TWI436186B - Driving-controlling module and driving-controlling method thereof - Google Patents
Driving-controlling module and driving-controlling method thereof Download PDFInfo
- Publication number
- TWI436186B TWI436186B TW100101861A TW100101861A TWI436186B TW I436186 B TWI436186 B TW I436186B TW 100101861 A TW100101861 A TW 100101861A TW 100101861 A TW100101861 A TW 100101861A TW I436186 B TWI436186 B TW I436186B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- driving
- switch
- control
- control module
- Prior art date
Links
Landscapes
- Reciprocating Pumps (AREA)
Description
本發明係關於一種驅動控制模組及其驅動控制方法,特別關於一種具有精準流量控制的驅動控制模組及其驅動控制方法。The invention relates to a driving control module and a driving control method thereof, in particular to a driving control module with precise flow control and a driving control method thereof.
胰島素是由胰臟分泌的一種賀爾蒙,其可幫助人體將食物中的糖份順利進入身體細胞,以提供人體所需能量。正常情況下,當身體內血糖濃度上升時,將刺激胰臟分泌胰島素以降低血糖濃度。反之,當身體內血糖濃度下降時則會抑制胰島素的分泌,以使人體之血糖濃度維持在正常範圍內。若身體因為不再分泌胰島素或是胰島素分泌不足時,則會出現糖尿病的症狀。Insulin is a kind of hormone secreted by the pancreas, which helps the body to smoothly enter the body's sugar into the body's cells to provide the energy needed by the body. Under normal circumstances, when the blood glucose level in the body rises, it will stimulate the pancreas to secrete insulin to lower the blood sugar concentration. Conversely, when the blood glucose concentration in the body decreases, insulin secretion is inhibited so that the blood glucose concentration of the human body is maintained within a normal range. If the body does not secrete insulin or insulin is insufficiently secreted, symptoms of diabetes can occur.
針對胰臟功能異常而無法隨血糖濃度自我調節胰島素分泌的患者,經常需要透過注射胰島素以維持體內正常的血糖濃度。而目前除了手動以針頭注射的方式補充患者的胰島素外,市面上尚有可以自動注射胰島素的藥劑施配裝置。For patients with abnormal pancreatic function and unable to self-regulate insulin secretion with blood glucose concentration, it is often necessary to inject insulin to maintain normal blood glucose levels in the body. At present, in addition to manually supplementing the patient's insulin by means of needle injection, there is a drug dispensing device that can automatically inject insulin on the market.
習知可自動注射胰島素的藥劑施配裝置大都以一電動馬達做為驅動力量的來源,並以一驅動控制電路輸出驅動訊號來驅動電動馬達,而電動馬達再帶動一減速齒輪組以驅動一具有細微刻度之螺桿,並推動一嵌入於注射筒形式之儲存槽內的活塞,以將活塞加壓於儲存槽內,使儲存槽內之藥劑注射至患者身上。然而,此種以電動馬達、減速齒輪組以及螺桿等元件所組成之驅動結構設計,不僅其驅動控制電路相對較複雜,而且,也使藥劑的輸送較不穩定,使應用該驅動控制電路驅動之藥劑施配裝置輸送藥劑的精準度亦無法提升。Conventionally, the drug dispensing device capable of automatically injecting insulin mostly uses an electric motor as a source of driving force, and drives a driving motor to drive the electric motor by a driving control circuit, and the electric motor drives a reduction gear set to drive one. The finely scaled screw pushes a piston embedded in a reservoir in the form of a syringe to pressurize the piston into the reservoir to inject the medicament in the reservoir into the patient. However, such a drive structure composed of components such as an electric motor, a reduction gear set, and a screw not only has a relatively complicated drive control circuit, but also makes the delivery of the medicament unstable, so that the drive control circuit is driven. The accuracy of the drug delivery device to deliver the drug cannot be improved.
因此,如何提供一種驅動控制模組及其驅動控制方法,不僅驅動控制模組的電路相對較簡單,也可使應用該驅動控制模組的之藥劑施配裝置具有較高的輸出精準度,已成為重要課題之一。Therefore, how to provide a driving control module and a driving control method thereof, not only the circuit for driving the control module is relatively simple, but also the pharmaceutical dispensing device applying the driving control module has high output precision, Become one of the important topics.
有鑑於上述課題,本發明之目的為提供一種不僅其驅動控制模組的電路相對較簡單,也可使應用該驅動控制模組的藥劑施配裝置具有較高的輸出精準度之驅動控制模組及其驅動控制方法。In view of the above problems, an object of the present invention is to provide a drive control module having a higher output accuracy than a device for driving a control module, which is relatively simple, and which can be applied to the drug control device. And its drive control method.
為達上述目的,依據本發明之一種驅動控制模組與一壓電式微泵浦配合應用。驅動控制模組包括一控制迴路、一升壓迴路、一回授迴路以及一驅動迴路。控制迴路輸出一升壓訊號及一控制訊號。升壓迴路與控制迴路電性連接,並依據升壓訊號輸出一直流訊號。回授迴路與控制迴路及升壓迴路電性連接,並依據直流訊號輸出一回授訊號以輸入控制迴路,以穩定直流訊號。驅動迴路與控制迴路、升壓迴路及壓電式微泵浦電性連接,並依據直流訊號及控制訊號輸出一驅動訊號,以使壓電式微泵浦穩定地輸送一流體。To achieve the above object, a drive control module according to the present invention is used in conjunction with a piezoelectric micropump. The drive control module includes a control loop, a boost loop, a feedback loop, and a drive loop. The control loop outputs a boost signal and a control signal. The boost circuit is electrically connected to the control loop, and outputs a continuous signal according to the boost signal. The feedback loop is electrically connected to the control loop and the booster loop, and outputs a feedback signal according to the DC signal to input the control loop to stabilize the DC signal. The driving circuit is electrically connected to the control circuit, the boosting circuit and the piezoelectric micropump, and outputs a driving signal according to the direct current signal and the control signal, so that the piezoelectric micropump stably delivers a fluid.
在本發明之一實施例中,升壓迴路係依據一電源訊號及升壓訊號輸出直流訊號。In an embodiment of the invention, the boosting circuit outputs a DC signal according to a power signal and a boost signal.
在本發明之一實施例中,回授訊號係控制控制迴路輸出升壓訊號,使升壓迴路輸出之直流訊號的電壓穩定,進而使驅動訊號的電壓穩定,以使壓電式微泵浦穩定地輸送流體。In an embodiment of the present invention, the feedback signal is controlled by the control loop to output a boost signal, so that the voltage of the DC signal outputted by the boosting loop is stabilized, thereby stabilizing the voltage of the driving signal, so that the piezoelectric micropump is stably Deliver fluid.
在本發明之一實施例中,驅動迴路輸出至少三相位的驅動控制,以控制壓電式微泵浦輸送流體。In one embodiment of the invention, the drive circuit outputs at least three phase drive controls to control the piezoelectric micropump to deliver fluid.
在本發明之一實施例中,驅動訊號的頻率係為可變的。In one embodiment of the invention, the frequency of the drive signal is variable.
在本發明之一實施例中,控制訊號係控制驅動迴路之至少一開關導通或截止。In an embodiment of the invention, the control signal controls at least one of the switches of the drive circuit to be turned on or off.
在本發明之一實施例中,驅動迴路具有一第一開關、一第二開關、一第三開關及一第四開關,直流訊號係分別輸入第一開關及第二開關之第一端,第一開關及第二開關之第二端係分別電性連接壓電式微泵浦之一致動元件的一第一電性輸入端及一第二電性輸入端。In an embodiment of the present invention, the driving circuit has a first switch, a second switch, a third switch, and a fourth switch, and the DC signal is respectively input to the first end of the first switch and the second switch, The second ends of the switches and the second switches are electrically connected to a first electrical input end and a second electrical input end of the piezoelectric micropumped actuating element.
在本發明之一實施例中,第三開關及第四開關之第一端係分別電性連接第一開關及第二開關之第二端及壓電式微泵浦之致動元件的第一電性輸入端及第二電性輸入端,第三開關及第四開關之第二端係分別接地。In one embodiment of the present invention, the first ends of the third switch and the fourth switch are electrically connected to the first end of the first switch and the second switch, respectively, and the first electric of the piezoelectric micro-pumped actuating element The second input and the second end of the fourth switch are respectively grounded.
在本發明之一實施例中,控制訊號同時導通第一開關及第四開關,以使直流訊號經由第一開關輸入致動元件的第一電性輸入端,且致動元件的第二電性輸入端經由第四開關接地。In an embodiment of the invention, the control signal simultaneously turns on the first switch and the fourth switch, so that the direct current signal is input to the first electrical input end of the actuating element via the first switch, and the second electrical property of the actuating element The input is grounded via a fourth switch.
在本發明之一實施例中,控制訊號同時導通第二開關及第三開關,以使直流訊號經由第二開關輸入致動元件的第二電性輸入端,且致動元件的第一電性輸入端經由第三開關接地。In an embodiment of the invention, the control signal simultaneously turns on the second switch and the third switch, so that the DC signal is input to the second electrical input end of the actuating element via the second switch, and the first electrical component of the actuating element The input is grounded via a third switch.
在本發明之一實施例中,回授迴路具有二電阻,該等電阻將直流訊號分壓,以產生回授訊號。In an embodiment of the invention, the feedback loop has two resistors that divide the DC signal to generate a feedback signal.
為達上述目的,依據本發明之一種驅動控制方法係用於控制一壓電式微泵浦穩定地輸送一流體。驅動控制方法包括以下步驟:依據一電源訊號及一升壓訊號輸出一直流訊號;依據直流訊號產生一回授訊號;依據回授訊號調整並穩定直流訊號;以及依據穩定的直流訊號及一控制訊號輸出一驅動訊號,以使壓電式微泵浦穩定地輸送流體。To achieve the above object, a drive control method according to the present invention is for controlling a piezoelectric micropump to stably deliver a fluid. The driving control method includes the following steps: outputting a continuous stream signal according to a power signal and a boost signal; generating a feedback signal according to the DC signal; adjusting and stabilizing the DC signal according to the feedback signal; and relying on the stable DC signal and a control signal A drive signal is output to enable the piezoelectric micropump to stably deliver fluid.
在本發明之一實施例中,回授訊號係為直流訊號之分壓。In an embodiment of the invention, the feedback signal is a partial voltage of the DC signal.
在本發明之一實施例中,驅動控制方法輸出至少三相位的驅動控制,以控制壓電式微泵浦輸送流體。In one embodiment of the invention, the drive control method outputs at least three phase drive controls to control the piezoelectric micropump to deliver fluid.
在本發明之一實施例中,於輸出驅動訊號的步驟中,控制訊號係控制至少一開關的導通與截止,以輸出驅動訊號。In an embodiment of the invention, in the step of outputting the driving signal, the control signal controls the turning on and off of the at least one switch to output the driving signal.
在本發明之一實施例中,控制訊號控制驅動訊號於不同時間作用於壓電式微泵浦之輸入電極的相位相反。In an embodiment of the invention, the control signal controls the driving signals to be opposite in phase to the input electrodes of the piezoelectric micropump at different times.
承上所述,因依據本發明之一種驅動控制模組及其驅動控制方法係輸出準確及穩定的直流訊號與驅動訊號,以控制與驅動控制模組配合之壓電式微泵浦作動,使得壓電式微泵浦的汲取與壓縮量為穩定且可預估。藉此,驅動控制模組可透過壓電式微泵浦之腔室的汲取與壓縮次數的計算即可得到實際輸出流體之流量,進而在達到使用者預先設定之輸出量時停止驅動控制模組的輸出。因此,使應用本發明驅動控制模組之藥劑施配裝置具有較高的輸出精準度。另外,因本發明之驅動控制模組及其驅動控制方法係與壓電式微泵浦配合應用,以取代習知之電動馬達、減速齒輪組以及螺桿等元件所組成之結構,因此,與習知之控制電路相較,本發明之驅動控制模組之電路具有相對簡單之優點。According to the above description, a driving control module and a driving control method thereof according to the present invention output an accurate and stable DC signal and a driving signal to control the piezoelectric micro-pump operation in cooperation with the driving control module, so that the pressure is made. The amount of extraction and compression of the electric micropump is stable and predictable. Thereby, the driving control module can obtain the flow of the actual output fluid through the calculation of the sampling and compression times of the piezoelectric micro-pump chamber, and then stop driving the control module when the user preset output is reached. Output. Therefore, the medicine dispensing device to which the driving control module of the present invention is applied has high output precision. In addition, the driving control module and the driving control method thereof of the present invention are combined with the piezoelectric micropump to replace the structure of the conventional electric motor, the reduction gear set, and the screw, and thus, the control is conventionally controlled. In comparison to the circuit, the circuit of the drive control module of the present invention has the advantage of being relatively simple.
以下將參照相關圖式,說明依本發明較佳實施例之一種驅動控制模組及其驅動控制方法,其中相同的元件將以相同的參照符號加以說明。Hereinafter, a drive control module and a drive control method thereof according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein like elements will be described with the same reference numerals.
請參照圖1所示,其為本發明較佳實施例之一種驅動控制模組1的功能方塊示意圖。本發明之驅動控制模組1係與一壓電式微泵浦2配合應用,使壓電式微泵浦2可穩定地輸送一流體3。其中,壓電式微泵浦2係可使用於微量(毫升或微升)及需精準流量控制之流體3的輸送。另外,流體3係可為液體或氣體,於此,並不限制為何種液體或氣體,只要輸送之液體或氣體不包含會與壓電式微泵浦2本身材質產生化學反應或具侵蝕性之成分即可。此外,驅動控制模組1係可應用於一流體施配裝置之流體輸出控制,而流體施配裝置可為一藥劑輸送器,例如胰島素幫浦、微量注射器(例如麻醉藥的注射),或可應用於微量流體之混合調配之用。於此,並不限制驅動控制模組1應用於何種流體施配裝置。Please refer to FIG. 1 , which is a functional block diagram of a driving control module 1 according to a preferred embodiment of the present invention. The drive control module 1 of the present invention is used in conjunction with a piezoelectric micropump 2 to enable the piezoelectric micropump 2 to stably deliver a fluid 3. Among them, the piezoelectric micropump 2 system can be used for the transport of a small amount (ml or microliter) and a fluid 3 requiring precise flow control. In addition, the fluid 3 may be a liquid or a gas, and is not limited to which liquid or gas, as long as the liquid or gas to be transported does not contain a chemical reaction or an aggressive component which may be caused by the piezoelectric micropump 2 itself. Just fine. In addition, the drive control module 1 can be applied to the fluid output control of a fluid dispensing device, and the fluid dispensing device can be a drug delivery device, such as an insulin pump, a micro syringe (such as an injection of anesthetic), or It is used in the mixing and preparation of trace fluids. Here, it is not limited to which fluid dispensing device the drive control module 1 is applied to.
驅動控制模組1係包括一控制迴路11、一升壓迴路12、一回授迴路13以及一驅動迴路14。The drive control module 1 includes a control circuit 11, a boost circuit 12, a feedback circuit 13 and a drive circuit 14.
首先,為了清楚說明驅動控制模組1之作動方式,以下,請先參考相關圖示以說明與驅動控制模組1配合應用之壓電式微泵浦2的結構。First, in order to clearly explain the operation mode of the drive control module 1, the structure of the piezoelectric micropump 2 to be used in conjunction with the drive control module 1 will be described below with reference to the related drawings.
請參照圖2A至圖2C所示,其中,圖2A為壓電式微泵浦2的立體剖面圖,而圖2B及圖2C分別為壓電式微泵浦2之平面剖面圖。2A to 2C, wherein FIG. 2A is a perspective cross-sectional view of the piezoelectric micropump 2, and FIGS. 2B and 2C are plan cross-sectional views of the piezoelectric micropump 2, respectively.
壓電式微泵浦2係具有一本體21及複數致動元件22,而致動元件22係設置於本體21。其中,本體21係具有複數腔室R,該等腔室R係分別與該等致動元件22對應設置。本實施例係以3組腔室R為例,然並不以此為限。而致動元件22係對應設置於3組腔室R之上。The piezoelectric micropump 2 has a body 21 and a plurality of actuating elements 22, and the actuating element 22 is disposed on the body 21. The body 21 has a plurality of chambers R, which are respectively disposed corresponding to the actuating elements 22. In this embodiment, three sets of chambers R are taken as an example, but it is not limited thereto. The actuating elements 22 are correspondingly disposed above the three sets of chambers R.
其中,壓電式微泵浦2之本體21的材質可包含塑膠,而塑膠例如係為甲基丙烯酸甲酯(poly-methylmethacrylate,PMMA)。另外,致動元件22係包含壓電材料,而壓電材料例如為鋯鈦酸鉛(Lead Zirconate Titanate,PZT)。特別說明的是,圖2A至圖2C之壓電式微泵浦2係採用無閥式設計,因此,可克服習知之有閥式微泵浦的閥門容易疲乏而導致無法閉鎖或斷裂的危險,或是輸送之流體內含的微粒子卡住閥門而阻礙流體輸送等缺點。The material of the body 21 of the piezoelectric micropump 2 may comprise plastic, and the plastic is, for example, poly-methylmethacrylate (PMMA). In addition, the actuating element 22 comprises a piezoelectric material, for example a lead zirconate Titanate (PZT). In particular, the piezoelectric micropump 2 of Figures 2A to 2C adopts a valveless design, thereby overcoming the risk that the valved micropumped valve is prone to fatigue and cannot be blocked or broken, or The particles contained in the transported fluid catch the valve and impede the disadvantages of fluid transport.
再者,如圖2B所示,在本實施例中,本體21內相鄰的腔室R係以一流道D連通。另外,本體更具有一進口IN及一出口OUT,而進口IN及出口OUT係藉由連串之通道D與腔室R連通。其中,流體3係可由進口IN吸入,經由通道D流經本體21之3組腔室R後,再由出口OUT排出。於此,本體21之3組腔室R係設計為圓筒狀,以符合流體動力學之低效能損失。Furthermore, as shown in FIG. 2B, in the present embodiment, the adjacent chambers R in the body 21 are connected by the first-class track D. In addition, the body has an inlet IN and an outlet OUT, and the inlet IN and the outlet OUT communicate with the chamber R through a series of passages D. Among them, the fluid 3 can be sucked by the inlet IN, flows through the three groups of chambers R of the body 21 via the passage D, and then discharged through the outlet OUT. Here, the three sets of chambers R of the body 21 are designed to be cylindrical to conform to the low efficiency loss of fluid dynamics.
請參照圖2A及圖2C所示,壓電式微泵浦2更具有一致動膜片23,致動膜片23係覆蓋於該等腔室R之頂部,而該等致動元件22係設置於致動膜片23之上。換言之,致動膜片23係位於致動元件22與腔室R之間。另外,致動元件22係藉由一具導電性且具黏性之材料(例如為:導電銀膠)緊密黏合於致動膜片23之上。因此,如圖2C所示,當致動元件22產生形變時,可連動致動膜片23產生形變。其中,致動膜片23係為具有高楊氏係數之薄型玻璃,可完全接受致動元件22之逆壓電效應,並可產生足夠的推力,使對應的腔室R產生形變,藉以提升壓電式微泵浦2之背壓。Referring to FIG. 2A and FIG. 2C, the piezoelectric micropump 2 further has a uniform moving diaphragm 23, and the actuating diaphragm 23 covers the top of the chambers R, and the actuating elements 22 are disposed on Actuated above the diaphragm 23. In other words, the actuation diaphragm 23 is located between the actuation element 22 and the chamber R. In addition, the actuating member 22 is tightly bonded to the actuating diaphragm 23 by a conductive and viscous material such as a conductive silver paste. Therefore, as shown in Fig. 2C, when the actuating member 22 is deformed, the actuating diaphragm 23 can be deformed. Wherein, the actuating diaphragm 23 is a thin glass with a high Young's modulus, which can fully accept the inverse piezoelectric effect of the actuating element 22, and can generate sufficient thrust to deform the corresponding chamber R, thereby lifting the pressure. Back pressure of electric micro pump 2 .
另外,請再參照圖1及圖2C所示,驅動控制模組1係與壓電式微泵浦2電性連接,並輸出穩定之一驅動訊號DS使該等致動元件22的至少其中之一產生形變,進而可連動本體21之腔室R產生形變,以使流體3可透過壓電式微泵浦2穩定地輸出。於此,驅動控制模組1係可輸出穩定之驅動訊號DS,以使致動元件22產生形變,進而可連動致動膜片23產生形變,以使與致動元件22對應設置之腔室R的容積產生變化。特別說明的是,上述穩定之驅動訊號DS係指穩定的電壓。另外,本實施例之驅動訊號DS的頻率係為可變的,因此也可針對不同輸送流體3之特性(例如不同的黏稠度)做最佳驅動頻率之設定。In addition, referring to FIG. 1 and FIG. 2C, the drive control module 1 is electrically connected to the piezoelectric micropump 2, and outputs a stable one drive signal DS to enable at least one of the actuating elements 22. The deformation is generated, and the chamber R of the body 21 can be deformed to make the fluid 3 stably output through the piezoelectric micropump 2. In this case, the drive control module 1 can output a stable driving signal DS to deform the actuating element 22, and then the actuating diaphragm 23 can be deformed to make the chamber R corresponding to the actuating element 22 The volume changes. In particular, the stable drive signal DS refers to a stable voltage. In addition, the frequency of the driving signal DS of the present embodiment is variable, so that the optimum driving frequency can also be set for the characteristics of different conveying fluids 3 (for example, different viscosities).
當致動元件22因驅動訊號DS的電壓加載而產生形變,並使致動膜片23連動而向上彎曲時,腔室R的容積亦隨之增加,故流體3可被汲取而流入腔室R內,於此定義為汲取階段(如圖2C左邊之腔室R所示);另外,當致動元件22因驅動訊號DS的電壓反向加載而產生形變,並使致動膜片23連動而向下彎曲時,腔室R的容積亦隨之減少,故流體3可從腔室R內被擠壓而輸送出,於此定義為壓縮階段(如圖2C中間及右邊之腔室R所示)。When the actuating element 22 is deformed by the voltage loading of the driving signal DS, and the actuating diaphragm 23 is interlocked and bent upward, the volume of the chamber R also increases, so that the fluid 3 can be drawn into the chamber R. Here, it is defined as the capture phase (shown as the chamber R on the left side of FIG. 2C); in addition, when the actuating element 22 is reversely loaded by the voltage of the drive signal DS, the deformation is caused, and the actuating diaphragm 23 is interlocked. When the curve is bent downward, the volume of the chamber R is also reduced, so that the fluid 3 can be squeezed out from the chamber R, which is defined as a compression phase (shown as the chamber R in the middle and the right side of Fig. 2C). ).
以下,請參照圖3A以進一步說明本發明之驅動控制模組1之控制方式及其電路。Hereinafter, please refer to FIG. 3A to further illustrate the control mode and circuit of the drive control module 1 of the present invention.
控制迴路11係輸出一升壓訊號BS及一控制訊號CS。其中,控制迴路11可包含微控制器(Micro Controller Unit,MCU)。另外,使用者可預先輸入控制參數,並儲存至驅動控制模組1內部的記憶體內,而控制迴路11可依據使用者輸入的控制參數控制並驅動壓電式微泵浦2輸出流體3。The control circuit 11 outputs a boost signal BS and a control signal CS. The control loop 11 can include a Micro Controller Unit (MCU). In addition, the user can input the control parameters in advance and store them in the memory inside the drive control module 1, and the control circuit 11 can control and drive the piezoelectric micropump 2 output fluid 3 according to the control parameters input by the user.
請同時參照圖1及圖3A所示,升壓迴路12係與控制迴路11電性連接。升壓迴路12係依據升壓訊號BS輸出一直流訊號DC。其中,升壓迴路12係依據一電源訊號ES及升壓訊號BS輸出直流訊號DC。升壓迴路12可將DC3V至DC5V之電源訊號ES升壓至DC60V或以上之電壓,而直流訊號DC係可為DC60V或DC60V以上的電壓訊號。本發明之升壓迴路12係為一交錯式升壓轉換器(Interleaved Boost Converter),交錯式升壓轉換器具有較高的電壓增益、較低的電流漣波、快速暫態回應及較小的被動元件尺寸等優點。Referring to FIG. 1 and FIG. 3A simultaneously, the boosting circuit 12 is electrically connected to the control circuit 11. The booster circuit 12 outputs a DC signal DC according to the boost signal BS. The booster circuit 12 outputs a DC signal DC according to a power signal ES and a boost signal BS. The boost circuit 12 can boost the power signal ES of DC3V to DC5V to a voltage of DC60V or higher, and the DC signal DC can be a voltage signal of DC60V or more. The booster circuit 12 of the present invention is an interleaved boost converter (Interleaved Boost Converter), and the interleaved boost converter has high voltage gain, low current chopping, fast transient response, and small Passive component size and other advantages.
另外,請同時參照圖1及圖3B所示,回授迴路13係與控制迴路11及升壓迴路12電性連接。回授迴路13係依據直流訊號DC輸出一回授訊號FS以輸入控制迴路11,以控制升壓迴路12輸出之直流訊號DC的電壓可穩定,進而使驅動訊號DS的電壓穩定。如圖3B所示,回授迴路13具有二電阻R1、R2,電阻R1、R2將直流訊號DC分壓,以產生回授訊號FS。換言之,回授訊號FS等於(R2/(R1+R2))×直流訊號DC。In addition, referring to FIG. 1 and FIG. 3B simultaneously, the feedback circuit 13 is electrically connected to the control circuit 11 and the boosting circuit 12. The feedback loop 13 outputs a feedback signal FS according to the DC signal DC to be input to the control loop 11 to control the voltage of the DC signal DC outputted by the booster loop 12 to be stabilized, thereby stabilizing the voltage of the drive signal DS. As shown in FIG. 3B, the feedback loop 13 has two resistors R1 and R2. The resistors R1 and R2 divide the DC signal DC to generate a feedback signal FS. In other words, the feedback signal FS is equal to (R2/(R1+R2)) x DC signal DC.
回授訊號FS係控制控制迴路11輸出升壓訊號BS,使升壓迴路12輸出之直流訊號DC的電壓穩定。回授迴路13係根據每次偵測的直流訊號DC的電壓值對升壓迴路12作微調控制,以達到穩定之直流訊號DC輸出,進而使驅動訊號DS的輸出電壓穩定,如此,可使壓電式微泵浦2的汲取與壓縮階段穩定,並使流體3之輸出流量也可穩定。The feedback signal FS is controlled by the control loop 11 to output the boost signal BS to stabilize the voltage of the DC signal DC output from the booster circuit 12. The feedback loop 13 fine-tunes the boosting circuit 12 according to the voltage value of the DC signal DC detected each time to achieve a stable DC signal DC output, thereby stabilizing the output voltage of the driving signal DS, thus enabling voltage The extraction and compression stages of the electric micropump 2 are stable and the output flow of the fluid 3 is also stabilized.
請同時參照圖1及圖3C所示,驅動迴路14係與控制迴路11、升壓迴路12及壓電式微泵浦2電性連接。驅動迴路14係依據直流訊號DC及控制迴路11輸出之控制訊號CS輸出驅動訊號DS,以使壓電式微泵浦2可穩定地輸送流體3。Referring to FIG. 1 and FIG. 3C simultaneously, the drive circuit 14 is electrically connected to the control circuit 11, the booster circuit 12, and the piezoelectric micropump 2. The driving circuit 14 outputs the driving signal DS according to the DC signal DC and the control signal CS output from the control circuit 11 so that the piezoelectric micropump 2 can stably transport the fluid 3.
如圖3C所示,驅動迴路14具有一第一開關S1、一第二開關S2、一第三開關S3及一第四開關S4,而直流訊號DC係分別輸入第一開關S1及第二開關S2之第一端S11、S21。另外,第一開關S1及第二開關S2之第二端S12、S22係分別電性連接壓電式微泵浦2之致動元件22的一第一電性輸入端221及一第二電性輸入端222。換言之,第一開關S1及第二開關S2之第二端S12、S22係分別電性連接壓電式微泵浦2之致動元件22的二個電極輸入端。As shown in FIG. 3C, the driving circuit 14 has a first switch S1, a second switch S2, a third switch S3, and a fourth switch S4, and the DC signal DC is input to the first switch S1 and the second switch S2, respectively. The first ends S11, S21. In addition, the second ends S12 and S22 of the first switch S1 and the second switch S2 are electrically connected to a first electrical input end 221 and a second electrical input of the actuating element 22 of the piezoelectric micropump 2, respectively. End 222. In other words, the second ends S12 and S22 of the first switch S1 and the second switch S2 are electrically connected to the two electrode input ends of the actuating element 22 of the piezoelectric micropump 2, respectively.
另外,第三開關S3及第四開關S4之第一端S31、S41係分別電性連接第一開關S1及第二開關S2之第二端S12、S22及壓電式微泵浦2之致動元件22的第一電性輸入端221及第二電性輸入端222。此外,第三開關S3及第四開關S4之第二端S32、S42係分別接地。其中,第一開關S1、第二開關S2、第三開關S3及第四開關S4係可為一光耦合開關。In addition, the first ends S31 and S41 of the third switch S3 and the fourth switch S4 are electrically connected to the second ends S12 and S22 of the first switch S1 and the second switch S2 and the actuating elements of the piezoelectric micropump 2, respectively. The first electrical input end 221 and the second electrical input end 222 of FIG. Further, the second ends S32 and S42 of the third switch S3 and the fourth switch S4 are grounded, respectively. The first switch S1, the second switch S2, the third switch S3, and the fourth switch S4 may be an optical coupling switch.
控制迴路11輸出之控制訊號CS可控制第一開關S1、第二開關S2、第三開關S3及第四開關S4的至少其中之一導通或截止。其中,控制訊號CS係同時導通第一開關S1及第四開關S4,以使直流訊號DC經由第一開關S1輸入致動元件22的第一電性輸入端221,且致動元件22的第二電性輸入端222可經由第四開關S4接地。換言之,控制訊號CS可同時導通第一開關S1及第四開關S4,以使直流訊號DC加載於致動元件22的二電極輸入端(此時之直流訊號DC即為致動元件22之驅動訊號DS,於此稱為第一驅動訊號DS1),使致動元件22產生形變,進而可連動致動膜片23產生形變,以使與致動元件22對應設置之腔室R的容積產生變化。The control signal CS outputted by the control circuit 11 can control at least one of the first switch S1, the second switch S2, the third switch S3, and the fourth switch S4 to be turned on or off. The control signal CS turns on the first switch S1 and the fourth switch S4 at the same time, so that the DC signal DC is input to the first electrical input end 221 of the actuating element 22 via the first switch S1, and the second of the actuating element 22 The electrical input 222 can be grounded via the fourth switch S4. In other words, the control signal CS can simultaneously turn on the first switch S1 and the fourth switch S4 to load the DC signal DC on the two-electrode input end of the actuating element 22 (the DC signal DC at this time is the driving signal of the actuating element 22) The DS, referred to herein as the first drive signal DS1), deforms the actuating element 22 such that the actuating diaphragm 23 is deformed to cause a change in the volume of the chamber R disposed corresponding to the actuating element 22.
另外,控制迴路11係同時導通第二開關S2及第三開關S3,以使直流訊號DC經由第二開關S2輸入致動元件22的第二電性輸入端222,且致動元件22的第一電性輸入端221可經由第三開關S3接地。換言之,控制訊號CS可同時導通第二開關S2及第三開關S3,以使直流訊號DC加載於致動元件22的二電極輸入端(此時之直流訊號DC為致動元件22之驅動訊號DS,於此稱為第二驅動訊號DS2),使致動元件22產生形變,進而可連動致動膜片23產生形變,以使與致動元件22對應設置之腔室R的容積產生變化。In addition, the control circuit 11 simultaneously turns on the second switch S2 and the third switch S3, so that the DC signal DC is input to the second electrical input end 222 of the actuating element 22 via the second switch S2, and the first of the actuating element 22 The electrical input 221 can be grounded via the third switch S3. In other words, the control signal CS can simultaneously turn on the second switch S2 and the third switch S3 to load the DC signal DC to the two-electrode input end of the actuating element 22 (the DC signal DC at this time is the driving signal DS of the actuating element 22) This is referred to as the second drive signal DS2) to deform the actuating element 22, and the actuating diaphragm 23 can be deformed to cause a change in the volume of the chamber R provided corresponding to the actuating element 22.
特別注意的是,此時之第一驅動訊號DS1與第二驅動訊號DS2之相位係為相反。另外,若第一驅動訊號DS1為汲取階段,則第二驅動訊號DS2即為壓縮階段。反之,若第一驅動訊號DS1為壓縮階段,則第二驅動訊號DS2為汲取階段。It is particularly noted that the phase of the first driving signal DS1 and the second driving signal DS2 at this time is opposite. In addition, if the first driving signal DS1 is in the capturing phase, the second driving signal DS2 is the compression phase. On the other hand, if the first driving signal DS1 is in the compression phase, the second driving signal DS2 is in the capturing phase.
因此,控制訊號CS可控制驅動迴路14之開關導通,使得直流訊號DC輸入壓電式微泵浦2之致動元件22之二電極輸入端,並使得每一腔室R在汲取階段的驅動訊號DS之電壓相位與在壓縮階段的驅動訊號DS之電壓相位係相反。故控制訊號CS可控制直流訊號DC作用於壓電式微泵浦2兩端電極之導通方向。因此,驅動訊號DS對壓電式微泵浦2所造成的驅動效能等同為2倍直流訊號DC之電壓的交流驅動方式。Therefore, the control signal CS can control the switch of the drive circuit 14 to be turned on, so that the DC signal DC is input to the two electrode input terminals of the actuating element 22 of the piezoelectric micropump 2, and the drive signal DS of each chamber R in the capture phase is made. The voltage phase is opposite to the voltage phase of the drive signal DS during the compression phase. Therefore, the control signal CS can control the direct current signal DC to act on the conduction direction of the electrodes at both ends of the piezoelectric micropump 2. Therefore, the driving effect of the driving signal DS on the piezoelectric micropump 2 is equivalent to the AC driving mode of the voltage of the DC signal DC twice.
以下,請參照圖4A至圖4D所示,以說明本發明之驅動控制模組1驅動壓電式微泵浦2,以輸送流體3的作動模式。其中,圖4A至圖4D為驅動控制模組1驅動壓電式微泵浦2的一種動作示意圖。Hereinafter, please refer to FIG. 4A to FIG. 4D to illustrate the driving mode in which the driving control module 1 of the present invention drives the piezoelectric micropump 2 to transport the fluid 3. 4A to 4D are schematic diagrams showing an operation of driving the piezoelectric micropump 2 by the drive control module 1.
驅動控制模組1係可輸出至少三相位的驅動控制,以控制壓電式微泵浦2作動。在本實施例中,係以驅動控制模組1輸出四相位的驅動訊號DS,以控制壓電式微泵浦2輸送流體3為例。The drive control module 1 can output at least three phases of drive control to control the piezoelectric micropump 2 actuation. In the present embodiment, the driving control module 1 outputs a four-phase driving signal DS to control the piezoelectric micropump 2 to transport the fluid 3 as an example.
要先說明的是,在本實施例中,四相位控制係指三組腔室R之狀態每經過四個獨立相位之轉換即完成一個完整的週期循環。而週期的長短取決於外加電極之極性改變頻率,而致動元件22位移量的多寡則取決於外加電極之電壓強度。It should be noted that, in the present embodiment, the four-phase control means that the state of the three sets of chambers R completes a complete cycle of cycles every four independent phases. The length of the period depends on the polarity of the applied electrode to change the frequency, and the amount of displacement of the actuating element 22 depends on the voltage strength of the applied electrode.
另外,為了便於說明壓電式微泵浦2的動作模式,於此,致動元件22向上變形拉伸的汲取階段以數字1表示,向下變形壓縮的壓縮階段以數字0表示,而致動元件22不動作之階段則以─表示。In addition, in order to facilitate the description of the operation mode of the piezoelectric micropump 2, the drawing phase of the upward deformation deformation of the actuating element 22 is represented by the numeral 1, and the compression phase of the downward deformation compression is represented by the numeral 0, and the actuating element 22 The stage of no action is indicated by ─.
因此,如圖4A至圖4D所示,驅動控制模組1輸出之四相位驅動控制為:【1──】、【01─】、【─01】及【──0】。當三組腔室R進行如上述之特定汲取與壓縮的動作搭配時,會使得壓電式微泵浦2內之流體3產生固定方向之驅動力,而流體3將由壓電式微泵浦2之進口IN進入,並由壓電式微泵浦2之出口OUT輸配出去。由於壓電式微泵浦2之動作類似於毛毛蟲的蠕動方式,因此,壓電式微泵浦2又可稱為蠕動壓電式微泵浦。Therefore, as shown in FIG. 4A to FIG. 4D, the four-phase drive control of the output of the drive control module 1 is: [1──], [01-], [-01], and [──0]. When the three sets of chambers R are combined with the specific extraction and compression actions as described above, the fluid 3 in the piezoelectric micropump 2 is caused to generate a driving force in a fixed direction, and the fluid 3 will be imported from the piezoelectric micropump 2 IN enters and is outputted by the output of the piezoelectric micropump 2 OUT. Since the action of the piezoelectric micropump 2 is similar to the peristaltic mode of the caterpillar, the piezoelectric micropump 2 can also be called a peristaltic piezoelectric micropump.
另外,請參照圖5A至圖5D所示,以說明本發明之驅動控制模組1驅動壓電式微泵浦2之另一種作動模式。其中,圖5A至圖5D為驅動控制模組1驅動壓電式微泵浦2的另一種動作示意圖。In addition, please refer to FIG. 5A to FIG. 5D to illustrate another operation mode in which the driving control module 1 of the present invention drives the piezoelectric micropump 2. 5A to 5D are schematic diagrams showing another operation of driving the piezoelectric micropump 2 by the drive control module 1.
如圖5A至圖5D所示,驅動控制模組1輸出之四相位驅動控制為:【100】、【110】、【011】及【001】。As shown in FIG. 5A to FIG. 5D, the four-phase drive control of the output of the drive control module 1 is: [100], [110], [011], and [001].
因此,本發明之驅動控制模組1可藉由上述至少三相位之驅動控制模式,使壓電式微泵浦2具有將腔室R內之流體3推動而使流體3產生流量變化之能力。值得一提的是,上述二種驅動控制模式僅僅為舉例,其並不用以限制本發明,只要驅動控制模組1可輸出至少三相位的驅動控制,以控制壓電式微泵浦2作動,並將流體3自壓電式微泵浦2之進口IN吸入,並經由壓電式微泵浦2之輸出口OUT輸送出即可。Therefore, the drive control module 1 of the present invention can cause the piezoelectric micropump 2 to have the ability to push the fluid 3 in the chamber R to cause a change in the flow rate of the fluid 3 by the above-described driving control mode of at least three phases. It is to be noted that the above two driving control modes are merely examples, and are not intended to limit the present invention, as long as the driving control module 1 can output at least three phases of driving control to control the piezoelectric micropump 2 actuation, and The fluid 3 is sucked from the inlet IN of the piezoelectric micropump 2 and sent out through the output port OUT of the piezoelectric micropump 2.
承上,本發明之驅動控制模組1可輸出準確及穩定的驅動訊號DS,使得配合應用之壓電式微泵浦2的每一腔室R於每一週期的汲取與壓縮量變得穩定且可預估,故驅動控制模組1可透過對腔室R之汲取與壓縮次數的計算即可得到實際輸出流體3的流量,進而在達到使用者預先設定之輸出量時即停止驅動控制模組1之驅動訊號DS的輸出。因此,應用本發明之驅動控制模組1的藥劑施配裝置可具有較高的輸出精準度。另外,因驅動控制模組1配合之驅動裝置係為壓電式微泵浦2,與習知之電動馬達、減速齒輪組以及螺桿等元件所組成之驅動結構相較,可使本發明之驅動控制模組1具有控制電路相對較簡單的優點。According to the above, the driving control module 1 of the present invention can output an accurate and stable driving signal DS, so that the extraction and compression amount of each chamber R of the piezoelectric micropump 2 used in the application is stable and can be stabilized. It is estimated that the drive control module 1 can obtain the flow rate of the actual output fluid 3 through the calculation of the extraction and compression times of the chamber R, and then stop the drive control module 1 when the user preset output is reached. The output of the drive signal DS. Therefore, the medicine dispensing device to which the drive control module 1 of the present invention is applied can have higher output accuracy. In addition, since the driving device of the driving control module 1 is a piezoelectric micropump 2, the driving control mode of the present invention can be compared with a driving structure composed of a conventional electric motor, a reduction gear set, and a screw. Group 1 has the advantage that the control circuit is relatively simple.
以下,請同時參照圖1及圖6以說明本發明之一種驅動控制方法。其中,圖6為本發明較佳實施例之一種驅動控制方法的流程圖。Hereinafter, please refer to FIG. 1 and FIG. 6 simultaneously to explain a drive control method of the present invention. 6 is a flow chart of a driving control method according to a preferred embodiment of the present invention.
本發明之驅動控制方法係用於控制一壓電式微泵浦2穩定地輸送一流體3,其中,驅動控制方法係包括步驟S01至S04。The drive control method of the present invention is for controlling a piezoelectric micropump 2 to stably deliver a fluid 3, wherein the drive control method includes steps S01 to S04.
首先,步驟S01係為:依據一電源訊號ES及一升壓訊號BS輸出一直流訊號DC。於此,係以升壓迴路12將電源訊號ES升壓,以輸出直流訊號DC。First, the step S01 is: outputting the DC signal DC according to a power signal ES and a boost signal BS. Here, the power supply signal ES is boosted by the booster circuit 12 to output a DC signal DC.
再者,步驟S02係為:依據直流訊號DC產生一回授訊號FS。於此,係將直流訊號DC輸入一回授迴路13以產生回授訊號FS。其中,回授訊號FS係為直流訊號DC之分壓訊號。Furthermore, step S02 is: generating a feedback signal FS according to the DC signal DC. Here, the DC signal DC is input to the feedback loop 13 to generate the feedback signal FS. The feedback signal FS is a voltage division signal of the DC signal DC.
接著,步驟S03係為:依據回授訊號FS調整並穩定直流訊號DC。於此,係依據回授訊號FS輸出升壓訊號BS,使升壓迴路12輸出之直流訊號DC的電壓穩定。其中,回授迴路13係根據每次偵測的直流訊號DC的電壓值對升壓迴路12作微調控制,以達到穩定之直流訊號DC輸出。穩定直流訊號DC係指穩定直流訊號DC的電壓。Next, step S03 is: adjusting and stabilizing the DC signal DC according to the feedback signal FS. In this case, the boost signal BS is output according to the feedback signal FS, so that the voltage of the DC signal DC outputted by the booster circuit 12 is stabilized. The feedback loop 13 performs fine-tuning control on the boosting loop 12 according to the voltage value of the DC signal DC detected each time to achieve a stable DC signal DC output. The stable DC signal DC refers to the voltage of the stabilized DC signal DC.
最後,步驟S04係為:依據穩定的直流訊號DC及一控制訊號CS輸出一驅動訊號DS,以使壓電式微泵浦2可穩定地輸送流體3。本發明之驅動控制方法係可輸出至少三相位的驅動訊號DS,以控制壓電式微泵浦2輸送流體3。Finally, step S04 is: outputting a driving signal DS according to the stable DC signal DC and a control signal CS, so that the piezoelectric micropump 2 can stably transport the fluid 3. The driving control method of the present invention can output a driving signal DS of at least three phases to control the piezoelectric micropump 2 to transport the fluid 3.
其中,於輸出驅動訊號DS的步驟中,控制訊號CS係控制至少一開關的導通與截止,以輸出驅動訊號DS。另外,驅動訊號的頻率係為可變的,且控制訊號CS控制驅動訊號DS於不同時間作用於壓電式微泵浦2之輸入電極的電壓相位係相反。In the step of outputting the driving signal DS, the control signal CS controls the on and off of at least one switch to output the driving signal DS. In addition, the frequency of the driving signal is variable, and the control signal CS controls the driving signal DS to be opposite to the voltage phase of the input electrode of the piezoelectric micropump 2 at different times.
此外,本發明之驅動控制方法的其它技術特徵已於上述之驅動控制模組1之實施例中清楚說明,於此不再贅述。In addition, other technical features of the driving control method of the present invention are clearly illustrated in the embodiment of the above-described driving control module 1, and are not described herein again.
綜上所述,因依據本發明之一種驅動控制模組及其驅動控制方法係輸出準確及穩定的直流訊號與驅動訊號,以控制與驅動控制模組配合之壓電式微泵浦作動,使得壓電式微泵浦的汲取與壓縮量為穩定且可預估。藉此,驅動控制模組可透過壓電式微泵浦之腔室的汲取與壓縮次數的計算即可得到實際輸出流體之流量,進而在達到使用者預先設定之輸出量時停止驅動控制模組的輸出。因此,使應用本發明驅動控制模組之藥劑施配裝置具有較高的輸出精準度。另外,因本發明之驅動控制模組及其驅動控制方法係與壓電式微泵浦配合應用,以取代習知之電動馬達、減速齒輪組以及螺桿等元件所組成之結構,因此,與習知之控制電路相較,本發明之驅動控制模組之電路具有相對簡單之優點。In summary, a driving control module and a driving control method thereof according to the present invention output an accurate and stable DC signal and a driving signal to control a piezoelectric micro-pump operation in cooperation with a driving control module, so that the pressure is made. The amount of extraction and compression of the electric micropump is stable and predictable. Thereby, the driving control module can obtain the flow of the actual output fluid through the calculation of the sampling and compression times of the piezoelectric micro-pump chamber, and then stop driving the control module when the user preset output is reached. Output. Therefore, the medicine dispensing device to which the driving control module of the present invention is applied has high output precision. In addition, the driving control module and the driving control method thereof of the present invention are combined with the piezoelectric micropump to replace the structure of the conventional electric motor, the reduction gear set, and the screw, and thus, the control is conventionally controlled. In comparison to the circuit, the circuit of the drive control module of the present invention has the advantage of being relatively simple.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.
1...驅動控制模組1. . . Drive control module
11...控制迴路11. . . Control loop
12...升壓迴路12. . . Boost loop
13...回授迴路13. . . Feedback loop
14...驅動迴路14. . . Drive loop
2...壓電式微泵浦2. . . Piezoelectric micropump
21...本體twenty one. . . Ontology
22...致動元件twenty two. . . Actuating element
221、222...電性輸入端221, 222. . . Electrical input
23...致動膜片twenty three. . . Actuated diaphragm
3...流體3. . . fluid
BS...升壓訊號BS. . . Boost signal
CS...控制訊號CS. . . Control signal
D...流道D. . . Runner
DC...直流訊號DC. . . DC signal
DS、DS1、DS2...驅動訊號DS, DS1, DS2. . . Drive signal
ES...電源訊號ES. . . Power signal
FS...回授訊號FS. . . Feedback signal
IN...進口IN. . . import
OUT...出口OUT. . . Export
R...腔室R. . . Chamber
R1、R2...電阻R1, R2. . . resistance
S1~S4...開關S1 ~ S4. . . switch
S01~S04...步驟S01~S04. . . step
S11、S12、S21、S22、S31、S32、S41、S42...端點S11, S12, S21, S22, S31, S32, S41, S42. . . End point
圖1為本發明較佳實施例之一種驅動控制模組的功能方塊示意圖;1 is a functional block diagram of a drive control module according to a preferred embodiment of the present invention;
圖2A為壓電式微泵浦的立體剖面圖;2A is a perspective cross-sectional view of a piezoelectric micropump;
圖2B及圖2C分別為壓電式微泵浦的平面剖面圖;2B and 2C are plan sectional views of the piezoelectric micropump, respectively;
圖3A為本發明之升壓迴路的電路示意圖;3A is a schematic circuit diagram of a booster circuit of the present invention;
圖3B為本發明之回授迴路的電路示意圖;3B is a schematic circuit diagram of a feedback loop of the present invention;
圖3C為本發明之驅動迴路的電路示意圖;3C is a schematic circuit diagram of a driving circuit of the present invention;
圖4A至圖4D為本發明之驅動控制模組驅動壓電式微泵浦的一種動作示意圖;4A to 4D are schematic views showing an operation of driving a piezoelectric micropump by a driving control module of the present invention;
圖5A至圖5D為本發明之驅動控制模組驅動壓電式微泵浦的另一種動作示意圖;以及5A to 5D are schematic views showing another operation of the driving control module for driving the piezoelectric micropump according to the present invention;
圖6為本發明較佳實施例之一種驅動控制方法的流程圖。FIG. 6 is a flow chart of a driving control method according to a preferred embodiment of the present invention.
1...驅動控制模組1. . . Drive control module
11...控制迴路11. . . Control loop
12...升壓迴路12. . . Boost loop
13...回授迴路13. . . Feedback loop
14...驅動迴路14. . . Drive loop
2...壓電式微泵浦2. . . Piezoelectric micropump
3...流體3. . . fluid
BS...升壓訊號BS. . . Boost signal
CS...控制訊號CS. . . Control signal
DC...直流訊號DC. . . DC signal
DS...驅動訊號DS. . . Drive signal
ES...電源訊號ES. . . Power signal
FS...回授訊號FS. . . Feedback signal
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100101861A TWI436186B (en) | 2011-01-18 | 2011-01-18 | Driving-controlling module and driving-controlling method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100101861A TWI436186B (en) | 2011-01-18 | 2011-01-18 | Driving-controlling module and driving-controlling method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201232214A TW201232214A (en) | 2012-08-01 |
TWI436186B true TWI436186B (en) | 2014-05-01 |
Family
ID=47069518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100101861A TWI436186B (en) | 2011-01-18 | 2011-01-18 | Driving-controlling module and driving-controlling method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI436186B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6793026B2 (en) * | 2016-12-13 | 2020-12-02 | 株式会社堀場エステック | Valve device and valve control device |
-
2011
- 2011-01-18 TW TW100101861A patent/TWI436186B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201232214A (en) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6802399B2 (en) | Separation piston type metering pump | |
US8920144B2 (en) | Peristaltic pump with linear flow control | |
EP3508234B1 (en) | Electroosmotic pump | |
US10525194B2 (en) | Hydraulically actuated pump for fluid administration | |
US10556059B2 (en) | Infusion pump drive with compression spring | |
WO2013058787A1 (en) | Piezoelectric dual-syringe insulin pump | |
CN111939387B (en) | Drug infusion device with multiple infusion modes | |
CA2883413A1 (en) | Electrochemically-actuated microfluidic devices | |
CN106413774A (en) | Moving basal engine for a fluid delivery device | |
TW201916903A (en) | Liquid supplying device for human insulin injection | |
US8251672B2 (en) | Electrokinetic pump with fixed stroke volume | |
CN112295062A (en) | Single-side driven multi-infusion mode drug infusion device | |
KR102250698B1 (en) | Method and device to inject medicine | |
TWI436186B (en) | Driving-controlling module and driving-controlling method thereof | |
Yang et al. | A wearable insulin delivery system based on a piezoelectric micropump | |
JP2007127086A (en) | Pump | |
JP2011160868A (en) | Flow rate control apparatus and pump apparatus | |
CN211705506U (en) | Micro-drug delivery device | |
CN117398594A (en) | Transdermal drug delivery device | |
TWM560924U (en) | Liquid supply device for human body insulin infusion | |
CN109718462B (en) | Liquid supply device for human insulin injection | |
JPH0451964A (en) | Fluid therapy device | |
JPH02234769A (en) | Embedded-in-body type micropump | |
TW201231110A (en) | Fluid dispenser | |
US20170095610A1 (en) | Personal injection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |