistor strings. This reduces wafer area and power consumption.

本發明提出一種數位類比轉換器,包括一第一電阻串與至少一通道電路。第一電阻串具有複數個串聯的第一電阻以產生複數個第一分壓。通道電路包括一第一資料選擇器、一第二電阻串與一第二資料選擇器。第一資料選擇器耦接於第一電阻串,用以選擇該些第一分壓中的兩個相鄰分壓以產生一電壓區間。第二電阻串具有複數個串聯的第二電阻,該第二電阻串耦接於第一資料選擇器,用以將電壓區間分壓為複數個第二分壓。第二資料選擇器耦接於第二電阻串,用以選擇並輸出該些第二分壓之一。電流源電路耦接於第二電阻串的兩端,根據所選擇之兩相鄰分壓來產生通過第二電阻串的一補償電流以降低由第一電阻串流向該第二電阻串的分流電流。The invention provides a digital analog converter comprising a first resistor string and at least one channel circuit. The first resistor string has a plurality of first resistors connected in series to generate a plurality of first partial voltages. The channel circuit includes a first data selector, a second resistor string and a second data selector. The first data selector is coupled to the first resistor string for selecting two adjacent partial voltages of the first partial voltages to generate a voltage interval. The second resistor string has a plurality of second resistors connected in series, and the second resistor string is coupled to the first data selector for dividing the voltage interval into a plurality of second partial voltages. The second data selector is coupled to the second resistor string for selecting and outputting one of the second partial voltages. The current source circuit is coupled to the two ends of the second resistor string, and generates a compensation current through the second resistor string according to the selected two adjacent voltage dividers to reduce the shunt current flowing from the first resistor string to the second resistor string. .

本發明另提出一種數位類比轉換器,包括一第一電阻串、一電流源電路與至少一通道電路。第一電阻串具有複數個串聯的第一電阻,該第一電阻串具有複數個分壓點以產生複數個第一分壓。電流源電路具有複數個子電流源,分別耦接於第一電阻串的每個分壓點。通道電路包括一第一資料選擇器、一第二電阻串與一第二資料選擇器。第一資料選擇器耦接於第一電阻串,用以選擇該些第一分壓中的兩個相鄰分壓以產生一電壓區間。第二電阻串具有複數個串聯的第二電阻,第二電阻串耦接於第一資料選擇器,用以將電壓區間分壓為複數個第二分壓。第二資料選擇器耦接於第二電阻串,用以選擇並輸出該些第二分壓之一。其中,電流源電路根據電壓區間調整每個子電流源的電流值以補償由第一電阻串流向第二電阻串的分流電流。The invention further provides a digital analog converter comprising a first resistor string, a current source circuit and at least one channel circuit. The first resistor string has a plurality of first resistors connected in series, the first resistor string having a plurality of voltage dividing points to generate a plurality of first partial voltages. The current source circuit has a plurality of sub current sources coupled to each of the voltage dividing points of the first resistor string. The channel circuit includes a first data selector, a second resistor string and a second data selector. The first data selector is coupled to the first resistor string for selecting two adjacent partial voltages of the first partial voltages to generate a voltage interval. The second resistor string has a plurality of second resistors connected in series, and the second resistor string is coupled to the first data selector for dividing the voltage interval into a plurality of second partial voltages. The second data selector is coupled to the second resistor string for selecting and outputting one of the second partial voltages. Wherein, the current source circuit adjusts the current value of each of the sub current sources according to the voltage interval to compensate the shunt current flowing from the first resistor string to the second resistor string.

本發明又提出一種數位類比轉換器,其為電阻式的數位類比轉換器。數位類比轉換器中的第一電阻串所產生分壓會同時提供給多個通道電路使用。每個通道電路中具有第二電阻串,根據所選擇的電壓區間產生複數個分壓。數位類比轉換器包括一通用電流源,用以產生對應於第一電阻串與第二電阻串的參考電流。通道電路會映射上述參考電流產生通過第二電阻串的一補償電流以降低由第一電阻串流向第二電阻串的分流電流。The invention further proposes a digital analog converter which is a resistive digital analog converter. The voltage division generated by the first resistor string in the digital analog converter is simultaneously provided to multiple channel circuits. Each channel circuit has a second resistor string that generates a plurality of partial voltages according to the selected voltage interval. The digital analog converter includes a general purpose current source for generating a reference current corresponding to the first resistor string and the second resistor string. The channel circuit maps the reference current to generate a compensation current through the second resistor string to reduce the shunt current flowing from the first resistor string to the second resistor string.

綜合上述,本發明所提出的數位類比轉換器,利用補償電流在第二電阻串上形成所需的分壓,藉此簡化電路結構以降低電阻式數位類比轉換器的電路面積與設計成本。In summary, the digital analog converter of the present invention utilizes a compensation current to form a desired voltage division on the second resistor string, thereby simplifying the circuit structure to reduce the circuit area and design cost of the resistive digital analog converter.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

在下文中,將藉由圖式說明本發明之實施例來詳細描述本發明,而圖式中的相同參考數字可用以表示類似的元件。In the following, the invention will be described in detail by the embodiments of the invention, and the same reference numerals are used in the drawings.

(第一實施例)(First Embodiment)

圖1繪示本發明第一實施例的數位類比轉換器的電路示意圖。數位類比轉換器100包括第一電阻串111與至少一個通道電路120,第一電阻串111具有多個串聯的第一電阻R1,其上下兩端分別耦接於參考電壓VRH與參考電壓VRL,可以產生多個第一分壓給通道電路120使用。通道電路120包括第二電阻串121、第一資料選擇器122、第二資料選擇器123與包括第一電流源124與第二電流源125的電流源電路。第二電阻串121包括多個串聯的第二電阻R2,用以產生複數個第二分壓。第二資料選擇器123耦接於第二電阻串121的分壓點,根據所接收的數位信號選擇對應的第二分壓輸出至緩衝器126以產對應的輸出電壓OUT1。其中,值得注意的是,第一電阻串111可視為共用的電阻串,其產生的第一分壓可以同時提供給多個通道電路120~140使用以降低電路體積。通道電路120~140的電路架構相似,以下以通道電路120為例說明電路的作動方式。1 is a circuit diagram of a digital analog converter according to a first embodiment of the present invention. The digital analog converter 100 includes a first resistor string 111 and at least one channel circuit 120. The first resistor string 111 has a plurality of first resistors R1 connected in series, and the upper and lower ends thereof are respectively coupled to the reference voltage VRH and the reference voltage VRL. A plurality of first partial voltages are generated for use by the channel circuit 120. The channel circuit 120 includes a second resistor string 121, a first data selector 122, a second data selector 123, and a current source circuit including a first current source 124 and a second current source 125. The second resistor string 121 includes a plurality of second resistors R2 connected in series for generating a plurality of second divided voltages. The second data selector 123 is coupled to the voltage dividing point of the second resistor string 121, and selects a corresponding second divided voltage output to the buffer 126 according to the received digital signal to generate a corresponding output voltage OUT1. It should be noted that the first resistor string 111 can be regarded as a common resistor string, and the generated first voltage divider can be simultaneously provided to the plurality of channel circuits 120-140 to reduce the circuit volume. The circuit structures of the channel circuits 120-140 are similar. The channel circuit 120 is taken as an example to describe the operation mode of the circuit.

本實施中的數位類比轉換器100例如是電阻-電阻串列式數位類比轉換器(resistor-resistor-string DAC,RRDAC),是結合兩組電阻式數位類比轉換器以形成較高位元的數位類比轉換器。第一電阻串111負責較高位元的分壓,而第二電阻串121負責較低位元的分壓。舉例來說,數位類比轉換器100可以是10位元的數位類比轉換器,其中較高的6位元的分壓由第一電阻串111產生,而後4位元的分壓則由第二電阻串121產生。第一電阻串111中的電阻R1的數目與所需的位元數相關,例如以6位元為例,第一電阻串111中會具有至少64個電阻R1以產生64個分壓。The digital analog converter 100 in this embodiment is, for example, a resistor-resistor-type DAC (RRDAC), which is a digital analogy that combines two sets of resistive digital analog converters to form higher bits. converter. The first resistor string 111 is responsible for the division of the higher bits, while the second resistor string 121 is responsible for the division of the lower bits. For example, the digital analog converter 100 can be a 10-bit digital analog converter, wherein the higher 6-bit partial voltage is generated by the first resistor string 111, and the second 4-bit divided voltage is generated by the second resistor. String 121 is generated. The number of resistors R1 in the first resistor string 111 is related to the number of bits required. For example, in the case of 6 bits, the first resistor string 111 will have at least 64 resistors R1 to generate 64 divided voltages.

第一資料選擇器122耦接於第一電阻串111的分壓點,即相鄰電阻R1的連接點以取得每個分壓點的電壓(即第一分壓)。第一資料選擇器122例如是多工器,可以根據數位信號的前6位元自第一電阻串111中選擇相鄰的兩個分壓並經由第一輸出端PIN1與第二輸出端PIN2輸出至第二電阻串121以定義第二電阻串121兩端的參考電壓VH、VL。第二電阻串121中的電阻R2會將參考電壓VH、VL所形成的電壓區間分壓為多個第二分壓。以4位元為例,第二電阻串121中會具有16個電阻R2以產生16個分壓。第二資料選擇器123耦接於第二電阻串121,可以根據數位信號的後4位元至第二分壓中選擇對應的一個分壓輸出至緩衝器126以產生輸出電壓OUT1。The first data selector 122 is coupled to the voltage dividing point of the first resistor string 111, that is, the connection point of the adjacent resistor R1 to obtain the voltage of each voltage dividing point (ie, the first voltage dividing). The first data selector 122 is, for example, a multiplexer, and can select two adjacent partial voltages from the first resistor string 111 according to the first 6 bits of the digit signal and output through the first output terminal PIN1 and the second output terminal PIN2. The second resistor string 121 is defined to define reference voltages VH, VL across the second resistor string 121. The resistor R2 in the second resistor string 121 divides the voltage interval formed by the reference voltages VH, VL into a plurality of second divided voltages. Taking 4-bit as an example, the second resistor string 121 will have 16 resistors R2 to generate 16 divided voltages. The second data selector 123 is coupled to the second resistor string 121, and can select a corresponding one of the last four bits of the digit signal to the second voltage divider to output to the buffer 126 to generate the output voltage OUT1.

通道電路120中具有電流源電路,可以提供補償電流ICOMP 給第二電阻串121,以第一電流源124與第二電流源125為例說明,其分別耦接於第二電阻串121的兩端。第一電流源124耦接於電壓源VDD與第二電阻串121的第一端(參考電壓VH端)之間,用以映射一參考電流以產生補償電流ICOMP 至第二電阻串121,而第二電流源125耦接於第二電阻串121的第二端(參考電壓VL端)與接地端GND之間,用以映射上述參考電流以產生補償電流ICOMP 至接地端GND。上述參考電流係對應於第一電阻串111分流至第二電阻串121的電流量。第一電流源124與第二電流源125所產生的補償電流ICOMP 可以讓第二電阻串121兩端的電壓降符合所需參考電壓VH、VL,藉此降低自第一電阻串111分流至第二電阻串121的電流。The channel circuit 120 has a current source circuit, and can provide a compensation current I COMP to the second resistor string 121. The first current source 124 and the second current source 125 are exemplified by the second current source 125. end. The first current source 124 is coupled between the voltage source VDD and the first end of the second resistor string 121 (the reference voltage VH terminal) for mapping a reference current to generate the compensation current I COMP to the second resistor string 121. The second current source 125 is coupled between the second end of the second resistor string 121 (the reference voltage VL terminal) and the ground GND for mapping the reference current to generate the compensation current I COMP to the ground GND. The reference current is corresponding to the amount of current shunted by the first resistor string 111 to the second resistor string 121. The compensation current I COMP generated by the first current source 124 and the second current source 125 can cause the voltage drop across the second resistor string 121 to conform to the required reference voltages VH, VL, thereby reducing the shunt from the first resistor string 111 to the first The current of the two resistor strings 121.

舉例來說,若沒有第一電流源124與第二電流源125,當第一資料選擇器122將第一電阻串111中的兩個分壓耦接至第二電阻串121時,第二電阻串121會自第一電阻串111中分流部分電流以維持兩端的電壓為參考電壓VH、VL。這就如同第二電阻串121並聯至第一電阻111的分壓點一般,不僅會影響第一電阻串111中的電流,也會影響其電阻值,造成分壓的誤差。在習知技術中,通常是在採用緩衝器來隔離兩個電阻串以避免其相互影響。在本發明中,則是採用補償電流的方式來取代緩衝器,藉此降低自第一電阻串111分流至第二電阻串121的電流。For example, if there is no first current source 124 and second current source 125, when the first data selector 122 couples two voltage dividers of the first resistor string 111 to the second resistor string 121, the second resistor The string 121 shunts a portion of the current from the first resistor string 111 to maintain the voltage across the terminals as reference voltages VH, VL. This is similar to the fact that the second resistor string 121 is connected in parallel to the voltage dividing point of the first resistor 111, which not only affects the current in the first resistor string 111, but also affects the resistance value thereof, resulting in a voltage division error. In the prior art, a buffer is usually used to isolate two resistor strings to avoid mutual influence. In the present invention, the buffer is replaced by a compensation current, thereby reducing the current shunted from the first resistor string 111 to the second resistor string 121.

補償電流ICOMP 會與原本由第一電阻串111分流至第二電阻串121的電流值相當,藉此可以讓第一電阻串111分流至第二電阻串121的電流1趨近於零。舉例來說,假如第一電阻串111相鄰的分壓的電壓差(VH-VL)為V,第二電阻串121由16個電阻R2組成,則補償電流ICOMP 為V/(16*R2)。由於補償電流ICOMP 已經可以產生第二電阻串121產生所需的分壓,所以可以降低第一電阻串111分流至第二電阻串121的分流電流。The compensation current I COMP is equivalent to the current value originally shunted by the first resistor string 111 to the second resistor string 121, whereby the current 1 shunted by the first resistor string 111 to the second resistor string 121 can approach zero. For example, if the voltage difference (VH-VL) of the divided voltage adjacent to the first resistor string 111 is V and the second resistor string 121 is composed of 16 resistors R2, the compensation current I COMP is V/(16*R2). ). Since the compensation current I COMP can already generate the required voltage division of the second resistor string 121, the shunt current shunted by the first resistor string 111 to the second resistor string 121 can be reduced.

第一電流源124與第二電流源125可以利用電流鏡的架構實現,但本發明並不限制於此。請參考圖2A,圖2A繪示本發明第一實施例的電流源電路示意圖。數位類比轉換器100中可以包括一個通用電流源210,耦接於第一電阻串111以產生參考電流,然後映射至第一電流源124與第二電流源125中以產生補償電流ICOMP 。通用電流源210包括PMOS電晶體P1~P3、NMOS電晶體N1~N3、運算放大器211、212與由多個第二電阻R2串聯而成的參考電阻串221。在本實施例中,通用電流源210可以根據第一電阻串111所產生的兩個分壓與一參考電阻串221產生參考電流IREF ,其中所選擇的兩個分壓不包括分壓中之最大值與最小值。參考電阻串221與電阻值與第二電阻串121相關。另外,通用電流源210也可以直接根據兩個參考電壓產生參考電流IREFThe first current source 124 and the second current source 125 may be implemented using a current mirror architecture, but the invention is not limited thereto. Please refer to FIG. 2A. FIG. 2A is a schematic diagram of a current source circuit according to a first embodiment of the present invention. The digital analog converter 100 can include a universal current source 210 coupled to the first resistor string 111 to generate a reference current, and then mapped to the first current source 124 and the second current source 125 to generate a compensation current I COMP . The general-purpose current source 210 includes PMOS transistors P1 to P3, NMOS transistors N1 to N3, operational amplifiers 211 and 212, and a reference resistor string 221 formed by connecting a plurality of second resistors R2 in series. In this embodiment, the universal current source 210 can generate the reference current I REF according to the two divided voltages generated by the first resistor string 111 and a reference resistor string 221, wherein the selected two partial voltages do not include the partial voltage Maximum and minimum values. The reference resistor string 221 and the resistance value are associated with the second resistor string 121. In addition, the universal current source 210 can also generate the reference current I REF directly from the two reference voltages.

在通用電流源210中,PMOS電晶體P1的源極耦接於一電壓源VDD;PMOS電晶體P2的源極耦接於PMOS電晶體P1的汲極,閘極耦接於偏壓VB1。NMOS電晶體N1的汲極耦接於PMOS電晶體P2的汲極與PMOS電晶體P1的閘極,其源極耦接於參考電阻串221的第一端。運算放大器211的非反相輸入端(non-inverting input)耦接於第一電阻串111,其反相輸入端(inverting input)耦接於NMOS電晶體N1的源極,其輸出端耦接於NMOS電晶體N1的閘極。PMOS電晶體P3的源極耦接於參考電阻串221的第二端。運算放大器212的反相輸入端耦接於參考電阻串221的第二端,其非反相輸入端耦接於第一電阻串111,其輸出端耦接於PMOS電晶體P3的閘極。NMOS電晶體N2的汲極耦接於PMOS電晶體P3的汲極,閘極耦接於偏壓VB2。NMOS電晶體N3的汲極耦接於NMOS電晶體N2的源極,其源極耦接於接地端GND,其閘極耦接於NMOS電晶體N2的汲極。In the general-purpose current source 210, the source of the PMOS transistor P1 is coupled to a voltage source VDD; the source of the PMOS transistor P2 is coupled to the drain of the PMOS transistor P1, and the gate is coupled to the bias voltage VB1. The drain of the NMOS transistor N1 is coupled to the drain of the PMOS transistor P2 and the gate of the PMOS transistor P1, and the source thereof is coupled to the first end of the reference resistor string 221. The non-inverting input of the operational amplifier 211 is coupled to the first resistor string 111, and the inverting input is coupled to the source of the NMOS transistor N1, and the output end thereof is coupled to The gate of the NMOS transistor N1. The source of the PMOS transistor P3 is coupled to the second end of the reference resistor string 221. The inverting input terminal of the operational amplifier 212 is coupled to the second terminal of the reference resistor string 221, the non-inverting input terminal is coupled to the first resistor string 111, and the output terminal thereof is coupled to the gate of the PMOS transistor P3. The drain of the NMOS transistor N2 is coupled to the drain of the PMOS transistor P3, and the gate is coupled to the bias voltage VB2. The drain of the NMOS transistor N3 is coupled to the source of the NMOS transistor N2, the source of which is coupled to the ground GND, and the gate of the NMOS transistor N3 is coupled to the drain of the NMOS transistor N2.

運算放大器211與運算放大器212之間具有n個第一電阻R1,所以其電壓差為n個分壓的總和,其中n為正整數。假設第二電阻串121表示4位元的資料,則第一電阻串111中的每個分壓會對應於16個第二電阻R2。因此,參考電阻串221包括(16×n)個第二電阻R2以產生對應的參考電流IREF 。參考電流IREF 會流過參考電阻串221,使參考電阻串221兩端的電壓等於通道電路210中的運算放大器211與運算放大器212所選擇的兩個分壓。其中,第一電流源124由串聯的PMOS電晶體P21、P22組成,分別耦接於PMOS電晶體P1的閘極與PMOS電晶體P2的閘極以形成電流鏡,進而映射參考電流IREF 而產生補償電流ICOMP 。第二電流源125由串聯的NMOS電晶體N21、N22組成,其分別耦接於NMOS電晶體N2的閘極與NMOS電晶體N3的閘極以形成電流鏡,進而映射參考電流IREF 而產生補償電流ICOMP 。參考電流IREF 與補償電流ICOMP 之間的比例與PMOS電晶體P21、P22的通道長寬比與PMOS電晶體P1、P2的通道長寬比之間的比值,以及NMOS電晶體N21、N22的通道長寬比與NMOS電晶體N2、N3的通道長寬比之間的比值有關,本技術領域具有通常知識者應可經由圖2A推知其計算方式,在此不加累述。There are n first resistors R1 between the operational amplifier 211 and the operational amplifier 212, so the voltage difference is the sum of n partial voltages, where n is a positive integer. Assuming that the second resistor string 121 represents a 4-bit data, each divided voltage in the first resistor string 111 corresponds to 16 second resistors R2. Therefore, the reference resistor string 221 includes (16×n) second resistors R2 to generate a corresponding reference current I REF . The reference current I REF flows through the reference resistor string 221 such that the voltage across the reference resistor string 221 is equal to the two divided voltages selected by the operational amplifier 211 and the operational amplifier 212 in the channel circuit 210. The first current source 124 is composed of PMOS transistors P21 and P22 connected in series, and is respectively coupled to the gate of the PMOS transistor P1 and the gate of the PMOS transistor P2 to form a current mirror, thereby mapping the reference current I REF to generate Compensation current I COMP . The second current source 125 is composed of NMOS transistors N21 and N22 connected in series, which are respectively coupled to the gate of the NMOS transistor N2 and the gate of the NMOS transistor N3 to form a current mirror, thereby mapping the reference current I REF to generate compensation. Current I COMP . The ratio between the reference current I REF and the compensation current I COMP and the ratio of the channel aspect ratio of the PMOS transistors P21 and P22 to the channel aspect ratio of the PMOS transistors P1 and P2, and the NMOS transistors N21 and N22 The channel aspect ratio is related to the ratio between the channel aspect ratios of the NMOS transistors N2, N3, and those skilled in the art should be able to infer the calculation thereof via FIG. 2A, which will not be described here.

通用電流源210所產生的參考電流IREF 可以提供給所有的通道電路120~140使用以產生對應的補償電流ICOMP 。各個通道電路120~140中的第二電阻串121的兩端設置有與第一電流源124與第二電流源125相似的電流源結構,可以用來映射參考電流IREF 以產生對應的補償電流ICOMP 。由於每個通道電路120~140所輸出的電壓主要是由補償電流ICOMP 流經第二電阻串121產生,所以不會影響第一電阻串111上的電流與分壓。第一電阻串111與第二電阻串121之間也不需要設置緩衝器或單位增益放大器(unit gain amplifier)來隔離兩邊的電阻。如圖1所示,第一電阻串111分流至第二電阻串121的電流I趨近於零。藉此,可以降低電路面積與功率消耗。The reference current I REF generated by the universal current source 210 can be provided to all of the channel circuits 120-140 to generate a corresponding compensation current I COMP . A current source structure similar to the first current source 124 and the second current source 125 is disposed at both ends of the second resistor string 121 in each of the channel circuits 120-140, and can be used to map the reference current I REF to generate a corresponding compensation current. I COMP . Since the voltage outputted by each of the channel circuits 120-140 is mainly generated by the compensation current I COMP flowing through the second resistor string 121, the current and the voltage division on the first resistor string 111 are not affected. There is also no need to provide a buffer or unit gain amplifier between the first resistor string 111 and the second resistor string 121 to isolate the resistors on both sides. As shown in FIG. 1, the current I of the first resistor string 111 shunted to the second resistor string 121 approaches zero. Thereby, the circuit area and power consumption can be reduced.

第一資料選擇器122可根據數位信號選擇兩個分壓以作為參考電壓VH、VL,其內部電路的實施例方式如圖2B所示,圖2B為根據本發明第一實施例的第一資料選擇器122的內部電路圖。如圖2B所示,第一資料選擇器122包括解碼單元127與切換單元S24。解碼單元127尚包括第一解碼器D21、第二解碼器D22與第三解碼器D23。假設第一電阻串111具有65個分壓點以對應於6位元的資料(000000~111111)。第一解碼器D21、第二解碼器D22與第三解碼器D23的輸入端分別耦接於第一電阻串111的所有分壓點ND1~ND65,其耦接關係如圖2B所示。第一解碼器D21與第三解碼器D23的輸入端分別耦接於奇數分壓點(ND1、ND3...ND65),其中第一解碼器D21耦接的分壓點為ND1~ND63,而第三解碼器D23耦接的分壓點為ND3~ND65。除了分壓點ND1與ND65外,第一解碼器D21與第三解碼器D23所耦接的分壓點重疊。第二解碼器D23則耦接於第一電阻串111的偶數分壓點(ND2、ND4...ND64)。The first data selector 122 can select two partial voltages as the reference voltages VH, VL according to the digital signal, and an embodiment of the internal circuit is as shown in FIG. 2B, and FIG. 2B is the first data according to the first embodiment of the present invention. The internal circuit diagram of the selector 122. As shown in FIG. 2B, the first material selector 122 includes a decoding unit 127 and a switching unit S24. The decoding unit 127 further includes a first decoder D21, a second decoder D22, and a third decoder D23. It is assumed that the first resistor string 111 has 65 voltage dividing points to correspond to the data of 6 bits (000000 to 111111). The input ends of the first decoder D21, the second decoder D22, and the third decoder D23 are respectively coupled to all the voltage dividing points ND1 ND ND65 of the first resistor string 111, and the coupling relationship thereof is as shown in FIG. 2B. The input ends of the first decoder D21 and the third decoder D23 are respectively coupled to the odd-numbered voltage dividing points (ND1, ND3, ..., ND65), wherein the voltage dividing points of the first decoder D21 are ND1~ND63, and The voltage dividing points coupled to the third decoder D23 are ND3~ND65. In addition to the voltage dividing points ND1 and ND65, the first decoder D21 overlaps with the voltage dividing point to which the third decoder D23 is coupled. The second decoder D23 is coupled to the even voltage dividing points (ND2, ND4, . . . ND64) of the first resistor string 111.

在圖2B中,第一資料選擇器122可以根據6位元的數位信號來產生所需的電壓區間。第一解碼器D21、第二解碼器D22與第三解碼器D23是採用適用於5位元的解碼器來實現,可以根據5位元的數位信號來選擇所輸出的分壓。在本實施例中,將第一資料選擇器122所接收的6位元的數位信號分為5位元的最高有效位元組與一位元的最低有效位元(Least Significant Bit,LSB)。最高有效位元組是指除了最低有效位元以外的5個位元。第一解碼器D21、第二解碼器D22與第三解碼器D23會根據最高有效位元組選擇三個相鄰的分壓點,並將其分壓輸出至切換單元S24。每個解碼器會對應最高有效位元組輸出一個分壓。In FIG. 2B, the first data selector 122 can generate a desired voltage interval based on a 6-bit digital signal. The first decoder D21, the second decoder D22, and the third decoder D23 are implemented using a decoder suitable for 5 bits, and the output divided voltage can be selected based on a 5-bit digital signal. In this embodiment, the 6-bit digital signal received by the first data selector 122 is divided into a 5-bit most significant byte and a Least Significant Bit (LSB). The most significant byte refers to 5 bits except the least significant bit. The first decoder D21, the second decoder D22, and the third decoder D23 select three adjacent voltage dividing points according to the most significant byte group, and output the divided voltages to the switching unit S24. Each decoder outputs a partial voltage corresponding to the most significant byte.

舉例來說,第一解碼器D21、第二解碼器D22與第三解碼器D23的輸入接腳由下而上對應於數位信號的數值,如同多工器一般。例如,當最高有效位元組為00000時,第一解碼器D21會輸出分壓點ND1的分壓,第二解碼器D22會輸出分壓點ND2的分壓,而第三解碼器D23會輸出分壓點ND3的分壓。當最高有效位元組為00001時,則分別輸出分壓點ND3、ND4、ND5上的分壓,依此類堆,在此不加累述。For example, the input pins of the first decoder D21, the second decoder D22, and the third decoder D23 have values corresponding to the digital signals from bottom to top, as in the multiplexer. For example, when the most significant byte is 00000, the first decoder D21 outputs the divided voltage of the voltage dividing point ND1, the second decoder D22 outputs the voltage dividing of the voltage dividing point ND2, and the third decoder D23 outputs The partial pressure of the partial pressure point ND3. When the most significant byte is 00001, the partial voltages on the voltage dividing points ND3, ND4, and ND5 are respectively output, and such a heap is not described here.

當數位信號的最低有效位元為0時,切換單元S24會將第一解碼器D21的輸出作為參考電壓VL輸出,將第二解碼器D22的輸出作為參考電壓VH輸出。當數位信號的最低有效位元為1時,切換單元S24會將第二解碼器D22的輸出作為參考電壓VL輸出,將第三解碼器D23的輸出作為參考電壓VH輸出。由於第一解碼器D21、第二解碼器D22與第三解碼器D23與各該分壓點ND1~ND65的耦接方式,其輸出的分壓點會相鄰。切換單元S24會根據最低有效位元自三個分壓中的選擇其中兩個分壓輸出至第一資料選擇器122的第一輸出端PIN1與第二輸出端PIN2以作為參考電壓VH、VL。When the least significant bit of the digital signal is 0, the switching unit S24 outputs the output of the first decoder D21 as the reference voltage VL, and outputs the output of the second decoder D22 as the reference voltage VH. When the least significant bit of the digital signal is 1, the switching unit S24 outputs the output of the second decoder D22 as the reference voltage VL, and outputs the output of the third decoder D23 as the reference voltage VH. Due to the coupling manner of the first decoder D21, the second decoder D22 and the third decoder D23 and each of the voltage dividing points ND1 ND ND65, the voltage dividing points of the outputs are adjacent. The switching unit S24 outputs two of the three partial pressures to the first output terminal PIN1 and the second output terminal PIN2 of the first data selector 122 as the reference voltages VH, VL according to the least significant bit.

第一解碼器D21、第二解碼器D22與第三解碼器D23例如是32對1的多工器,可根據5位元的最高有效位元組選擇導通路徑。在本發明的應用上,主要的差異在於多工器的輸入端與分壓點的分配方式與習知不同。經由上述實施例之說明後,本技術領域具有通常知識者應可推知如何利用多工器實現第一解碼器D21、第二解碼器D22與第三解碼器D23,在此不加累述。本實施例藉由交錯的配置分式與利用切換單元S24,可以對應輸出所需的電壓區間。切換單元S24的電路是由四個開關形成不同的切換路徑。為方便說明,以2位元的解碼器配合說明切換電路的架構。請參照圖2C,圖2C繪示本發明一實施例的解碼器與切換單元的內部電路示意圖。在圖2C中,3位元的數位信號以b2b1b0表示,其中b0為最低有效位元,而b2b1則為最高有效位元組。第一解碼器DX21、第二解碼器DX22與第二解碼器DX23的輸入端分別耦接於9個分壓點ND1~ND9,其耦接方式如上述圖2B所述,在此不加累述。The first decoder D21, the second decoder D22, and the third decoder D23 are, for example, 32-to-1 multiplexers, and the conduction path can be selected according to the most significant byte of 5 bits. In the application of the present invention, the main difference is that the input and the voltage dividing points of the multiplexer are distributed differently than conventionally. After the description of the above embodiments, those skilled in the art should be able to infer how to implement the first decoder D21, the second decoder D22 and the third decoder D23 by using a multiplexer, which will not be described here. In this embodiment, by using the interleaved configuration fraction and the utilization switching unit S24, the required voltage interval can be output correspondingly. The circuit of the switching unit S24 is formed by four switches forming different switching paths. For convenience of explanation, the 2-bit decoder is used to illustrate the architecture of the switching circuit. Please refer to FIG. 2C. FIG. 2C is a schematic diagram of an internal circuit of a decoder and a switching unit according to an embodiment of the present invention. In Figure 2C, the 3-bit digital signal is represented by b2b1b0, where b0 is the least significant bit and b2b1 is the most significant byte. The input ends of the first decoder DX21, the second decoder DX22, and the second decoder DX23 are respectively coupled to the nine voltage dividing points ND1 ND ND9, and the coupling manner thereof is as described above in FIG. 2B, and is not described here. .

第一解碼器DX21、第二解碼器DX22與第二解碼器DX23中每個開關與對應於最高有效位元組b2b1的致能關係如圖2C所示,其每個開關會根據所對應的位元b2、b1、非b2(negation of b2或稱為b2 bar)、非b1(negation of b1或稱為b1 bar)對應導通。切換單元SX24包括第一開關SW1、第二開關SW2、第三開關SW3與第四開關SW4。第一開關SW1耦接於第三解碼器DX23的輸出端與第一資料選擇器122的第一輸出端PIN1。第二開關SW2耦接於第一解碼器DX21的輸出端與第一資料選擇器122的第二輸出端PIN2。第三開關SW3耦接於第二解碼器DX22的輸出端與第一資料選擇器122的第一輸出端PIN1。第四開關SW4耦接於第二解碼器DX22的輸出端與第一資料選擇器122的第二輸出端PIN2。其中,當最低有效位元為1時,第一開關SW1與第四開關SW4導通,當最低有效位元為0時,第二開關SW2與第三開關SW3導通。切換單元SX24的電路架構可以直接應用於圖2B中的切換單元S24,其與第一解碼器D21、第二解碼器D22與第三解碼器D23的耦接關係如同圖2C一般,本技術領域具有通常知識者應可經由圖2推知其計算方式,在此不加累述。The enabling relationship of each of the first decoder DX21, the second decoder DX22 and the second decoder DX23 and the most significant byte b2b1 is as shown in FIG. 2C, and each of the switches is based on the corresponding bit. Element b2, b1, non-b2 (negation of b2 or b2 bar), non-b1 (negation of b1 or b1 bar) are turned on. The switching unit SX24 includes a first switch SW1, a second switch SW2, a third switch SW3, and a fourth switch SW4. The first switch SW1 is coupled to the output end of the third decoder DX23 and the first output terminal PIN1 of the first data selector 122. The second switch SW2 is coupled to the output of the first decoder DX21 and the second output PIN2 of the first data selector 122. The third switch SW3 is coupled to the output end of the second decoder DX22 and the first output terminal PIN1 of the first data selector 122. The fourth switch SW4 is coupled to the output end of the second decoder DX22 and the second output terminal PIN2 of the first data selector 122. Wherein, when the least significant bit is 1, the first switch SW1 and the fourth switch SW4 are turned on, and when the least significant bit is 0, the second switch SW2 and the third switch SW3 are turned on. The circuit architecture of the switching unit SX24 can be directly applied to the switching unit S24 in FIG. 2B, and its coupling relationship with the first decoder D21, the second decoder D22 and the third decoder D23 is as shown in FIG. 2C, and has a technical field in the art. Generally, the knowledge person should be able to infer the calculation method according to FIG. 2, which is not described here.

緩衝器126是由負回授的運算放大器形成,其內部電路例如由串疊組態AB類放大器(cascode class-AB amplifier)形成,其電路請參照圖3,圖3繪示本發明第一實施例的串疊組態AB類放大器的電路示意圖。形成緩衝器126的運算放大器是由電晶體M1~M20組成,其中電晶體M1~M3、M7、M8、M11、M14、M15、M18、M19為P型電晶體;電晶體M4~M6、M9、M10、M12、M13、M16、M17、M20為N型電晶體。電晶體M1的閘極耦接於偏壓VB31;電晶體M4的閘極耦接於偏壓VB32;電晶體M11、M15的閘極耦接於偏壓VB33;電晶體M13、M17的閘極耦接於偏壓VB34。電晶體M1~M6為差動輸入級電路,其中電晶體M1~M3為P型電晶體,電晶體M5~M6為N型電晶體,其中電晶體M3、M6的閘極為運算放大器的非反相輸入端,以端點in+表示;電晶體M2、M5的閘極為運算放大器的反相輸入端,以端點in-表示。電晶體M1的源極耦接於電壓源VDD;電晶體M4的源極耦接於接地端GND。電晶體M11~M18為串疊組態AB類放大器的電路架構,其可以準確的控制輸出電晶體的靜態電流(quiescent current),可降低靜態電路對電壓源的敏感度。電晶體M7、M8、M9、M10為電流鏡架構,而電晶體M19、M20為輸出級電路,其電晶體M19、M20的共用接點(汲極)用以產生輸出電壓OUT1。運算放大器的電路架構如圖3所示,在此不加累述。實現運算放大器的電路有很多種方式,在經由上述實施例之說明後,本技術領域具有通常知識者應可推知運算放大器的其他實施方式,在此不加累述。The buffer 126 is formed by a negative feedback operational amplifier, and its internal circuit is formed, for example, by a cascode class-AB amplifier. The circuit is shown in FIG. 3. FIG. 3 illustrates the first embodiment of the present invention. A schematic diagram of the circuit configuration of a cascaded configuration class AB amplifier. The operational amplifier forming the buffer 126 is composed of transistors M1~M20, wherein the transistors M1~M3, M7, M8, M11, M14, M15, M18, M19 are P-type transistors; the transistors M4~M6, M9, M10, M12, M13, M16, M17, and M20 are N-type transistors. The gate of the transistor M1 is coupled to the bias voltage VB31; the gate of the transistor M4 is coupled to the bias voltage VB32; the gates of the transistors M11 and M15 are coupled to the bias voltage VB33; and the gates of the transistors M13 and M17 are coupled. Connected to the bias voltage VB34. The transistors M1~M6 are differential input stage circuits, wherein the transistors M1~M3 are P-type transistors, and the transistors M5~M6 are N-type transistors, wherein the gates of the transistors M3 and M6 are extremely non-inverting of the operational amplifier. The input is represented by the end point in+; the gates of the transistors M2 and M5 are the inverting input of the operational amplifier, indicated by the end point in-. The source of the transistor M1 is coupled to the voltage source VDD; the source of the transistor M4 is coupled to the ground GND. The transistor M11~M18 is a circuit structure of a cascade configuration class AB amplifier, which can accurately control the quiescent current of the output transistor, and can reduce the sensitivity of the static circuit to the voltage source. The transistors M7, M8, M9, and M10 are current mirror structures, and the transistors M19 and M20 are output stage circuits, and the common contacts (drains) of the transistors M19 and M20 are used to generate the output voltage OUT1. The circuit architecture of the operational amplifier is shown in Figure 3 and will not be described here. There are many ways to implement an operational amplifier circuit. Those skilled in the art will be able to deduce other embodiments of the operational amplifier after the description of the above embodiments, and will not be described here.

(第二實施例)(Second embodiment)

請參照圖4,圖4繪示本發明第二實施例的數位類比轉換器400的電路示意圖。圖4與上述圖1主要差異在於第一資料選擇器122與第二電阻串121之間的耦接關係。在圖1中,第一資料選擇器122具有兩個輸出端,分別耦接於第二電阻串121的兩端。在圖4中,第一資料選擇器122只有一個輸出端,其耦接於第二電阻串121的第一端(參考電壓VH端)以將所選擇的分壓輸出至第二電阻串121以作為參考電壓VH。相較於圖1,在圖4中,第一資料選擇器122會將所選擇出的一個分壓(來自第一電阻串111)輸出至第二電阻串121以作為參考電壓VH。由於第一電流源124與第二電流源125會產生補償電流ICOMP ,所以只要決定參考電壓VH的電壓準位,第二電阻串121中的每個分壓便會對應產生。Please refer to FIG. 4. FIG. 4 is a schematic circuit diagram of a digital analog converter 400 according to a second embodiment of the present invention. The main difference between FIG. 4 and FIG. 1 above is the coupling relationship between the first data selector 122 and the second resistor string 121. In FIG. 1 , the first data selector 122 has two outputs coupled to the two ends of the second resistor string 121 . In FIG. 4, the first data selector 122 has only one output terminal coupled to the first end of the second resistor string 121 (reference voltage VH terminal) to output the selected divided voltage to the second resistor string 121. As the reference voltage VH. In comparison with FIG. 1, in FIG. 4, the first data selector 122 outputs the selected one divided voltage (from the first resistor string 111) to the second resistor string 121 as the reference voltage VH. Since the first current source 124 and the second current source 125 generate the compensation current I COMP , each voltage division in the second resistor string 121 is correspondingly generated as long as the voltage level of the reference voltage VH is determined.

事實上在本發明另一實施例中,不一定要把第一資料選擇器122的輸出耦接於第二電阻串121的第一端(參考電壓VH端),它也可以耦接於第二電阻串121中的任一點(任一個分壓點),當然也包括第二電阻串121的第二端(參考電壓VL端)。第一由於電流源124與第二電流源125仍然會產生補償電流ICOMP ,所以只要決定第二電阻串121上任一點的電壓準位,第二電阻串121中的每個分壓便會對應產生。在圖4的通道電路420~440中,除了第一資料選擇器122與第二電阻串121之間的耦接關係以外,其餘電路架構與圖1相似,本技術領域具有通常知識者應可由上述第一實施例的說明中推知,在此不加累述。In another embodiment of the present invention, the output of the first data selector 122 is not necessarily coupled to the first end of the second resistor string 121 (reference voltage VH terminal), and it may be coupled to the second Any point in the resistor string 121 (any one of the voltage dividing points), of course, also includes the second end of the second resistor string 121 (reference voltage VL terminal). First, since the current source 124 and the second current source 125 still generate the compensation current I COMP , each voltage division in the second resistor string 121 is generated correspondingly as long as the voltage level at any point on the second resistor string 121 is determined. . In the channel circuits 420-440 of FIG. 4, except for the coupling relationship between the first data selector 122 and the second resistor string 121, the remaining circuit architecture is similar to that of FIG. 1. Those skilled in the art should be able to It is inferred from the description of the first embodiment that it will not be described here.

(第三實施例)(Third embodiment)

由於第二電阻串121耦接至第一電阻串111的分壓點時會影響分壓點之間的電阻值以及產生電流分流,為避免上述情況發生,本發明採用電流補償的技術手段來降低第二電阻串121對第一電阻串111的影響。如同上述圖1所示,電流源124、125是設置在通道電路120中以產生補償電流ICOMP ,藉此降低自第一電阻串111分流至第二電阻串121的電流。其中,電流源124、125的設計原理也可以應用在第一電阻串111中以避免第二電阻串121影響到第一電阻串111。Since the second resistor string 121 is coupled to the voltage dividing point of the first resistor string 111, the resistance value between the voltage dividing points and the current shunting are affected. To avoid the above situation, the present invention uses a current compensation technique to reduce The influence of the second resistor string 121 on the first resistor string 111. As shown in FIG. 1 above, current sources 124, 125 are disposed in channel circuit 120 to generate a compensation current I COMP , thereby reducing the current shunted from first resistor string 111 to second resistor string 121. The design principle of the current sources 124, 125 can also be applied to the first resistor string 111 to prevent the second resistor string 121 from affecting the first resistor string 111.

請參照圖5,圖5繪示本發明第三實施例的數位類比轉換器的電路示意圖。圖5與圖1主要的差異在於電流源電路510是設置在第一電阻串111上,而不是設置在第二電阻串121上。電流源電路510包括複數個子電流源151、152、控制器511與電流模式數位類比轉換器512。第一電阻串111的每個分壓點會具有一個子電流源I51與子電流源I52。子電流源I51的電流方向是流進分壓點,而子電流源I52的電流方向是自分壓點流出。每個子電流源I51、I52都是可調整電流的可變電流源。控制器511耦接於電流模式數位類比轉換器512,而電流模式數位類比轉換器512則耦接於每個子電流源I51、I52以控制每個子電流源I51、I52的電流值。第一資料選擇122耦接於第一電阻串111與第二電阻串121之間,根據所接收的數位信號選擇第一電阻串111的兩個分壓以輸出至第二電阻串121的兩端。第二資料選擇器123會自第二電阻串121中選擇一個分壓以輸出至緩衝器126,然後產生輸出電壓OUT1。第二資料選擇器123根據數位信號所選擇的分壓就是對應於數位信號的類比輸出電壓。舉例來說,數位信號可以是對應於畫素的灰階值,而輸出電壓OUT1就是對應於此灰階值的畫素電壓。Please refer to FIG. 5. FIG. 5 is a schematic circuit diagram of a digital analog converter according to a third embodiment of the present invention. The main difference between FIG. 5 and FIG. 1 is that the current source circuit 510 is disposed on the first resistor string 111 instead of the second resistor string 121. Current source circuit 510 includes a plurality of sub-current sources 151, 152, controller 511 and current mode digital analog converter 512. Each of the voltage dividing points of the first resistor string 111 has a sub current source I51 and a sub current source I52. The current direction of the sub current source I51 flows into the voltage dividing point, and the current direction of the sub current source I52 flows out from the voltage dividing point. Each of the sub-current sources I51, I52 is a variable current source that can adjust the current. The controller 511 is coupled to the current mode digital analog converter 512, and the current mode digital analog converter 512 is coupled to each of the sub current sources I51, I52 to control the current value of each of the sub current sources I51, I52. The first data selection 122 is coupled between the first resistor string 111 and the second resistor string 121, and selects two divided voltages of the first resistor string 111 according to the received digit signal to output to both ends of the second resistor string 121. . The second data selector 123 selects a divided voltage from the second resistor string 121 to output to the buffer 126, and then generates an output voltage OUT1. The divided voltage selected by the second data selector 123 according to the digital signal is an analog output voltage corresponding to the digital signal. For example, the digital signal may be a grayscale value corresponding to a pixel, and the output voltage OUT1 is a pixel voltage corresponding to the grayscale value.

控制器511根據輸入信號INT產生控制信號至電流模式數位類比轉換器512。輸入信號INT係對應於被選擇的兩個分壓點。電流模式數位類比轉換器512會根據控制信號計算每個分壓點會分流多少電流至第二電阻串121,以及每個分壓點會接收多少自第二電阻串121回流的電流。然後,控制每個子電流源I51、I52產生對應的電流以抵消第二電阻串121對第一電阻串111的影響。舉例來說,假如通道電路520所選擇的分壓點為N51、N52,電流模式數位類比轉換器512會計算第二電阻串121所需的分流電流值,然後控制耦接至分壓點N51的子電流源I51與耦接於分壓點N52的子電流源I52產生對應的補償電流以補償由第一電阻串111流向第二電阻串121的分流電流。The controller 511 generates a control signal to the current mode digital analog converter 512 based on the input signal INT. The input signal INT corresponds to the two divided points selected. The current mode digital analog converter 512 calculates how much current will be shunted by each voltage dividing point to the second resistor string 121 based on the control signal, and how much current is returned from the second resistor string 121 for each voltage dividing point. Then, each of the sub current sources I51, I52 is controlled to generate a corresponding current to cancel the influence of the second resistor string 121 on the first resistor string 111. For example, if the voltage dividing points selected by the channel circuit 520 are N51 and N52, the current mode digital analog converter 512 calculates the shunt current value required by the second resistor string 121, and then controls the coupling to the voltage dividing point N51. The sub current source I51 and the sub current source I52 coupled to the voltage dividing point N52 generate a corresponding compensation current to compensate the shunt current flowing from the first resistor string 111 to the second resistor string 121.

舉例來說,假設流經第二電阻串121的電流分流為補償電流ICOMP ,則子電流源I51就會產生補償電流ICOMP 流進分壓點N51中,而子電流源N52同樣會產生對應的補償電流ICOMP 自分壓點N52流出。藉此,補償自第一電流串111分流至第二電阻串121的電流分流。由於子電流源I51與子電流源I52的電流方向分別為流進與流出,所以在分壓點N51、N52以外的電阻分壓不會受到補償電流ICOMP 影響,而能維持原有的分壓。第二電阻串121所需要的電流分流就直接由子電流源I51與子電流源I52所產生的補償電流ICOMP 提供,所以第二電阻串121也不會影響到第一電阻串111原有的分壓。另外,從電阻並聯的角度來看,當把第二電阻串121耦接至第一電阻串111的分壓點N51、N52時,分壓點N51、N52兩端點之間的電阻會電阻因並聯而變小。因此,為維持分壓點N51、N52兩端的壓降就必須流經更多的電流。這個電流與原先第一電阻串111上的電流的差值就是補償電流ICOMP 的值。藉由補償電流ICOMP 的產生,可以讓第二電阻串121產生對應的分壓,並且避免第二電阻串121影響到第一電阻串111原有的分壓。For example, if the current flowing through the second resistor string 121 is shunted into the compensation current I COMP , the sub current source I51 generates a compensation current I COMP flowing into the voltage dividing point N51, and the sub current source N52 also generates a corresponding value. The compensation current I COMP flows out from the voltage dividing point N52. Thereby, the current shunt that is shunted from the first current string 111 to the second resistor string 121 is compensated. Since the current directions of the sub current source I51 and the sub current source I52 are respectively flowing in and out, the voltage division of the resistors other than the voltage dividing points N51 and N52 is not affected by the compensation current I COMP , and the original partial voltage can be maintained. . The current shunt required by the second resistor string 121 is directly provided by the compensating current I COMP generated by the sub current source I51 and the sub current source I52, so the second resistor string 121 does not affect the original fraction of the first resistor string 111. Pressure. In addition, when the second resistor string 121 is coupled to the voltage dividing points N51 and N52 of the first resistor string 111, the resistance between the two ends of the voltage dividing points N51 and N52 may be due to the parallel connection of the resistors. Parallel and smaller. Therefore, in order to maintain the voltage drop across the voltage dividing points N51, N52, more current must flow. The difference between this current and the current on the original first resistor string 111 is the value of the compensation current I COMP . By compensating for the generation of the current I COMP , the second resistor string 121 can be made to generate a corresponding partial voltage, and the second resistor string 121 can be prevented from affecting the original voltage division of the first resistor string 111.

同理,當多個通道電路520~540同時使用相同的分壓點時,電流模式數位類比轉換器512就會根據通道電路520~540所需的電流分流,調整每個分壓點上的子電流源I51、I52。舉例來說,當通道電路520、530共用分壓點N51、N52時,分壓點N51上的子電流源I51與分壓點N52上的子電流源I52就會產生兩倍的補償電流ICOMP 。由於每個通道電路520~540所耦接於分壓點可能不同,因此每個子電源I51、I52都會依據所對應的分壓點與其所需的分流電流產生補償電流以補償自第一電阻串111分流至第二電阻串121的電流,同時將自第二電阻串121回流至第一電阻串111的電流引流至接地端以避免影響第一電阻串111原有的分壓。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知其子電流源I51、I52的電流值,在此不加累述。Similarly, when multiple channel circuits 520-540 use the same voltage dividing point at the same time, the current mode digital analog converter 512 adjusts the voltage at each voltage dividing point according to the current shunt required by the channel circuits 520~540. Current sources I51, I52. For example, when the channel circuits 520 and 530 share the voltage dividing points N51 and N52, the sub current source I51 at the voltage dividing point N51 and the sub current source I52 at the voltage dividing point N52 generate twice the compensation current I COMP. . Since each of the channel circuits 520-540 may be coupled to the voltage dividing point, each of the sub-power sources I51 and I52 generates a compensation current according to the corresponding voltage dividing point and its required shunt current to compensate the first resistor string 111. The current is shunted to the second resistor string 121 while the current flowing back from the second resistor string 121 to the first resistor string 111 is drained to the ground to avoid affecting the original voltage division of the first resistor string 111. After the description of the above embodiments, those skilled in the art should be able to infer the current values of their sub-current sources I51, I52, which will not be described here.

此外,值得注意的是,上述元件之間的耦接關係包括直接或間接的電性連接,只要可以達到所需的電信號傳遞功能即可,本發明並不受限。上述實施例中的技術手段可以合併或單獨使用,其元件可依照其功能與設計需求增加、去除、調整或替換,本發明並不受限。在經由上述實施例之說明後,本技術領域具有通常知識者應可推知其實施方式,在此不加累述。In addition, it is to be noted that the coupling relationship between the above elements includes a direct or indirect electrical connection as long as the desired electrical signal transfer function can be achieved, and the invention is not limited. The technical means in the above embodiments may be combined or used alone, and the components may be added, removed, adjusted or replaced according to their functions and design requirements, and the invention is not limited. After the description of the above embodiments, those skilled in the art should be able to deduce the embodiments thereof, and will not be described herein.

綜上所述,本發明在電阻串上加上可以產生補償電流的電流源,避免第二級的電阻串(即第二電阻串)影響到第一級電阻串的分壓。同時,利用本發明的技術手段,兩個電阻串之間不需設置緩衝器或隔離電路以分隔兩個電阻串。In summary, the present invention adds a current source that can generate a compensation current to the resistor string, and prevents the second-stage resistor string (ie, the second resistor string) from affecting the voltage division of the first-stage resistor string. At the same time, with the technical means of the present invention, no buffer or isolation circuit is needed between the two resistor strings to separate the two resistor strings.

雖然本發明之較佳實施例已揭露如上,然本發明並不受限於上述實施例,任何所屬技術領域中具有通常知識者,在不脫離本發明所揭露之範圍內,當可作些許之更動與調整,因此本發明之保護範圍應當以後附之申請專利範圍所界定者為準。Although the preferred embodiments of the present invention have been disclosed as above, the present invention is not limited to the above-described embodiments, and any one of ordinary skill in the art can make some modifications without departing from the scope of the present invention. The scope of protection of the present invention should be determined by the scope of the appended claims.

100...數位類比轉換器100. . . Digital analog converter

111...第一電阻串111. . . First resistor string

120~140...通道電路120~140. . . Channel circuit

121...第二電阻串121. . . Second resistor string

122...第一資料選擇器122. . . First data selector

123...第二資料選擇器123. . . Second data selector

124...第一電流源124. . . First current source

125...第二電流源125. . . Second current source

126...緩衝器126. . . buffer

127...解碼單元127. . . Decoding unit

210...通用電流源210. . . Universal current source

211、212...運算放大器211, 212. . . Operational Amplifier

221...參考電阻串221. . . Reference resistor string

400...數位類比轉換器400. . . Digital analog converter

420~440...通道電路420~440. . . Channel circuit

510...電流源電路510. . . Current source circuit

511...控制器511. . . Controller

512...電流模式數位類比轉換器512. . . Current mode digital analog converter

520~540...通道電路520~540. . . Channel circuit

I51、I52...子電流源I51, I52. . . Sub current source

R1...第一電阻R1. . . First resistance

R2...第二電阻R2. . . Second resistance

PIN1...第一輸出端PIN1. . . First output

PIN2...第二輸出端PIN2. . . Second output

VRH、VRL...參考電壓VRH, VRL. . . Reference voltage

OUT1...輸出電壓OUT1. . . The output voltage

ICOMP ...補償電流I COMP . . . Compensation current

IREF ...參考電流I REF . . . Reference current

VH、VL...參考電壓VH, VL. . . Reference voltage

P1~P3、P21、P22...PMOS電晶體P1~P3, P21, P22. . . PMOS transistor

N1~N3、N21、N22...NMOS電晶體N1~N3, N21, N22. . . NMOS transistor

VB1、VB2、VB31、VB32、VB33、VB34...偏壓VB1, VB2, VB31, VB32, VB33, VB34. . . bias

ND1~ND65...分壓點ND1~ND65. . . Partial pressure point

D21~D23、DX21~DX23...解碼器D21~D23, DX21~DX23. . . decoder

S24、SX24...切換單元S24, SX24. . . Switching unit

SW1~SW4...開關SW1~SW4. . . switch

b2、b1、b0...位元B2, b1, b0. . . Bit

GND...接地端GND. . . Ground terminal

I...電流I. . . Current

M1~M20...電晶體M1~M20. . . Transistor

in+、in-...端點In+, in-. . . End point

INT...輸入信號INT. . . input signal

N51、N52...分壓點N51, N52. . . Partial pressure point

圖1繪示本發明第一實施例的數位類比轉換器的電路示意圖。1 is a circuit diagram of a digital analog converter according to a first embodiment of the present invention.

圖2A繪示本發明第一實施例的電流源電路示意圖。2A is a schematic diagram of a current source circuit according to a first embodiment of the present invention.

圖2B繪示本發明第一實施例的第一資料選擇器的電路示意圖。2B is a circuit diagram of a first data selector of the first embodiment of the present invention.

圖2C繪示本發明第一實施例的解碼器與切換單元的內部電路示意圖。2C is a schematic diagram showing the internal circuit of the decoder and the switching unit according to the first embodiment of the present invention.

圖3繪示本發明第一實施例的串疊組態AB類放大器的電路示意圖。3 is a circuit diagram of a tandem configuration class AB amplifier according to a first embodiment of the present invention.

圖4繪示本發明第二實施例的數位類比轉換器的電路示意圖。4 is a circuit diagram of a digital analog converter according to a second embodiment of the present invention.

圖5繪示本發明第三實施例的數位類比轉換器的電路示意圖。FIG. 5 is a circuit diagram of a digital analog converter according to a third embodiment of the present invention.

100...數位類比轉換器100. . . Digital analog converter

111...第一電阻串111. . . First resistor string

120~140...通道電路120~140. . . Channel circuit

121...第二電阻串121. . . Second resistor string

122...第一資料選擇器122. . . First data selector

123...第二資料選擇器123. . . Second data selector

124...第一電流源124. . . First current source

125...第二電流源125. . . Second current source

126...緩衝器126. . . buffer

R1...第一電阻R1. . . First resistance

R2...第二電阻R2. . . Second resistance

PIN1...第一輸出端PIN1. . . First output

PIN2...第二輸出端PIN2. . . Second output

VRH、VRL...參考電壓VRH, VRL. . . Reference voltage

OUT1...輸出電壓OUT1. . . The output voltage

ICOMP ...補償電流I COMP . . . Compensation current

VH、VL...參考電壓VH, VL. . . Reference voltage

Claims (20)

一種數位類比轉換器,具有一第一電阻串,該第一電阻串具有複數個串聯的第一電阻以產生複數個第一分壓,該數位類比轉換器包括:至少一通道電路,包括:一第一資料選擇器,耦接於該第一電阻串,用以選擇該些第一分壓中至少一個分壓以產生一電壓區間;一第二電阻串,具有複數個串聯的第二電阻,該第二電阻串耦接於該第一資料選擇器,用以將該電壓區間分壓為複數個第二分壓;一第二資料選擇器,耦接於該第二電阻串,用以選擇並輸出該些第二分壓之一;以及一電流源電路,耦接於該第二電阻串,根據該電壓區間產生通過該第二電阻串的一補償電流以降低由該第一電阻串流向該第二電阻串的分流電流;其中該第一資料選擇器根據一M位元的數位信號以產生該電壓區間,其中該數位信號分為一最高有效位元組與一最低有效位元,其中該最高有效位元組為(M-1)位元,其中M為正整數且大於等於3,該第一資料選擇器包括:一解碼單元,具有三個適用於(M-1)位元的解碼器,分別耦接於該第一電阻串的所有分壓點,並根據該最高有效位元組選擇該些第一分壓中三個相鄰的分壓以對應於該數位信號;以及一切換單元,耦接於該些解碼器的輸出,根據該最低有效位元選擇上述三個分壓中的兩個分壓以產生 該電壓區間。 A digital analog converter having a first resistor string having a plurality of first resistors connected in series to generate a plurality of first voltage dividers, the digital analog converter comprising: at least one channel circuit comprising: The first data selector is coupled to the first resistor string for selecting at least one of the first partial voltages to generate a voltage interval; and a second resistor string having a plurality of second resistors connected in series, The second resistor string is coupled to the first data selector for dividing the voltage interval into a plurality of second voltage dividers; a second data selector coupled to the second resistor string for selecting And outputting one of the second partial voltages; and a current source circuit coupled to the second resistor string, generating a compensation current through the second resistor string according to the voltage interval to reduce flow from the first resistor string a shunt current of the second resistor string; wherein the first data selector generates the voltage interval according to a digital signal of an M bit, wherein the digital signal is divided into a most significant byte and a least significant bit, wherein The highest The effective byte is (M-1) bit, where M is a positive integer and is greater than or equal to 3. The first data selector includes: a decoding unit having three decoders suitable for (M-1) bits And respectively coupled to all voltage dividing points of the first resistor string, and selecting three adjacent partial voltages of the first partial voltages according to the most significant byte group to correspond to the digital signal; and a switching unit And coupled to the outputs of the decoders, selecting two of the three divided voltages according to the least significant bits to generate This voltage range. 如申請專利範圍第1項所述的數位類比轉換器,其中該電流源電路包括:一第一電流源,耦接於該第二電阻串的第一端,用以映射一參考電流以產生該補償電流至該第二電阻串;以及一第二電流源,耦接於該第二電阻串的第二端,用以映射該參考電流以從該第二電阻串引流該補償電流至一接地端。 The digital analog circuit of claim 1, wherein the current source circuit comprises: a first current source coupled to the first end of the second resistor string for mapping a reference current to generate the Compensating current to the second resistor string; and a second current source coupled to the second end of the second resistor string for mapping the reference current to drain the compensation current from the second resistor string to a ground . 如申請專利範圍第2項所述的數位類比轉換器,更包括:一通用電流源,耦接於該第一電阻串或該第一電阻串所對應的兩個參考電壓以產生該參考電流,其中該參考電流與該第二電阻串的電阻值相關。 The digital analog converter of claim 2, further comprising: a universal current source coupled to the first resistor string or the two reference voltages corresponding to the first resistor string to generate the reference current, Wherein the reference current is related to a resistance value of the second resistor string. 如申請專利範圍第3項所述的數位類比轉換器,其中該通用電流源包括:一第一PMOS電晶體,其源極耦接於一電壓源;一第二PMOS電晶體,其源極耦接於該第一PMOS電晶體的汲極,其閘極耦接於一偏壓;一第一NMOS電晶體,其汲極耦接於該第二PMOS電晶體的汲極與該第一PMOS電晶體的閘極,其源極耦接於一參考電阻串的第一端;以及一第一運算放大器,其非反相輸入端耦接於該第一電阻串,其反相輸入端耦接於該第一NMOS電晶體的源極,其輸出端耦接於該第一NMOS電晶體的閘極;一第三PMOS電晶體,其源極耦接於該參考電阻串的第二端;一第二運算放大器,其反相輸入端耦接於該參考電阻串的 第二端,其非反相輸入端耦接於該第一電阻串,其輸出端耦接於該第三PMOS電晶體的閘極;一第二NMOS電晶體,其汲極耦接於該第三PMOS電晶體的汲極,其閘極耦接於一偏壓;以及一第三NMOS電晶體,其汲極耦接於該第二NMOS電晶體的源極,其源極耦接該接地端,其閘極耦接於該第二NMOS電晶體的汲極;其中,該第一電流源耦接於該第一PMOS電晶體的閘極與該第二PMOS電晶體的閘極以映射該參考電流;該第二電流源耦接於該第二NMOS電晶體的閘極與該第三NMOS電晶體的閘極以映射該參考電流。 The digital analog converter of claim 3, wherein the universal current source comprises: a first PMOS transistor having a source coupled to a voltage source; a second PMOS transistor having a source coupling a gate connected to the first PMOS transistor, the gate of which is coupled to a bias voltage; a first NMOS transistor having a drain coupled to the drain of the second PMOS transistor and the first PMOS a gate of the crystal, the source of which is coupled to the first end of a reference resistor string; and a first operational amplifier having a non-inverting input coupled to the first resistor string and an inverting input coupled to the a source of the first NMOS transistor having an output coupled to the gate of the first NMOS transistor; a third PMOS transistor having a source coupled to the second end of the reference resistor string; a second operational amplifier having an inverting input coupled to the reference resistor string The second end has a non-inverting input coupled to the first resistor string, an output coupled to the gate of the third PMOS transistor, and a second NMOS transistor having a drain coupled to the second a drain of the three PMOS transistor, the gate of which is coupled to a bias voltage, and a third NMOS transistor, the drain of which is coupled to the source of the second NMOS transistor, and the source of which is coupled to the ground The gate is coupled to the drain of the second NMOS transistor; wherein the first current source is coupled to the gate of the first PMOS transistor and the gate of the second PMOS transistor to map the reference The second current source is coupled to the gate of the second NMOS transistor and the gate of the third NMOS transistor to map the reference current. 如申請專利範圍第1項所述的數位類比轉換器,其中該第一資料選擇器具有一第一輸出端與一第二輸出端以分別耦接於該第二電阻串的兩端,用以提供所選擇的該些第一分壓中的兩個分壓至該第二電阻串的兩端。 The digital analog converter of claim 1, wherein the first data selector has a first output end and a second output end respectively coupled to the two ends of the second resistor string for providing Two of the selected first partial pressures are divided to both ends of the second resistance string. 如申請專利範圍第1項所述的數位類比轉換器,其中該第一資料選擇器為6位元的資料選擇器,該第二資料選擇器為4位元的資料選擇器;該第一電阻串至少包括64個串聯的第一電阻,該第二電阻串至少包括16個串聯的第二電阻。 The digital analog converter of claim 1, wherein the first data selector is a 6-bit data selector, and the second data selector is a 4-bit data selector; the first resistor The string includes at least 64 first resistors in series, the second resistor string including at least 16 second resistors in series. 如申請專利範圍第1項所述的數位類比轉換器,其中該補償電流係根據該電壓區間所對應的一電壓差除以該第二電阻串的電阻值所得的商數而定。 The digital analog converter of claim 1, wherein the compensation current is determined by dividing a voltage difference corresponding to the voltage interval by a quotient of the resistance value of the second resistor string. 如申請專利範圍第1項所述的數位類比轉換器,其中該通道電路更包括一緩衝器,耦接於該第二資料選擇器的輸出端,其中該緩衝器為串疊組態AB類放大器。 The digital analog converter of claim 1, wherein the channel circuit further comprises a buffer coupled to the output of the second data selector, wherein the buffer is a cascade configuration class AB amplifier . 如申請專利範圍第1項所述的數位類比轉換器,其中 該些解碼器包括一第一解碼器、一第二解碼器與一第三解碼器,其中該第一電阻串中的奇數分壓點分別耦接於該第一解碼器與該第三解碼器,該第一電阻串中的偶數分壓點則分別耦接於該第二解碼器。 A digital analog converter as described in claim 1 of the patent application, wherein The decoder includes a first decoder, a second decoder, and a third decoder, wherein the odd voltage points in the first resistor string are respectively coupled to the first decoder and the third decoder The even voltage dividing points in the first resistor string are respectively coupled to the second decoder. 如申請專利範圍第9項所述的數位類比轉換器,其中該切換單元包括:一第一開關,耦接於該第三解碼器的輸出端與該第一資料選擇器的一第一輸出端;一第二開關,耦接於該第一解碼器的輸出端與該第一資料選擇器的一第二輸出端;一第三開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第一輸出端;以及一第四開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第二輸出端;其中,當該最低有效位元為1時,該第一開關與該第四開關導通,當該最低有效位元為0時,該第二開關與該第三開關導通。 The digital analog converter of claim 9, wherein the switching unit comprises: a first switch coupled to the output end of the third decoder and a first output of the first data selector a second switch coupled to the output of the first decoder and a second output of the first data selector; a third switch coupled to the output of the second decoder and the first a first output of the data selector; and a fourth switch coupled to the output of the second decoder and the second output of the first data selector; wherein, the least significant bit When it is 1, the first switch is turned on and the fourth switch is turned on. When the least significant bit is 0, the second switch is turned on. 一種資料選擇器,適用於一數位類比轉換器,該數位類比轉換器具有一第一電阻串,該第一電阻串具有複數個串聯的第一電阻以產生複數個第一分壓,其中,該資料選擇器耦接於該第一電阻串,用以選擇該些第一分壓中至少一個分壓以產生一電壓區間,該資料選擇器根據一M位元的數位信號以產生該電壓區間,其中該數位信號分為一最高有效位元組與一最低有效位元,其中該最高有效位元組為(M-1)位元,其中M為正整數且大於等於3,該資料選擇器包括:一解碼單元,具有三個適用於(M-1)位元的解碼器,分別 耦接於該第一電阻串的所有分壓點,並根據該最高有效位元組選擇該些第一分壓中三個相鄰的分壓以對應於該數位信號;以及一切換單元,耦接於該些解碼器的輸出,根據該最低有效位元選擇上述三個分壓中的兩個分壓以產生該電壓區間。 A data selector, which is suitable for a digital analog converter, the digital analog converter has a first resistor string, the first resistor string has a plurality of first resistors connected in series to generate a plurality of first partial voltages, wherein the data The selector is coupled to the first resistor string for selecting at least one of the first divided voltages to generate a voltage interval, and the data selector generates the voltage interval according to a digital signal of an M-bit, wherein The digital signal is divided into a most significant byte and a least significant bit, wherein the most significant byte is a (M-1) bit, wherein M is a positive integer and greater than or equal to 3. The data selector comprises: a decoding unit having three decoders for (M-1) bits, respectively All the voltage dividing points of the first resistor string are coupled, and three adjacent voltage dividers of the first voltage dividers are selected according to the most significant byte group to correspond to the digital signal; and a switching unit is coupled Connected to the outputs of the decoders, two of the three divided voltages are selected according to the least significant bit to generate the voltage interval. 如申請專利範圍第11項所述的資料選擇器,其中該些解碼器包括一第一解碼器、一第二解碼器與一第三解碼器,其中該第一電阻串中的奇數分壓點分別耦接於該第一解碼器與該第三解碼器,該第一電阻串中的偶數分壓點則分別耦接於該第二解碼器。 The data selector of claim 11, wherein the decoders comprise a first decoder, a second decoder and a third decoder, wherein the odd voltage points in the first resistor string The first and second decoders are respectively coupled to the first decoder and the third decoder, and the even voltage points in the first resistor string are respectively coupled to the second decoder. 如申請專利範圍第12項所述的資料選擇器,其中該切換單元包括:一第一開關,耦接於該第三解碼器的輸出端與該第一資料選擇器的一第一輸出端;一第二開關,耦接於該第一解碼器的輸出端與該第一資料選擇器的一第二輸出端;一第三開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第一輸出端;以及一第四開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第二輸出端;其中,當該最低有效位元為1時,該第一開關與該第四開關導通,當該最低有效位元為0時,該第二開關與該第三開關導通。 The data selector of claim 12, wherein the switching unit comprises: a first switch coupled to an output end of the third decoder and a first output end of the first data selector; a second switch coupled to the output of the first decoder and a second output of the first data selector; a third switch coupled to the output of the second decoder and the first The first output of the data selector; and a fourth switch coupled to the output of the second decoder and the second output of the first data selector; wherein, when the least significant bit is At 1 o'clock, the first switch is turned on and the fourth switch is turned on. When the least significant bit is 0, the second switch is turned on. 一種數位類比轉換器,包括:一第一電阻串,具有複數個串聯的第一電阻,該第一電阻串具有複數個分壓點以產生複數個第一分壓; 一電流源電路,具有複數個子電流源,分別耦接於該第一電阻串的每個分壓點;以及至少一通道電路,包括:一第一資料選擇器,耦接於該第一電阻串,用以選擇該些第一分壓中的兩個分壓以產生一電壓區間;一第二電阻串,具有複數個串聯的第二電阻,該第二電阻串耦接於該第一資料選擇器,用以將該電壓區間分壓為複數個第二分壓;以及一第二資料選擇器,耦接於該第二電阻串,用以選擇並輸出該些第二分壓之一;其中,該第一資料選擇器根據一M位元的數位信號以產生該電壓區間,其中該數位信號分為一最高有效位元組與一最低有效位元,其中該最高有效位元組為(M-1)位元,其中M為正整數且大於等於3,該第一資料選擇器包括:一解碼單元,具有三個適用於(M-1)位元的解碼器,分別耦接於該第一電阻串的所有分壓點,並根據該最高有效位元組選擇該些第一分壓中三個相鄰的分壓以對應於該數位信號;以及一切換單元,耦接於該些解碼器的輸出,根據該最低有效位元選擇上述三個分壓中的兩個分壓以產生該電壓區間;其中,該電流源電路根據該電壓區間調整每個子電流源的電流值以補償由該第一電阻串流向該第二電阻串的分流電流。 A digital analog converter includes: a first resistor string having a plurality of first resistors connected in series, the first resistor string having a plurality of voltage dividing points to generate a plurality of first voltage dividers; a current source circuit having a plurality of sub-current sources coupled to each of the voltage dividing points of the first resistor string; and at least one channel circuit comprising: a first data selector coupled to the first resistor string The second resistor string has a plurality of second resistors connected in series, and the second resistor string is coupled to the first data selection. And the second data selector is coupled to the second resistor string for selecting and outputting one of the second partial voltages; wherein The first data selector generates the voltage interval according to an M-bit digital signal, wherein the digital signal is divided into a most significant byte and a least significant bit, wherein the most significant byte is (M -1) a bit, wherein M is a positive integer and greater than or equal to 3, the first data selector comprises: a decoding unit having three decoders suitable for (M-1) bits, respectively coupled to the first a voltage divider point of a resistor string and selected according to the most significant byte group Selecting three adjacent partial voltages of the first partial voltages to correspond to the digital signal; and a switching unit coupled to the outputs of the decoders, and selecting the three partial voltages according to the least significant bits The two divided voltages generate the voltage interval; wherein the current source circuit adjusts the current value of each of the sub current sources according to the voltage interval to compensate for the shunt current flowing from the first resistor string to the second resistor string. 如申請專利範圍第14項所述的數位類比轉換器,其中該電流源電路包括: 一控制器,根據一輸入信號產生一控制信號,該輸入信號對應於該些分壓點的兩個分壓點,其中該第一資料選擇器根據該輸出信號選擇該些第一分壓中的兩個分壓以產生該電壓區間;以及一電流模式數位類比轉換器,耦接於該控制器與該些子電流源,根據該控制信號調整對應於所選擇的分壓點的子電流源以補償由該第一電阻串流向該第二電阻串的分流電流。 The digital analog converter of claim 14, wherein the current source circuit comprises: a controller generates a control signal according to an input signal, the input signal corresponding to two voltage dividing points of the voltage dividing points, wherein the first data selector selects the first partial voltages according to the output signal Two voltage divisions to generate the voltage interval; and a current mode digital analog converter coupled to the controller and the sub current sources, and adjusting the sub current source corresponding to the selected voltage dividing point according to the control signal Compensating for a shunt current flowing from the first resistor string to the second resistor string. 如申請專利範圍第14項所述的數位類比轉換器,其中該些解碼器包括一第一解碼器、一第二解碼器與一第三解碼器,其中該第一電阻串中的奇數分壓點分別耦接於該第一解碼器與該第三解碼器,該第一電阻串中的偶數分壓點則分別耦接於該第二解碼器。 The digital analog converter of claim 14, wherein the decoder comprises a first decoder, a second decoder and a third decoder, wherein the odd voltage divider in the first resistor string The points are respectively coupled to the first decoder and the third decoder, and the even voltage dividing points in the first resistor string are respectively coupled to the second decoder. 如申請專利範圍第16項所述的數位類比轉換器,其中該切換單元包括:一第一開關,耦接於該第三解碼器的輸出端與該第一資料選擇器的一第一輸出端;一第二開關,耦接於該第一解碼器的輸出端與該第一資料選擇器的一第二輸出端;一第三開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第一輸出端;以及一第四開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第二輸出端;其中,當該最低有效位元為1時,該第一開關與該第四開關導通,當該最低有效位元為0時,該第二開關與該第三開關導通。 The digital analog converter of claim 16, wherein the switching unit comprises: a first switch coupled to the output end of the third decoder and a first output of the first data selector a second switch coupled to the output of the first decoder and a second output of the first data selector; a third switch coupled to the output of the second decoder and the first a first output of the data selector; and a fourth switch coupled to the output of the second decoder and the second output of the first data selector; wherein, the least significant bit When it is 1, the first switch is turned on and the fourth switch is turned on. When the least significant bit is 0, the second switch is turned on. 一種數位類比轉換器,具有一第一電阻串,該第一電 阻串具有複數個串聯的第一電阻以產生複數個第一分壓,該數位類比轉換器包括:至少一通道電路,包括:一第一資料選擇器,耦接於該第一電阻串,用以選擇該些第一分壓中的一分壓;一第二電阻串,具有複數個串聯的第二電阻以產生複數個第二分壓,其中該第一資料選擇器具有一輸出端以耦接於該第二電阻串中的任一點,僅將所選擇的該分壓提供至該第二電阻串上的一分壓點;一第二資料選擇器,耦接於該第二電阻串,用以選擇並輸出該些第二分壓之一;以及一電流源電路,耦接於該第二電阻串,根據該電壓區間產生通過該第二電阻串的一補償電流以降低由該第一電阻串流向該第二電阻串的分流電流;其中,該第一資料選擇器根據一M位元的數位信號以產生該分壓,其中該數位信號分為一最高有效位元組與一最低有效位元,其中該最高有效位元組為(M-1)位元,其中M為正整數且大於等於3,該第一資料選擇器包括:一解碼單元,具有三個適用於(M-1)位元的解碼器,分別耦接於該第一電阻串的所有分壓點,並根據該最高有效位元組選擇該些第一分壓中三個相鄰的分壓以對應於該數位信號;以及一切換單元,耦接於該些解碼器的輸出,根據該最低有效位元選擇上述三個分壓中的一個分壓以產生該分壓。 A digital analog converter having a first resistor string, the first The resistor string has a plurality of first resistors connected in series to generate a plurality of first voltage dividers. The digital analog converter includes: at least one channel circuit, including: a first data selector coupled to the first resistor string, Selecting a partial voltage of the first partial voltages; a second resistor string having a plurality of second resistors connected in series to generate a plurality of second partial voltages, wherein the first data selector has an output end coupled At any point in the second resistor string, only the selected divided voltage is supplied to a voltage dividing point on the second resistor string; a second data selector is coupled to the second resistor string, Selecting and outputting one of the second partial voltages; and a current source circuit coupled to the second resistor string, generating a compensation current through the second resistor string according to the voltage interval to reduce the first resistor Generating a shunt current to the second resistor string; wherein the first data selector generates the voltage division according to a digital signal of an M bit, wherein the digital signal is divided into a most significant byte and a least significant bit Yuan, where the most significant bit The group is (M-1) bits, wherein M is a positive integer and is greater than or equal to 3. The first data selector comprises: a decoding unit having three decoders suitable for (M-1) bits, respectively coupled Connecting to all voltage dividing points of the first resistor string, and selecting three adjacent partial voltages of the first voltage dividers according to the most significant byte group to correspond to the digital signal; and a switching unit coupled At the outputs of the decoders, one of the three divided voltages is selected according to the least significant bit to generate the divided voltage. 如申請專利範圍第18項所述的數位類比轉換器,其中該些解碼器包括一第一解碼器、一第二解碼器與一第三解碼 器,其中該第一電阻串中的奇數分壓點分別耦接於該第一解碼器與該第三解碼器,該第一電阻串中的偶數分壓點則分別耦接於該第二解碼器。 The digital analog converter of claim 18, wherein the decoders comprise a first decoder, a second decoder, and a third decoding. The odd-numbered voltage-divided points in the first resistor string are respectively coupled to the first decoder and the third decoder, and the even-numbered voltage-divided points in the first resistor string are respectively coupled to the second decoding Device. 如申請專利範圍第19項所述的數位類比轉換器,其中該切換單元包括:一第一開關,耦接於該第三解碼器的輸出端與該第一資料選擇器的一第一輸出端;一第二開關,耦接於該第一解碼器的輸出端與該第一資料選擇器的一第二輸出端;一第三開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第一輸出端;以及一第四開關,耦接於該第二解碼器的輸出端與該第一資料選擇器的該第二輸出端;其中,當該最低有效位元為1時,該第一開關與該第四開關導通,當該最低有效位元為0時,該第二開關與該第三開關導通。The digital analog converter of claim 19, wherein the switching unit comprises: a first switch coupled to the output end of the third decoder and a first output of the first data selector a second switch coupled to the output of the first decoder and a second output of the first data selector; a third switch coupled to the output of the second decoder and the first a first output of the data selector; and a fourth switch coupled to the output of the second decoder and the second output of the first data selector; wherein, the least significant bit When it is 1, the first switch is turned on and the fourth switch is turned on. When the least significant bit is 0, the second switch is turned on.
TW100105517A 2011-02-18 2011-02-18 Data selector used in digital-to-analog converter and the digital-to-analog converter TWI439057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100105517A TWI439057B (en) 2011-02-18 2011-02-18 Data selector used in digital-to-analog converter and the digital-to-analog converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100105517A TWI439057B (en) 2011-02-18 2011-02-18 Data selector used in digital-to-analog converter and the digital-to-analog converter

Publications (2)

Publication Number Publication Date
TW201236379A TW201236379A (en) 2012-09-01
TWI439057B true TWI439057B (en) 2014-05-21

Family

ID=47222819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105517A TWI439057B (en) 2011-02-18 2011-02-18 Data selector used in digital-to-analog converter and the digital-to-analog converter

Country Status (1)

Country Link
TW (1) TWI439057B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799982B (en) * 2021-09-08 2023-04-21 大陸商常州欣盛半導體技術股份有限公司 Digital-to-analog converter and source driver
CN116094525A (en) * 2022-12-13 2023-05-09 无锡前诺德半导体有限公司 DAC circuit

Also Published As

Publication number Publication date
TW201236379A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
US7948418B2 (en) Digital-to-analog conversion circuit and column driver including the same
JP4472507B2 (en) DIFFERENTIAL AMPLIFIER, DATA DRIVER OF DISPLAY DEVICE USING SAME, AND METHOD FOR CONTROLLING DIFFERENTIAL AMPLIFIER
JP3594125B2 (en) DA converter and liquid crystal driving device using the same
US7576674B2 (en) Digital-to-analog converter circuit, data driver, and display device using the digital-to-analog converter circuit
US8963905B2 (en) Liquid crystal display panel driving circuit
TWI395183B (en) Source driver of liquid crystal display
US6950045B2 (en) Gamma correction D/A converter, source driver integrated circuit and display having the same and D/A converting method using gamma correction
JP3506219B2 (en) DA converter and liquid crystal driving device using the same
JP4143588B2 (en) Output circuit, digital analog circuit, and display device
US7724220B2 (en) Driving system of light emitting diode
US7250889B2 (en) Digital-to-analog converter with secondary resistor string
US7880692B2 (en) Driver circuit of AMOLED with gamma correction
US8344978B2 (en) Digital-to-analog converter for display device
JP2007286526A (en) Display device and drive circuit of the display device
US7423572B2 (en) Digital-to-analog converter
US8941522B2 (en) Segmented digital-to-analog converter having weighted current sources
Lu et al. A 10-b two-stage DAC with an area-efficient multiple-output voltage selector and a linearity-enhanced DAC-embedded op-amp for LCD column driver ICs
US20180075796A1 (en) Display driver, electro-optic apparatus, electronic device, and control method for display driver
TWI439057B (en) Data selector used in digital-to-analog converter and the digital-to-analog converter
JP4819921B2 (en) DIFFERENTIAL AMPLIFIER, DATA DRIVER OF DISPLAY DEVICE USING SAME, AND METHOD FOR CONTROLLING DIFFERENTIAL AMPLIFIER
TWI436320B (en) Source driver
KR100912090B1 (en) Digital-to-analog converter, and Method thereof
KR100690061B1 (en) Digatal to Analog Converter for Driving Apparatus of Organic Light Emitting Diode Display Panel
JPH10108040A (en) Gamma-correction circuit for driving liquid crystal display element
Yang et al. 27.1: An Area‐Effective Source Driver with 12‐Bit Linear DAC for Large‐Size TFT‐LCDs

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees