TWI436254B - Optical touch display system - Google Patents
Optical touch display system Download PDFInfo
- Publication number
- TWI436254B TWI436254B TW100112274A TW100112274A TWI436254B TW I436254 B TWI436254 B TW I436254B TW 100112274 A TW100112274 A TW 100112274A TW 100112274 A TW100112274 A TW 100112274A TW I436254 B TWI436254 B TW I436254B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- light
- group
- distance
- emitting element
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Description
本發明係有關於一種光學觸控螢幕系統,更明確地說,係有關於適用於多點觸控之光學觸控螢幕系統。The present invention relates to an optical touch screen system, and more particularly to an optical touch screen system suitable for multi-touch.
現今觸控螢幕技術已廣泛應用於各式電子產品中,例如自動櫃員機、手持式電子裝置以及顯示器。一般說來,觸控螢幕技術可分為電阻式、電容式以及光學式三種。其中電阻式和電容式觸控螢幕技術係利用物體接觸感測裝置時,造成觸控螢幕表面的電場變化而定位物件。光學式觸控螢幕技術則係利用物件在觸控螢幕表面上移動時,造成光路徑阻斷或是光影變化而定位物件。Today's touch screen technology has been widely used in a variety of electronic products, such as automated teller machines, handheld electronic devices and displays. In general, touch screen technology can be divided into three types: resistive, capacitive, and optical. Among them, the resistive and capacitive touch screen technology utilizes an object contact sensing device to cause an electric field change on the surface of the touch screen to position the object. The optical touch screen technology uses the object to move on the touch screen surface, causing the light path to block or the light and shadow to change and position the object.
由於光學式觸控螢幕技術在顯示裝置的生產流程上不須特別的製程與元件,且光學式觸控技術的成本較不受尺寸大小的影響,因此光學式觸控螢幕在中大型螢幕上的生產成本較電阻式和電容式觸控螢幕為低。為了達到機構設計上的輕薄,光學式觸控技術往往將影像感測器置於觸控螢幕的角落並從不同的角度以三角測量方式來估測接觸物的座標。但是針對兩個以上的接觸物,其影像往往因為遮蔽而容易降低座標估測的精確度或是得到錯誤的座標(鬼影),造成應用上的不便。Since the optical touch screen technology does not require special processes and components in the production process of the display device, and the cost of the optical touch technology is not affected by the size, the optical touch screen is on the medium and large screen. Production costs are lower than resistive and capacitive touch screens. In order to achieve the thinness of the design of the mechanism, the optical touch technology often places the image sensor at the corner of the touch screen and estimates the coordinates of the contact from different angles. However, for two or more contacts, the image tends to reduce the accuracy of the coordinate estimation or get the wrong coordinates (ghost) due to the shielding, which causes inconvenience in application.
本發明提供一種光學觸控螢幕系統。該光學觸控螢幕系統包含一發光元件,設置於一觸控區域之周圍,且該發光元件至少部分位於該觸控區域上方,致使該發光元件所發射光線可橫跨該觸控區域;一反射鏡,設置於該觸控區域之周圍,反射該發光元件所發射光線並產生該觸控區域之一鏡像;一影像感測器,設置於該發光元件上方,接收位於該觸控區域之一組接觸點以及該反射鏡,所反射該發光元件之光線,並據以產生一二維影像;其中該二維影像包含一組物像,該組物像包含對應於該組接觸點之一組實像以及該反射鏡反射該發光元件之光線所產生對應於該組接觸點之一組虛像;以及一處理裝置,用來根據該組實像於該二維影像中之位置,產生對應於該組接觸點之一組輸出座標。The invention provides an optical touch screen system. The optical touch screen system includes a light-emitting component disposed around a touch area, and the light-emitting component is at least partially located above the touch area, such that light emitted by the light-emitting element can span the touch area; a mirror disposed around the touch area to reflect light emitted by the light emitting element and to generate a mirror image of the touch area; an image sensor disposed above the light emitting element and receiving a group located in the touch area a contact point and the mirror, the light of the light-emitting element is reflected, and a two-dimensional image is generated according to the image; wherein the two-dimensional image comprises a group of objects, the group image comprising a group of real images corresponding to the set of contact points And the light reflected by the mirror reflecting the light-emitting element generates a virtual image corresponding to the set of contact points; and a processing device for generating a position corresponding to the set of contact points according to the position of the set of real images in the two-dimensional image One group of output coordinates.
本發明另提供一種光學觸控螢幕系統。該光學觸控螢幕系統包含一觸控區域;一發光元件,設置於一觸控區域之周圍,且該發光元件至少部分位於該觸控區域上方,致使該發光元件所發射光線可橫跨該觸控區域;一影像感測器,設置於該發光元件上方,接收位於該觸控區域之一組接觸點所反射該發光元件之光線,並據以產生一二維影像;其中該二維影像包含對應於該組接觸點之一組物像;一距離測量裝置,連接該發光元件與該影像感測器,用來控制該發光元件與該影像感測器,並根據該組物像在該二維影像中於一第一方向上之座標,產生對應於該組物像之一組物像距離;一角度測量裝置,連接該影像感測器,用來根據該組物像在該二維影像中於一第二方向上之座標,產生對應於該組物像之一組物像角度;以及一處理裝置,根據該組物像距離與該組物像角度,產生對應於該組接觸點之一組輸出座標。The invention further provides an optical touch screen system. The optical touch screen system includes a touch area; a light emitting element is disposed around a touch area, and the light emitting element is at least partially located above the touch area, such that light emitted by the light emitting element can span the touch An image sensor is disposed above the light emitting element to receive light reflected by the contact point of a group of the touch area and to generate a two-dimensional image; wherein the two-dimensional image comprises Corresponding to a group object image of the group of contact points; a distance measuring device connecting the light emitting element and the image sensor for controlling the light emitting element and the image sensor, and according to the group image in the second a coordinate in a first direction of the dimensional image, generating a group image distance corresponding to the group of objects; an angle measuring device connected to the image sensor for the 2D image according to the group image a coordinate in a second direction, generating a group image angle corresponding to the group image; and a processing device generating a corresponding contact point according to the group image distance and the group image angle One Output coordinates.
本發明另提供一種光學觸控螢幕系統。該光學觸控螢幕系統包含一發光元件,設置於一觸控區域之周圍,且該發光元件至少部分位於該觸控區域上方,致使該發光元件所發射光線可橫跨該觸控區域;一第一影像感測器,設置於該發光元件上方,接收位於該觸控區域之一組接觸點所反射該發光元件之光線,並據以產生一第一二維影像;其中該第一二維影像包含對應於該組接觸點之一第一組實像;一第二影像感測器,設置於該觸控區域之周圍,接收位於該觸控區域之該組接觸點以所反射該發光元件之光線,並據以產生一第二二維影像;其中該第二二維影像包含對應於該組接觸點之一第二組實像;一距離測量裝置,連接該發光元件與該第一影像感測器,用來控制該第一影像感測器與該發光元件,並根據該第一組實像在該二維影像中於一第一方向上之座標,產生對應於該第一組實像之一第一組物像距離;以及一處理裝置,用來根據該第一組實像與該第一影像感測器於該第一二維影像中之位置,產生一第一組實像直線,以及根據該第二組實像與該第二影像感測器於該第二二維影像中之位置,產生一第二組實像直線,該處理裝置根據該第一組實像直線與該該第一組實像直線,產生對應於該組接觸點之一組候選座標,並根據該組候選座標與該第一組物像距離,產生對應於該組接觸點之一組輸出座標。The invention further provides an optical touch screen system. The optical touch screen system includes a light-emitting component disposed around a touch area, and the light-emitting component is at least partially located above the touch area, such that light emitted by the light-emitting element can span the touch area; An image sensor is disposed above the light emitting element, and receives light reflected by the group of contact points of the touch area to reflect the light emitting element, and accordingly generates a first two-dimensional image; wherein the first two-dimensional image Included in the first group of real images corresponding to the set of contact points; a second image sensor disposed around the touch area, receiving the set of contact points located in the touch area to reflect the light of the light emitting element And generating a second two-dimensional image; wherein the second two-dimensional image includes a second group of real images corresponding to one of the set of contact points; and a distance measuring device connecting the light-emitting element and the first image sensor And controlling the first image sensor and the light emitting component, and generating a first one corresponding to the first group of real images according to coordinates of the first set of real images in a first direction in the two-dimensional image group And a processing device configured to generate a first set of real image lines according to the positions of the first group of real images and the first image sensor in the first two-dimensional image, and according to the second group of real images And generating a second set of real image lines at a position of the second image sensor in the second two-dimensional image, the processing device generating a corresponding line according to the first set of real image lines and the first set of real image lines A group of candidate points of the set of contact points, and according to the set of candidate coordinates and the first group of object distances, generating a group output coordinate corresponding to the set of contact points.
請參考第1圖。第1圖係為本發明之第一實施例之光學觸控螢幕系統100之示意圖。光學觸控螢幕系統100包含一影像感測器101、一發光元件102、一觸控區域103、一吸光元件104以及一處理裝置120。處理裝置120包含一距離測量裝置105、一角度測量裝置106,以及一處理器107。光學觸控螢幕系統100可偵測多個接觸點。此外,距離測量裝置105另透過控制訊號SC 來控制影像感測器101以及發光元件102。於第1圖中,僅繪出兩個接觸點O1 、O2 以方便說明。此外,在第1圖中各元件之相對位置係為了方便說明而與實際上的設置有所差異,而光學觸控螢幕系統100實際上會在影像感測器101之感測面設置一鏡頭LN,以讓所有入射至影像感測器101之光線皆會經過該鏡頭LN,然而同樣為了方便說明而未將鏡頭LN繪製於第1圖中。Please refer to Figure 1. 1 is a schematic diagram of an optical touchscreen system 100 in accordance with a first embodiment of the present invention. The optical touch screen system 100 includes an image sensor 101 , a light emitting element 102 , a touch area 103 , a light absorbing element 104 , and a processing device 120 . The processing device 120 includes a distance measuring device 105, an angle measuring device 106, and a processor 107. The optical touchscreen system 100 can detect multiple touch points. In addition, the distance measuring device 105 further controls the image sensor 101 and the light emitting element 102 through the control signal S C . In Fig. 1, only two contact points O 1 , O 2 are drawn for convenience of explanation. In addition, the relative positions of the components in FIG. 1 are different from the actual settings for convenience of explanation, and the optical touch screen system 100 actually sets a lens LN on the sensing surface of the image sensor 101. So that all the light incident on the image sensor 101 passes through the lens LN, but the lens LN is not drawn in the first figure for convenience of explanation.
較佳地,觸控區域103設定為一矩形,吸光元件104設置於觸控區域103之周圍,用來吸收發光元件102之光線,以防止發光元件102之光線反射回影像感測器101。然而觸控區域103,根據使用者需求,亦可設置成梯形,或其他多邊形。發光元件102設置於觸控區域103之周圍;較佳地,發光元件102之部分設置於觸控區域103之一角落的上方,以使發光元件102所發射的光線能橫跨觸控區域103。影像感測器101設置於靠近發光元件102;較佳地,影像感測器101設置於發光元件102之上方。此外,發光元件102可為一二維光源,包含一線光源以及一光源轉換裝置,其中該線光源係透過一雷射二極體或一發光二極體產生光線;該光源轉換裝置係將該線光源轉換為該二維光源,以產生照射在觸控區域103之光線;該光源轉換裝置係為一柱狀鏡、一繞射光學元件(DOE)或一微機電反射鏡模組。Preferably, the touch area 103 is set to a rectangular shape, and the light absorbing element 104 is disposed around the touch area 103 for absorbing the light of the light emitting element 102 to prevent the light of the light emitting element 102 from being reflected back to the image sensor 101. However, the touch area 103 can also be set as a trapezoid or other polygons according to user requirements. The light-emitting element 102 is disposed around the touch area 103. Preferably, a portion of the light-emitting element 102 is disposed above a corner of the touch area 103 such that light emitted by the light-emitting element 102 can traverse the touch area 103. The image sensor 101 is disposed adjacent to the light emitting element 102; preferably, the image sensor 101 is disposed above the light emitting element 102. In addition, the light-emitting element 102 can be a two-dimensional light source, including a line source and a light source conversion device, wherein the line source generates light through a laser diode or a light-emitting diode; the light source conversion device is the line The light source is converted into the two-dimensional light source to generate light that is incident on the touch area 103. The light source conversion device is a cylindrical mirror, a diffractive optical element (DOE) or a microelectromechanical mirror module.
影像感測器101係由M排N列個感測單元所構成之一感光陣列,並據以產生一具有M排N列解析度之一二維影像F。更明確地說,二維影像F係使用直角座標,在X軸方向上有M個解析度、在Y軸方向上有N個解析度。The image sensor 101 is formed by one row of N rows of sensing units, and generates a two-dimensional image F having a resolution of M rows and N columns. More specifically, the two-dimensional image F uses a rectangular coordinate, and has M resolutions in the X-axis direction and N resolutions in the Y-axis direction.
本發明於觸控區域103中使用極座標系統。如第1圖所示,極座標系統之原點(0,0)設於觸控區域103之左上角,角度基準設為觸控區域103之上邊界。較佳地,影像感測器101設置於觸控區域之左上角,意即影像感測器101之座標亦為原點(0,0);發光元件102同樣設置於觸控區域之左上角,意即發光元件102之座標亦為原點(0,0)。因此,在觸控區域103中之物體之位置,係以與觸控區域103之左上角之距離R與上邊界之角度θ來表示。The present invention uses a polar coordinate system in the touch area 103. As shown in FIG. 1, the origin (0, 0) of the polar coordinate system is disposed at the upper left corner of the touch area 103, and the angle reference is set to the upper boundary of the touch area 103. Preferably, the image sensor 101 is disposed at the upper left corner of the touch area, that is, the coordinates of the image sensor 101 are also the origin (0, 0); the light-emitting element 102 is also disposed at the upper left corner of the touch area. That is, the coordinates of the light-emitting element 102 are also the origin (0, 0). Therefore, the position of the object in the touch area 103 is represented by the angle θ from the upper left corner of the touch area 103 and the upper boundary.
距離測量裝置105與角度測量裝置106係根據接觸點反射的光線,在二維影像F中產生的物像位置,測量出接觸點的物像距離與物像角度。更明確地說,距離測量裝置105根據在二維影像F中,於Y軸方向上的物像位置,計算接觸點的距離;角度測量裝置106根據在二維影像F中,於X軸方向上的物像位置,計算接觸點的角度。處理裝置107再根據距離測量裝置105與角度測量裝置106所得到的資訊,輸出接觸點的位置(距離與角度)。The distance measuring device 105 and the angle measuring device 106 measure the object image distance of the contact point and the object image angle based on the object image position generated in the two-dimensional image F according to the light reflected by the contact point. More specifically, the distance measuring device 105 calculates the distance of the contact point based on the object image position in the Y-axis direction in the two-dimensional image F; the angle measuring device 106 is based on the X-axis direction in the two-dimensional image F. The object image position, the angle of the contact point is calculated. The processing device 107 then outputs the position (distance and angle) of the contact point based on the information obtained by the distance measuring device 105 and the angle measuring device 106.
請參考第2圖。第2圖係為說明光學觸控螢幕系統100在校正階段之示意圖。在光學觸控螢幕系統100開始偵測接觸點的位置前,可先經過一校正階段。以下將說明本發明之光學觸控螢幕系統100於校正階段之操作方式。同樣地,為了方便說明,鏡頭LN並未繪製於第2圖中。Please refer to Figure 2. Figure 2 is a schematic diagram showing the optical touch screen system 100 during the calibration phase. Before the optical touch screen system 100 begins to detect the position of the contact point, a correction phase can be passed. The mode of operation of the optical touchscreen system 100 of the present invention during the calibration phase will be described below. Similarly, for convenience of explanation, the lens LN is not drawn in the second drawing.
於校正階段中,可在觸控區域103之各角落設置校正物P1 、P2 、P3 、P4 ,且其對應座標為(RP1 ,θP1 )、(RP2 ,θP2 )、(RP3 ,θP3 )、(RP4 ,θP4 )。發光元件102分別對校正物P1 、P2 、P3 、P4 射出光線;校正物P1 、P2 、P3 、P4 將發光元件102射過來的光線反射回影像感測器101。此處假設校正物P1 、P2 、P3 、P4 分別成像於感測單元CS(M,0) 、CS(M,N) 、CS(0,N) 、CS(0,0) (此假設僅為了方便說明,與實際情況有所差異)。也就是說,校正物P1 、P2 、P3 、P4 在二維影像F中之對應物像IP1 、IP2 、IP3 、IP4 之座標分別為(M,0)、(M,N)、(0,N)、(0,0)。由於將校正物P1 ~P4 設置於觸控區域之各角落,且已知觸控區域103的長寬,在原點(0,0)設於觸控區域的左上角的情況下,可以單由數學方式推導得知(RP1 ,θP1 )、(RP2 ,θP2 )、(RP3 ,θP3 )、(RP4 ,θP4 )。舉例來說,設觸控區域103的長度為RL ,寬度為WL ,則可推得知(RP1 ,θP1 )、(RP2 ,θP2 )、(RP3 ,θP3 )、(RP4 ,θP4 )分別為(0,0)、(RL ,0)、((RL 2 +WL 2 )1/2 ,tan-1 (WL /RL ))、(WL ,90°)。如此一來,以校正物P3 與P4 的情況來說,距離測量裝置105便能知道在二維影像F中Y軸方向上相差N時,則實際距離差為WL ,並以內插方式推測一物像在二維影像F中於Y軸方向上的位置所對應於在觸控區域103中與原點的距離。以校正物P1 與P3 的情況來說,角度測量裝置106便能知道在二維影像F中X軸方向上相差M時,則實際角度差為90°,並以內插方式推測一物像在二維影像F中於X軸方向上的位置所對應於在觸控區域103中與原點的角度。此外,於上述之校正方式,可根據使用者的需求而有不同變化,如更改校正物之位置與數量...等。In the correction phase, the calibrators P 1 , P 2 , P 3 , and P 4 may be disposed at each corner of the touch area 103, and the corresponding coordinates are (R P1 , θ P1 ), (R P2 , θ P2 ), (R P3 , θ P3 ), (R P4 , θ P4 ). The light-emitting elements 102 emit light to the calibrators P 1 , P 2 , P 3 , and P 4 , respectively ; and the calibrators P 1 , P 2 , P 3 , and P 4 reflect the light emitted from the light-emitting elements 102 back to the image sensor 101. It is assumed here that the calibrators P 1 , P 2 , P 3 , P 4 are respectively imaged in the sensing units CS (M, 0) , CS (M, N) , CS (0, N) , CS (0, 0) ( This assumption is for convenience only and is different from the actual situation). That is to say, the coordinates of the corresponding objects P 1 , P 2 , P 3 , and P 4 in the two-dimensional image F are (M, 0), (M, respectively, the coordinates of the objects I P1 , I P2 , I P3 , and I P4 . , N), (0, N), (0, 0). Since the calibrators P 1 -P 4 are disposed at each corner of the touch area, and the length and width of the touch area 103 are known, when the origin (0, 0) is set at the upper left corner of the touch area, the single It is mathematically derived (R P1 , θ P1 ), (R P2 , θ P2 ), (R P3 , θ P3 ), (R P4 , θ P4 ). For example, if the length of the touch region 103 is R L and the width is W L , then (R P1 , θ P1 ), (R P2 , θ P2 ), (R P3 , θ P3 ), ( R P4 , θ P4 ) are (0,0), (R L ,0), ((R L 2 +W L 2 ) 1/2 , tan -1 (W L /R L )), (W L , 90°). In this way, in the case of the calibrators P 3 and P 4 , the distance measuring device 105 can know that when the phase difference N in the Y-axis direction in the two-dimensional image F, the actual distance difference is W L and is interpolated. It is presumed that the position of an object image in the Y-axis direction in the two-dimensional image F corresponds to the distance from the origin in the touch region 103. In the case of the calibrators P 1 and P 3 , the angle measuring device 106 can know that when the phase difference M is in the X-axis direction in the two-dimensional image F, the actual angle difference is 90°, and an object image is estimated by interpolation. The position in the X-axis direction in the two-dimensional image F corresponds to the angle with the origin in the touch region 103. In addition, the above-mentioned correction method can be changed according to the needs of the user, such as changing the position and quantity of the calibration object, and the like.
請參考第3圖。第3圖係為說明本發明之光學觸控螢幕系統100於正常運作時之示意圖。於正常運作時,發光元件102對接觸點O1 射出光線;接觸點O1 將發光元件102射過來的光線反射回影像感測器101,並於感光元件CS(X1,Y1) 上成像。也就是說,接觸點O1 在二維影像F中之對應物像IO1 之座標為(X1 ,Y1 )。由於距離測量裝置105與角度測量裝置106在經過校正階段後得知觸控區域103與二維影像F之間的座標關係,因此可計算出接觸點O1 於觸控區域103中之位置為(RO1 ,θO1 )。至於計算接觸點O2 之方式與接觸點O1 類似,於此不再贅述。Please refer to Figure 3. Figure 3 is a schematic diagram showing the optical touch screen system 100 of the present invention in normal operation. When in normal operation, a contact point of the light emitting element 102 emits light O 1; contact point O 1 to the light emitting element 102 is reflected back out the light from the image sensor 101, and the photosensitive member to CS (X1, Y1) on the image. That is to say, the coordinates of the corresponding object image I O1 of the contact point O 1 in the two-dimensional image F are (X 1 , Y 1 ). Since the distance measuring device 105 and the angle measuring device 106 know the coordinate relationship between the touch region 103 and the two-dimensional image F after the correction phase, the position of the contact point O 1 in the touch region 103 can be calculated as ( R O1 , θ O1 ). The manner of calculating the contact point O 2 is similar to the contact point O 1 and will not be described here.
請參考第4圖。第4圖係為光學觸控螢幕系統100之側視圖。第4圖主要係用來說明距離測量裝置105量測距離R之方式,並使用校正物P1 、P2 以及接觸點OT ,以作為示範說明。另外,鏡頭LN繪 製於第4圖中以說明所有入射至影像感測器101之光線皆會經過鏡頭LN而因此成像位置才會如第4圖所示。設校正物P1 與P2 之距離RL 為已知,且對應之物像IP1 、IP2 成像於二維影像F中,其座標分別為(M,N)、(M,0)。此時距離測量裝置105要偵測接觸點OT 之距離ROT 便可利用其物像IOT 在二維影像F中,於Y軸方向上,相對於物像IP1 、IP2 的位置來得出。更明確地說,物像IOT 之位置為(XT ,YT ),因此距離ROT 便可利用下式得出:ROT =(YT /N)×RL 。Please refer to Figure 4. FIG. 4 is a side view of the optical touch screen system 100. Fig. 4 is mainly used to explain the manner in which the distance measuring device 105 measures the distance R, and uses the calibrators P 1 , P 2 and the contact point O T as an example. In addition, the lens LN is drawn in FIG. 4 to show that all of the light incident on the image sensor 101 passes through the lens LN, so that the image forming position is as shown in FIG. It is assumed that the distance R L between the calibrators P 1 and P 2 is known, and the corresponding object images I P1 and I P2 are imaged in the two-dimensional image F, and their coordinates are (M, N) and (M, 0), respectively. At this time, the distance measuring device 105 detects the distance O OT of the contact point O T , and can use the object image I OT in the two-dimensional image F in the Y-axis direction with respect to the positions of the object images I P1 and I P2 . Out. More specifically, the position of the object image I OT is (X T , Y T ), so the distance R OT can be obtained by the following equation: R OT = (Y T /N) × R L .
請參考第5圖。第5圖係為光學觸控螢幕系統100之上視圖。第5圖主要係用來說明角度測量裝置106量測角度θ之方式,並使用校正物P2 、P3 以示範說明。由於校正物P2 與P3 之夾角θP3 (如tan-1 (WL /RL ))為已知,且對應之物像IP2 、IP3 成像於(M,N)、(0,N)。此時角度測量裝置106要偵測接觸點OT 之角度θOT 便可利用其物像IOT 在二維影像F中,於X軸方向上,相較於物像IP2 、IP3 的位置來得出。更明確地說,物像IOT 之位置為(XT ,YT ),因此角度θOT 便可利用下式得出:θOT =(XT /M)×θP3 。Please refer to Figure 5. Figure 5 is a top view of the optical touch screen system 100. Fig. 5 is mainly used to explain the manner in which the angle measuring device 106 measures the angle θ, and uses the calibrators P 2 , P 3 for illustrative purposes. Since the angle θ P3 of the calibrators P 2 and P 3 (such as tan -1 (W L /R L )) is known, and the corresponding objects like I P2 and I P3 are imaged at (M, N), (0, N). At this time, the angle measuring device 106 can detect the angle θ OT of the contact point O T by using the object image I OT in the two-dimensional image F in the X-axis direction, compared with the positions of the object images I P2 and I P3 . Come to draw. More specifically, the position of the object image I OT is (X T , Y T ), so the angle θ OT can be obtained by the following equation: θ OT = (X T / M) × θ P3 .
請參考第6圖。第6圖係為本發明之第二實施例之光學觸控螢幕系統600之示意圖。相較於光學觸控螢幕系統100,光學觸控螢幕系統600增設一個反射鏡(反射元件)108,主要係用來提升判斷接觸點位置之精準度。另外光學觸控螢幕系統600之處理裝置120可選擇性地包含一實像判斷裝置170。於下列說明時,先假設該二維影像F中之物像是否為實像之判斷為已知。此外,根據前面描述在觸控區域中之一物體之位置與其對應的物像在二維影像中之位置之間的關係,本領域中具有通常知識者應可自行推導。因此,為了方便說明,以下主要描述物體在觸控區域內之位置。Please refer to Figure 6. Figure 6 is a schematic illustration of an optical touch screen system 600 in accordance with a second embodiment of the present invention. Compared with the optical touch screen system 100, the optical touch screen system 600 is provided with a mirror (reflecting element) 108, which is mainly used to improve the accuracy of determining the position of the contact point. In addition, the processing device 120 of the optical touch screen system 600 can optionally include a real image determining device 170. In the following description, it is assumed that the judgment of whether the object image in the two-dimensional image F is a real image is known. In addition, the relationship between the position of an object in the touch area and the position of the corresponding object image in the two-dimensional image according to the foregoing description should be deduced by those having ordinary knowledge in the art. Therefore, for convenience of explanation, the following mainly describes the position of the object in the touch area.
請參考第7圖。第7圖係為說明光學觸控螢幕系統600偵測接觸點位置之流程圖。為了方便說明,僅說明二接觸點O1 、O2 的情況。此外,第7圖所揭示之步驟,僅係為了方便相關圖式能夠清楚說明原理,實際上並不一定會按照第7圖所揭示之流程來進行。步驟說明如下:Please refer to Figure 7. Figure 7 is a flow chart illustrating the position of the optical touch screen system 600 to detect contact points. For convenience of explanation, only the case of the two contact points O 1 and O 2 will be described. In addition, the steps disclosed in FIG. 7 can be clearly explained for convenience of the related drawings, and may not actually be performed in accordance with the flow disclosed in FIG. The steps are as follows:
步驟701:發光元件102射出光線,經由接觸點O1 與O2 以及反射鏡之反射,在二維影像F上產生物像IO1 、IO2 、IO1J 、IO2J ,其中IO1J 與IO2J 分別為接觸點O1 與O2 之鏡像(虛像);請對應參考第8圖;在第8圖中,虛線區域表示反射鏡108反射發光元件102所造成之鏡像,其中觸控點O1 、O2 分別對應之鏡像為O1J 與O2J 。因此,影像感測器101會看到有四個物像IO1 、IO2 、IO1J 與IO2J ,其中O1J 與O2J 為虛像,如第8圖中之二維影像F所示。Step 701: The light-emitting element 102 emits light, and generates object images I O1 , I O2 , I O1J , I O2J on the two-dimensional image F via the contact points O 1 and O 2 and the reflection of the mirror, wherein I O1J and I O2J Corresponding to the mirror image (virtual image) of the contact points O 1 and O 2 respectively; please refer to FIG. 8 correspondingly; in FIG. 8 , the dotted line area represents the mirror image caused by the mirror 108 reflecting the light-emitting element 102 , wherein the touch point O 1 , The corresponding mirrors of O 2 are O 1J and O 2J . Therefore, the image sensor 101 will see four objects like I O1 , I O2 , I O1J and I O2J , where O 1J and O 2J are virtual images, as shown by the two-dimensional image F in FIG. 8 .
步驟702:角度測量裝置106根據物像IO1 、IO2 、IO1J 、IO2J 在二維影像F於X軸方向上之位置,產生物像角度θO1 、θO2 、θO1J 、θO2J ;請對應參考第9圖A。Step 702: The angle measuring device 106 generates the object image angles θ O1 , θ O2 , θ O1J , θ O2J according to the positions of the object images I O1 , I O2 , I O1J , I O2J in the X-axis direction of the two-dimensional image F; Please refer to Figure 9A for reference.
步驟703:處理裝置107以發光元件102為起點,分別根據物像角度θO1 、θO2 、θO1J 、θO2J ,產生實像直線SLO1 與SLO2 ,以及虛像直線SLO1J 、SLO2J ;請對應參考第9圖B。Step 703: The processing device 107 uses the light-emitting elements 102 as a starting point to generate real image lines SL O1 and SL O2 and virtual image lines SL O1J and SL O2J according to the object image angles θ O1 , θ O2 , θ O1J , θ O2J , respectively ; Refer to Figure 9B.
步驟704:處理裝置107計算出虛像直線SLO1J 與SLO2J 在反射鏡108所處之平面的交點為G1 、G2 ,處理裝置107以影像感測器101之鏡像101J (或發光元件102之鏡像102J )、交點G1 、G2 ,產生虛像直線SLG1 、SLG2 ;請對應參考第10圖。Step 704: the processing means 107 calculates a straight line SL O1J virtual image S LO2J intersection with the plane in which the mirror 108 is G 1, G 2, image processing apparatus 107 to the image sensor 101 J 101 (or a light emitting element 102 The mirror image 102 J ), the intersection points G 1 , G 2 , and the virtual image lines SL G1 and SL G2 are generated; please refer to FIG. 10 .
步驟705:處理裝置107根據實像直線SLO1 、SLO2 與虛像直線SLG1 、SLG2 ,予以計算,並產生四個候選座標OC1 、OC2 、OC3 與OC4 ;請對應參考第11圖。Step 705: The processing device 107 calculates the real image lines SL O1 , SL O2 and the virtual image lines SL G1 , SL G2 , and generates four candidate coordinates O C1 , O C2 , O C3 and O C4 ; please refer to FIG. 11 . .
步驟706:距離測量裝置105根據物像IO1 、IO2 在二維影像F於Y軸方向上之位置,產生物像距離RO1 、RO2 ;請對應參考第12圖A。Step 706: The distance measuring device 105 generates the object image distances R O1 and R O2 according to the object images I O1 and I O2 at the position of the two-dimensional image F in the Y-axis direction; please refer to FIG. 12A.
步驟707:處理裝置107選擇在實像直線SLO1 上與物像距離RO1 誤差最小的候選座標,以作為最後輸出接觸點O1 之座標;請對應參考第12圖B;處理裝置107選擇在實像直線SLO2 上與物像距離RO2 誤差最小的候選座標,以作為最後輸出接觸點O2 之座標;請對應參考第12圖B。Step 707: The processing device 107 selects the candidate coordinates with the smallest error between the real image line SL O1 and the object image distance R O1 as the coordinates of the last output contact point O 1 ; please refer to FIG. 12B; the processing device 107 selects the real image. on a straight line with the object image SL O2 minimum error distance R O2 candidate coordinates as the coordinates of the contact point of the final output of the O 2; please refer to Figure 12 corresponding to B.
由上述可知,光學觸控螢幕系統600可先透過影像感測器101與反射鏡108,測得物像角度,再根據距離測量裝置105所測出之距離,判斷候選座標中誤差最小的座標,以作為最後接觸點的輸出座標。As can be seen from the above, the optical touch screen system 600 can first measure the object image angle through the image sensor 101 and the mirror 108, and then determine the coordinate with the smallest error among the candidate coordinates according to the distance measured by the distance measuring device 105. Take the output coordinates as the last point of contact.
此外,距離測量裝置105所測得的物像距離僅用在步驟707、708中來判斷候選座標中何者為輸出座標,因此所測得之物像距離的精準度不需太高。實際上接觸點的輸出座標仍係由所測得的角度,經過處理裝置107的計算來決定。In addition, the object image distance measured by the distance measuring device 105 is only used in steps 707 and 708 to determine which of the candidate coordinates is the output coordinate, so the accuracy of the measured object image distance need not be too high. In fact, the output coordinates of the contact point are still determined by the calculation of the processing device 107 from the measured angle.
另外,實像判斷裝置170判斷影像感測器101上之物像所對應於觸控區域中之物像係為實像或虛像。更明確地說,實像判斷裝置170可根據所量測到對應於一物像X之物像距離RX 與物像角度θX 是否符合一預定關係,判斷物像X是否為實像。舉例來說,當物像距離RX 與物像角度θX 的關係符合使物像X之座標落於觸控區域103之範圍內,則物像X被判斷為實像,反之則為虛像。In addition, the real image determining device 170 determines that the object image on the image sensor 101 corresponds to the real image or the virtual image in the touch region. More specifically, the real image determining means 170 determines whether the object image X is a real image based on whether the object image distance R X corresponding to an object image X and the object image angle θ X satisfy a predetermined relationship. For example, when the relationship between the object image distance R X and the object image angle θ X is such that the coordinates of the object image X fall within the range of the touch region 103 , the object image X is judged as a real image, and vice versa.
請參考第13圖。第13圖係為本發明之第三實施例之光學觸控螢幕系統1300之示意圖。相較於光學觸控螢幕系統100,光學觸控螢幕系統1300增設一個影像感測器109,功能類似於反射鏡108,主要係用來提升判斷接觸點位置之精準度。較佳地,影像感測器109可設置於觸控區域103之右上角。光學觸控螢幕系統1300之運作原理類似於光學觸控螢幕系統600,細節說明如後。Please refer to Figure 13. Figure 13 is a schematic diagram of an optical touch screen system 1300 according to a third embodiment of the present invention. Compared with the optical touch screen system 100, the optical touch screen system 1300 adds an image sensor 109, which functions similarly to the mirror 108, and is mainly used to improve the accuracy of determining the position of the contact point. Preferably, the image sensor 109 can be disposed in the upper right corner of the touch area 103. The optical touch screen system 1300 operates similarly to the optical touch screen system 600, as described in detail below.
請參考第14圖,並同時參考第15圖。第14圖係為說明光學觸控螢幕系統1300偵測接觸點位置之流程圖。第15圖係為說明第14圖之流程之示意圖。此外,第14圖所揭示之步驟,僅係為了方便相關圖式能夠清楚說明原理,實際上並不一定會按照第14圖所揭示之流程來進行。步驟說明如下:Please refer to Figure 14 and refer to Figure 15 at the same time. Figure 14 is a flow chart illustrating the position of the optical touch screen system 1300 to detect contact points. Figure 15 is a schematic diagram showing the flow of Figure 14. In addition, the steps disclosed in FIG. 14 can be clearly explained for convenience of the related drawings, and may not actually be performed according to the flow disclosed in FIG. The steps are as follows:
步驟1401:發光元件102射出光線,被接觸點O1 與O2 反射,在影像感測器101所感測的二維影像F1 上產生物像IO11 、IO21 ,亦於影像感測器109所感測的二維影像F2 上產生物像IO19 、IO29 。Step 1401: The light-emitting element 102 emits light, is reflected by the contact points O 1 and O 2 , and generates object images I O11 and I O21 on the two-dimensional image F 1 sensed by the image sensor 101, and is also applied to the image sensor 109. The sensed two-dimensional image F 2 produces objects like I O19 and I O29 .
步驟1402:角度測量裝置106根據物像IO11 、IO21 在二維影像F1 於X軸方向上之位置,以及根據物像IO19 、IO29 在二維影像F2 於X軸方向上之位置,分別產生物像角度θO11 、θO21 以及θO19 、θO29 ,請注意θO19 、θO29 的角度基準係以影像感測器109為主。Step 1402: The angle measuring device 106 is located in the X-axis direction according to the object images I O11 and I O21 in the two-dimensional image F 1 and in the X-axis direction according to the object images I O19 and I O29 in the two-dimensional image F 2 . The position image angles θ O11 , θ O21 , and θ O19 , θ O29 are respectively generated. Note that the angle reference of θ O19 and θ O29 is mainly the image sensor 109.
步驟1403:處理裝置107以發光元件102為起點,分別根據物像角度θO11 、θO21 ,產生實像直線SLO11 與SLO21 ,再以影像感測器109之位置為原點,分別根據物像角度θO19 、θO29 ,產生實像直線SLO19 與SLO29 。Step 1403: The processing device 107 uses the light-emitting elements 102 as a starting point to generate real-image lines SL O11 and SL O21 according to the object image angles θ O11 and θ O21 , and then uses the position of the image sensor 109 as an origin, respectively, according to the object image. The angles θ O19 and θ O29 generate real image lines SL O19 and SL O29 .
步驟1404:接著,處理器107計算出實像直線SLO11 、SLO21 、SLO19 、SLO29 與虛像直線SLG1 、SLG2 ,予以計算,並產生四個候選座標OC1 、OC2 、OC3 與OC4 。Step 1404: Next, the processor 107 calculates the real image lines SL O11 , SL O21 , SL O19 , SL O29 and the virtual image lines SL G1 , SL G2 , and calculates and generates four candidate coordinates O C1 , O C2 , O C3 and O C4 .
步驟1405:距離測量裝置105根據物像IO11 、IO21 在二維影像F1 於Y軸方向上之位置,產生物像距離RO11 、RO21 。Step 1405: The distance measuring device 105 generates the object image distances R O11 and R O21 according to the positions of the object images I O11 and I O21 in the Y-axis direction of the two-dimensional image F 1 .
步驟1406:處理器107選擇在實像直線SLO11 上與物像距離RO11 誤差最小的候選座標,以作為最後輸出接觸點O1 之座標;處理器107選擇在實像直線SLO21 上與物像距離RO21 誤差最小的候選座標,以作為最後輸出接觸點O2 之座標。Step 1406: The processor 107 selects the candidate coordinates that have the smallest error from the object image distance R O11 on the real image line SL O11 as the coordinates of the last output contact point O 1 ; the processor 107 selects the object image distance on the real image line SL O21 . The candidate coordinates with the smallest error of R O21 are used as the coordinates of the last output contact point O 2 .
由上述可知,光學觸控螢幕系統1300可先透過影像感測器101與109,測得物像角度,再根據距離測量裝置105所測出之距離,判斷候選座標中誤差最小的座標,以作為最後接觸點的輸出座標。As can be seen from the above, the optical touch screen system 1300 can first measure the object image angle through the image sensors 101 and 109, and then determine the coordinate with the smallest error among the candidate coordinates according to the distance measured by the distance measuring device 105. The output coordinate of the last contact point.
此外,距離測量裝置105所測得的物像距離僅用在步驟1407、1408中來判斷候選座標中何者為輸出座標,因此所測得之物像距離的精準度不需太高。實際上接觸點的輸出座標仍係由所測得的角度,經過處理器107的計算來決定。In addition, the object image distance measured by the distance measuring device 105 is only used in steps 1407 and 1408 to determine which of the candidate coordinates is the output coordinate, so the accuracy of the measured object image distance need not be too high. In fact, the output coordinates of the contact point are still determined by the calculation of the processor 107 from the measured angle.
請參考第16圖與第17圖。第16圖與第17圖係為說明本發明距離測量裝置105之結構及工作原理之示意圖。以第1圖的設置方式來說,距離測量裝置105用來量測接觸點O1 與發光元件102之間之物像距離RO1 。距離測量裝置105包含一發光/感測控制電路110以及一距離計算電路140。發光/感測控制電路110用來產生控制訊號SC ,以控制發光元件102以及影像感測器101。距離測量裝置105之內部各元件之耦接關係如第1圖所示,故不再贅述。此外,為了提升準確度,可另於影像感測器101之前方與發光元件102之前方分別設置鏡頭LEN1 與LEN2 。Please refer to Figure 16 and Figure 17. 16 and 17 are schematic views for explaining the structure and operation principle of the distance measuring device 105 of the present invention. In the manner of the arrangement of Fig. 1, the distance measuring device 105 is used to measure the object image distance R O1 between the contact point O 1 and the light-emitting element 102. The distance measuring device 105 includes a lighting/sensing control circuit 110 and a distance calculating circuit 140. The illumination/sensing control circuit 110 is configured to generate a control signal S C to control the light emitting element 102 and the image sensor 101. The coupling relationship between the internal components of the distance measuring device 105 is as shown in Fig. 1, and therefore will not be described again. In addition, in order to improve the accuracy, the lenses LEN 1 and LEN 2 may be separately disposed in front of the image sensor 101 and the front side of the light-emitting element 102, respectively.
發光/感測控制電路110所產生之控制訊號SC 包含發光脈衝訊號SLD 、快門脈衝訊號SST 、階段訊號SP 、讀取訊號SRE ,以及已知距離訊號SD 。距離測量裝置105於測距時可分為兩階段:1.距離感測階段;2.雜訊感測階段。當距離測量裝置105於距離感測階段時,發光/感測控制電路110同時產生表示「發光」之發光脈衝訊號SLD 與表示「開啟」之快門脈衝訊號SST ,且二者的脈衝寬度皆為TC ;然後發光/感測控制電路110再同時產生表示「讀取」之讀取訊號SRE 與表示「總和」之階段訊號SP ,且二者的脈衝寬度皆為TR 。當距離測量裝置105於雜訊感測階段時,發光/感測控制電路110產生表示「開啟」之快門脈衝訊號SST 且同時發光脈衝訊號SLD 表示「不發光」,且快門脈衝訊號的脈衝寬度為TC ;然後發光/感測控制電路110再同時產生表示「讀取」之讀取訊號SRE 與表示「雜訊」之階段訊號SP ,且二者的脈衝寬度皆為TR 。The control signal S C generated by the illumination/sensing control circuit 110 includes an illumination pulse signal S LD , a shutter pulse signal S ST , a phase signal S P , a read signal S RE , and a known distance signal S D . The distance measuring device 105 can be divided into two phases during ranging: 1. distance sensing phase; 2. noise sensing phase. When the distance measuring device 105 is in the distance sensing phase, the illuminating/sensing control circuit 110 simultaneously generates the illuminating pulse signal S LD indicating "lighting" and the shutter pulse signal S ST indicating "on", and the pulse widths of both are It is T C ; then the illumination/sensing control circuit 110 simultaneously generates the read signal S RE indicating "read" and the phase signal S P indicating "sum", and the pulse widths of both are T R . When the distance measuring device 105 is in the noise sensing phase, the illumination/sensing control circuit 110 generates a shutter pulse signal S ST indicating "on" and the illumination pulse signal S LD indicates "no illumination", and the pulse of the shutter pulse signal The width is T C ; then the illumination/sensing control circuit 110 simultaneously generates the read signal S RE indicating "read" and the phase signal S P indicating "noise", and the pulse widths of both are T R .
發光元件102受控於發光/感測控制電路110,用來根據發光脈衝訊號SLD ,以發出偵測光LID 射向接觸點O1 ,以使接觸點O1 產生反射光LRD 。更明確地說,當發光脈衝訊號SLD 表示「發光」時,發光元件102發出偵測光LID 射向接觸點O1 ;當發光脈衝訊號SLD 表示「不發光」時,發光元件102不發出偵測光LID 。The illuminating element 102 is controlled by the illuminating/sensing control circuit 110 for emitting the detecting light L ID to the contact point O 1 according to the illuminating pulse signal S LD such that the contact point O 1 generates the reflected light L RD . More specifically, when the illuminating pulse signal S LD indicates "lighting", the illuminating element 102 emits the detecting light L ID to the contact point O 1 ; when the illuminating pulse signal S LD indicates "no illuminating", the illuminating element 102 does not The detection light L ID is emitted.
以影像感測器101之其中一行為例,如第Q行感測單元行CSQ ,其包含N個並排的感測單元CS(Q,1) ~CS(Q,N) ,且每個感測單元之高度皆等於畫素高度HPIX ,意即N個並排的感測單元CS(Q,1) ~CS(Q,N) 之總寬度為N×HPIX 。感測單元CS(Q,1) ~CS(Q,N) 用來根據快門脈衝訊號SST ,以感測鏡頭LEN1 所匯聚之光之能量。更明確地說,當快門脈衝訊號SST 表示「開啟」時,感測單元CS(Q,1) ~CS(Q,N) 感測鏡頭LEN1 所匯聚之光(如背景光LB 或反射光LRD )之能量以據以產生光感測訊號;當快門脈衝訊號SST 表示「關閉」時,感測單元CS(Q,1) ~CS(Q,N) 不感測鏡頭LEN1 所匯聚之光之能量。舉例來說,當快門脈衝訊號SST 表示「開啟」時,感測單元CS(Q,1) 感測鏡頭LEN1 所匯聚之光之能量並據以產生光感測訊號SLS1 ;感測單元CS(Q,2) 感測鏡頭LEN1 所匯聚之光之能量並據以產生光感測訊號SLS2 ;依此類推,感測單元CS(Q,N) 感測鏡頭LEN1 所匯聚之光之能量並據以產生光感測訊號SLSN 。此外,當讀取訊號SRE 表示「讀取」時,感測單元CS(Q,1) ~CS(Q,N) 分別輸出光感測訊號SLS1 ~SLSN ,此即為二維影像F中第Q行之影像訊號。One of the behaviors of the image sensor 101, such as the Qth row sensing unit row CS Q , includes N side-by-side sensing units CS (Q, 1) ~ CS (Q, N) , and each sense The height of the measuring unit is equal to the pixel height H PIX , which means that the total width of the N side-by-side sensing units CS (Q, 1) ~ CS (Q, N) is N × H PIX . The sensing units CS (Q, 1) ~ CS (Q, N) are used to sense the energy of the light condensed by the lens LEN 1 according to the shutter pulse signal S ST . More specifically, when the shutter pulse signal S ST indicates "on", the sensing unit CS (Q, 1) ~ CS (Q, N) senses the light condensed by the lens LEN 1 (such as background light L B or reflection) The energy of the light L RD ) is used to generate the light sensing signal; when the shutter pulse signal S ST indicates “off”, the sensing unit CS (Q, 1) ~ CS (Q, N) does not converge the lens LEN 1 The energy of light. For example, when the shutter pulse signal S ST indicates "on", the sensing unit CS (Q, 1) senses the energy of the light condensed by the lens LEN 1 and generates the light sensing signal S LS1 accordingly ; the sensing unit CS (Q, 2) senses the energy of the light condensed by the lens LEN 1 and generates the light sensing signal S LS2 ; and so on, the sensing unit CS (Q, N) senses the light condensed by the lens LEN 1 The energy is generated accordingly to generate a light sensing signal S LSN . In addition, when the read signal S RE indicates "read", the sensing units CS (Q, 1) ~ CS (Q, N) respectively output the light sensing signals S LS1 ~ S LSN , which is the two-dimensional image F The video signal of the Qth line.
距離計算電路140包含複數個儲存單元,分別用來儲存感測單元CS(Q,1) ~CS(Q,N) 所輸出之光感測訊號SLS1 ~SLSN ,且根據階段訊號SP ,設定所接收之光感測訊號之屬性。在本實施例中,以距離計算電路140包含N個儲存單元M1 ~MN 作舉例說明。當階段訊號SP 表示「總和」時,儲存單元M1 ~MN 將所接收之光感測訊號SLS1 ~SLSN 設定為正,意即所接收之光感測訊號SLS1 ~SLSN 根據階段訊號SP 表示「總和」而被標記為正光感測訊號SLS1+ ~SLSN+ ;當階段訊號SP 表示「雜訊」時,儲存單元M1 ~MN 將所接收之光感測訊號SLS1 ~SLSN 設定為負,意即所接收之光感測訊號SLS1 ~SLSN 根據階段訊號SP 表示「雜訊」而被標記為負光感測訊號SLS1- ~SLSN- 。距離計算電路140便可根據正光感測訊號SLS1+ ~SLSN+ 與負光感測訊號SLS1- ~SLSN- ,計算出物像距離RO1 。以下將說明距離計算電路140計算物像距離RO1 之工作原理。The distance calculation circuit 140 includes a plurality of storage units for storing the light sensing signals S LS1 ~S LSN output by the sensing units CS (Q, 1) ~ CS (Q, N) , and according to the phase signal S P , Set the properties of the received light sensing signal. In the present embodiment, the distance calculation circuit 140 includes N storage units M 1 to M N as an example. When the phase signal S P indicates "sum", the storage units M 1 -M N set the received light sensing signals S LS1 ~S LSN to be positive, that is, the received light sensing signals S LS1 ~S LSN are based on The phase signal S P indicates "sum" and is marked as positive light sensing signal S LS1+ ~S LSN+ ; when the phase signal S P indicates "noise", the storage unit M 1 ~M N will receive the received light sensing signal S LS1 ~ S LSN is set to be negative, that is, the received optical sensing signals S LS1 ~ S LSN are marked as negative light sensing signals S LS1 ~ ~S LSN- according to the phase signal S P indicating "noise". The distance calculation circuit 140 can calculate the object image distance R O1 according to the positive light sensing signal S LS1+ ~S LSN+ and the negative light sensing signal S LS1 - ~S LSN- . The operation principle of the distance calculation circuit 140 for calculating the object image distance R O1 will be described below.
如第17圖左半部所示,於距離感測階段內,發光/感測控制電路110會產生代表「發光」之發光脈衝訊號SLD ,而使得發光元件102發出偵測光LID 射向接觸點O1 ,以使接觸點O1 產生反射光LRD 。此時,發光/感測控制電路110產生代表「開啟」之快門脈衝訊號SST ,而使得感測單元CS(Q,1) ~CS(Q,N) 感測反射光LRD 與背景光LB 之能量,以分別產生光感測訊號SLS1 ~SLSN 。然後發光/感測控制電路110會輸出代表「讀取」之讀取訊號SRE ,以使影像感測器101輸出光感測訊號SLS1 ~SLSN 至距離計算電路140,且發光/感測控制電路110會產生代表「總和」之階段訊號SP 以指示距離計算電路140此時所接收之光感測訊號係為距離感測階段內之光感測訊號,意即為正光感測訊號SLS1+ ~SLSN+ 。設於距離感測階段內,反射光LRD 主要匯聚成像於感測單元CS(Q,K) ,則此時距離計算電路140所接收之正光感測訊號SLS1+ ~SLSN+ 之值如第17圖右上半部所示,感測單元CS(Q,K) 同時感測到背景光LB 與反射光LRD (意即接觸點O1 成像於感測單元CS(Q,K) 上)。因此,感測訊號SLSK+ 係等於感測單元CS(Q,K) 感測背景光LB 所累積之能量BK 加上感測單元CS(Q,K) 感測反射光LRD 所累積之能量RK ,而其他感測單元則只接收到背景光LB 。因此,感測訊號SLS1+ 係等於感測單元CS(Q,1) 感測背景光LB 所累積之能量B1 ;感測訊號SLS2+ 係等於感測單元CS(Q,2) 感測背景光LB 所累積之能量B2 ;依此類推,感測訊號SLSN+ 係等於感測單元CS(Q,N) 感測背景光LB 所累積之能量BN 。As shown in the left half of Fig. 17, during the distance sensing phase, the illumination/sensing control circuit 110 generates an illumination pulse signal S LD representing "lighting", so that the illumination element 102 emits the detection light L ID. The point O 1 is contacted so that the contact point O 1 produces reflected light L RD . At this time, the illumination/sensing control circuit 110 generates a shutter pulse signal S ST representing "on", so that the sensing unit CS (Q, 1) ~ CS (Q, N) senses the reflected light L RD and the background light L The energy of B to generate the light sensing signals S LS1 ~S LSN , respectively . Then, the illumination/sensing control circuit 110 outputs a read signal S RE representing "read", so that the image sensor 101 outputs the light sensing signals S LS1 ~S LSN to the distance calculation circuit 140, and emits/senses The control circuit 110 generates a phase signal S P representing the "sum" to indicate that the light sensing signal received by the distance calculating circuit 140 is a light sensing signal in the distance sensing phase, that is, a positive light sensing signal S. LS1+ ~S LSN+ . In the distance sensing phase, the reflected light L RD is mainly concentrated and imaged on the sensing unit CS (Q, K) , and the value of the positive light sensing signal S LS1+ ~S LSN+ received by the distance calculating circuit 140 is 17th. As shown in the upper right half of the figure, the sensing unit CS (Q, K) simultaneously senses the background light L B and the reflected light L RD (that is, the contact point O 1 is imaged on the sensing unit CS (Q, K) ). Therefore, the sensing signal S LSK+ is equal to the energy B K accumulated by the sensing unit CS (Q, K) sensing the background light L B plus the sensing unit CS (Q, K) sensing the reflected light L RD accumulated The energy R K , while the other sensing units only receive the background light L B . Therefore, the sensing signal S LS1+ is equal to the sensing unit CS (Q, 1) sensing the energy B 1 accumulated by the background light L B ; the sensing signal S LS2+ is equal to the sensing unit CS (Q, 2) sensing the background The energy B 2 accumulated by the light L B ; and so on, the sensing signal S LSN + is equal to the energy B N accumulated by the sensing unit CS (Q, N) sensing the background light L B .
如第17圖左半部所示,於雜訊感測階段內,發光/感測控制電路110會產生代表「開啟」之快門脈衝訊號SST ,而使得感測單元CS(Q,1) ~CS(Q,N) 感測鏡頭LEN1 所匯聚之光,以產生光感測訊號SLS1 ~SLSN 。然而,此時發光/感測控制電路110會產生代表「不發光」之發光脈衝訊號SLD ,因此發光元件102不會發出偵測光LID 射向接觸點O1 ,且接觸點O1 也不會產生反射光LRD 。然後發光/感測控制電路110會輸出代表「讀取」之讀取訊號SRE ,以使影像感測器101輸出光感測訊號SLS1 ~SLSN 至距離計算電路140,且發光/感測控制電路110會產生代表「雜訊」之階段訊號SP 以指示距離計算電路140此時所接收之光感測訊號係為雜訊感測階段內之光感測訊號,意即為負光感測訊號SLS1- ~SLSN- 。此時距離計算電路140所接收之光感測訊號SLS1- ~SLSN- 之值如第17圖右下半部所示。由於快門脈衝訊號SST 於距離感測階段與雜訊感測階段之脈衝寬度相同(皆為時間長度TC )。因此感測單元CS(Q,1) ~CS(Q,N) 在距離感測階段與雜訊感測階段所產生之光感測訊號SLS1 ~SLSN 對應於背景光LB 累積的部分會相等。換句話說,正光感測訊號SLS1+ ~SLSN+ 中之背景光累積的能量會等於負光感測訊號SLS1- ~SLSN- 中之背景光累積的能量(B1 ~BN )。As shown in the left half of Fig. 17, during the noise sensing phase, the illumination/sensing control circuit 110 generates a shutter pulse signal S ST representative of "on", so that the sensing unit CS (Q, 1) ~ The CS (Q, N) senses the light condensed by the lens LEN 1 to generate the light sensing signals S LS1 ~S LSN . However, at this time, the illumination/sensing control circuit 110 generates the illumination pulse signal S LD representing "no illumination", so that the illumination element 102 does not emit the detection light L ID to the contact point O 1 , and the contact point O 1 also No reflected light L RD is produced. Then, the illumination/sensing control circuit 110 outputs a read signal S RE representing "read", so that the image sensor 101 outputs the light sensing signals S LS1 ~S LSN to the distance calculation circuit 140, and emits/senses The control circuit 110 generates a phase signal S P representing "noise" to indicate that the light sensing signal received by the distance calculating circuit 140 is a light sensing signal in the noise sensing phase, that is, a negative light perception. Test signal S LS1- ~S LSN- . At this time, the distance calculation circuit 140 receives the light sensing signal value S of LS1- ~ S LSN- As shown in the lower half of the right in FIG. 17. Since the shutter pulse signal S ST is the same as the pulse width of the noise sensing phase and the noise sensing phase (all are the time length T C ). Therefore , the light sensing signals S LS1 ~S LSN generated by the sensing unit CS (Q,1) ~CS (Q,N) in the distance sensing phase and the noise sensing phase correspond to the accumulation of the background light L B . equal. In other words, the accumulated energy of the background light in the positive light sensing signal S LS1+ ~S LSN+ is equal to the energy (B 1 ~B N ) accumulated by the background light in the negative light sensing signal S LS1- ~S LSN- .
在經過距離感測階段與雜訊感測階段後,發光/感測控制電路110會產生代表「計算距離」之階段訊號SP 。此時距離計算電路140會將儲存單元中的正光感測訊號與負光感測訊號相減,並選出相減之後所儲存的值最大的儲存單元並據以判斷反射光LRD 於影像感測 器101上之成像位置。也就是說,距離計算電路140之儲存單元M1 ~MN 所儲存之值係分別等於正光感測訊號SLS1+ ~SLSN+ 之值減去負光感測訊號SLS1- ~SLSN- 之值。更明確地說,儲存單元M1 儲存正光感測訊號SLS1+ 與負光感測訊號SLS1- ,由於正光感測訊號SLS1+ 等於B1 且負光感測訊號SLS1- 等於B1 ,因此儲存單元M1 經過相減之後所儲存之值為零;儲存單元M2 儲存正光感測訊號SLS2+ 與負光感測訊號SLS2- ,由於正光感測訊號SLS2+ 等於B2 且負光感測訊號SLS2- 等於B2 ,因此儲存單元M2 經過相減之後所儲存之值為零;依此類推,儲存單元MK 儲存正光感測訊號SLSK+ 與負光感測訊號SLSK- ,由於正光感測訊號SLS2+ 等於(BK +RK )且負光感測訊號SLS2- 等於BK ,因此儲存單元MK 於相減之後所儲存之值為RK ;儲存單元MN 儲存正光感測訊號SLSN+ 與負光感測訊號SLSN- ,由於正光感測訊號SLSN+ 等於BN 且負光感測訊號SLSN- 等於BN ,因此儲存單元MN 相減之後所儲存之值為零。換句話說,在儲存單元M1 ~MN 之中,儲存單元MK 之值等於RK ,而其他儲存單元之值皆等於零,因此距離計算電路140可據以選擇儲存單元MK ,意即儲存單元MK 所儲存之光感測訊號具有對應於反射光LRD 之能量。由於儲存單元MK 係為儲存感測單元CS(Q,K) 所產生之光感測訊號,因此距離計算電路140可判斷出接觸點O1 所產生之反射光LRD 主要匯聚成像於感測單元CS(Q,K) 。如此,距離計算電路140可更進一步地根據接觸點O1 所產生之反射光LRD 主要匯聚成像於感測單元CS(Q,K) ,而由下式推算出第16圖中反射光LRD 之成像位置DCS :DCS =K×HPIX ...(1);After passing the distance sensing phase and the noise sensing phase, the illumination/sensing control circuit 110 generates a phase signal S P representative of the "calculated distance". At this time, the distance calculation circuit 140 subtracts the positive light sensing signal and the negative light sensing signal in the storage unit, and selects the storage unit with the largest value stored after subtraction and determines the reflected light L RD for image sensing. The imaging position on the device 101. That is, the values stored by the storage units M 1 -M N of the distance calculation circuit 140 are equal to the values of the positive light sensing signals S LS1+ ~S LSN+ minus the values of the negative light sensing signals S LS1 - ~S LSN- , respectively. . More specifically, the storage unit M 1 stores the positive light sensing signal S LS1+ and the negative light sensing signal S LS1- , since the positive light sensing signal S LS1+ is equal to B 1 and the negative light sensing signal S LS1 is equal to B 1 , The stored value of the storage unit M 1 is zero after the subtraction; the storage unit M 2 stores the positive light sensing signal S LS2+ and the negative light sensing signal S LS2- , because the positive light sensing signal S LS2+ is equal to B 2 and the negative light perception The test signal S LS2- is equal to B 2 , so the value stored by the storage unit M 2 after subtraction is zero; and so on, the storage unit M K stores the positive light sensing signal S LSK+ and the negative light sensing signal S LSK- , Since the positive light sensing signal S LS2+ is equal to (B K +R K ) and the negative light sensing signal S LS2- is equal to B K , the storage unit M K stores the value R K after the subtraction; the storage unit M N stores The positive light sensing signal S LSN+ and the negative light sensing signal S LSN- , since the positive light sensing signal S LSN+ is equal to B N and the negative light sensing signal S LSN− is equal to B N , the storage unit M N is subtracted and stored The value is zero. In other words, among the storage units M 1 to M N , the value of the storage unit M K is equal to R K , and the values of the other storage units are all equal to zero, so the distance calculation circuit 140 can select the storage unit M K , that is, The light sensing signal stored by the storage unit M K has an energy corresponding to the reflected light L RD . Since the storage unit M K is a light sensing signal generated by the storage sensing unit CS (Q, K) , the distance calculation circuit 140 can determine that the reflected light L RD generated by the contact point O 1 is mainly concentrated and imaged in the sensing. Unit CS (Q, K) . In this way, the distance calculation circuit 140 can further concentrate the image based on the reflected light L RD generated by the contact point O 1 on the sensing unit CS (Q, K) , and derive the reflected light L RD in FIG. 16 from the following equation. Imaging position D CS : D CS = K × H PIX ... (1);
此外,由於在第16圖中鏡頭LEN1 之焦點OF 與感測單元CS(Q,1) 之間所形成之直線LF 係平行於偵測光LID ,因此偵測光LID 及反射光LRD 之夾角θ1 與直線LF 及反射光LRD 之夾角θ2 相等。換句話說tanθ1 與tanθ2 之關係可以下式表示:In addition, since the straight line L F formed between the focus O F of the lens LEN 1 and the sensing unit CS (Q, 1) in FIG. 16 is parallel to the detection light L ID , the detection light L ID and reflection are light L RD angle θ 1 of the straight line and the reflected light L F L RD is equal to the angle θ 2. In other words, the relationship between tan θ 1 and tan θ 2 can be expressed by the following formula:
tanθ1 =L/DM =tanθ2 =DCS /DF ...(2);Tan θ 1 = L / D M = tan θ 2 = D CS / D F (2);
其中L代表發光元件102與影像感測器101(偵測光LID 與直線LF )之間之預定距離、DCS 代表反射光LRD 之成像位置、DF 代表鏡頭LEN1 之焦距。根據式(2),物像距離RO1 可以下式表示:Wherein L represents a predetermined distance between the light-emitting element 102 and the image sensor 101 (detecting light L ID and line L F ), D CS represents an imaging position of the reflected light L RD , and D F represents a focal length of the lens LEN 1 . According to the formula (2), the object image distance R O1 can be expressed by the following formula:
RO1 =(DF ×L)/DCS ...(3);R O1 = (D F × L) / D CS ... (3);
因此,距離計算電路140可藉由式(1)先計算出成像位置DCS ,再藉由式(3),根據預定距離L、焦距DF ,以計算出物像距離RO1 。Therefore, the distance calculation circuit 140 can first calculate the imaging position D CS by the equation (1), and then calculate the object image distance R O1 according to the predetermined distance L and the focal length D F by the equation (3).
簡單地說,在距離測量裝置105之中,於距離感測階段內,發光/感測控制電路110控制發光元件102發出偵測光LID 射至接觸點O1 ,且將感測單元CS(Q,1) ~CS(Q,N) 感測鏡頭LEN1 所匯聚之光(如反射光LRD 與背景光LB )而據以產生之正光感測訊號SLS1+ ~SLSN+ 儲存於儲存單元M1 ~MN 。於雜訊感測階段內,發光/感測控制電路110控制發光元件102不發出偵測光LID ,且將感測單元CS1 ~CSN 感測鏡頭LEN1 所匯聚之光(如背景光LB )而據以產生之負光感測訊號SLS1+ ~SLSN+ 儲存於儲存單元M1 ~MN 。此時,儲存單元M1 ~MN 之值會等於正光感測訊號SLS1+ ~SLSN+ 減去負光感測訊號SLS1- ~SLSN- 。因此,對應於反射光LRD 所匯聚之感測單元CS(Q,K) 之儲存單元MK 之值會大於其他儲存單元之值。如此,距離計算電路140可判斷出反射光LRD 所匯聚之感測單元CS(Q,K) ,並據以計算出反測光LRD 之成像位置DCS 。因此,距離計算電路140可根據成像位置DCS 、鏡頭LEN1 之焦距DF 、預定距離L以計算出物像距離RO1 。Briefly, in the distance measuring device 105, within a distance sensing stage, the light emitting / sensing control circuit 110 controls the light emitting element 102 emits light L ID detecting emitted to the contact point O 1, and the sensing unit CS ( Q,1) ~CS (Q,N) senses the light condensed by the lens LEN 1 (such as the reflected light L RD and the background light L B ) and the positive light sensing signal S LS1+ ~S LSN+ generated therefrom is stored in the storage unit M 1 ~M N . During the noise sensing phase, the illumination/sensing control circuit 110 controls the light-emitting element 102 not to emit the detection light L ID , and the sensing unit CS 1 ~CS N senses the light condensed by the lens LEN 1 (such as the background light). The negative light sensing signals S LS1+ ~S LSN+ generated according to L B ) are stored in the storage units M 1 -M N . In this case, the storage unit M 1 ~ M N value will equal the positive optical sensing signal S LS1 + ~ S LSN + subtracting the negative-sense signal S LS1- ~ S LSN-. Therefore, the value of the memory cell M K corresponding to the sensing unit CS (Q, K) condensed by the reflected light L RD may be greater than the value of the other memory cells. Thus, the distance calculation circuit 140 can determine the sensing unit CS (Q, K) where the reflected light L RD converges, and calculate the imaging position D CS of the back-measuring light L RD accordingly. Therefore, the distance calculation circuit 140 can calculate the object image distance R O1 according to the imaging position D CS , the focal length D F of the lens LEN 1 , and the predetermined distance L.
綜上所述,本發明之光學觸控螢幕系統,可在多個接觸點的情況下,藉由距離測量裝置的驗證,來判斷各接觸點的真正座標。因此,本發明之光學觸控螢幕系統,可應用於多接觸點的情況並準確地判斷各接觸點的位置,提供給使用者更大的便利性。In summary, the optical touch screen system of the present invention can determine the true coordinates of each contact point by the verification of the distance measuring device in the case of a plurality of contact points. Therefore, the optical touch screen system of the present invention can be applied to multiple contact points and accurately determine the position of each contact point, thereby providing greater convenience to the user.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100、600、1300...光學觸控螢幕系統100, 600, 1300. . . Optical touch screen system
101、109...影像感測器101, 109. . . Image sensor
102...發光元件102. . . Light-emitting element
103...觸控區域103. . . Touch area
104...吸光元件104. . . Absorbing element
105...距離測量裝置105. . . Distance measuring device
106...角度測量裝置106. . . Angle measuring device
107...處理器107. . . processor
120...處理裝置120. . . Processing device
108...反射元件108. . . Reflective element
SC 、SLD 、SST 、SRE 、SP 、SLS ...訊號S C , S LD , S ST , S RE , S P , S LS . . . Signal
SL...直線SL. . . straight line
R...距離R. . . distance
O...接觸點O. . . Contact point
P...校正物P. . . Calibrator
I...影像I. . . image
θ...角度θ. . . angle
CS...感測單元CS. . . Sensing unit
LEN1 、LEN2 ...鏡頭LEN 1 , LEN 2 . . . Lens
DCS ...成像位置D CS . . . Imaging position
DF ...焦距D F . . . focal length
LID 、LRD ...光線L ID , L RD . . . Light
第1圖係為本發明之第一實施例之光學觸控螢幕系統之示意圖。1 is a schematic view of an optical touch screen system according to a first embodiment of the present invention.
第2圖係為說明本發明之第一實施例之光學觸控螢幕系統在校正階段之示意圖。2 is a schematic view showing the optical touch screen system of the first embodiment of the present invention in a correction stage.
第3圖係為說明本發明之第一實施例之光學觸控螢幕系統於正常運作時之示意圖。Figure 3 is a schematic view showing the optical touch screen system of the first embodiment of the present invention in normal operation.
第4圖係為本發明之第一實施例之光學觸控螢幕系統之側視圖。Figure 4 is a side view of the optical touch screen system of the first embodiment of the present invention.
第5圖係為本發明之第一實施例之光學觸控螢幕系統之上視圖。Figure 5 is a top plan view of the optical touch screen system of the first embodiment of the present invention.
第6圖係為本發明之第二實施例之光學觸控螢幕系統之示意圖。Figure 6 is a schematic view of an optical touch screen system of a second embodiment of the present invention.
第7圖係為說明本發明之第二實施例之光學觸控螢幕系統偵測接觸點位置之流程圖。Figure 7 is a flow chart for explaining the position of the touch point of the optical touch screen system of the second embodiment of the present invention.
第8-12圖係為說明第7圖之流程之示意圖。Figures 8-12 are schematic diagrams illustrating the flow of Figure 7.
第13圖係為本發明之第三實施例之光學觸控螢幕系統之示意圖。Figure 13 is a schematic view of an optical touch screen system according to a third embodiment of the present invention.
第14圖係為說明本發明之第三實施例之光學觸控螢幕系統偵測接觸點位置之流程圖。Figure 14 is a flow chart for explaining the position of the touch point of the optical touch screen system of the third embodiment of the present invention.
第15圖係為說明第14圖之流程之示意圖。Figure 15 is a schematic diagram showing the flow of Figure 14.
第16圖與第17圖係為說明本發明距離測量裝置之結構及工作原理之示意圖。Fig. 16 and Fig. 17 are schematic views for explaining the structure and working principle of the distance measuring device of the present invention.
600...光學觸控螢幕系統600. . . Optical touch screen system
101...影像感測器101. . . Image sensor
102...發光元件102. . . Light-emitting element
103...觸控區域103. . . Touch area
104...吸光元件104. . . Absorbing element
105...距離測量裝置105. . . Distance measuring device
106...角度測量裝置106. . . Angle measuring device
107...處理器107. . . processor
120...處理裝置120. . . Processing device
108...反射元件108. . . Reflective element
SC ...訊號S C . . . Signal
R...距離R. . . distance
O...接觸點O. . . Contact point
θ...角度θ. . . angle
Claims (27)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100112274A TWI436254B (en) | 2011-04-08 | 2011-04-08 | Optical touch display system |
US13/288,035 US9645681B2 (en) | 2009-09-23 | 2011-11-03 | Optical touch display system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100112274A TWI436254B (en) | 2011-04-08 | 2011-04-08 | Optical touch display system |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201241696A TW201241696A (en) | 2012-10-16 |
TWI436254B true TWI436254B (en) | 2014-05-01 |
Family
ID=47600142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100112274A TWI436254B (en) | 2009-09-23 | 2011-04-08 | Optical touch display system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI436254B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI470514B (en) * | 2012-11-08 | 2015-01-21 | Wistron Corp | Method of determining whether a lens device is shifted and optical touch system thereof |
TWI476664B (en) * | 2012-11-30 | 2015-03-11 | Compal Electronics Inc | Multi-touch optical input device and method thereof |
TWI612445B (en) | 2015-09-21 | 2018-01-21 | 緯創資通股份有限公司 | Optical touch apparatus and a method for determining a touch position |
-
2011
- 2011-04-08 TW TW100112274A patent/TWI436254B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201241696A (en) | 2012-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9645681B2 (en) | Optical touch display system | |
TWI453642B (en) | Multiple-input touch panel and method for gesture recognition | |
JP5459689B2 (en) | Optical touch screen | |
JP4839827B2 (en) | 3D measuring device | |
US9971455B2 (en) | Spatial coordinate identification device | |
TWI460637B (en) | Optical touch system and optical detecting method for touch position | |
TWI443308B (en) | Distance-measuring device, 3d image sensing device, and optical touch system | |
TWI430151B (en) | Touch device and touch method | |
US20110084938A1 (en) | Touch detection apparatus and touch point detection method | |
TWI533010B (en) | Optical sensing apparatus and method for detecting object near optical sensing apparatus | |
US9442604B2 (en) | Optical-touch calibration method and optical-touch panel for calibrating the deformation bias on the optical-touch panel | |
KR101300350B1 (en) | Apparatus and method for processing image | |
TWI436254B (en) | Optical touch display system | |
TWI460635B (en) | Optical touch panel system, optical apparatus and positioning method thereof | |
CN102736795B (en) | Optical touch screen system | |
US10037107B2 (en) | Optical touch device and sensing method thereof | |
US20110043484A1 (en) | Apparatus for detecting a touching position on a flat panel display and a method thereof | |
TWI525507B (en) | Optical touch system, method of touch detection, and computer program product | |
US9323394B2 (en) | Touch control apparatus and associated selection method | |
TW201327324A (en) | Optical touch control module | |
TWI435059B (en) | Optical distance detection system | |
TW201339921A (en) | Optical touch system and optical detecting method for touch position | |
TW201201078A (en) | Optical touch panel | |
JP2005043085A (en) | Angle detector and projector equipped with the same | |
TWI520037B (en) | Optical touch panel system, optical apparatus and positioning method thereof |