TWI436047B - System and method for evaluating mechanical vibration signal using mse - Google Patents

System and method for evaluating mechanical vibration signal using mse Download PDF

Info

Publication number
TWI436047B
TWI436047B TW99139718A TW99139718A TWI436047B TW I436047 B TWI436047 B TW I436047B TW 99139718 A TW99139718 A TW 99139718A TW 99139718 A TW99139718 A TW 99139718A TW I436047 B TWI436047 B TW I436047B
Authority
TW
Taiwan
Prior art keywords
mechanical vibration
entropy
vibration signal
signal
evaluation system
Prior art date
Application number
TW99139718A
Other languages
Chinese (zh)
Other versions
TW201221931A (en
Inventor
Yet Men Wang
Original Assignee
Ancad Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ancad Inc filed Critical Ancad Inc
Priority to TW99139718A priority Critical patent/TWI436047B/en
Publication of TW201221931A publication Critical patent/TW201221931A/en
Application granted granted Critical
Publication of TWI436047B publication Critical patent/TWI436047B/en

Links

Description

一種利用多尺度熵之機械震動信號評估系統與方法 Mechanical vibration signal evaluation system and method using multi-scale entropy

本發明係關於一種機械震動信號評估系統及方法,並且特別是關於一種利用多尺度熵以評估機械震動信號之系統及方法。 The present invention relates to a mechanical vibration signal evaluation system and method, and more particularly to a system and method for utilizing multi-scale entropy to evaluate mechanical vibration signals.

機械在工業界與生活當中是相當常見的系統與作動原理。而在機械領域裡,隨著加工需求日益嚴苛,對於加工品質的要求亦趨於高精密與高標準。 Machinery is a fairly common system and actuation principle in industry and life. In the field of machinery, as processing demands become more stringent, the requirements for processing quality tend to be high-precision and high standards.

隨著產品複雜度的增加,在改善製程品質時,往往需要考量到多個品質特性的同時最佳化。因此,良好的切削頻率、刀具摩耗、表面粗糙度以及切削力為加工所追求的目標。由於機械工作型態是一種動態行為,其係由好幾種運作模態所組成,而當其中一項參數或是運作因子發生變異時,極可能造成整體結構與產能的損壞與危險。這些細微的現象,在習知技術中常以快速傅立葉轉換(Fast Fouier Transform,FFT)檢測法與均方根(Root Mean Square,RMS)演算法做為分析工具,但往往卻無法有效率的直接分析出問題之原因。以FFT檢測法而言,只能對機械做最基本的概略判定。而RMS演算法之特性在於計算快速簡單並可即時監控任何震動變化,但無法辨識問題型態以及頻率分佈之特性。 As product complexity increases, it is often necessary to optimize multiple process characteristics while improving process quality. Therefore, good cutting frequency, tool wear, surface roughness and cutting force are the goals pursued by the machining. Since the mechanical working type is a dynamic behavior, it is composed of several operating modes, and when one of the parameters or the operating factor is mutated, it is likely to cause damage and danger to the overall structure and productivity. These subtle phenomena often use Fast Fourier Transform (FFT) and Root Mean Square (RMS) algorithms as analytical tools in traditional techniques, but often cannot be directly analyzed efficiently. The cause of the problem. In terms of FFT detection, only the most basic rough decision can be made for the machine. The RMS algorithm is characterized by fast and simple calculations and the ability to monitor any vibration changes in real time, but does not recognize the characteristics of the problem and the frequency distribution.

由此觀之,若以習知檢測評估技術進行機械之加工品質檢測,目前皆無法達到有效的解析判斷效果。除此之外,由於習知檢測評估技術之理論與判斷結果常過於 艱深,往往需要專業度極高的人員才有能力判別。因此,對於不斷提升效率與追求加工品質的機械市場中,需要更有效率與準確性的檢測評估技術是有其必要性存在。 From this point of view, if the processing quality inspection of the machine is carried out by the conventional detection and evaluation technology, the effective analytical judgment effect cannot be achieved at present. In addition, the theory and judgment results of the conventional detection and evaluation techniques are often too Difficult, often require highly qualified personnel to be able to distinguish. Therefore, in the machinery market that continuously improves efficiency and pursues processing quality, it is necessary to have a more efficient and accurate detection and evaluation technology.

有鑑於此,本發明提供關於一種機械震動信號評估系統和方法,特別係關於一種利用多尺度熵以評估機械震動信號之系統和方法,藉以解決上述習知問題。 In view of this, the present invention is directed to a mechanical vibration signal evaluation system and method, and more particularly to a system and method for utilizing multi-scale entropy to evaluate mechanical vibration signals, thereby solving the above-described conventional problems.

本發明之一範疇在於一種機械震動信號評估系統,運用多尺度熵(multi-scale entropy,MSE)的演算法進行機械震動信號的評估,除了可以快速評估機械震動狀況之外,可產生更準確的判斷結果。 One aspect of the present invention is a mechanical vibration signal evaluation system that uses a multi-scale entropy (MSE) algorithm to evaluate mechanical vibration signals, in addition to being able to quickly assess mechanical vibration conditions, which can produce more accurate critical result.

依據本發明之一具體實施例,本發明機械震動信號評估系統包含濾波模組、信號分割模組、處理器以及分類器。其中,濾波模組以一頻率範圍過濾時序信號並輸出濾波後之時序信號。信號分割模組耦接濾波模組,接收濾波後之時序信號,並以一時脈間隔分割濾波後之時序信號,產生多個信號片段。處理器耦接信號分割模組,接收所述多個信號片段,並運算每一信號片段之多個熵值。分類器耦接處理器,具有熵值對照表,分類器接收每一信號片段之所述多個熵值,並將所述多個熵值比對熵值對照表,據以產生機械震動信號評估結果。 According to an embodiment of the present invention, the mechanical vibration signal evaluation system of the present invention comprises a filter module, a signal splitting module, a processor and a classifier. The filter module filters the timing signal by a frequency range and outputs the filtered timing signal. The signal splitting module is coupled to the filter module, receives the filtered timing signal, and divides the filtered timing signal by a clock interval to generate a plurality of signal segments. The processor is coupled to the signal segmentation module, receives the plurality of signal segments, and calculates a plurality of entropy values of each signal segment. a classifier coupled to the processor, having an entropy value comparison table, the classifier receiving the plurality of entropy values of each signal segment, and comparing the plurality of entropy values to an entropy value table to generate a mechanical vibration signal evaluation result.

於實際應用中,本發明機械震動信號評估系統更包含取樣模組,所述取樣模組耦接濾波模組,以一預設頻率取樣原始信號,據以產生時序信號。此外,濾波模組可包含帶通濾波器(band pass filter)。再者,每一熵值為多尺度熵演算法中,以多個運算尺度其中之一進行運算之結果。另外,分類 器可藉由預先輸入多個標準熵值,建立熵值對照表。其中,熵值對照表包含多個熵值區間,每一熵值區間至少包含所述多個標準熵值其中之一。 In a practical application, the mechanical vibration signal evaluation system of the present invention further includes a sampling module, and the sampling module is coupled to the filtering module to sample the original signal at a preset frequency to generate a timing signal. In addition, the filter module can include a band pass filter. Furthermore, each entropy is the result of performing an operation on one of a plurality of operational scales in a multi-scale entropy algorithm. In addition, classification The entropy value comparison table can be established by inputting a plurality of standard entropy values in advance. The entropy value comparison table includes a plurality of entropy value intervals, and each entropy value interval includes at least one of the plurality of standard entropy values.

本發明之一範疇在於一種機械震動信號評估方法,運用多尺度熵的演算法進行機械震動信號的評估,除了可以快速評估機械震動狀況之外,可產生更準確的判斷結果。 One aspect of the present invention resides in a method for evaluating mechanical vibration signals, which uses a multi-scale entropy algorithm to evaluate mechanical vibration signals. In addition to being able to quickly assess mechanical vibration conditions, a more accurate judgment result can be produced.

依據本發明之一具體實施例,本發明之機械震動信號評估方法包含下列步驟:以一頻率範圍過濾時序信號,據以產生濾波後之時序信號;以一時脈間隔分割濾波後之時序信號,據以產生多個信號片段;運算每一信號片段之多個熵值;將所述多個熵值比對熵值對照表,據以產生機械震動信號評估結果。 According to an embodiment of the present invention, the mechanical vibration signal evaluation method of the present invention comprises the steps of: filtering a timing signal by a frequency range to generate a filtered timing signal; and dividing the filtered timing signal by a clock interval, Generating a plurality of signal segments; computing a plurality of entropy values for each of the signal segments; comparing the plurality of entropy values to an entropy value table to generate a mechanical vibration signal evaluation result.

於實際應用中,每一熵值為一多尺度熵演算法中,以多個運算尺度其中之一進行運算之結果。此外,所述機械震動信號評估方法更包含下列步驟:預先輸入多個標準熵值,建立熵值對照表。其中熵值對照表包含多個熵值區間,每一熵值區間至少包含所述多個標準熵值其中之一。 In practical applications, each entropy is the result of one of a plurality of operational scales in a multi-scale entropy algorithm. In addition, the mechanical vibration signal evaluation method further includes the following steps: inputting a plurality of standard entropy values in advance, and establishing an entropy value comparison table. The entropy value comparison table includes a plurality of entropy value intervals, and each entropy value interval includes at least one of the plurality of standard entropy values.

綜上所述,本發明之機械震動信號評估系統及方法,運用多尺度熵的演算法進行機械震動信號的評估,由於多尺度熵演算法中,可依據不同的運算尺度可進行多維度的分析,因此本發明可比對多個運算尺度運算出來的多個熵值,而不僅僅是依照單一熵值進行判斷。藉此,本發明之機械震動信號評估系統及方法除了可以快速評估機械震動狀況之外,可大幅提升判斷結果的準確度。 In summary, the mechanical vibration signal evaluation system and method of the present invention uses a multi-scale entropy algorithm to evaluate mechanical vibration signals. Because of the multi-scale entropy algorithm, multi-dimensional analysis can be performed according to different operational scales. Therefore, the present invention can compare a plurality of entropy values calculated by a plurality of operation scales, not just a single entropy value. Thereby, the mechanical vibration signal evaluation system and method of the present invention can greatly improve the accuracy of the judgment result in addition to the rapid evaluation of the mechanical vibration condition.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

請參見圖一,圖一係繪示本發明之一具體實施例之機械震動信號評估系統的方塊圖。如圖一所示,本發明機械震動信號評估系統1包含濾波模組10、信號分割模組12、處理器14、分類器16以及取樣模組18。其中,濾波模組10電性連接於信號分割模組12以及取樣模組18之間,處理器14電性連接於信號分割模組12以及分類器16之間。 Referring to FIG. 1, FIG. 1 is a block diagram showing a mechanical vibration signal evaluation system according to an embodiment of the present invention. As shown in FIG. 1 , the mechanical vibration signal evaluation system 1 of the present invention includes a filter module 10 , a signal splitting module 12 , a processor 14 , a classifier 16 , and a sampling module 18 . The filter module 10 is electrically connected between the signal splitting module 12 and the sampling module 18, and the processor 14 is electrically connected between the signal splitting module 12 and the classifier 16.

濾波模組10以一頻率範圍過濾時序信號並輸出濾波後之時序信號。於實務中,濾波模組10可包含或可為一種帶通濾波器,並且所述頻率範圍為0.5Hz至30Hz。也就是說,濾波模組10可過濾掉不需要的信號,而僅留下頻率範圍在0.5Hz~30Hz之中的信號。另一方面,若欲偵測之機械震動信號頻率較高,濾波模組10可依據欲偵測之機械震動信號的頻率進行設計,因此濾波模組10並不限定僅能留下頻率範圍在0.5Hz~30Hz之中的信號。 The filter module 10 filters the timing signals in a frequency range and outputs the filtered timing signals. In practice, the filter module 10 can include or can be a bandpass filter and the frequency range is from 0.5 Hz to 30 Hz. That is to say, the filter module 10 can filter out unwanted signals, leaving only signals with a frequency range of 0.5 Hz to 30 Hz. On the other hand, if the frequency of the mechanical vibration signal to be detected is high, the filter module 10 can be designed according to the frequency of the mechanical vibration signal to be detected, so the filter module 10 is not limited to only leaving the frequency range at 0.5. Signal from Hz to 30Hz.

信號分割模組12接收經濾波模組10輸出的濾波後之時序信號,並以一時脈間隔分割濾波後之時序信號,產生多個信號片段。於實務中,信號分割模組12用以將信號分成多段,以便將分段後的信號做進一步的處理,而所述時脈間隔在此並不加以限制,舉例來說,時脈間隔可為30秒。 The signal segmentation module 12 receives the filtered timing signals output by the filter module 10, and divides the filtered timing signals by a clock interval to generate a plurality of signal segments. In practice, the signal segmentation module 12 is configured to divide the signal into a plurality of segments to further process the segmented signal, and the clock interval is not limited herein. For example, the clock interval may be 30 seconds.

處理器14接收所述多個信號片段,並運算每一信號片段之多個熵值。於實務中,每一熵值為多尺度熵(MSE)演算法中,以多個運算尺度其中之一進行運算之結果。舉例來說,處理器14可使用20個運算尺度以進行所述多尺度熵演算法,而透過所述多尺度熵演算法,每一個(第1~20個)運算尺度可分 別產生各自(第1~20個)的熵值,輸出至分類器16。在此,本發明並不限制運算尺度之數量,技術人員可自行選擇適當的運算尺度之數量。 The processor 14 receives the plurality of signal segments and operates a plurality of entropy values for each of the signal segments. In practice, each entropy is the result of computing in one of multiple operational scales in a multi-scale entropy (MSE) algorithm. For example, the processor 14 may use 20 operational scales to perform the multi-scale entropy algorithm, and each of the (1st to 20th) operational scales may be divided by the multi-scale entropy algorithm. The entropy values of the respective (1st to 20th) are not generated and output to the classifier 16. Here, the present invention does not limit the number of operational scales, and the skilled person can select the appropriate number of operational scales.

值得注意的是,本發明不對其運算方式加以限制,其原因在於,所述多尺度熵演算法係所述技術領域具有通常知識者皆能明瞭的一種演算法,雖然可運用若干不同的方式進行多尺度熵的運算,但只要是進行多尺度熵的運算且每一個運算尺度可分別產生各自的熵值,即屬於本發明之範疇,技術人員可自行決定其運算方式。 It should be noted that the present invention does not limit its operation mode because the multi-scale entropy algorithm is an algorithm that can be understood by those skilled in the art, although it can be implemented in a number of different ways. The operation of multi-scale entropy, but as long as it is a multi-scale entropy operation and each of the operational scales can generate respective entropy values, which belongs to the scope of the present invention, the technician can determine the operation mode by himself.

分類器16具有一熵值對照表,且分類器16接收每一信號片段之所述多個熵值,並將所述多個熵值比對熵值對照表,據以產生機械震動信號評估結果。於實務中,分類器16可為一種線性或非線性之分類器。並且,分類器16可預先輸入多個標準熵值,據以建立熵值對照表。其中,熵值對照表包含多個熵值區間,每一熵值區間至少包含所述多個標準熵值其中之一。舉例來說,在使用機械震動信號評估系統1進行機械震動信號的評估之前,可先透過輸入若干標準值或由專業人員先行調校所述熵值對照表,使得分類器16能夠精確分類從處理器14輸入的熵值。 The classifier 16 has an entropy value comparison table, and the classifier 16 receives the plurality of entropy values of each signal segment, and compares the plurality of entropy values with an entropy value table to generate a mechanical vibration signal evaluation result. . In practice, classifier 16 can be a linear or non-linear classifier. And, the classifier 16 may input a plurality of standard entropy values in advance to establish an entropy value comparison table. The entropy value comparison table includes a plurality of entropy value intervals, and each entropy value interval includes at least one of the plurality of standard entropy values. For example, before using the mechanical vibration signal evaluation system 1 to evaluate the mechanical vibration signal, the entropy value comparison table may be first adjusted by inputting a number of standard values or by a professional to enable the classifier 16 to accurately classify the processing. The entropy value entered by the device 14.

另外,所述多個熵值區間分別對應多個運算尺度,例如第1~20個運算尺度所運算出來的熵值,可分別由第1~20個熵值區間進行比對。其中,每一個熵值區間應包含用以指示不同機械震動信號評估參數的範圍。此外,使用者可自行選擇要採用哪個熵值區間所產生的機械震動信號評估結果。 In addition, the plurality of entropy value sections respectively correspond to a plurality of operation scales, for example, the entropy values calculated by the first to the 20th operation scales may be compared by the first to the 20th entropy value sections, respectively. Wherein, each entropy interval should include a range for indicating different mechanical vibration signal evaluation parameters. In addition, the user can select which mechanical vibration signal evaluation result to be generated by which entropy interval.

此外,在調校所述熵值對照表時,通常會設置多個熵值區 間分別對應多個標準熵值,提高機械震動信號的容錯率,使得機械震動信號的判斷可以免於受到一些不理想因素的干擾。 In addition, when the entropy value comparison table is adjusted, a plurality of entropy value areas are usually set. Corresponding to multiple standard entropy values respectively, the fault tolerance rate of the mechanical vibration signal is improved, so that the judgment of the mechanical vibration signal can be protected from some undesired factors.

取樣模組18以一預設頻率取樣原始信號,據以產生時序信號。於實務中,由偵測機械震動狀態產生的原始信號往往是一個長時間的信號,若從原始信號進行信號的分析及處理,將會過分消耗運算資源。因此,為了減少運算量,使得進入濾波模組10的信號資料量能有效地被縮小,取樣模組18可從原始信號中降低信號頻率,舉例來說,預設頻率可預設為256Hz。 The sampling module 18 samples the original signal at a predetermined frequency to generate a timing signal. In practice, the original signal generated by detecting the state of mechanical vibration is often a long-term signal. If the signal is analyzed and processed from the original signal, the computing resources will be excessively consumed. Therefore, in order to reduce the amount of calculation, the amount of signal data entering the filter module 10 can be effectively reduced, and the sampling module 18 can reduce the signal frequency from the original signal. For example, the preset frequency can be preset to 256 Hz.

此外,本發明機械震動信號評估系統1所產生之機械震動信號評估結果係以圖形呈現,該圖形可以包含一多尺度熵圖。請參閱圖二A至圖二C,圖二A至圖二C分別繪示電梯上升震動之時序圖、時頻圖以及多尺度熵圖。於實際應用上以電梯上升震動為例,圖二A顯示該電梯上升震動信號隨時間所對應振幅之變化,圖二B顯示該電梯上升震動信號隨時間所對應頻率之變化,圖二C顯示該電梯上升震動信號隨時間所對應多尺度熵之變化。相較於圖二A及圖二B,應用本發明機械震動信號評估系統1所產生之多尺度熵圖(圖二C)中,可以清楚判定於時間25秒至65秒期間,電梯發生異常抖動情況。 In addition, the mechanical vibration signal evaluation result generated by the mechanical vibration signal evaluation system 1 of the present invention is graphically presented, and the graphic may include a multi-scale entropy map. Please refer to FIG. 2A to FIG. 2C. FIG. 2A to FIG. 2C respectively show a timing chart, a time-frequency diagram and a multi-scale entropy map of the elevator ascending vibration. Taking the elevator ascending vibration as an example in practical application, Figure 2A shows the change of the amplitude of the elevator ascending vibration signal with time, and Figure 2B shows the change of the elevator's rising vibration signal with time. Figure 2C shows the The multi-scale entropy of the elevator ascending vibration signal corresponding to time. Compared with FIG. 2A and FIG. 2B, in the multi-scale entropy map (FIG. 2C) generated by the mechanical vibration signal evaluation system 1 of the present invention, it can be clearly determined that the elevator has abnormal jitter during the time period of 25 seconds to 65 seconds. Happening.

以下搭配本發明之機械震動信號評估方法及圖式,作更詳細的說明。 The following is a detailed description of the mechanical vibration signal evaluation method and the drawing of the present invention.

請參見圖一及圖三,圖三係繪示本發明之一具體實施例之機械震動信號評估方法的流程圖。如圖所示,於步驟S20中,取樣模組18以一預設頻率取樣一原始信號,據以產生一時序信號,且取樣模組18可進一步傳送時序信號至濾波模組10。於實務中,取樣模組18可選擇其他的取樣條件進行原始信號 之取樣,舉例來說,取樣模組18也可用以排除振幅過大或過小的信號,藉以減少進入濾波模組10之信號的運算量。 Referring to FIG. 1 and FIG. 3, FIG. 3 is a flow chart showing a method for evaluating a mechanical vibration signal according to an embodiment of the present invention. As shown in the figure, in step S20, the sampling module 18 samples an original signal at a predetermined frequency to generate a timing signal, and the sampling module 18 can further transmit the timing signal to the filtering module 10. In practice, the sampling module 18 can select other sampling conditions for the original signal. Sampling, for example, the sampling module 18 can also be used to eliminate signals with excessive or too small amplitudes, thereby reducing the amount of computation of signals entering the filtering module 10.

接著,於步驟S22中,濾波模組10以一頻率範圍過濾時序信號,據以產生濾波後之時序信號。 Next, in step S22, the filter module 10 filters the timing signals by a frequency range to generate the filtered timing signals.

接著,於步驟S24中,信號分割模組12自濾波模組10接收濾波後之時序信號,並以一時脈間隔分割濾波後之時序信號,據以產生多個信號片段。 Next, in step S24, the signal segmentation module 12 receives the filtered timing signal from the filter module 10, and divides the filtered timing signal by a clock interval to generate a plurality of signal segments.

接著,於步驟S26中,處理器14接收多個信號片段並以多尺度熵演算法運算每一信號片段之多個熵值。於實務中,處理器14使用多尺度熵演算法,並以多個運算尺度運算每一個信號片段,據以對應產生多個熵值。 Next, in step S26, the processor 14 receives the plurality of signal segments and operates a plurality of entropy values for each of the signal segments in a multi-scale entropy algorithm. In practice, the processor 14 uses a multi-scale entropy algorithm and operates each of the signal segments on multiple operational scales to correspondingly generate a plurality of entropy values.

接著,於步驟S28中,分類器16將多個熵值比對熵值對照表,據以產生機械震動信號評估結果。舉例來說,處理器14接收某一信號片段,接著以20個運算尺度透過多尺度熵演算法計算出所述信號片段的20個熵值,接著將所述20個熵值輸入分類器16。舉例來說,當第i個運算尺度所運算出來的熵值落在第i個熵值區間的第一個範圍內,則分類器16輸出第一加工品質評估參數;當所述熵值落在第i個熵值區間的第二個範圍內,則分類器16輸出第二加工品質評估參數。 Next, in step S28, the classifier 16 compares the plurality of entropy values with the entropy value table to generate a mechanical vibration signal evaluation result. For example, the processor 14 receives a certain signal segment, and then calculates 20 entropy values of the signal segment through a multi-scale entropy algorithm on 20 operational scales, and then inputs the 20 entropy values into the classifier 16. For example, when the entropy value calculated by the i-th operation scale falls within the first range of the i-th entropy value interval, the classifier 16 outputs the first processing quality evaluation parameter; when the entropy value falls Within the second range of the i-th entropy interval, the classifier 16 outputs a second processing quality evaluation parameter.

值得一提的是,若時序信號較長,機械震動信號評估系統1更可以反覆進行步驟S26與步驟S28,可分類每個信號片段之中的機械震動信號評估結果,藉此,可得到一連串的機械震動信號評估結果以判別每個時間點的機械震動狀態。 It is worth mentioning that if the timing signal is long, the mechanical vibration signal evaluation system 1 can further perform step S26 and step S28 repeatedly, and the mechanical vibration signal evaluation result in each signal segment can be classified, thereby obtaining a series of The mechanical vibration signal is evaluated to determine the state of mechanical vibration at each time point.

綜上所述,本發明之機械震動信號評估系統及方法,運用多尺度熵的演算法進行機械震動信號的評估。此外,本發明之 機械震動信號評估系統及方法可廣泛的應用於各種機械震動信號的分析,由於多尺度熵演算法中,可依據不同的運算尺度可進行多維度的分析,因此本發明之不僅僅是依照單一熵值進行判斷。藉此,本發明之機械震動信號評估系統及方法除了可以快速評估受測者的機械震動狀況之外,可大幅提升判斷結果的準確度。另一方面,本發明之分類器更可預先由專業人員如進行調整,使本發明之評估結果更準確可靠。 In summary, the mechanical vibration signal evaluation system and method of the present invention uses a multi-scale entropy algorithm to evaluate mechanical vibration signals. Further, the present invention The mechanical vibration signal evaluation system and method can be widely applied to the analysis of various mechanical vibration signals. Since the multi-scale entropy algorithm can perform multi-dimensional analysis according to different operation scales, the present invention is not only based on a single entropy. The value is judged. Thereby, the mechanical vibration signal evaluation system and method of the present invention can greatly improve the accuracy of the judgment result in addition to the rapid evaluation of the mechanical vibration condition of the subject. On the other hand, the classifier of the present invention can be adjusted in advance by a professional to make the evaluation result of the present invention more accurate and reliable.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

1‧‧‧機械震動信號評估系統 1‧‧‧Mechanical vibration signal evaluation system

10‧‧‧濾波模組 10‧‧‧Filter module

12‧‧‧信號分割模組 12‧‧‧Signal splitting module

14‧‧‧處理器 14‧‧‧ Processor

16‧‧‧分類器 16‧‧‧ classifier

18‧‧‧取樣模組 18‧‧‧Sampling module

S20~S28‧‧‧步驟流程 S20~S28‧‧‧Step process

圖一係繪示本發明之一具體實施例之機械震動信號評估系統的方塊圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing a mechanical vibration signal evaluation system in accordance with an embodiment of the present invention.

圖二A至圖二C分別繪示電梯上升震動之時序圖、時頻圖以及多尺度熵圖。 Figure 2A to Figure 2C show the timing diagram, time-frequency diagram and multi-scale entropy diagram of the elevator ascending vibration.

圖三係繪示本發明之一具體實施例之機械震動信號評估方法的流程圖。 FIG. 3 is a flow chart showing a method for evaluating a mechanical vibration signal according to an embodiment of the present invention.

1‧‧‧機械震動信號評估系統 1‧‧‧Mechanical vibration signal evaluation system

10‧‧‧濾波模組 10‧‧‧Filter module

12‧‧‧信號分割模組 12‧‧‧Signal splitting module

14‧‧‧處理器 14‧‧‧ Processor

16‧‧‧分類器 16‧‧‧ classifier

18‧‧‧取樣模組 18‧‧‧Sampling module

Claims (18)

一種機械震動信號評估系統,包含:一濾波模組,以一頻率範圍過濾一時序信號並輸出一濾波後之時序信號;一信號分割模組,耦接該濾波模組,接收該濾波後之時序信號,並以一時脈間隔分割該濾波後之時序信號,產生多個信號片段;一處理器,耦接該信號分割模組,該處理器接收該等信號片段,運算每一該信號片段之多個熵值;以及一分類器,耦接該處理器,具有一熵值對照表,該分類器接收每一該信號片段之該等熵值,並將該等熵值比對該熵值對照表,據以產生一機械震動信號評估結果。 A mechanical vibration signal evaluation system comprises: a filter module, filtering a timing signal in a frequency range and outputting a filtered timing signal; a signal dividing module coupled to the filtering module, receiving the filtered timing And dividing the filtered timing signal by a clock interval to generate a plurality of signal segments; a processor coupled to the signal segmentation module, the processor receiving the signal segments, and calculating each of the signal segments An entropy value; and a classifier coupled to the processor, having an entropy value comparison table, the classifier receiving the isentropic value of each of the signal segments, and comparing the entropy values to the entropy value table According to the results of a mechanical vibration signal evaluation. 如申請專利範圍第1項所述之機械震動信號評估系統,其中該機械震動信號評估結果係以圖形呈現。 The mechanical vibration signal evaluation system of claim 1, wherein the mechanical vibration signal evaluation result is graphically presented. 如申請專利範圍第2項所述之機械震動信號評估系統,其中該圖形包含有一多尺度熵圖。 The mechanical vibration signal evaluation system of claim 2, wherein the graphic comprises a multi-scale entropy map. 如申請專利範圍第1項所述之機械震動信號評估系統,更包含:一取樣模組,耦接該濾波模組,以一預設頻率取樣一原始信號,據以產生該時序信號。 The mechanical vibration signal evaluation system of claim 1, further comprising: a sampling module coupled to the filtering module to sample an original signal at a predetermined frequency to generate the timing signal. 如申請專利範圍第1項所述之機械震動信號評估系統,其中該濾波模組包含一帶通濾波器。 The mechanical vibration signal evaluation system of claim 1, wherein the filter module comprises a band pass filter. 如申請專利範圍第1項所述之機械震動信號評估系統,其中每一該熵值為一多尺度熵演算法中,以多個運算尺度其中之一進行運算之結果。 The mechanical vibration signal evaluation system according to claim 1, wherein each of the entropy values is a result of performing operation on one of a plurality of operational scales in a multi-scale entropy algorithm. 如申請專利範圍第1項所述之機械震動信號評估系統,其中該分類器藉由預先輸入多個標準熵值,建立該熵值對照表。 The mechanical vibration signal evaluation system according to claim 1, wherein the classifier establishes the entropy value comparison table by inputting a plurality of standard entropy values in advance. 如申請專利範圍第7項所述之機械震動信號評估系統,其中該熵值對照表包含多個熵值區間,每一該熵值區間至少包含該等標準熵值其中之一。 The mechanical vibration signal evaluation system of claim 7, wherein the entropy value comparison table includes a plurality of entropy value intervals, each of the entropy value intervals including at least one of the standard entropy values. 如申請專利範圍第1項所述之機械震動信號評估系統,其中該分類器係一線性分類器或一非線性分類器。 The mechanical vibration signal evaluation system of claim 1, wherein the classifier is a linear classifier or a nonlinear classifier. 如申請專利範圍第1項所述之機械震動信號評估系統,其中該時序信號係一機械震動信號。 The mechanical vibration signal evaluation system of claim 1, wherein the timing signal is a mechanical vibration signal. 一種機械震動信號評估方法,包含下列步驟:以一頻率範圍過濾一時序信號,據以產生一濾波後之時序信號;以一時脈間隔分割該濾波後之時序信號,據以產生多個信號片段;運算每一該信號片段之多個熵值;以及將該等熵值比對一熵值對照表,據以產生一機械震動信號評估結果。 A method for evaluating a mechanical vibration signal, comprising the steps of: filtering a timing signal by a frequency range, thereby generating a filtered timing signal; dividing the filtered timing signal by a time interval to generate a plurality of signal segments; Computing a plurality of entropy values of each of the signal segments; and comparing the entropy values to an entropy value table to generate a mechanical vibration signal evaluation result. 如申請專利範圍第11項所述之機械震動信號評估方法,其中該機械震動信號評估結果係以圖形呈現。 The method for evaluating a mechanical vibration signal according to claim 11, wherein the mechanical vibration signal evaluation result is graphically presented. 如申請專利範圍第12項所述之機械震動信號評估方法,其中該圖形包含一多尺度熵圖。 The method for evaluating a mechanical vibration signal according to claim 12, wherein the graphic comprises a multi-scale entropy map. 如申請專利範圍第11項所述之機械震動信號評估方法,更包含下列步驟:以一預設頻率取樣一原始信號,據以產生該時序信號。 The method for evaluating a mechanical vibration signal according to claim 11, further comprising the step of sampling an original signal at a predetermined frequency to generate the timing signal. 如申請專利範圍第11項所述之機械震動信號評估方法,其中每一該熵值為一多尺度熵演算法中,以多個運算尺度其中之一進行運算之結果。 The method for evaluating a mechanical vibration signal according to claim 11, wherein each of the entropy values is a result of performing an operation on one of a plurality of operational scales in a multi-scale entropy algorithm. 如申請專利範圍第11項所述之機械震動信號評估方法,更包含下列步驟: 預先輸入多個標準熵值,建立該熵值對照表。 The method for evaluating the mechanical vibration signal described in claim 11 of the patent application further includes the following steps: A plurality of standard entropy values are input in advance, and the entropy value comparison table is established. 如申請專利範圍第16項所述之機械震動信號評估方法,其中該熵值對照表包含多個熵值區間,每一該熵值區間至少包含該等標準熵值其中之一。 The mechanical vibration signal evaluation method according to claim 16, wherein the entropy value comparison table includes a plurality of entropy value intervals, and each of the entropy value intervals includes at least one of the standard entropy values. 如申請專利範圍第11項所述之機械震動信號評估方法,其中該時序信號係一機械震動信號。 The method for evaluating a mechanical vibration signal according to claim 11, wherein the timing signal is a mechanical vibration signal.
TW99139718A 2010-11-18 2010-11-18 System and method for evaluating mechanical vibration signal using mse TWI436047B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99139718A TWI436047B (en) 2010-11-18 2010-11-18 System and method for evaluating mechanical vibration signal using mse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99139718A TWI436047B (en) 2010-11-18 2010-11-18 System and method for evaluating mechanical vibration signal using mse

Publications (2)

Publication Number Publication Date
TW201221931A TW201221931A (en) 2012-06-01
TWI436047B true TWI436047B (en) 2014-05-01

Family

ID=46725092

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99139718A TWI436047B (en) 2010-11-18 2010-11-18 System and method for evaluating mechanical vibration signal using mse

Country Status (1)

Country Link
TW (1) TWI436047B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447371B (en) * 2010-11-18 2014-08-01 Univ Nat Taiwan Science Tech Real-time detection system and the method thereof

Also Published As

Publication number Publication date
TW201221931A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
Liu et al. Tool wear monitoring and prediction based on sound signal
Benkedjouh et al. Tool wear condition monitoring based on continuous wavelet transform and blind source separation
Fu et al. Timely online chatter detection in end milling process
Cao et al. Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators
TWI587294B (en) Detection method of abnormal sound of apparatus and detection device
da Silva et al. A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals
TWI447371B (en) Real-time detection system and the method thereof
Li et al. A novel ensemble deep learning model for cutting tool wear monitoring using audio sensors
TWI637169B (en) Tool status detection system and method thereof
Patra Acoustic emission based tool condition monitoring system in drilling
US20120253694A1 (en) Method and apparatus for judging status of mechanical system
US10607470B2 (en) Vibrational analysis systems and methods
US10311703B1 (en) Detection of spikes and faults in vibration trend data
JP2022507110A (en) Automatic analysis of non-stationary mechanical performance
Yao et al. Real-time chatter detection and automatic suppression for intelligent spindles based on wavelet packet energy entropy and local outlier factor algorithm
CN114220189B (en) Monitoring method, prediction system, electronic equipment and storage medium
JP2016200451A (en) Signal processing method, signal processing device, and cutting work abnormality detection device
JP2018081523A (en) Equipment diagnostic device and equipment diagnostic method
TWI436047B (en) System and method for evaluating mechanical vibration signal using mse
CN116307938B (en) Health state assessment method for feeding system of machining center
Prieto et al. Chromatic monitoring of gear mechanical degradation based on acoustic emission
Zhong et al. Correlation analysis of cutting force and acoustic emission signals for tool condition monitoring
Schmetz et al. Decision Support by Interpretable Machine Learning in Acoustic Emission Based Cutting Tool Wear Prediction
TW201521954A (en) Method to separate signal and noise for chatter monitor and device thereof
CN104808643B (en) A kind of control loop non-linear detection method based on improved double-spectrum analysis

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees