TWI436640B - Image sensor - Google Patents

Image sensor Download PDF

Info

Publication number
TWI436640B
TWI436640B TW99115682A TW99115682A TWI436640B TW I436640 B TWI436640 B TW I436640B TW 99115682 A TW99115682 A TW 99115682A TW 99115682 A TW99115682 A TW 99115682A TW I436640 B TWI436640 B TW I436640B
Authority
TW
Taiwan
Prior art keywords
sensing
image
color
sensing unit
array
Prior art date
Application number
TW99115682A
Other languages
Chinese (zh)
Other versions
TW201143400A (en
Inventor
Chih Min Liu
Ping Hung Yin
Original Assignee
Himax Imagimg Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Imagimg Inc filed Critical Himax Imagimg Inc
Priority to TW99115682A priority Critical patent/TWI436640B/en
Publication of TW201143400A publication Critical patent/TW201143400A/en
Application granted granted Critical
Publication of TWI436640B publication Critical patent/TWI436640B/en

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

影像感測器Image sensor

本發明係關於影像感測,尤指一種由數個對應於不同色彩之影像感測單元所組成之影像感測器。The present invention relates to image sensing, and more particularly to an image sensor composed of a plurality of image sensing units corresponding to different colors.

時至今日,影像感測器已廣泛地應用在數位相機、數位攝影機與可攜式電子裝置上以提供影像擷取的功能。然而,隨著這些電子裝置的尺寸縮小而造成影像感測器本身尺寸的縮小以及影像感測器解析度的提升,一些存在於影像感測器中的問題也愈趨明顯。請參考第1圖,其係習知影像感測器的結構示意圖。如圖所示,影像感測器100中包含有一色彩濾光片陣列(Color filter array)110,其上設置有一微透鏡陣列(Microlens array)120,而在色彩濾光片陣列120的下方則設置有感測陣列130,用以將入射的光線轉換成電子訊號,進而獲得所欲擷取的影像。通常來說,感測陣列130包含有複數個感測單元,其可能為互補式金氧半導體(CMOS)感測單元或電荷耦合元件(Charge-coupled Device,CCD)感測單元。而每一個感測單元則會接受穿透其上方之色彩濾光片陣列110之入射光,以感測出對應於某一畫素的特定色彩成份大小。舉例來說,感測單元131會接收穿透微透鏡陣列120中之一微透鏡121與色彩濾光片陣列110中之一色彩濾光片R的過濾後入射光L,進而產生對應於某一畫素之紅色成分的感測訊號,而感測單元132則會接收穿透微透鏡陣列120中之一微透鏡122與色彩濾光片陣列110中之一色彩濾光片G的過濾後入射光L’,進而產生對應於某一畫素之綠色成分的感測訊號,依此,每一個感測單元都會感測到對應於某一種色彩成分的感測訊號,而透過影像處理的技術,可將這些對應於各別色彩成分的感測訊號重新計算,進而獲得影像中的每個畫素的完整的色彩成分資訊(如:R、G與B值)。然而,在影像感測器尺寸的縮小以及影像感測器解析度的提升趨勢下,進而使得感測單元的尺寸也隨之縮小,如此一來,會使串音(Crosstalk)現象更為明顯。舉例來說,由於光的繞射與干涉等特性,故感測單元131可能會錯誤地感測到穿透微透鏡122與色彩濾光片G的過濾後入射光L’,而感測單元132亦會錯誤地感測到穿透微透鏡121與色彩濾光片R的過濾後入射光L。而在影像感測器的原始設計中,原本每一個感測單元各自應該感測不同色彩成分的光,如:感測單元131係用來感測入射光中之紅色色彩成分,而感測單元132則用來感測入射光中之綠色色彩成分,這種串音現象將會使得感測單元131與132錯誤地感測到其它色彩成分,如此一來,可能會造成後續的影像處理操作產生錯誤的結果,因而無法正確地取每個畫素的所有色彩成分資訊,使得成像品質受到影響。Today, image sensors have been widely used in digital cameras, digital cameras and portable electronic devices to provide image capture. However, as the size of these electronic devices shrinks and the size of the image sensor itself shrinks and the resolution of the image sensor increases, some problems existing in the image sensor become more and more obvious. Please refer to FIG. 1 , which is a schematic structural view of a conventional image sensor. As shown, the image sensor 100 includes a color filter array 110 on which a microlens array 120 is disposed, and a color filter array 120 is disposed below the color filter array 120. There is a sensing array 130 for converting incident light into an electronic signal to obtain an image to be captured. Generally, the sensing array 130 includes a plurality of sensing units, which may be complementary metal oxide semiconductor (CMOS) sensing units or charge-coupled device (CCD) sensing units. Each of the sensing units receives incident light that passes through the color filter array 110 above it to sense a particular color component size corresponding to a certain pixel. For example, the sensing unit 131 receives the filtered incident light L that penetrates one of the microlenses 121 of the microlens array 120 and one of the color filters R of the color filter array 110, thereby generating a corresponding one. The sensing unit 132 receives the filtered incident light that penetrates one of the microlenses 122 of the microlens array 120 and one of the color filters G of the color filter array 110. L', which in turn generates a sensing signal corresponding to a green component of a certain pixel, whereby each sensing unit senses a sensing signal corresponding to a certain color component, and the image processing technology can These sensing signals corresponding to the respective color components are recalculated to obtain complete color component information (eg, R, G, and B values) for each pixel in the image. However, as the size of the image sensor is reduced and the resolution of the image sensor is increased, the size of the sensing unit is also reduced, which makes the crosstalk phenomenon more obvious. For example, due to characteristics such as diffraction and interference of light, the sensing unit 131 may erroneously sense the filtered incident light L′ penetrating the microlens 122 and the color filter G, and the sensing unit 132 The filtered incident light L penetrating the microlens 121 and the color filter R is also erroneously sensed. In the original design of the image sensor, each of the sensing units should respectively sense light of different color components, for example, the sensing unit 131 is used to sense the red color component in the incident light, and the sensing unit 132 is used to sense the green color component in the incident light. This crosstalk phenomenon will cause the sensing units 131 and 132 to erroneously sense other color components, which may cause subsequent image processing operations to be generated. The result of the error is that the color component information of each pixel cannot be correctly taken, so that the image quality is affected.

再者,另一個造成串音現象的原因是在於,當影像感測器的解析度提升,而感測單元則勢必縮小,故每個感測單元間的距離也相對變小。如此一來,在感測較為強烈的光線的時候,感測單元會產生較多的電荷,因此容易發生電荷溢出的情形,而這些溢出的電荷可能會進一步干擾鄰近感測單元而造成感測結果的誤差。由此可知,在影像感測器尺寸縮小與解析度提升的趨勢下,習知的影像處理器架構正面臨諸多難以克服的考驗。Moreover, another cause of crosstalk is that when the resolution of the image sensor is increased, the sensing unit is bound to shrink, so the distance between each sensing unit is relatively small. In this way, when sensing relatively strong light, the sensing unit generates more electric charge, so the charge overflow is prone to occur, and the overflowed electric charge may further interfere with the adjacent sensing unit to cause the sensing result. Error. It can be seen that under the trend of image sensor size reduction and resolution improvement, the conventional image processor architecture is facing many insurmountable tests.

有鑑於此,本發明提供一種可解決串音問題的影像感測器架構。這種影像感測器架構利用多個分別感測不同色彩成分的影像感測單元來擷取影像,以分別於不同感測陣列上取得不同色彩成分的資訊,因此可減輕串音現象對成像品質所造成的影響。此外,本發明亦依據影像感測單元所感測之色彩成分的不同,進一步調整影像感測單元中之微透鏡陣列之設置高度,藉以提升影像感測器之成像品質。In view of this, the present invention provides an image sensor architecture that can solve the crosstalk problem. The image sensor architecture utilizes multiple image sensing units that respectively sense different color components to capture images to obtain different color component information on different sensing arrays, thereby reducing crosstalk phenomenon to image quality. The impact. In addition, the present invention further adjusts the set height of the microlens array in the image sensing unit according to the difference in color components sensed by the image sensing unit, thereby improving the image quality of the image sensor.

依據本發明之一實施例,其係提供一種影像感測器,該影像感測器包含有:一第一影像感測單元以及一第二影像感測單元。其中,該第一影像感測單元包括:一第一色彩濾光片與一第一感測陣列。該第一色彩濾光片係對應至一第一色彩,並且用以過濾一入射光中除了該第一色彩以外的其它色彩成分,以產生一第一過濾後入射光。該第一感測陣列具有複數個感測單元,並且用以感測該第一過濾後入射光,以產生一第一感測結果。再者,該第二影像感測單元包括:一第二色彩濾光片與一第二感測陣列。該第二色彩濾光片係對應至一第二色彩,並且用以過濾該入射光中除了該第二色彩以外的其它色彩成分,以產生一第二過濾後入射光,其中該第二色彩與該第一色彩係為不同。該第二感測陣列具有複數個感測單元,並且用以感測該第二過濾後入射光,以產生一第二感測結果。According to an embodiment of the present invention, an image sensor is provided. The image sensor includes: a first image sensing unit and a second image sensing unit. The first image sensing unit includes: a first color filter and a first sensing array. The first color filter corresponds to a first color and is used to filter a color component of the incident light other than the first color to generate a first filtered incident light. The first sensing array has a plurality of sensing units and is configured to sense the first filtered incident light to generate a first sensing result. Furthermore, the second image sensing unit comprises: a second color filter and a second sensing array. The second color filter corresponds to a second color, and is configured to filter color components of the incident light other than the second color to generate a second filtered incident light, wherein the second color is The first color is different. The second sensing array has a plurality of sensing units and is configured to sense the second filtered incident light to generate a second sensing result.

依據本發明之另一實施例,其係提供一種影像感測單元,該影像感測單元包含有:一色彩濾光片、一感測陣列以及一微透鏡陣列。該色彩濾光片係對應至一色彩,並且用以過濾一入射光中除了該色彩以外的其它色彩成分,以產生一過濾後入射光。該感測陣列具有複數個感測單元,並且用以感測該過濾後入射光,以產生一感測結果。其中,該微透鏡陣列係設置於該色彩濾光片與該感測陣列之間。According to another embodiment of the present invention, an image sensing unit is provided. The image sensing unit includes: a color filter, a sensing array, and a microlens array. The color filter corresponds to a color and is used to filter a color component other than the color of the incident light to generate a filtered incident light. The sensing array has a plurality of sensing units and is configured to sense the filtered incident light to generate a sensing result. The microlens array is disposed between the color filter and the sensing array.

請參考第2圖,其係本發明影像感測器之一實施例的側面示意圖。如圖所示,影像感測器200包含有:一第一影像感測單元210、一第二影像感測單元220以及一第三影像感測單元230,此些影像感測單元係鄰近排列。其中,每一影像感測器分別包含有(由上至下):一色彩濾光片(如:212、222、232)以及一感測陣列(如:216、226、236)。每一色彩濾光片212、222與232,分別對應至單一色彩,係分別用以過濾入射光中除了該色彩以外的其它色彩成分,由於色彩濾光片的原理係為本發明所屬技術領域中具有通常知識者所熟知,故在此不作贅述。相較於傳統影像感測器中,採用複個對應至不同色彩成分之小型色彩濾光片所組成之色彩濾光陣列(例如:Bayer filter array)以對入射光進行過濾,本發明影像感測器所採用之色彩濾光片212、222與232乃為對應至單一色彩之較大型的色彩濾光片。舉例來說,色彩濾光片212可能對應至紅色色彩成分(R color component),並將一入射光中紅色色彩成份以外之其他色彩成分過濾,進而產生一以紅色色彩成份為主之過濾後入射光。而當色彩濾光片212所產生之過濾後入射光被感測陣列216接收後,感測陣列216中之複數個感測單元會分別依據其所接收到的光線強度產生電荷,進而輸出對應之感測訊號,而第一影像感測單元210則依據這些感測訊號來產生一第一感測結果。因此,藉由感測陣列216上的該複數個感測單元(其中,這些感測單元可能為互補式金氧半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感測單元或電荷耦合元件(Charge-coupled Device,CCD)感測單元),第一影像感測單元210可產生對應於每一畫素之紅色彩成分之該第一感測結果。再者,第二影像感測單元220與第三影像感測單元230亦會進行類似操作,以進一步產生對應入射光中其它不同色彩成分(如:綠色色彩成分(G color component)與藍色色彩成分(B color component))的一第二感測結果與一第三感測結果,以完成影像感測器200的影像擷取操作。再者,儘管於上述實施例中,第一影像感測單元210、第二影像感測單元220與第三影像感測單元230可能分別用以感測入射光中之不同色彩成分,但於本發明之其它實施例中,可能包含有一個以上的影像感測單元用以感測同一色彩成分,例如:影像感測器包含有四個影像感測單元,其中有兩個影像感測單元同時用以感測入射光中之綠色色彩成分,其他兩個影像感測單元則分別用以感測紅色色彩成分與藍色色彩成分,這種實施方式仍屬於本發明之範疇,亦即,本發明並未對影像感測器中之影像感測單元的數量有所限制,且亦未對對應至相同色彩成分的影像感測單元的數量有所限制。Please refer to FIG. 2, which is a side view of an embodiment of the image sensor of the present invention. As shown in the figure, the image sensor 200 includes a first image sensing unit 210, a second image sensing unit 220, and a third image sensing unit 230. The image sensing units are arranged adjacent to each other. Each image sensor includes (from top to bottom): a color filter (eg, 212, 222, 232) and a sensing array (eg, 216, 226, 236). Each of the color filters 212, 222, and 232 respectively corresponds to a single color, and is used to filter color components other than the color in the incident light, since the principle of the color filter is in the technical field of the present invention. It is well known to those of ordinary skill and will not be described here. Compared with the conventional image sensor, the color filter array (for example, Bayer filter array) composed of a plurality of small color filters corresponding to different color components is used to filter the incident light, and the image sensing of the present invention is performed. The color filters 212, 222, and 232 employed by the device are larger color filters corresponding to a single color. For example, the color filter 212 may correspond to a red color component and filter other color components other than the red color component of the incident light to generate a filtered incident with the red color component as the main component. Light. When the filtered incident light generated by the color filter 212 is received by the sensing array 216, the plurality of sensing units in the sensing array 216 respectively generate charges according to the received light intensity, and then output corresponding signals. The first image sensing unit 210 generates a first sensing result according to the sensing signals. Therefore, by sensing the plurality of sensing units on the array 216 (wherein the sensing units may be complementary metal-oxi-semiconductor (CMOS) sensing units or charge coupled elements (Charge- The first image sensing unit 210 can generate the first sensing result corresponding to the red color component of each pixel. Furthermore, the second image sensing unit 220 and the third image sensing unit 230 perform similar operations to further generate other color components corresponding to the incident light (eg, a green color component (G color component) and a blue color component. A second sensing result of the component (B color component) and a third sensing result are used to complete the image capturing operation of the image sensor 200. In addition, in the above embodiment, the first image sensing unit 210, the second image sensing unit 220, and the third image sensing unit 230 may respectively be used to sense different color components in the incident light, but In other embodiments of the invention, more than one image sensing unit may be included for sensing the same color component. For example, the image sensor includes four image sensing units, and two of the image sensing units are used simultaneously. In order to sense the green color component in the incident light, the other two image sensing units respectively sense the red color component and the blue color component, and such an embodiment still belongs to the scope of the present invention, that is, the present invention There is no limit to the number of image sensing units in the image sensor, and there is no limit to the number of image sensing units corresponding to the same color component.

再者,為了避免對應不同色彩成份的感測結果因電荷溢出而互相干擾,因此,於本實施例中,第一感測陣列216、第二感測陣列226與第三感測陣列236間係彼此獨立,並且分別設置於複數個不同基底(substrate)218、228與238上。然而,這僅是本發明的一種實施態樣,於本發明之不同實施例中,第一感測陣列216、第二感測陣列226與第三感測陣列236亦可能設置於同一基底上。In addition, in the present embodiment, the first sensing array 216, the second sensing array 226, and the third sensing array 236 are connected to each other in order to prevent the sensing results of the different color components from interfering with each other. They are independent of one another and are disposed on a plurality of different substrates 218, 228 and 238, respectively. However, this is only one embodiment of the present invention. In different embodiments of the present invention, the first sensing array 216, the second sensing array 226, and the third sensing array 236 may also be disposed on the same substrate.

由上可知,由於大部分的傳統影像感測器僅具備一感測陣列與一色彩濾光片陣列,並且利用該感測陣列上的複數個感測單元以同時感測光線中之不同色彩成分,因此串音現象相當明顯。相較之下,本發明則利用多個影像感測單元來感測入射光中的不同色彩成分,因此,本發明將可避免不同色彩成分之光線的交互干擾而對感測單元之感測造成的不良影響。As can be seen from the above, most of the conventional image sensors only have a sensing array and a color filter array, and utilize a plurality of sensing units on the sensing array to simultaneously sense different color components in the light. Therefore, the crosstalk phenomenon is quite obvious. In contrast, the present invention utilizes multiple image sensing units to sense different color components in the incident light. Therefore, the present invention can avoid the mutual interference of light of different color components and cause sensing of the sensing unit. Bad effects.

此外,於本發明之較佳實施例中,每一影像感測單元又分別具有一微透鏡陣列,如第2圖所示之微透鏡陣列214、224與234。與傳統影像感測器不同的地方是,本實施例中微透鏡陣列214、224與234乃分別設置於影像感測單元之色彩濾光片與感測陣列之間。並且,於對應至不同色彩之影像感測單元中,微透鏡陣列與感測陣列之間距皆不同。舉例來說,若於影像感測單元210中,微透鏡陣列214與感測陣列216之間的距離為D,以及於影像感測單元220中,微透鏡陣列224與感測陣列226之間的距離為D’,而當影像感測單元210與影像感測單元220分別用以感測入射光中的不同色彩成份,則距離D與距離D’不相同。然而,當影像感測單元210與影像感測單元220均用以感測入射光中的相同色彩成份,則距離D與距離D’相同。換言之,於本實施例中,影像感測單元中之微透鏡陣列與感測陣列之間的距離係為可調整,並且會依據影像感測單元之色彩濾光片所對應的色彩而定。這樣的設計的理念因在於,由於對應至不同色彩成分的光線具有不同的波長,因此對同一透鏡而言會有不同的焦距,故本發明的概念係依據色彩成分的不同來調整微透鏡陣列與感測陣列之間距,亦即,依據不同色彩成分的光線所對應之焦距來調整該間距。進而可將每一對應至不同色彩成分之影像感測單元進行最佳化,提升影像感測器的成像品質。Moreover, in the preferred embodiment of the present invention, each image sensing unit has a microlens array, such as the microlens arrays 214, 224, and 234 shown in FIG. Different from the conventional image sensor, in the embodiment, the microlens arrays 214, 224 and 234 are respectively disposed between the color filter and the sensing array of the image sensing unit. Moreover, in the image sensing unit corresponding to different colors, the distance between the microlens array and the sensing array is different. For example, in the image sensing unit 210, the distance between the microlens array 214 and the sensing array 216 is D, and in the image sensing unit 220, between the microlens array 224 and the sensing array 226. The distance D is D, and when the image sensing unit 210 and the image sensing unit 220 are respectively used to sense different color components in the incident light, the distance D is different from the distance D′. However, when both the image sensing unit 210 and the image sensing unit 220 are used to sense the same color component in the incident light, the distance D is the same as the distance D'. In other words, in the embodiment, the distance between the microlens array and the sensing array in the image sensing unit is adjustable, and is determined according to the color corresponding to the color filter of the image sensing unit. The idea of such a design is that since the light rays corresponding to different color components have different wavelengths, there are different focal lengths for the same lens, so the concept of the present invention adjusts the microlens array according to the difference in color components. The distance between the arrays is sensed, that is, the pitch is adjusted according to the focal length corresponding to the light of different color components. In turn, each image sensing unit corresponding to a different color component can be optimized to improve the imaging quality of the image sensor.

接著,請參考第3圖與第4圖,兩者分別為本發明影像感測器之不同實施例的上方示意圖,其係繪示本發明影像感測器中之影像感測單元可能的排列方式。如圖所示,於不同實施例中,本發明影像感測器中之影像感測單元將有不同的排列方式,舉例來說,第3圖中的影像感測單元310~330係沿垂直方方向排列,並且分別對應至紅色(R)色彩成分、綠色(G)色彩成分以及藍色(B)色彩成分,用以分別感測入射光中之不同色彩成分,進而分別輸出對應於R、G與B之複數個感測結果,而第4圖中的影像感測單元410~430則以三角狀方式排列,並且分別輸出對應於R、G與B之複數個感測結果。由以上兩實施例可知,本發明未對於影像感測器中影像感測單元的排列方式有所限制,亦即,任何可能的排列方式均屬本發明的範疇。Next, please refer to FIG. 3 and FIG. 4 , which are respectively upper schematic views of different embodiments of the image sensor of the present invention, which illustrate possible arrangement of image sensing units in the image sensor of the present invention. . As shown in the figure, in different embodiments, the image sensing units in the image sensor of the present invention will have different arrangements. For example, the image sensing units 310-330 in FIG. 3 are vertically oriented. The directions are arranged and correspond to a red (R) color component, a green (G) color component, and a blue (B) color component, respectively, for respectively sensing different color components in the incident light, and respectively outputting corresponding to R, G The plurality of sensing results are compared with B, and the image sensing units 410 to 430 in FIG. 4 are arranged in a triangular manner, and output a plurality of sensing results corresponding to R, G, and B, respectively. It can be seen from the above two embodiments that the present invention does not limit the arrangement of the image sensing units in the image sensor, that is, any possible arrangement is within the scope of the present invention.

本發明的影像感測器可能包含有一影像補償單元,其目的在於補償因影像感測單元設置於不同位置所帶來的像差。舉例來說,請參考第4圖,因為位於位置4101、4201與4301處的感測單元,所分別感測到的紅色色彩成分、綠色色彩成分以及藍色色彩成分均屬一影像中同一畫素的色彩成分,然而,由於感測單元的實際位置的不同,因此可能會影像感測單元的感測結果間可能會產生像差,故本發明需透過一影像補償單元以針對不同影像感測單元所產生之感測結果進行修正,進而提升本發明影像感測器的成像品質。因此,於本發明影像感測器之較佳實施例中,還另包含有一影像補償單元,其係耦接於本發明影像感測器中之影像感測單元中之至少一者,並且用以補償影像感測單元所產生之感測結果中之至少一者。The image sensor of the present invention may include an image compensation unit, the purpose of which is to compensate for the aberration caused by the image sensing unit being disposed at different positions. For example, please refer to FIG. 4, because the sensing unit at positions 4101, 4201 and 4301 respectively sense the red color component, the green color component and the blue color component, which belong to the same pixel in one image. The color component, however, may cause aberrations between the sensing results of the image sensing unit due to the difference in the actual position of the sensing unit. Therefore, the present invention needs to pass an image compensation unit to target different image sensing units. The resulting sensing results are corrected to improve the imaging quality of the image sensor of the present invention. Therefore, in a preferred embodiment of the image sensor of the present invention, an image compensation unit is coupled to at least one of the image sensing units of the image sensor of the present invention, and is used for Compensating at least one of the sensing results generated by the image sensing unit.

再者,為了提供較佳的白平衡與色彩校正的能力,於另一實施例中,本發明影像感測器可能另包含有不具備色彩濾光片的之一影像感測單元,用以提供對應至入射光中之白色(W)色彩成分,以輔助白平衡與色彩校正等操作。這樣的實施例請參考第5圖,其係本發明影像感測器之上方示意圖。如圖所示,影像感測器500包含有:第一影像感測單元510、第二影像感測單元520、第三影像感測單元530以及第四影像感測單元540。其中,第一影像感測單元510、第二影像感測單元520、第三影像感測單元530相似於第2圖中影像感測單元的結構,然而,第四影像感測單元540則有所不同,其結構中並不具備色彩濾光片,而僅具備微透鏡陣列與感測陣列。因此可接收到光線中之白色(W)色彩成分。第四影像感測單元540的主要目的在於提供白色色彩成分的資訊,以利進行白平衡與色彩校正。再者,由於第四影像感測單元540不具備色彩濾光片,所以其產生的感測結果,將可對應至YUV色彩空間中的Y成分值。因此,透過第四影像感測單元540的感測結果,本發明可進一步調整將RGB色彩空間中之RGB值轉換成YUV色彩空間中之YUV值所使用的係數。進一步來說,一般將RGB色彩空間轉換為YUV色彩空間時,可能會使用Y=0.299R+0.587G+0.114B的公式,因此習知的影像感測器,會直接利用這樣的公式將所感測到的R、G與B值轉換為YUV值,然而,隨著影像感測器之特性的不同,上述公式所使用的係數(如:0.299、0.587與0.114)未必適合於所有情形。故本發明可透過第四影像感測單元540所產生之對應於Y值的感測結果與第一影像感測單元510、第二影像感測單元520、第三影像感測單元530所產生之對應於RGB色彩空間中之R、G與B值的感測結果,來重新調整這些係數。因此,影像感測器500中可能另包含有一影像處理電路(未示出),其係分別耦接於第一影像感測單元510、第二影像感測單元520、第三影像感測單元530以及第四影像感測單元540,並且依據第一影像感測單元510、第二影像感測單元520、第三影像感測單元530以及第四影像感測單元540的感測結果來調整將RGB色彩空間中之RGB值轉換成YUV色彩空間中之YUV值所使用的係數(如:如:0.299、0.587與0.114)。Furthermore, in another embodiment, the image sensor of the present invention may further comprise an image sensing unit without a color filter for providing the image with a color filter. Corresponds to the white (W) color component in the incident light to assist in operations such as white balance and color correction. For an example of this embodiment, please refer to FIG. 5, which is a schematic diagram of the upper side of the image sensor of the present invention. As shown in the figure, the image sensor 500 includes a first image sensing unit 510, a second image sensing unit 520, a third image sensing unit 530, and a fourth image sensing unit 540. The first image sensing unit 510, the second image sensing unit 520, and the third image sensing unit 530 are similar to the structure of the image sensing unit in FIG. 2, however, the fourth image sensing unit 540 has Differently, there is no color filter in its structure, but only a microlens array and a sensing array. Therefore, the white (W) color component in the light can be received. The main purpose of the fourth image sensing unit 540 is to provide information of white color components for white balance and color correction. Moreover, since the fourth image sensing unit 540 does not have a color filter, the sensing result generated by the fourth image sensing unit 540 can correspond to the Y component value in the YUV color space. Therefore, the present invention can further adjust the coefficients used to convert the RGB values in the RGB color space into the YUV values in the YUV color space through the sensing results of the fourth image sensing unit 540. Further, when converting the RGB color space to the YUV color space, a formula of Y=0.299R+0.587G+0.114B may be used. Therefore, the conventional image sensor directly uses such a formula to sense the image. The R, G, and B values obtained are converted to YUV values. However, the coefficients used by the above formulas (eg, 0.299, 0.587, and 0.114) may not be suitable for all situations depending on the characteristics of the image sensor. Therefore, the present invention can generate the sensing result corresponding to the Y value generated by the fourth image sensing unit 540 and the first image sensing unit 510, the second image sensing unit 520, and the third image sensing unit 530. These coefficients are re-adjusted corresponding to the sensing results of the R, G, and B values in the RGB color space. Therefore, the image sensor 500 may further include an image processing circuit (not shown) coupled to the first image sensing unit 510, the second image sensing unit 520, and the third image sensing unit 530. And the fourth image sensing unit 540, and adjusts the RGB according to the sensing results of the first image sensing unit 510, the second image sensing unit 520, the third image sensing unit 530, and the fourth image sensing unit 540. The coefficients used to convert the RGB values in the color space to the YUV values in the YUV color space (eg, eg 0.299, 0.587, and 0.114).

總結來說,本發明所提供的影像感測器架構,可減少串音現象,並且也具備了提供了更佳的白平衡與色彩校正能力,故可擁有優於習知影像感測器的成像品質。In summary, the image sensor architecture provided by the present invention can reduce crosstalk, and also provides better white balance and color correction capability, so that it can have imaging better than conventional image sensors. quality.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200、300、400、500...影像感測器100, 200, 300, 400, 500. . . Image sensor

110...色彩濾光片陣列110. . . Color filter array

120、214、224、234...微透鏡陣列120, 214, 224, 234. . . Microlens array

121、122...微透鏡121, 122. . . Microlens

130、216、226、236...感測陣列130, 216, 226, 236. . . Sensing array

131、132...感測單元131, 132. . . Sensing unit

210、220、230、310~330、410~430、510~540...影像感測單元210, 220, 230, 310~330, 410~430, 510~540. . . Image sensing unit

212、222、232...色彩濾光片212, 222, 232. . . Color filter

218、228、238...基底218, 228, 238. . . Base

4101、4201、4304...位置4101, 4201, 4304. . . position

第1圖係為習知影像感測器之結構示意圖。Figure 1 is a schematic view of the structure of a conventional image sensor.

第2圖係為本發明影像感測器之一實施例的側面結構示意圖。2 is a schematic side view showing an embodiment of an image sensor of the present invention.

第3圖係為本發明影像感測器之一實施例的上方結構示意圖。Figure 3 is a schematic diagram of the upper structure of an embodiment of the image sensor of the present invention.

第4圖係為本發明影像感測器之另一實施例的上方結構示意圖。Figure 4 is a schematic view of the upper structure of another embodiment of the image sensor of the present invention.

第5圖係為本發明影像感測器之再一實施例的上方結構示意圖。Fig. 5 is a schematic view showing the upper structure of still another embodiment of the image sensor of the present invention.

200...影像感測器200. . . Image sensor

210、220、230...影像感測單元210, 220, 230. . . Image sensing unit

212、222、232...色彩濾光片212, 222, 232. . . Color filter

214、224、234...微透鏡陣列214, 224, 234. . . Microlens array

216、226、236...感測陣列216, 226, 236. . . Sensing array

218、228、238...基底218, 228, 238. . . Base

Claims (8)

一種影像感測器,包含有:一第一影像感測單元,包括:一第一色彩濾光片,對應至一第一色彩,用以過濾一入射光中除了該第一色彩以外的其它色彩成分,以產生一第一過濾後入射光;以及一第一感測陣列,具有複數個感測單元,用以感測該第一過濾後入射光,以產生一第一感測結果;一第二影像感測單元,包括:一第二色彩濾光片,對應至一第二色彩,用以過濾該入射光中除了該第二色彩以外的其它色彩成分,以產生一第二過濾後入射光,其中該第二色彩與該第一色彩係為不同;以及一第二感測陣列,具有複數個感測單元,用以感測該第二過濾後入射光,以產生一第二感測結果;一第三影像感測單元,包括:一第三色彩濾光片,對應至一第三色彩,用以過濾該入射光中除了該第三色彩以外的其它色彩成分,以產生一第三過濾後入射光,其中該第三色彩與該第一、第二色彩係為不同;以及一第三感測陣列,具有複數個感測單元,用以感測該第三過濾後入射光,以產生一第三感測結果; 一第四影像感測單元,包含有:一感測陣列,具有複數個感測單元,用以感測該入射光,以一第四感測結果;以及一影像處理電路,耦接於該第一影像感測單元、該第二影像感測單元、該第三影像感測單元以及該第四影像感測單元,用以依據該第四感測結果,來調整將該第一感測結果、該第二感測結果、該第三感測結果由一第一色彩空間轉換至一第二色彩空間的轉換方式;其中,該第一影像感測單元係位於該第二影像感測單元之旁。 An image sensor includes: a first image sensing unit, comprising: a first color filter corresponding to a first color for filtering colors other than the first color of an incident light a component for generating a first filtered incident light; and a first sensing array having a plurality of sensing units for sensing the first filtered incident light to generate a first sensing result; The second image sensing unit includes: a second color filter corresponding to a second color for filtering color components other than the second color of the incident light to generate a second filtered incident light The second color is different from the first color system; and a second sensing array has a plurality of sensing units for sensing the second filtered incident light to generate a second sensing result a third image sensing unit, comprising: a third color filter corresponding to a third color for filtering color components other than the third color of the incident light to generate a third filter After incident light, where Three first color and the second color are different lines; and a third sensing array having a plurality of sensing unit for sensing the third filter the incident light, to generate a third sensing result; a fourth image sensing unit includes: a sensing array having a plurality of sensing units for sensing the incident light to be a fourth sensing result; and an image processing circuit coupled to the first An image sensing unit, the second image sensing unit, the third image sensing unit, and the fourth image sensing unit are configured to adjust the first sensing result according to the fourth sensing result, The second sensing result is converted from a first color space to a second color space; wherein the first image sensing unit is located beside the second image sensing unit . 如申請專利範圍第1項所述之影像感測器,其中該第一色彩與該第二色彩分別為紅(R)、綠(G)或藍(B)中之一者。 The image sensor of claim 1, wherein the first color and the second color are respectively one of red (R), green (G) or blue (B). 如申請專利範圍第1項所述之影像感測器,另包含有:一影像補償電路,耦接於該第一感測陣列與該第二感測陣列中至少一感測陣列,用以補償該該第一感測結果與該第二感測結果中之至少一者。 The image sensor of claim 1, further comprising: an image compensation circuit coupled to the at least one sensing array of the first sensing array and the second sensing array for compensating At least one of the first sensing result and the second sensing result. 如申請專利範圍第1項所述之影像感測器,其中該第一感測陣列與該第二感測陣列係彼此獨立,並且分別設置於複數個不同基底(substrate)上。 The image sensor of claim 1, wherein the first sensing array and the second sensing array are independent of each other and are respectively disposed on a plurality of different substrates. 如申請專利範圍第1項所述之影像感測器,其中該複數個感測單 元中每一感測單元係為一互補式金氧半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感測單元或一電荷耦合元件(Charge-coupled Device,CCD)感測單元。 The image sensor of claim 1, wherein the plurality of sensing sheets Each sensing unit in the element is a Complementary Metal-Oxide-Semiconductor (CMOS) sensing unit or a Charge-coupled Device (CCD) sensing unit. 如申請專利範圍第1項所述之影像感測器,其中該第四影像感測單元另包含:一微透鏡陣列,設置於該感測陣列之上。 The image sensor of claim 1, wherein the fourth image sensing unit further comprises: a microlens array disposed on the sensing array. 如申請專利範圍第1項所述之影像感測器,其中該第一影像感單元與該第二影像感單元中分別另包含:一微透鏡陣列,設置於該色彩濾光片與該感測陣列之間。 The image sensor of claim 1, wherein the first image sensing unit and the second image sensing unit respectively comprise: a microlens array disposed on the color filter and the sensing Between arrays. 如申請專利範圍第7項所述之影像感測器,其中於該第一影像感測單元與該第二影像感測單元中,該微透鏡陣列與該感測陣列之間距係為不同。 The image sensor of claim 7, wherein the distance between the microlens array and the sensing array is different in the first image sensing unit and the second image sensing unit.
TW99115682A 2010-05-17 2010-05-17 Image sensor TWI436640B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99115682A TWI436640B (en) 2010-05-17 2010-05-17 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99115682A TWI436640B (en) 2010-05-17 2010-05-17 Image sensor

Publications (2)

Publication Number Publication Date
TW201143400A TW201143400A (en) 2011-12-01
TWI436640B true TWI436640B (en) 2014-05-01

Family

ID=46765321

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99115682A TWI436640B (en) 2010-05-17 2010-05-17 Image sensor

Country Status (1)

Country Link
TW (1) TWI436640B (en)

Also Published As

Publication number Publication date
TW201143400A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
US8035708B2 (en) Solid-state imaging device with an organic photoelectric conversion film and imaging apparatus
US10032810B2 (en) Image sensor with dual layer photodiode structure
TWI460520B (en) Solid-state imaging device and camera module
US7483065B2 (en) Multi-lens imaging systems and methods using optical filters having mosaic patterns
JP5106256B2 (en) Imaging device
US8134633B2 (en) Color solid-state image capturing apparatus and electronic information device
US8624305B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device, and electronic device
US8339488B2 (en) Solid-state image pickup device having laminated color filters, manufacturing method thereof, and electronic apparatus incorporating same
TWI442780B (en) Solid-state imaging device, color filter arrangement method therefor and image recording apparatus
US20070272836A1 (en) Photoelectric conversion apparatus
US11139325B2 (en) Solid-state imaging device, imaging apparatus, and electronic apparatus
CN113542639A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
WO2006064564A1 (en) Imaging device, imaging element, and image processing method
KR101621158B1 (en) Solid-state imaging device
JP2009212154A (en) Image pickup device and image pickup system
US20170026599A1 (en) Image Sensor Array and Arrangement Method Thereof, Image Acquisition Component and Electronic Device
US10931902B2 (en) Image sensors with non-rectilinear image pixel arrays
KR101465885B1 (en) Solid-state imaging device, camera module and digital camera
US20050117039A1 (en) Solid-state imaging device
US11647305B2 (en) Solid-state imaging apparatus, signal processing method of solid-state imaging apparatus and electronic device
TWI436640B (en) Image sensor
US20070029580A1 (en) Image-processing unit
JP6701772B2 (en) Photoelectric conversion element, image reading apparatus, and image forming apparatus
KR101136217B1 (en) Solid state imaging circuit and camera system
US8964071B2 (en) Solid-state imaging device, camera module, and imaging method having first and second green pixel cells