TWI436056B - A composite thin film micro gas sensor - Google Patents

A composite thin film micro gas sensor Download PDF

Info

Publication number
TWI436056B
TWI436056B TW98129763A TW98129763A TWI436056B TW I436056 B TWI436056 B TW I436056B TW 98129763 A TW98129763 A TW 98129763A TW 98129763 A TW98129763 A TW 98129763A TW I436056 B TWI436056 B TW I436056B
Authority
TW
Taiwan
Prior art keywords
micro
gas sensor
composite film
micro gas
sensing device
Prior art date
Application number
TW98129763A
Other languages
Chinese (zh)
Other versions
TW201109649A (en
Inventor
Ching Liang Dai
Yen Chi Chen
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW98129763A priority Critical patent/TWI436056B/en
Publication of TW201109649A publication Critical patent/TW201109649A/en
Application granted granted Critical
Publication of TWI436056B publication Critical patent/TWI436056B/en

Links

Description

一種複合薄膜之微氣體感測裝置 Micro-gas sensing device for composite film

一種複合薄膜之微氣體感測裝置,特別是指一種利用電阻或電容變化來測量待測氣體的分子濃度變化量的一種複合薄膜之微氣體感測裝置。 A micro-gas sensing device for a composite film, in particular, a micro-gas sensing device for a composite film that utilizes a change in resistance or capacitance to measure a change in molecular concentration of a gas to be measured.

在常溫常壓下,一氧化碳為無色,無味,無臭,無刺激性的氣體。但它是有毒氣體,可在沒有任何刺激的情況下進入人身,慢慢引起中毒,其化學結構式是為CO,在環境中是個無形的殺手。由於一氧化碳與血紅蛋白的結合力比氧大240倍,因此當一氧化碳於進入血液循環系統後,會大量地取代氧氣並與血紅素結合,因而抑制到血液中氧氣的釋放,因而導致頭痛、耳鳴、嘔吐、血壓降低等不同程度的症狀。如果一氧化碳中毒程度嚴重但未達致命的程度,則患者在康復過程中則可能會引發頭昏眼花、喪失記憶或引起視覺及精神上的障礙症狀,若嚴重的損傷到腦部則不能完全康復。 At normal temperature and pressure, carbon monoxide is a colorless, odorless, odorless, non-irritating gas. But it is a toxic gas that can enter the body without any stimulation, and slowly cause poisoning. Its chemical structure is CO, which is an invisible killer in the environment. Since the binding force of carbon monoxide and hemoglobin is 240 times larger than that of oxygen, when carbon monoxide enters the blood circulation system, it will replace oxygen and bind to hemoglobin in a large amount, thereby inhibiting the release of oxygen in the blood, thereby causing headache, tinnitus, and vomiting. Different symptoms such as lower blood pressure. If the degree of carbon monoxide poisoning is severe but not fatal, the patient may cause dizziness, loss of memory or symptoms of visual and mental disorders during the recovery process. If the damage is severe to the brain, it will not fully recover.

氣體感測裝置使用於檢測環境或製程中特定氣體(如一氧化碳、二氧化硫及乙醇等)之存在及含量,但是目前業界所使用的氣體感測器在常溫下的靈敏度不佳及響應速度不夠快速,必須於感測元件上加裝電熱板,再加溫至300℃以上才能有效使用。但是如此不僅讓習知氣體感測器之構造變的複雜,也讓操作成本增加,且須於高溫及通電環境下工作,因此在實際應用上尚有安全性的顧慮。 Gas sensing devices are used to detect the presence and content of specific gases (such as carbon monoxide, sulfur dioxide, and ethanol) in the environment or process. However, the gas sensors used in the industry are not sensitive at room temperature and the response speed is not fast enough. A hot plate must be installed on the sensing element and heated to above 300 °C for effective use. However, this not only complicates the construction of the conventional gas sensor, but also increases the operating cost and requires operation in a high temperature and energized environment. Therefore, there are safety concerns in practical applications.

因此如何設計一製備簡單且於常溫下可與欲偵測氣體發生反應之元件,並在將其運用至氣體感測裝置時,可有效提昇靈敏度及偵測效率,對於目前業界而言,仍存在一極大之需求及改善空 間。 Therefore, how to design a component that is simple to prepare and can react with the gas to be detected at normal temperature, and when applied to a gas sensing device, can effectively improve sensitivity and detection efficiency, and currently exists in the industry. a huge demand and improvement between.

由於目前氣體感測器尚有靈敏度不佳、響應時間不夠快速、體積過大、成本過高以及必須於高溫下工作之問題,以至於生產製作上並不具有經濟上的效益。 Because gas sensors currently have poor sensitivity, fast response time, excessive volume, high cost, and the need to work at high temperatures, there is no economic benefit in production.

所以本發明的主要目的即在於提供一種可以增進靈敏度、加快反應時間、大幅縮減體積、降低成本以及於常溫下工作之一種複合薄膜之微氣體感測裝置 Therefore, the main object of the present invention is to provide a micro gas sensing device capable of improving sensitivity, accelerating reaction time, greatly reducing volume, reducing cost, and operating at a normal temperature.

為達上述之目的,本發明所揭露之一種複合薄膜之微氣體感測裝置及其結構,可分為電阻式及電容式二種。 For the purpose of the above, a micro gas sensing device and a structure thereof for a composite film disclosed in the present invention can be classified into two types: a resistive type and a capacitive type.

其中該電阻式的複合薄膜之微氣體感測裝置,係為使用電阻的變化量來偵測待測氣體的分子濃度變化量,該裝置包含:一複合薄膜,係為用於吸附待測氣體的分子;一電阻式微氣體感測器,將複合薄膜滴覆在該電阻式微氣體感測器上,並利用該電阻式微氣體感測器的電阻變化來偵測待測氣體的分子濃度變化量;一放大電路,與電阻式微氣體感測器電性連接,將電阻式微氣體感測器的電阻變化轉換成電壓變化,以得到較大的變化量。 The micro gas sensing device of the resistive composite film is used for detecting the change of the molecular concentration of the gas to be tested by using the change amount of the electric resistance, and the device comprises: a composite film for adsorbing the gas to be tested. a resistive micro gas sensor, wherein a composite film is dripped on the resistive micro gas sensor, and a resistance change of the resistive micro gas sensor is used to detect a molecular concentration change of the gas to be tested; The amplifying circuit is electrically connected to the resistive micro gas sensor to convert the resistance change of the resistive micro gas sensor into a voltage change to obtain a large variation.

而電容式的複合薄膜之微氣體感測裝置,係為使用電容的變化量來偵測待測氣體的分子濃度變化量,該裝置包含:一複合薄膜,係為用於吸附待測氣體的分子;一電容式微氣體感測器,將複合薄膜滴覆在該電容式微氣體感測器上,並利用該電容式微氣體感測器的電容變化來偵測待測氣體的分子濃度變化量;一震盪電路,與電容式微氣體感測器電性連接,將電容式微氣體感測器的電容變化轉換成頻率訊號讀出。 The micro-gas sensing device of the capacitive composite film is used to detect the change of the molecular concentration of the gas to be tested by using the variation of the capacitance. The device comprises: a composite film, which is a molecule for adsorbing the gas to be tested. a capacitive micro gas sensor, the composite film is dripped on the capacitive micro gas sensor, and the capacitance change of the capacitive micro gas sensor is used to detect the molecular concentration change of the gas to be tested; The circuit is electrically connected to the capacitive micro gas sensor to convert the capacitance change of the capacitive micro gas sensor into a frequency signal readout.

有關本發明之詳細特徵與實作,茲配合圖示在實施方式中詳細說明如下。 Detailed features and implementations of the present invention are described in detail in the embodiments below.

請參閱圖一所示,係為本發明之電阻式的複合薄膜之微氣體感測裝置之電路示意圖。電阻式的複合薄膜之微氣體感測裝置1,係為使用電阻的變化量來偵測待測氣體的分子濃度變化量,該裝置包含:一複合薄膜11,係為用於吸附待測氣體的分子,該複合薄膜11係為二氧化鍚(SnO2)與聚苯胺(Polyaniline)的混合所產生的薄膜;一微氣體感測器,該微氣體感測器為電阻式微氣體感測器12,將複合薄膜11滴覆在該電阻式微氣體感測器12上,並利用該電阻式微氣體感測器12的電阻變化來偵測待測氣體的分子濃度變化量,而該電阻式微氣體感測器12係為一可變電阻;一轉換電路,依據該電阻式微氣體感測器該轉換電路為放大電路13,該放大電路13與電阻式微氣體感測器12電性連接,將電阻式微氣體感測器12的電阻變化轉換成電壓變化,以得到較大的變化量。其中該放大電路13,具有:一第一反向放大電路131,具有一運算放大器OP1、一輸入電阻R1及一回授可變電阻Rs,該第一反向放大電路131的輸出電壓會隨著回授可變電阻Rs的變化而改變;一第二反向放大電路132,具有一運算放大器OP2、一輸入電阻R2及一回授電阻R3,該第二反向放大電路132的輸出電壓係做為第一反向放大電路131的參考電壓之用;一差動放大電路133,具有一運算放大器OP3、二輸入電阻R4與R5、一回授電阻R6及一接地電阻R7,該差動放大電路133 係將第一反向放大電路131與第二反向放大電路132的兩輸出電壓整合放大輸出。 Please refer to FIG. 1 , which is a circuit diagram of the micro gas sensing device of the resistive composite film of the present invention. The resistive composite film micro gas sensing device 1 is configured to detect the molecular concentration variation of the gas to be tested by using the change amount of the electric resistance, and the device comprises: a composite film 11 for adsorbing the gas to be tested. Molecule, the composite film 11 is a film produced by mixing cerium oxide (SnO 2 ) and polyaniline (Polyaniline); a micro gas sensor, which is a resistive micro gas sensor 12, The composite film 11 is dropped on the resistive micro gas sensor 12, and the change in the molecular concentration of the gas to be tested is detected by the resistance change of the resistive micro gas sensor 12, and the resistive micro gas sensor is used. The 12-series is a variable resistor; a conversion circuit according to the resistive micro-gas sensor, the conversion circuit is an amplifying circuit 13, the amplifying circuit 13 is electrically connected to the resistive micro-gas sensor 12, and the resistive micro-gas sensing is performed. The change in resistance of the device 12 is converted into a voltage change to obtain a large amount of change. The amplifying circuit 13 has a first inverting amplifying circuit 131 having an operational amplifier OP1, an input resistor R1 and a feedback variable resistor Rs. The output voltage of the first inverting circuit 131 will follow The feedback of the variable resistor Rs is changed; a second inverting circuit 132 has an operational amplifier OP2, an input resistor R2 and a feedback resistor R3, and the output voltage of the second inverting circuit 132 is The differential amplifier circuit 133 has an operational amplifier OP3, two input resistors R4 and R5, a feedback resistor R6 and a grounding resistor R7. The differential amplifier circuit is used for the reference voltage of the first inverting circuit 131. 133 integrates the two output voltages of the first inverse amplification circuit 131 and the second inverse amplification circuit 132 to amplify and output.

請參閱圖一及圖二所示,圖二係為本發明之電阻式的複合薄膜之微氣體感測裝置之結構示意圖。電阻式的複合薄膜之微氣體感測裝置結構2,係為使用標準的互補式金氧半導體製程來製作,設置於一絕緣基板上21,其由下而上之結構為:一氧化層22,係位於絕緣基板21的上方處,該氧化層22略呈凹形結構,該凹形結構的缺口處滴覆有複合薄膜11;複數個多晶矽層221,係位於氧化層22凹形結構之底部內,其排列方式為偶數排列或奇數排列,該多晶矽層221略呈長方形結構;二保護層23,係位於氧化層22凹形結構之左右二側的頂部;以及一放大電路結構24,係位於氧化層22凹形結構之右側內部,其由下而上之結構為:二連接層241,係為埋藏於絕緣基板21之內部上方處;二導通層242,係位於二連接層241之上方;二金屬層243,係位於二導通層242之上方;一多晶矽層244,係位於二導通層242與二金屬層243之中間處。 Referring to FIG. 1 and FIG. 2, FIG. 2 is a schematic structural view of a micro gas sensing device of the resistive composite film of the present invention. The resistive composite film micro gas sensing device structure 2 is fabricated by using a standard complementary MOS process, and is disposed on an insulating substrate 21, and the bottom-up structure is: an oxide layer 22, It is located above the insulating substrate 21, and the oxide layer 22 has a slightly concave structure. The recessed portion of the concave structure is dripped with a composite film 11; a plurality of polycrystalline germanium layers 221 are located in the bottom of the concave structure of the oxide layer 22. , the arrangement is even or odd, the polysilicon layer 221 has a slightly rectangular structure; the second protective layer 23 is located on the top left and right sides of the concave structure of the oxide layer 22; and an amplifying circuit structure 24 is located in the oxidation The bottom right side of the concave structure of the layer 22, the bottom-up structure is: the two connection layers 241 are buried above the inner portion of the insulating substrate 21; the two conductive layers 242 are located above the two connection layers 241; The metal layer 243 is located above the two-conducting layer 242; and a polysilicon layer 244 is located between the two-conducting layer 242 and the two-metal layer 243.

請參閱圖三所示,係為本發明之電容式的複合薄膜之微氣體感測裝置之電路示意圖。電容式的複合薄膜之微氣體感測裝置3,係為使用電容的變化量來偵測待測氣體的分子濃度變化量,該裝置包含:一複合薄膜31,係為用於吸附待測氣體的分子,該複合薄膜31係為二氧化鍚(SnO2)與聚苯胺(Polyaniline)的混合所產生的 薄膜;一微氣體感測器,該微氣體感測器為電容式微氣體感測器32,將複合薄膜31滴覆在該電容式微氣體感測器32上,並利用該電容式微氣體感測器32的電容變化來偵測待測氣體的分子濃度變化量,而該電容式微氣體感測器32係為一可變電容;一轉換電路,依據上述電容式氣體感測器該轉換電路為震盪電路33,該震盪電路33與電容式微氣體感測器32電性連接,將電容式微氣體感測器32的電容變化轉換成頻率訊號讀出。其中該震盪電路33,具有:五反相器Inverter1,Inverter2,Inverter3,Inverter4及Inverter5、四電容C1,C2,C3及C4與一可變電容Cs所組成。 Please refer to FIG. 3, which is a circuit diagram of the micro gas sensing device of the capacitive composite film of the present invention. The micro-gas sensing device 3 of the capacitive composite film is used to detect the change of the molecular concentration of the gas to be tested by using the variation of the capacitance. The device comprises: a composite film 31 for adsorbing the gas to be tested. Molecule, the composite film 31 is a film produced by mixing cerium oxide (SnO 2 ) and polyaniline (Polyaniline); a micro gas sensor, which is a capacitive micro gas sensor 32, The composite film 31 is dropped on the capacitive micro gas sensor 32, and the capacitance change of the gas to be tested is detected by the capacitance change of the capacitive micro gas sensor 32, and the capacitive micro gas sensor is used. The 32-series is a variable capacitor; a conversion circuit, according to the above-mentioned capacitive gas sensor, the conversion circuit is an oscillating circuit 33, and the oscillating circuit 33 is electrically connected to the capacitive micro-gas sensor 32, and the capacitive micro-gas sensing is performed. The change in capacitance of the device 32 is converted into a frequency signal readout. The oscillating circuit 33 has five inverters Inverter1, Inverter2, Inverter3, Inverter4 and Inverter5, four capacitors C1, C2, C3 and C4 and a variable capacitor Cs.

請參閱圖三及圖四所示,係為本發明之電容式的複合薄膜之微氣體感測裝置之結構示意圖。電容式的複合薄膜之微氣體感測裝置結構4,係為使用標準的互補式金氧半導體製程來製作,設置於一絕緣基板上41,其由下而上之結構為:一氧化層42,係位於絕緣基板41的上方處,該氧化層42略呈凹形結構,該凹形結構的缺口處滴覆有複合薄膜31;複數個第一電極結構43,係位於氧化層42凹形結構底部表面處,其排列方式為偶數排列或奇數排列,該第一電極結構43呈長方形結構;複數個第二電極結構44,係位於氧化層42凹形結構底部表面處,其排列方式為偶數排列或奇數排列,但是當複數個第一電極結構43為偶數排列時,該第二電極結構44則必須為奇數排列,穿插於複數個第一電極結構43之間,反之亦然,該第二電極結構44呈長方形結構;複數個保護層45,係位於複數個第一電極結構43與複數個 第二電極結構44之上方處;一震盪電路結構46,係位於氧化層42凹形結構之右則內部,其由下而上之結構為:四連接層461,係為埋藏於絕緣基板21之內部上方處,該四連接層461由左至右排列為:左n型連接層4611、右n型連接層4612、左p型連接層4613及右p型連接層4614;二多晶矽層462,各自分別位於左、右n型連接層與左、右p型連接層的中間處;複數個導通層463,係位於四連接層461及二多晶矽層462的上方處,而右n型連接層4612與p型連接層4613上方的導通層為相互連接。 Please refer to FIG. 3 and FIG. 4 , which are schematic structural diagrams of the micro gas sensing device of the capacitive composite film of the present invention. The micro-gas sensing device structure 4 of the capacitive composite film is fabricated by using a standard complementary MOS process, and is disposed on an insulating substrate 41. The bottom-up structure is: an oxide layer 42, It is located above the insulating substrate 41. The oxide layer 42 has a slightly concave structure. The recessed portion of the concave structure is dripped with a composite film 31. The plurality of first electrode structures 43 are located at the bottom of the concave structure of the oxide layer 42. The surface is arranged in an even or odd arrangement. The first electrode structure 43 has a rectangular structure. The plurality of second electrode structures 44 are located at the bottom surface of the concave structure of the oxide layer 42 and are arranged in an even number or An odd number arrangement, but when the plurality of first electrode structures 43 are evenly arranged, the second electrode structure 44 must be oddly arranged, interspersed between the plurality of first electrode structures 43, and vice versa, the second electrode structure 44 has a rectangular structure; a plurality of protective layers 45 are located in the plurality of first electrode structures 43 and a plurality of Above the second electrode structure 44; an oscillating circuit structure 46 is located on the right side of the concave structure of the oxide layer 42, and the bottom-up structure is: a four-connection layer 461, which is buried in the insulating substrate 21. Above the inner portion, the four connection layers 461 are arranged from left to right: a left n-type connection layer 4611, a right n-type connection layer 4612, a left p-type connection layer 4613, and a right p-type connection layer 4614; Located at the middle of the left and right n-type connection layers and the left and right p-type connection layers; a plurality of conduction layers 463 are located above the four connection layers 461 and the two polysilicon layers 462, and the right n-type connection layer 4612 and The conductive layers above the p-type connection layer 4613 are connected to each other.

本發明前述之最佳實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內所為之更動與潤飾,均屬本發明之專利保護範圍,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 The above-mentioned preferred embodiments of the present invention are disclosed above, but are not intended to limit the present invention. Any modification and refinement of those skilled in the art without departing from the spirit and scope of the present invention are the scope of protection of the present invention. Therefore, the scope of patent protection of the present invention is defined by the scope of the patent application attached to the specification.

1‧‧‧電阻式的複合薄膜之微氣體感測裝置 1‧‧‧Resistive composite film micro gas sensing device

11‧‧‧複合薄膜 11‧‧‧Composite film

12‧‧‧電阻式微氣體感測器 12‧‧‧Resistive micro gas sensor

13‧‧‧放大電路 13‧‧‧Amplification circuit

131‧‧‧第一反向放大電路 131‧‧‧First reverse amplification circuit

OP1‧‧‧運算放大器 OP1‧‧‧Operational Amplifier

R1‧‧‧輸入電阻 R1‧‧‧ input resistance

Rs‧‧‧回授可變電阻 Rs‧‧‧ feedback variable resistor

132‧‧‧第二反向放大電路 132‧‧‧second reverse amplification circuit

OP2‧‧‧運算放大器 OP2‧‧‧Operational Amplifier

R2‧‧‧輸入電阻 R2‧‧‧ input resistance

R3‧‧‧回授電阻 R3‧‧‧Responsive resistor

133‧‧‧差動放大電路 133‧‧‧Differential Amplifying Circuit

OP3‧‧‧運算放大器 OP3‧‧‧Operational Amplifier

R4‧‧‧輸入電阻 R4‧‧‧ input resistance

R5‧‧‧輸入電阻 R5‧‧‧ input resistance

R6‧‧‧回授電阻 R6‧‧‧Responsive resistor

R7‧‧‧接地電阻 R7‧‧‧ Grounding resistor

2‧‧‧電阻式的複合薄膜之微氣體感測裝置結構 2‧‧‧Resistive composite film micro gas sensing device structure

21‧‧‧絕緣基板 21‧‧‧Insert substrate

22‧‧‧氧化層 22‧‧‧Oxide layer

221‧‧‧多晶矽層 221‧‧‧ Polycrystalline layer

23‧‧‧保護層 23‧‧‧Protective layer

24‧‧‧放大電路結構 24‧‧‧Amplification circuit structure

241‧‧‧連接層 241‧‧‧Connection layer

242‧‧‧導通層 242‧‧‧ conduction layer

243‧‧‧金屬層 243‧‧‧metal layer

244‧‧‧多晶矽層 244‧‧‧Polysilicon layer

3‧‧‧電容式的複合薄膜之微氣體感測裝置 3‧‧‧Micro-gas sensing device for capacitive composite film

31‧‧‧複合薄膜 31‧‧‧Composite film

32‧‧‧電容式微氣體感測器 32‧‧‧Capacitive micro gas sensor

33‧‧‧震盪電路 33‧‧‧ oscillating circuit

Inverter1‧‧‧反相器 Inverter1‧‧‧Inverter

Inverter2‧‧‧反相器 Inverter2‧‧‧Inverter

Inverter3‧‧‧反相器 Inverter3‧‧‧Inverter

Inverter4‧‧‧反相器 Inverter4‧‧‧Inverter

Inverter5‧‧‧反相器 Inverter5‧‧‧Inverter

C1‧‧‧電容 C1‧‧‧ capacitor

C2‧‧‧電容 C2‧‧‧ capacitor

C3‧‧‧電容 C3‧‧‧ capacitor

C4‧‧‧電容 C4‧‧‧ capacitor

Cs‧‧‧可變電容 Cs‧‧‧Variable Capacitor

4‧‧‧電容式的複合薄膜之微氣體感測裝置結構 4‧‧‧Micro-gas sensing device structure of capacitive composite film

41‧‧‧絕緣基板 41‧‧‧Insert substrate

42‧‧‧氧化層 42‧‧‧Oxide layer

43‧‧‧第一電極結構 43‧‧‧First electrode structure

44‧‧‧第二電極結構 44‧‧‧Second electrode structure

45‧‧‧保護層 45‧‧‧Protective layer

46‧‧‧震盪電路結構 46‧‧‧ oscillating circuit structure

461‧‧‧連接層 461‧‧‧Connection layer

4611‧‧‧左n型連接層 4611‧‧‧Left n-type connection layer

4612‧‧‧右n型連接層 4612‧‧‧Right n-type connection layer

4613‧‧‧左p型連接層 4613‧‧‧Left p-type connection layer

4614‧‧‧右p型連接層 4614‧‧‧Right p-type connection layer

462‧‧‧多晶矽層 462‧‧‧Polysilicon layer

463‧‧‧導通層 463‧‧‧ conduction layer

圖一係為本發明之電阻式的複合薄膜之微氣體感測裝置之電路示意圖。 1 is a circuit diagram of a micro gas sensing device of a resistive composite film of the present invention.

圖二係為本發明之電阻式的複合薄膜之微氣體感測裝置之結構示意圖。 2 is a schematic structural view of a micro gas sensing device of the resistive composite film of the present invention.

圖三係為本發明之電容式的複合薄膜之微氣體感測裝置之電路示意圖。 FIG. 3 is a circuit diagram of the micro gas sensing device of the capacitive composite film of the present invention.

圖四係為本發明之電容式的複合薄膜之微氣體感測裝置之結構示意圖。 FIG. 4 is a schematic structural view of a micro gas sensing device of the capacitive composite film of the present invention.

1‧‧‧電阻式的複合薄膜之微氣體感測裝置 1‧‧‧Resistive composite film micro gas sensing device

11‧‧‧複合薄膜 11‧‧‧Composite film

12‧‧‧電阻式微氣體感測器 12‧‧‧Resistive micro gas sensor

13‧‧‧放大電路 13‧‧‧Amplification circuit

131‧‧‧第一反向放大電路 131‧‧‧First reverse amplification circuit

OP1‧‧‧運算放大器 OP1‧‧‧Operational Amplifier

R1‧‧‧輸入電阻 R1‧‧‧ input resistance

Rs‧‧‧回授可變電阻 Rs‧‧‧ feedback variable resistor

132‧‧‧第二反向放大電路 132‧‧‧second reverse amplification circuit

OP2‧‧‧運算放大器 OP2‧‧‧Operational Amplifier

R2‧‧‧輸入電阻 R2‧‧‧ input resistance

R3‧‧‧回授電阻 R3‧‧‧Responsive resistor

133‧‧‧差動放大電路 133‧‧‧Differential Amplifying Circuit

OP3‧‧‧運算放大器 OP3‧‧‧Operational Amplifier

R4‧‧‧輸入電阻 R4‧‧‧ input resistance

R5‧‧‧輸入電阻 R5‧‧‧ input resistance

R6‧‧‧回授電阻 R6‧‧‧Responsive resistor

R7‧‧‧接地電阻 R7‧‧‧ Grounding resistor

Claims (9)

一種複合薄膜之微氣體感測裝置,該裝置包含:一複合薄膜,該複合薄膜係為二氧化錫與聚苯胺混合而成之薄膜,係為用於吸附待測氣體的分子;一微氣體感測器,該微氣體感測器包括一設於一絕緣基板上的氧化層,該氧化層呈凹形結構,該複合薄膜滴覆在該氧化層之凹形結構的缺口中,利用該微氣體感測器來偵測待測氣體的分子濃度變化量;一轉換電路,設於該氧化層中,位於該凹形結構之缺口的側邊,與該微氣體感測器電性連接,將該微氣體感測器所測得之待測氣體的分子濃度變化量轉換為訊號輸出。 A micro-gas sensing device for a composite film, the device comprising: a composite film, which is a film formed by mixing tin dioxide and polyaniline, is a molecule for adsorbing a gas to be tested; a micro gas sensor comprising an oxide layer disposed on an insulating substrate, the oxide layer having a concave structure, the composite film being dripped in a notch of the concave structure of the oxide layer, using the micro gas a sensor for detecting a change in the molecular concentration of the gas to be tested; a conversion circuit disposed in the oxide layer on a side of the notch of the concave structure, electrically connected to the micro gas sensor, The amount of change in the molecular concentration of the gas to be measured measured by the micro gas sensor is converted into a signal output. 如申請專利範圍第1項所述之複合薄膜之微氣體感測裝置,其中,該微氣體感測器係為電阻式微氣體感測器;該電阻式微氣體感測器的轉換電路係一放大電路,將該微氣體感測器所測得之待測氣體的分子濃度變化量轉換成電壓訊號輸出;該放大電路具有:一第一反向放大電路,具有一運算放大器、一輸入電阻及一回授可變電阻,該第一反向放大電路的輸出電壓會隨著回授可變電阻的變化而改變;一第二反向放大電路,具有一運算放大器、一輸入電阻及一回授電阻,該第二反向放大電路的輸出電壓係做為第一反向放大電路的參考電壓之用;一差動放大電路,具有一運算放大器、二輸入電阻、一回授電阻及一接地電阻,該差動放大電路係將第一反向放大電路與第二反向放大電路的兩輸出電壓整合放大輸出。 The micro gas sensing device of the composite film according to claim 1, wherein the micro gas sensor is a resistive micro gas sensor; the conversion circuit of the resistive micro gas sensor is an amplifying circuit Converting the molecular concentration variation of the gas to be measured measured by the micro gas sensor into a voltage signal output; the amplifying circuit has: a first inverse amplifying circuit having an operational amplifier, an input resistor, and a return a variable resistor, the output voltage of the first inverting circuit is changed according to a change of the feedback variable resistor; and a second inverting circuit having an operational amplifier, an input resistor and a feedback resistor, The output voltage of the second inverting amplifier circuit is used as a reference voltage of the first inverting amplifying circuit; a differential amplifying circuit having an operational amplifier, a two-input resistor, a feedback resistor and a grounding resistor, The differential amplifying circuit integrates and amplifies the two output voltages of the first inverse amplifying circuit and the second inverting amplifying circuit. 如申請專利範圍第2項所述之複合薄膜之微氣體感測裝置,其 中,該電阻式微氣體感測器更包含:複數個多晶矽層,係位於氧化層之底部內;以及二保護層,係位於氧化層左右二邊的上方處。 A micro gas sensing device for a composite film according to claim 2, The resistive micro gas sensor further comprises: a plurality of polycrystalline germanium layers located in the bottom of the oxide layer; and a second protective layer located above the left and right sides of the oxide layer. 如申請專利範圍第1項所述之複合薄膜之微氣體感測裝置,其中該複數個多晶矽層略呈長方形結構。 The micro-gas sensing device of the composite film according to claim 1, wherein the plurality of polycrystalline germanium layers have a slightly rectangular structure. 如申請專利範圍第1項所述之複合薄膜之微氣體感測裝置,其中,該微氣體感測器係為電容式微氣體感測器,該電容式微氣體感測器係為一可變電容;該電容式微氣體感測器利用電容變化來偵測待測氣體的分子濃度變化量。 The micro gas sensing device of the composite film according to claim 1, wherein the micro gas sensor is a capacitive micro gas sensor, and the capacitive micro gas sensor is a variable capacitor; The capacitive micro gas sensor utilizes a change in capacitance to detect a change in the molecular concentration of the gas to be measured. 如申請專利範圍第5項所述之複合薄膜之微氣體感測裝置,其中,該轉換電路為震盪電路,將該微氣體感測器所測得之待測氣體的分子濃度變化量轉換成頻率訊號輸出;該震盪電路具有:五反相器、四電容及一可變電容所組成。 The micro gas sensing device of the composite film according to claim 5, wherein the conversion circuit is an oscillating circuit, and the molecular concentration variation of the gas to be measured measured by the micro gas sensor is converted into a frequency. Signal output; the oscillating circuit comprises: a five-inverter, a four-capacitor and a variable capacitor. 如申請專利範圍第5項所述之複合薄膜之微氣體感測裝置,其中,該電容式微氣體感測器更包含:複數個第一電極結構,係位於氧化層底部表面處,其排列方式為偶數排列或奇數排列;複數個第二電極結構,係位於氧化層底部表面處,其排列方式為偶數排列或奇數排列,穿插於複數個第一電極結構之間;複數個保護層,係位於複數個第一電極結構與複數個第二電極結構之上方處。 The micro-gas sensing device of the composite film according to claim 5, wherein the capacitive micro gas sensor further comprises: a plurality of first electrode structures located at a bottom surface of the oxide layer, arranged in a manner An even number or an odd number arrangement; a plurality of second electrode structures are located at the bottom surface of the oxide layer, arranged in an even or odd arrangement, interspersed between the plurality of first electrode structures; and the plurality of protective layers are located in the plural Above the first electrode structure and the plurality of second electrode structures. 如申請專利範圍第7項所述之複合薄膜之微氣體感測裝置,其中該第一電極結構呈長方形結構。 The micro-gas sensing device of the composite film according to claim 7, wherein the first electrode structure has a rectangular structure. 如申請專利範圍第7項所述之複合薄膜之微氣體感測裝置,其中該第二電極結構呈長方形結構。 The micro-gas sensing device of the composite film according to claim 7, wherein the second electrode structure has a rectangular structure.
TW98129763A 2009-09-03 2009-09-03 A composite thin film micro gas sensor TWI436056B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98129763A TWI436056B (en) 2009-09-03 2009-09-03 A composite thin film micro gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98129763A TWI436056B (en) 2009-09-03 2009-09-03 A composite thin film micro gas sensor

Publications (2)

Publication Number Publication Date
TW201109649A TW201109649A (en) 2011-03-16
TWI436056B true TWI436056B (en) 2014-05-01

Family

ID=44836012

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98129763A TWI436056B (en) 2009-09-03 2009-09-03 A composite thin film micro gas sensor

Country Status (1)

Country Link
TW (1) TWI436056B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890548B2 (en) 2017-11-23 2021-01-12 Industrial Technology Research Institute Resistive gas sensor and gas sensing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890548B2 (en) 2017-11-23 2021-01-12 Industrial Technology Research Institute Resistive gas sensor and gas sensing method therefor

Also Published As

Publication number Publication date
TW201109649A (en) 2011-03-16

Similar Documents

Publication Publication Date Title
Nassar et al. Paper skin multisensory platform for simultaneous environmental monitoring
CN106716152A (en) Thin-film resistive-based sensor
US11585773B2 (en) Gas sensing device and a method for sensing gas
CN101932928A (en) Improved structure for capacitive balancing of integrated relative humidity sensor
WO2008140024A4 (en) Gas sensor, gas measuring system using the gas sensor, and gas detection module for the gas measuring system
WO2008084582A1 (en) Substance detection sensor
JPS6045368B2 (en) semiconductor gas sensor
CN101226089B (en) Flexible one point force sheet type sensor and production method
US9176088B2 (en) Method and apparatus for detecting smoke in an ion chamber
JPH07500916A (en) Selective gas detection device
CN104977327B (en) Gas sensor
TWI436056B (en) A composite thin film micro gas sensor
CN216247762U (en) Semiconductor type gas-sensitive sensor for normal temperature gas detection
KR101649605B1 (en) CMOS humidity sensor and method for manufacturing the same
JP5936087B2 (en) Thin film hydrogen gas sensor
CN104614079B (en) A kind of infrared sensor
JP2020020790A (en) Capacitive gas sensor and method for manufacturing the same
TWI484171B (en) A method for the determination of fluid concentration by magnetic catalysis
CN214844954U (en) Immune biosensor
JPH03249555A (en) Multicomponent gas sensor
JPS6118850A (en) Humidity and dew condensation detection element
Namboodiri et al. An Enhanced ISFET Readout Circuit for Biosensing
US11408846B2 (en) Laterally actuated amplified capacitive vapor sensor
JPH0486550A (en) Gas sensor
CN101949887A (en) Semiconductor gas sensor and various gas detection method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees