TWI434670B - Multi-channel physiological signal measure system and method thereof - Google Patents

Multi-channel physiological signal measure system and method thereof Download PDF

Info

Publication number
TWI434670B
TWI434670B TW100125265A TW100125265A TWI434670B TW I434670 B TWI434670 B TW I434670B TW 100125265 A TW100125265 A TW 100125265A TW 100125265 A TW100125265 A TW 100125265A TW I434670 B TWI434670 B TW I434670B
Authority
TW
Taiwan
Prior art keywords
signal
physiological
unit
resistor
amplification
Prior art date
Application number
TW100125265A
Other languages
Chinese (zh)
Other versions
TW201304742A (en
Inventor
Ching Sung Wang
Original Assignee
Oriental Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Inst Technology filed Critical Oriental Inst Technology
Priority to TW100125265A priority Critical patent/TWI434670B/en
Publication of TW201304742A publication Critical patent/TW201304742A/en
Application granted granted Critical
Publication of TWI434670B publication Critical patent/TWI434670B/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

多通道生理訊號量測系統與方法Multi-channel physiological signal measurement system and method

本發明有關於一種生理訊號的量測系統與方法,且特別是應用於可同時多通道量測生理訊號的量測系統與方法。The invention relates to a measurement system and method for physiological signals, and in particular to a measurement system and method for simultaneously measuring physiological signals by multiple channels.

近幾年來,雖然物質生活比起過去優渥許多,但是競爭壓力也日益增加,腦部疾病所造成的死亡率也因此高居國人死亡原因的前幾名。故發展腦波量測裝置以提供醫師診斷疾病以及相關研究人員判讀病人疾病,已經成為未來的重要趨勢。不過腦波訊號相當微弱,非常容易受到內、外在及受測者本身生理訊號的干擾,因而加深了訊號量測的困難度,舉例來說,干擾訊號可能包括電子零件本身的問題、電路佈線不良以及受測者的肌電訊號、心電訊號等等。In recent years, although material life has been much better than in the past, the pressure of competition has also increased, and the mortality caused by brain diseases has therefore been among the top reasons for the death of Chinese people. Therefore, the development of brain wave measuring devices to provide physicians to diagnose diseases and related researchers to interpret patient diseases has become an important trend in the future. However, the brainwave signal is quite weak, and it is very susceptible to interference from the internal, external, and physiological signals of the subject. This makes the signal measurement difficult. For example, the interference signal may include problems with the electronic components themselves, and circuit wiring. Poor and the patient's myoelectric signal, ECG signal, and so on.

舉例來講,由於人體存在的共模雜訊及環境雜訊均遠大於腦波訊號,以往是使用儀表放大器做為腦波訊號量測之前端放大器,用以抵減共模雜訊,但此時卻會產生出另一個問題,皮膚與電極貼片間存在著直流偏壓,此直流偏壓會限制住放大器的增益,導致過去的生理訊號量測儀器無法精確地量測到腦波訊號,導致醫師及相關研究人員的誤判。For example, since the common mode noise and environmental noise in the human body are much larger than the brain wave signal, the instrument amplifier was used as the brain wave signal measurement front-end amplifier to offset the common mode noise, but this Another problem arises. There is a DC bias between the skin and the electrode patch. This DC bias limits the gain of the amplifier, which makes the past physiological signal measuring instruments unable to accurately measure the brain wave signal. Lead to misjudgment by physicians and related researchers.

再加上,腦波訊號其實是一個包括了α波、β波或者是γ波等不同頻段的混合訊號。故可以同時間觀測多頻段訊號的多通道訊號量測儀器便成了研究腦波訊號的關鍵之一,但這樣勢必會增加訊號量測儀器在電路設計上的困難以及各通道間會有訊號干擾的問題,因此目前市面上的腦波訊號量測裝置還是以單通道量測為主。In addition, the brain wave signal is actually a mixed signal including different frequency bands such as α wave, β wave or γ wave. Therefore, multi-channel signal measuring instruments that can simultaneously observe multi-band signals have become one of the keys to studying brain wave signals, but this will inevitably increase the difficulty in circuit design of signal measuring instruments and signal interference between channels. The problem, therefore, the current brain wave signal measuring device on the market is still based on single channel measurement.

本發明提供一種多通道生理訊號量測系統,可有效地降低皮膚與電極貼片的直流偏壓以及量測時會有雜訊干擾的問題。還可以同時量測多個生理訊號,協助醫師診斷疾病以及相關研究人員判讀病人疾病。The invention provides a multi-channel physiological signal measuring system, which can effectively reduce the DC bias of the skin and the electrode patch and the problem of noise interference during measurement. It is also possible to measure multiple physiological signals simultaneously to assist the physician in diagnosing the disease and the relevant researchers interpreting the patient's disease.

本發明實施例提供一種多通道生理訊號量測系統,包括訊號輸入模組、前置處理模組、數位處理模組以及終端裝置。其中,訊號輸入模組用以量測生理訊號及參考電壓後,輸出至前置處理模組進行訊號前置放大。待訊號前置放大完畢後,輸出至數位處理模組進行訊號放大及訊號轉換等功能。最後數位處理模組輸出數位生理訊號至終端裝置顯示結果。Embodiments of the present invention provide a multi-channel physiological signal measurement system, including a signal input module, a pre-processing module, a digital processing module, and a terminal device. The signal input module is configured to measure the physiological signal and the reference voltage, and then output to the pre-processing module for signal preamplification. After the signal is preamplified, it is output to the digital processing module for signal amplification and signal conversion. The last digital processing module outputs the digital physiological signal to the terminal device to display the result.

本發明實施例提供一種多通道訊號量測方法,方法包括利用訊號輸入模組取得複數組生理訊號。透過前置處理模組分別對生理訊號提供放大處理以相對輸出複數組生理放大訊號。以及透過數位處理模組接收這些生理放大訊號,並以分時多工方式輸出這些生理放大訊號的至少其中一組,以進行訊號轉換後再相對輸出數位生理訊號。The embodiment of the invention provides a multi-channel signal measurement method, which comprises acquiring a complex array physiological signal by using a signal input module. The pre-processing module respectively provides amplification processing on the physiological signals to relatively output the array of physiological amplification signals. And receiving the physiological amplification signals through the digital processing module, and outputting at least one of the physiological amplification signals in a time division multiplexing manner to perform signal conversion and then output the digital physiological signals.

綜上所述,本發明利用訊號輸入模組及前置處理模組有效地解決直流偏壓及訊號干擾問題,並利用數位處理模組的參數設定,可針對不同的生理訊號頻段加以設計,達到可以同時多通道生理訊號的量測。相較於傳統的生理訊號量測系統,本發明可以提供醫師診斷以及相關研究人員判讀病人疾病更加可靠的依據。In summary, the present invention utilizes the signal input module and the pre-processing module to effectively solve the DC bias and signal interference problems, and utilizes the parameter setting of the digital processing module to design different physiological signal frequency bands. Simultaneous measurement of multi-channel physiological signals. Compared with the conventional physiological signal measurement system, the present invention can provide a more reliable basis for physician diagnosis and related researchers to interpret the patient's disease.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

〔多通道生理訊號量測系統之實施例〕[Embodiment of Multichannel Physiological Signal Measurement System]

請參照圖1,圖1為本發明一實施例之多通道生理訊號量測系統之方塊示意圖。多通道生理訊號量測系統包括訊號輸入模組10、前置處理模組20、數位處理模組30以及終端裝置40。其中,訊號輸入模組10包括生理感測器110、訊號傳輸通道120以及參考電壓傳輸通道130。前置處理模組20包括多個前置放大單元210。終端裝置40包括人機操作介面401。Please refer to FIG. 1. FIG. 1 is a block diagram of a multi-channel physiological signal measurement system according to an embodiment of the present invention. The multi-channel physiological signal measurement system includes a signal input module 10, a pre-processing module 20, a digital processing module 30, and a terminal device 40. The signal input module 10 includes a physiological sensor 110, a signal transmission channel 120, and a reference voltage transmission channel 130. The pre-processing module 20 includes a plurality of preamplifying units 210. The terminal device 40 includes a human machine operation interface 401.

訊號輸入模組10的生理感測器110從受測者身上取得生理訊號後,藉由訊號傳輸通道120輸出生理訊號至前置放大單元210,以及透過參考電壓傳輸通道130輸出前置放大單元210所需要的參考電壓。當前置放大單元210收到生理訊號和參考電壓,進行前置類比訊號放大處理得到生理放大訊號,再將生理放大訊號輸出至數位處理模組30。待數位處理模組30收到各個前置放大單元210傳來之生理訊號後,對其進行訊號放大,訊號轉換等功能。最後輸出至終端裝置40的人機操作介面401顯示結果。After the physiological sensor 110 of the signal input module 10 obtains the physiological signal from the subject, the physiological signal is outputted to the preamplifier unit 210 through the signal transmission channel 120, and the preamplifier unit 210 is output through the reference voltage transmission channel 130. The required reference voltage. The current amplification unit 210 receives the physiological signal and the reference voltage, performs a pre-amplification signal amplification process to obtain a physiological amplification signal, and outputs the physiological amplification signal to the digital processing module 30. After the digital processing module 30 receives the physiological signals transmitted from the preamplifier units 210, it performs signal amplification, signal conversion and the like. Finally, the man-machine interface 401 output to the terminal device 40 displays the result.

特別值得注意的是,數位處理模組30受控於終端裝置40的指令。也就是說,使用者可以透過終端裝置40輸入參數(例如:放大倍率、濾波頻率等),再將此參數指令傳輸至數位處理模組30進行設定,數位處理模組30便根據此參數設定進行訊號處理,待處理完成後,再輸出生理訊號結果至終端裝置40。It is particularly noteworthy that the digital processing module 30 is controlled by the instructions of the terminal device 40. That is to say, the user can input parameters (for example, magnification, filter frequency, etc.) through the terminal device 40, and then transmit the parameter command to the digital processing module 30 for setting, and the digital processing module 30 performs the setting according to the parameter. After the signal processing, after the processing is completed, the physiological signal result is output to the terminal device 40.

於本實施例中,生理感測器110實質上為黏貼於皮膚上之 電極貼片,但本發明並不因此為限,例如生理感測器110也可以是脈搏計數器、加速規等能量測到生理訊號的感測器。In this embodiment, the physiological sensor 110 is substantially adhered to the skin. The electrode patch is not limited to the present invention. For example, the physiological sensor 110 may also be a sensor that measures the physiological signal such as a pulse counter or an acceleration gauge.

於本實施例中,訊號傳輸通道120是用以提供生理感測器110將量測到的生理訊號傳輸至前置放大單元210的通道。參考電壓傳輸通道130是用以傳輸參考電壓至前置放大單元210的通道,其實質上為DRL電路(Driven Right Leg Circuit )以及參考電路所耦接的電路通道。在此要說明的是,參考電壓傳輸通道130的功能並非為本發明之限制,僅為本發明之一實施例。In this embodiment, the signal transmission channel 120 is configured to provide a channel for the physiological sensor 110 to transmit the measured physiological signal to the preamplifier unit 210. The reference voltage transmission channel 130 is a channel for transmitting a reference voltage to the preamplifier unit 210, which is substantially a DRL circuit (Driven Right Leg Circuit) and a circuit channel to which the reference circuit is coupled. It is to be noted that the function of the reference voltage transmission channel 130 is not a limitation of the present invention and is only one embodiment of the present invention.

當量測生理訊號時,由於受測者沒有真正與地相連接以提供接地電位,導致人體本身的共模電位會影響腦波訊號。故利用其中一個生理感測器量測到的電位(例如右腳的電位)於經過參考電壓傳輸通道130後,做為前置處理模組20的參考電壓。此參考電壓可以避免掉皮膚與電極貼片間產生的直流偏壓,使前置處理模組20可以在濾除共模雜訊時,不會受到放大增益被限制的影響。值得一提的是,參考電壓傳輸通道130的使用,並不因此限定本發明。也就是說,即使沒有參考電壓傳輸通道130提供參考電壓至前置處理模組20,本發明還是擁有生理訊號量測之功能。When the physiological signal is equivalently measured, since the subject is not connected to the ground to provide a ground potential, the common mode potential of the human body affects the brain wave signal. Therefore, the potential measured by one of the physiological sensors (for example, the potential of the right foot) is used as the reference voltage of the pre-processing module 20 after passing through the reference voltage transmission channel 130. The reference voltage can avoid the DC bias generated between the skin and the electrode patch, so that the pre-processing module 20 can be filtered out of the common mode noise without being affected by the amplification gain being limited. It is worth mentioning that the use of the reference voltage transmission channel 130 does not limit the invention accordingly. That is to say, even if the reference voltage transmission channel 130 is not provided with the reference voltage to the pre-processing module 20, the present invention has the function of physiological signal measurement.

於本實施例中,前置處理模組20包括多個前置放大單元210。每一條訊號傳輸通道120與參考電壓傳輸通道130都會與其對應的前置放大單元210耦接。舉例來說,第一條訊號傳輸通道120(CH1)傳輸生理訊號至對應的第一前置放大單元310、第二條訊號傳輸通道120(CH2)傳輸生理訊號至對應的第二前置放大單元310等,以此類推下去,在此不加詳述。In this embodiment, the pre-processing module 20 includes a plurality of preamplifying units 210. Each of the signal transmission channels 120 and the reference voltage transmission channel 130 are coupled to their corresponding preamplifier units 210. For example, the first signal transmission channel 120 (CH1) transmits the physiological signal to the corresponding first preamplifier unit 310 and the second signal transmission channel 120 (CH2) to transmit the physiological signal to the corresponding second preamplifier unit. 310, etc., and so on, will not be detailed here.

請參照圖2,其係為本發明一實施例之前置處理模組20之前置放大單元210的方塊示意圖,並請配合參照圖1。前置放大單元210包括差動放大單元211、濾波單元213以及準位調整單元215。其中,差動放大單元211的訊號輸入端與訊號傳輸通道120耦接,差動放大單元211的參考電壓輸入端與參考電壓傳輸通道130耦接,差動放大單元211的訊號輸出端與濾波單元213的輸入端耦接。濾波單元213的輸出端會與準位調整單元215的輸入端耦接。準位調整單元215的輸出端會耦接至數位處理模組30。Please refer to FIG. 2 , which is a block diagram of a pre-amplification unit 210 of the pre-processing module 20 according to an embodiment of the present invention, and please refer to FIG. 1 . The preamplifier unit 210 includes a differential amplifying unit 211, a filtering unit 213, and a level adjusting unit 215. The signal input end of the differential amplifying unit 211 is coupled to the signal transmission channel 120, the reference voltage input end of the differential amplifying unit 211 is coupled to the reference voltage transmission channel 130, and the signal output end of the differential amplifying unit 211 and the filtering unit are coupled. The input end of 213 is coupled. The output of the filtering unit 213 is coupled to the input of the level adjusting unit 215. The output of the level adjustment unit 215 is coupled to the digital processing module 30.

差動放大單元211之電路為一種可利用單電源驅動的電路,如圖3所示。藉由儀表放大器2111、第一及第二交流訊號耦合元件2112及2112’、以及偏壓投入單元2113所組成。其中,第一及第二交流耦合單元2112及2112’分別與儀表放大器2111之第一輸入端與第二輸入端連接,且第一交流訊號耦合單元2112包括第一電容C1及第一電阻R1,其中第一電容C1的第一端接收一差動訊號,第一電容C1的第二端連接於第一電阻R1的第一端與第一輸入端,第二交流訊號耦合單元2112’包括第二電容C1’及第二電阻R1’,其中第二電容C1’的第一端接收差動訊號,第二電容C1’的第二端連接於第二電阻R1’的第一端與儀表放大元件2111的第二輸入端,亦即第一交流及第二交流耦合單元2112及2112’可分別藉由電容C1、C1’及電阻R1、R1’以組成高通濾波電路。The circuit of the differential amplifying unit 211 is a circuit that can be driven by a single power source, as shown in FIG. It is composed of an instrumentation amplifier 2111, first and second alternating current signal coupling elements 2112 and 2112', and a bias input unit 2113. The first and second AC coupling units 2112 and 2112' are respectively connected to the first input end and the second input end of the instrumentation amplifier 2111, and the first AC signal coupling unit 2112 includes a first capacitor C1 and a first resistor R1. The first end of the first capacitor C1 receives a differential signal, the second end of the first capacitor C1 is connected to the first end of the first resistor R1 and the first input end, and the second AC signal coupling unit 2112' includes the second end. a capacitor C1' and a second resistor R1', wherein the first end of the second capacitor C1' receives the differential signal, and the second end of the second capacitor C1' is coupled to the first end of the second resistor R1' and the meter amplifying component 2111 The second input terminals, that is, the first AC and second AC coupling units 2112 and 2112' can respectively constitute a high-pass filter circuit by capacitors C1, C1' and resistors R1, R1'.

偏壓投入單元2113與儀表放大器2111之回授端連接,以及分別與第一及第二交流耦合單元2112、2112’連接,偏壓投入單元2113包括第三電阻R2、第四電阻R3、第五電阻R3’及第三電容C2,其中第三電阻R2的第一端接收參考電壓 傳輸通道130提供的一電壓Vcc/2,第三電阻R2的第二端連接於第一電阻R1的第二端、第二電阻R1’的第二端與第三電容C2的第一端,第三電容C2的第二端連接於第四電阻R3的第一端與第五電阻R3’的第一端,第四電阻R3的第二端與第五電阻R3’的第二端分別連接於儀表放大器,並且第三電阻R2之兩端點與參考電壓Vcc/2及共模點A連接。於本實施例中,參考電壓Vcc/2為參考電壓傳輸通道130提供之電壓,以調整輸入至儀表放大器2111之差動輸入訊號的輸入偏移電壓值。The bias input unit 2113 is connected to the feedback terminal of the instrumentation amplifier 2111, and is respectively connected to the first and second AC coupling units 2112 and 2112'. The bias input unit 2113 includes a third resistor R2, a fourth resistor R3, and a fifth. a resistor R3' and a third capacitor C2, wherein the first end of the third resistor R2 receives the reference voltage The second end of the third resistor R2 is connected to the second end of the first resistor R1, the second end of the second resistor R1' and the first end of the third capacitor C2, The second end of the third capacitor C2 is connected to the first end of the fourth resistor R3 and the first end of the fifth resistor R3', and the second end of the fourth resistor R3 and the second end of the fifth resistor R3' are respectively connected to the meter The amplifier and the two ends of the third resistor R2 are connected to the reference voltage Vcc/2 and the common mode point A. In the present embodiment, the reference voltage Vcc/2 is the voltage supplied from the reference voltage transmission channel 130 to adjust the input offset voltage value of the differential input signal input to the instrumentation amplifier 2111.

於本實施例中,差動放大元件211之電路的第一及第二交流訊號耦合單元2112及2112’可接收來自於人體的生理訊號,也就是訊號傳輸通道120提供之生理訊號。分別藉由第一及第二交流耦合單元2112、2112’之電容C1、C1’與電阻R1、R1’所組成的高通濾波電路,將生理訊號的直流與低頻成分濾除,以分別讓生理訊號的高頻成分通過並傳遞至B與B’點。藉此,可以濾除交流差動訊號當中低頻的雜訊干擾,並將差動訊號的高頻成分輸入至B與B’點。並且,藉由電阻R1、R1’及電容C2所組成之低通濾波電路,以將交流差動訊號的高頻成分限制於B與B’點,以增加儀表放大器2111之輸入阻抗,並增加共模拒斥比。In this embodiment, the first and second AC signal coupling units 2112 and 2112' of the circuit of the differential amplifying element 211 can receive the physiological signal from the human body, that is, the physiological signal provided by the signal transmission channel 120. The DC and low frequency components of the physiological signal are filtered by the high-pass filter circuit composed of the capacitors C1 and C1' of the first and second AC coupling units 2112 and 2112' and the resistors R1 and R1', respectively, to respectively allow the physiological signals to be respectively The high frequency components pass through and pass to the B and B' points. Thereby, the low-frequency noise interference in the AC differential signal can be filtered out, and the high-frequency component of the differential signal is input to the B and B' points. Moreover, the low-pass filter circuit composed of the resistors R1, R1' and the capacitor C2 limits the high-frequency components of the AC differential signal to the B and B' points to increase the input impedance of the instrumentation amplifier 2111 and increase the total Mode rejection ratio.

另外,儀表放大器2111可產生一共模訊號,並透過電阻R3、R3’傳遞至電容C2與第三電阻R2所組成的高通濾波電路,可濾除共模訊號的直流成分,並傳遞至A點。直流偏壓訊號,則是參考電壓Vcc/2透過電阻R2及R1、R1’的分壓原理,即可於A點產生一直流偏壓訊號。藉此,可於A點將共模訊號與直流偏壓訊號耦合,以形成一共模點訊號。於本實施例中,共 模訊號為儀表放大器2111產生之回授訊號,可與差動訊號耦合,透過儀表放大器2111產生共模抵減的效果。In addition, the instrumentation amplifier 2111 can generate a common mode signal and transmit it to the high-pass filter circuit composed of the capacitor C2 and the third resistor R2 through the resistors R3 and R3' to filter out the DC component of the common mode signal and transmit it to point A. The DC bias signal is the voltage division principle of the reference voltage Vcc/2 through the resistor R2 and R1, R1', which can generate a DC bias signal at point A. Thereby, the common mode signal and the DC bias signal can be coupled at point A to form a common mode signal. In this embodiment, a total of The analog signal is a feedback signal generated by the instrumentation amplifier 2111, and can be coupled with the differential signal to generate a common mode offset through the instrumentation amplifier 2111.

特別要注意的是,於此實施例中,差動放大單元之放大增益設定為1000倍,可將原先1-150μV生理訊號放大至1-150mV之間,但此放大增益倍率並非做為本發明之限定,僅為了避免此實施例中的儀表放大器2111,其會因為輸出電壓飽和或過小的緣故而無法正常動作。It should be noted that, in this embodiment, the amplification gain of the differential amplifying unit is set to 1000 times, and the original 1-150 μV physiological signal can be amplified to between 1-150 mV, but the amplification gain ratio is not the present invention. The limitation is only to avoid the instrumentation amplifier 2111 in this embodiment, which may not operate normally because the output voltage is saturated or too small.

請同時參照圖1與圖2,濾波單元213包括高通濾波器2131和低通濾波器2132。當經過差動放大單元211放大處理過的生理訊號輸入至濾波單元213後,先經過高通濾波器2131進行0.16赫茲(Hz)的低頻雜訊濾除,再經過低通濾波器2132進行100赫茲(Hz)的高頻雜訊濾除。其中,上述的經過高通與低通濾波器順序以及雜訊濾除範圍僅為本發明之實施例。此外,於本實施例中,高通濾波器2131實質上為二階(order)高通濾波器,而低通濾波器2132為八階(order)低通濾波器,不過,此階數(order)設定僅為本發明之實施例。在此要說明的是,濾波單元213的濾波範圍、階數(order)以及高低通濾波器的順序並非用以限制本發明。Referring to FIG. 1 and FIG. 2 simultaneously, the filtering unit 213 includes a high pass filter 2131 and a low pass filter 2132. After the physiological signal amplified by the differential amplifying unit 211 is input to the filtering unit 213, the low-frequency noise filtering of 0.16 Hz is performed through the high-pass filter 2131, and then 100 Hz through the low-pass filter 2132 ( Hz) high frequency noise filtering. The above-mentioned high-pass and low-pass filter order and noise filtering range are only examples of the present invention. In addition, in the embodiment, the high-pass filter 2131 is substantially a second-order high-pass filter, and the low-pass filter 2132 is an eighth-order low-pass filter. However, the order setting is only It is an embodiment of the invention. It should be noted that the filtering range, order of the filtering unit 213, and the order of the high and low pass filters are not intended to limit the present invention.

復請同時參照圖1與圖2,生理訊號經過濾波單元213濾波處理後輸出至準位調整單元215,準位調整單元215對其提升訊號電位提升至正電位,再輸出至數位處理模組4。其中,準位調整單元215並非用以限制本發明,此準位調整單元215實質上為箝位器,但也能改採用升壓轉換器或變位器等替代電路。Referring to FIG. 1 and FIG. 2 simultaneously, the physiological signal is filtered by the filtering unit 213 and output to the level adjusting unit 215. The level adjusting unit 215 raises the boosting signal potential to a positive potential, and then outputs the signal to the digital processing module 4. . The level adjusting unit 215 is not intended to limit the present invention. The level adjusting unit 215 is substantially a clamper, but a replacement circuit such as a boost converter or a shifter can also be used instead.

請參照圖4,其係為本發明一實施例之數位處理模組30之方塊圖,並配合參照圖1。數位處理模組30包括訊號混合 單元310、訊號放大單元330、類比/數位轉換單元350、數位訊號處理單元370以及訊號收發傳輸介面390。其中,訊號混合單元310的輸入端與前置處理模組20的輸出端耦接,訊號混合單元310的輸出端與訊號放大單元330的輸入端耦接。訊號放大單元330的輸出端與類比/數位轉換單元350的輸入端耦接。類比/數位轉換單元350的輸出端則是耦接數位訊號處理單元370。數位訊號處理單元370透過訊號收發傳輸介面390和終端裝置40連結。Please refer to FIG. 4 , which is a block diagram of a digital processing module 30 according to an embodiment of the present invention, with reference to FIG. 1 . Digital processing module 30 includes signal mixing The unit 310, the signal amplifying unit 330, the analog/digital converting unit 350, the digital signal processing unit 370, and the signal transceiving transmission interface 390. The input end of the signal mixing unit 310 is coupled to the output end of the pre-processing module 20, and the output end of the signal mixing unit 310 is coupled to the input end of the signal amplifying unit 330. The output of the signal amplifying unit 330 is coupled to the input of the analog/digital converting unit 350. The output of the analog/digital conversion unit 350 is coupled to the digital signal processing unit 370. The digital signal processing unit 370 is coupled to the terminal device 40 via the signal transceiving transmission interface 390.

當生理訊號經過前置處理模組20前置放大完畢後,先輸出至訊號混合單元310轉換訊號的排列方式,再輸出至訊號放大單元330進行訊號放大,接著輸出至類比/數位轉換單元350進行訊號轉換。上述的訊號處理過程完成後,透過訊號收發傳輸介面390輸出數位生理訊號至終端裝置40顯示結果。After the pre-amplification of the physiological signal by the pre-processing module 20, the signal is first outputted to the signal mixing unit 310 to convert the signal, and then output to the signal amplifying unit 330 for signal amplification, and then output to the analog/digital conversion unit 350. Signal conversion. After the signal processing process is completed, the digital physiological signal is outputted through the signal transceiving transmission interface 390 to the terminal device 40 to display the result.

值得注意的是,訊號混合單元310、訊號放大單元330以及類比/數位轉換單元350受控於數位訊號處理單元370。也就是說,當數位訊號處理單元370藉由訊號收發傳輸介面390收到使用者於終端裝置40設定之參數指令時,數位訊號處理單元370會控制訊號混合單元310、訊號放大單元330以及類比/數位轉換單元350的參數設定。It should be noted that the signal mixing unit 310, the signal amplifying unit 330, and the analog/digital converting unit 350 are controlled by the digital signal processing unit 370. That is, when the digital signal processing unit 370 receives the parameter command set by the user in the terminal device 40 through the signal transceiving and transmitting interface 390, the digital signal processing unit 370 controls the signal mixing unit 310, the signal amplifying unit 330, and the analogy/ The parameter setting of the digital conversion unit 350.

於本實施例中,訊號混合單元310接收到前置處理模組20傳來的訊號是多通道並列的生理訊號。訊號混合單元310會利用分時多工(TDM)的方式將其重新排列成一個串列訊號。In this embodiment, the signal mixing unit 310 receives the physiological signal that the signal sent from the pre-processing module 20 is multi-channel. The signal mixing unit 310 rearranges the signals into a serial signal by means of time division multiplexing (TDM).

舉例來說,使用者量測了α波、β波以及γ波,此三個訊號經過前端處理完,傳輸到訊號混合單元310輸入端時,彼 此之間為三個並列且獨立的訊號。訊號混合單元310利用分時多工(TDM)的方式重新排列此三個訊號成一個串列的訊號,再輸出至訊號放大單元330。不過在此要說明的是,此訊號混合單元310僅為本發明之一實施例,不因此作為本發明之限制。也就是說,沒有透過訊號混合單元310重新排列,直接將此三個並列且獨立的訊號輸入至訊號放大單元330,於終端裝置40依舊可以顯示此三個訊號的結果。For example, the user measures the alpha wave, the beta wave, and the gamma wave. The three signals are processed by the front end and transmitted to the input end of the signal mixing unit 310. There are three parallel and independent signals between them. The signal mixing unit 310 rearranges the three signals into a series of signals by means of time division multiplexing (TDM), and outputs the signals to the signal amplifying unit 330. It should be noted, however, that the signal mixing unit 310 is only one embodiment of the present invention and is not intended to be a limitation of the present invention. That is to say, the three parallel and independent signals are directly input to the signal amplifying unit 330 without being rearranged by the signal mixing unit 310, and the results of the three signals can still be displayed on the terminal device 40.

另外,訊號混合單元310採取的分時多工(TDM)的排列方式,是藉由快速切換通道以進行訊號擷取後,再重新排列成一個串列訊號。但要特別注意的是,多個生理訊號輸入至訊號混合單元310時,訊號混合單元310需要設定最低取樣頻率以避免訊號中的資訊遺失。也就是說,假設最低取樣頻率為500sample/s,切換頻道的時間起碼要小於62.5μs,才可以避免沒有完整擷取到訊號中所包含的資訊。In addition, the time division multiplexing (TDM) arrangement adopted by the signal mixing unit 310 is performed by quickly switching channels for signal extraction and then rearranging into a serial signal. It should be noted that when a plurality of physiological signals are input to the signal mixing unit 310, the signal mixing unit 310 needs to set a minimum sampling frequency to avoid loss of information in the signal. That is to say, assuming that the lowest sampling frequency is 500 samples/s, the time to switch channels is at least 62.5 μs, so as to avoid the information contained in the signal not being completely captured.

於本實施例中,訊號放大單元330收到訊號混合單元310傳來之訊號後,對其進行放大跟濾波等功能,再輸出訊號至類比/數位轉換單元350。但這些功能的參數是可以由使用者於終端裝置40上所設定的。舉例來講,現在使用者在終端裝置40上設定放大倍率為100倍、濾波頻率為10-20赫茲(Hz),這些在電腦上設定的參數會透過訊號收發傳輸介面390傳到數位訊號處理單元370,數位訊號處理單元370因此對訊號放大單元330設定,當其接收到生理訊號時給予100倍的放大增益及10-20赫茲(Hz)的濾波範圍。In this embodiment, after receiving the signal transmitted by the signal mixing unit 310, the signal amplifying unit 330 performs functions such as amplification and filtering, and then outputs the signal to the analog/digital conversion unit 350. However, the parameters of these functions can be set by the user on the terminal device 40. For example, the user sets the magnification on the terminal device 40 to 100 times and the filter frequency to 10-20 Hz. The parameters set on the computer are transmitted to the digital signal processing unit through the signal transmission and transmission interface 390. 370, the digital signal processing unit 370 is thus set to the signal amplifying unit 330 to give a magnification gain of 100 times and a filtering range of 10-20 Hertz (Hz) when it receives the physiological signal.

請參照圖1,終端裝置40包括人機操作介面401。於本實施例中,人機操作介面401包括放大倍率與頻道選擇之控制介面、數位濾波與顯示控制介面,以及生理訊號波形顯示 介面等,本發明並不因此限定人機操作介面401之功能。另外,於本實施例中,雖然終端裝置40實質上為電腦,但終端裝置40也可以為手機以及各種顯示裝置所取代,所以本發明並不因此限制終端裝置40之類型。Referring to FIG. 1, the terminal device 40 includes a human machine operation interface 401. In this embodiment, the human-machine interface 401 includes a control interface for magnification and channel selection, a digital filtering and display control interface, and a physiological signal waveform display. The interface and the like do not limit the function of the human-machine interface 401. Further, in the present embodiment, although the terminal device 40 is substantially a computer, the terminal device 40 may be replaced by a mobile phone and various display devices. Therefore, the present invention does not limit the type of the terminal device 40.

〔多通道生理訊號量測系統之另一實施例〕[Another embodiment of a multi-channel physiological signal measuring system]

請參照圖5,圖5是多通道生理訊號量測系統之另一實施例之架構圖,並請同時參照圖1。圖5跟圖1不同處在於圖5的訊號傳輸通道120包括主要訊號傳輸通道120’和參考訊號傳輸通道120”,以及前置放大單元210包括主要訊號前置放大單元210’與參考訊號前置放大單元210”。其中,主要訊號傳輸通道120’和主要訊號前置放大單元210’係用以傳輸和接收想要量測的目標生理訊號,像是腦波訊號。參考訊號傳輸通道120”和參考訊號前置放大單元210”用以傳輸和接收其他生理訊號,像是可用來輔助驗證目標生理訊號並無受到干擾的肌電訊號、眼動訊號等。Please refer to FIG. 5. FIG. 5 is a structural diagram of another embodiment of a multi-channel physiological signal measurement system, and please refer to FIG. 5 is different from FIG. 1 in that the signal transmission channel 120 of FIG. 5 includes a primary signal transmission channel 120' and a reference signal transmission channel 120", and the preamplifier unit 210 includes a primary signal preamplifier unit 210' and a reference signal preamplifier. Amplifying unit 210". The primary signal transmission channel 120' and the primary signal preamplifier unit 210' are used to transmit and receive target physiological signals, such as brainwave signals, that are to be measured. The reference signal transmission channel 120" and the reference signal preamplifier unit 210" are used to transmit and receive other physiological signals, such as myoelectric signals, eye movement signals, etc., which can be used to assist in verifying that the target physiological signals are not interfered.

舉例來說,量測受測者的腦波訊號時,負責量測腦波訊號的生理感測器110將腦波訊號藉由主要訊號傳輸通道120’傳至主要訊號前置放大單元210’進行訊號處理,且參考電壓傳輸通道130藉由會加入參考電壓以降低共模電位對腦波訊號之干擾。同時,負責量測其他生理訊號(像是肌電、眼動等訊號)的生理感測器110將其他生理訊號藉由參考訊號傳輸通道120”傳至參考訊號前置放大單元210”進行訊號處理,證明腦波訊號量測是否有受到其他生理訊號干擾。For example, when measuring the brain wave signal of the test subject, the physiological sensor 110 responsible for measuring the brain wave signal transmits the brain wave signal to the main signal preamplifier unit 210' through the main signal transmission channel 120'. Signal processing, and the reference voltage transmission channel 130 reduces the interference of the common mode potential on the brain wave signal by adding a reference voltage. At the same time, the physiological sensor 110 responsible for measuring other physiological signals (such as myoelectric, eye movement, etc.) transmits other physiological signals to the reference signal preamplifier unit 210 via the reference signal transmission channel 120" for signal processing. , to prove whether the brain wave signal measurement is interfered by other physiological signals.

不過,特別要注意的是,主要訊號前置放大單元210’係用以接收並放大目標生理訊號,故透過參考電壓傳輸通道130加入參考電壓至主要訊號前置放大單元210’,以降低共 模電位對目標生理訊號之干擾。不過,此僅為本發明之實施例,本發明並不因此限定。也就是說,即使主要訊號前置放大單元210’沒有加入參考電壓,或者是加入參考電壓至參考訊號前置放大單元310”加入參考電壓,本發明依舊具有生理訊號量測之功效。However, it is particularly important to note that the primary signal preamplifier unit 210' is configured to receive and amplify the target physiological signal, so that the reference voltage is added to the primary signal preamplifier unit 210' through the reference voltage transmission channel 130 to reduce the total The interference of the mode potential on the target physiological signal. However, this is only an embodiment of the present invention, and the present invention is not limited thereto. That is, even if the main signal preamplifier unit 210' does not add a reference voltage, or the reference voltage is added to the reference signal preamplifier unit 310" to add the reference voltage, the present invention still has the effect of physiological signal measurement.

另外,從上述的實施例說明中,可以歸納出一種多通道訊號量測方法之流程,如圖6所示。首先,利用訊號輸入模組10取得生理訊號及參考電壓(步驟S601),再輸入至差動放大單元211進行雜訊抑制及訊號放大(步驟S603)。然後利用濾波單元213濾除雜訊(步驟S605),以及使用準位調整單元215提昇訊號電位(步驟S607)。接著,訊號傳輸至訊號混合單元310進行多通道訊號的擷取並重新排列成一串列訊號之功能(步驟S609)。之後,此串列訊號傳輸至訊號放大單元330以及類比/數位轉換單元350進行訊號放大以及轉換成數位訊號之功能(步驟S611)。最後,利用訊號收發傳輸介面390輸出訊號至終端裝置40(步驟S613)。並於終端裝置40的人機操作介面401顯示生理訊號結果及各項參數設定值,以供使用者參閱(步驟S615)。In addition, from the above description of the embodiment, a flow of a multi-channel signal measurement method can be summarized, as shown in FIG. 6. First, the physiological signal and the reference voltage are obtained by the signal input module 10 (step S601), and then input to the differential amplifying unit 211 for noise suppression and signal amplification (step S603). Then, the filtering unit 213 filters out the noise (step S605), and raises the signal potential using the level adjusting unit 215 (step S607). Then, the signal is transmitted to the signal mixing unit 310 to perform the function of capturing and rearranging the multi-channel signals into a series of signals (step S609). Thereafter, the serial signal is transmitted to the signal amplifying unit 330 and the analog/digital converting unit 350 for signal amplification and conversion into a digital signal (step S611). Finally, the signal is transmitted to the terminal device 40 by the signal transceiving transmission interface 390 (step S613). The physiological signal result and each parameter setting value are displayed on the human-machine interface 401 of the terminal device 40 for reference by the user (step S615).

順帶一提,步驟S609與步驟S611所進行的數位訊號處理功能受控於數位訊號處理單元370。也就是說,數位訊號處理單元370收到訊號收發傳輸介面390傳來之使用者的參數設定指令時,藉此設定訊號混合單元310的通道選擇以及取樣頻率(步驟S609)以及設定訊號放大單元330的訊號放大倍率及濾波範圍(步驟S611)。Incidentally, the digital signal processing function performed in steps S609 and S611 is controlled by the digital signal processing unit 370. That is, when the digital signal processing unit 370 receives the parameter setting command from the user transmitted from the signal transceiving transmission interface 390, the channel selection and sampling frequency of the signal mixing unit 310 are set (step S609) and the setting signal amplifying unit 330. The signal magnification and the filtering range (step S611).

〔實施例的可能功效〕[Possible effects of the examples]

綜上所述,本發明提供一種多通道生理訊號量測系統,此多通道生理訊號量測系統包括訊號輸入模組、前置處理模組、數位處理模組以及終端裝置。透過訊號輸入模組及前置處理模組有效地解決以往因為直流偏壓及共模電位所產生的訊號干擾問題,利用終端裝置設定數位處理模組的參數後,可針對不同的生理訊號頻段加以設計,達到可以同時多通道生理訊號的量測,進而提供醫師診斷以及相關研究人員判讀病人疾病的可靠依據。In summary, the present invention provides a multi-channel physiological signal measurement system including a signal input module, a pre-processing module, a digital processing module, and a terminal device. Through the signal input module and the pre-processing module, the problem of signal interference caused by the DC bias voltage and the common mode potential is effectively solved. After the parameters of the digital processing module are set by the terminal device, the signals can be applied to different physiological signal frequency bands. Designed to achieve simultaneous multi-channel physiological signal measurement, which in turn provides a reliable basis for physician diagnosis and related research personnel to interpret patient disease.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

1、1a‧‧‧多通道生理訊號量測系統1, 1a‧‧‧Multichannel physiological signal measurement system

10、10a‧‧‧訊號輸入模組10, 10a‧‧‧ signal input module

110‧‧‧生理感測器110‧‧‧ Physiological sensor

120‧‧‧訊號傳輸通道120‧‧‧Signal transmission channel

120’‧‧‧主要訊號傳輸通道120’‧‧‧ main signal transmission channel

120”‧‧‧參考訊號傳輸通道120”‧‧‧reference signal transmission channel

130‧‧‧參考電壓傳輸通道130‧‧‧reference voltage transmission channel

20、20a‧‧‧前置處理模組20, 20a‧‧‧ pre-processing module

210‧‧‧前置放大單元210‧‧‧Preamplifier

210’‧‧‧主要訊號前置放大單元210’‧‧‧ main signal preamplifier

210”‧‧‧參考訊號前置放大單元210”‧‧‧reference signal preamplifier

211‧‧‧差動放大單元211‧‧‧Differential amplification unit

2111‧‧‧儀表放大器2111‧‧‧Instrument Amplifier

2112‧‧‧第一交流訊號耦合單元2112‧‧‧First AC signal coupling unit

2112’‧‧‧第二交流訊號耦合單元2112'‧‧‧Second AC signal coupling unit

2113‧‧‧偏壓投入單元2113‧‧‧ bias input unit

213‧‧‧濾波單元213‧‧‧Filter unit

2131‧‧‧高通濾波器2131‧‧‧High-pass filter

2132‧‧‧低通濾波器2132‧‧‧Low-pass filter

215‧‧‧準位調整單元215‧‧ ‧ level adjustment unit

30‧‧‧數位處理模組30‧‧‧Digital Processing Module

310‧‧‧訊號混合單元310‧‧‧Signal mixing unit

330‧‧‧訊號放大單元330‧‧‧Signal amplification unit

350‧‧‧類比數位轉換單元350‧‧‧ analog digital conversion unit

370‧‧‧數位訊號處理單元370‧‧‧Digital Signal Processing Unit

390‧‧‧訊號收發傳輸介面390‧‧‧Signal transmission and transmission interface

40‧‧‧終端裝置40‧‧‧ Terminal devices

401‧‧‧人機操作介面401‧‧‧Man-machine interface

S601~S615‧‧‧流程步驟S601~S615‧‧‧ Process steps

圖1係為本發明實施例之一的多通道生理訊號量測系統之方塊示意圖;圖2係為本發明實施例之一的前置處理模組之方塊示意圖;圖3係為本發明實施例之一的差動放大單元之電路圖;圖4係為本發明實施例之一的數位處理模組之方塊示意圖;圖5係為本發明實施例之一的多通道生理訊號量測系統之方塊示意圖;以及圖6係為本發明實施例之一的多通道生理訊號量測方法之流程圖。1 is a block diagram of a multi-channel physiological signal measurement system according to an embodiment of the present invention; FIG. 2 is a block diagram of a pre-processing module according to an embodiment of the present invention; FIG. 3 is an embodiment of the present invention. FIG. 4 is a block diagram of a digital processing module according to an embodiment of the present invention; FIG. 5 is a block diagram of a multi-channel physiological signal measuring system according to an embodiment of the present invention; And FIG. 6 is a flowchart of a multi-channel physiological signal measurement method according to an embodiment of the present invention.

1...多通道生理訊號量測系統1. . . Multi-channel physiological signal measurement system

10...訊號輸入模組10. . . Signal input module

110...生理感測器110. . . Physiological sensor

120...訊號傳輸通道120. . . Signal transmission channel

130...參考電壓傳輸通道130. . . Reference voltage transmission channel

20...前置處理模組20. . . Pre-processing module

210...前置放大單元210. . . Preamplifier unit

30...數位處理模組30. . . Digital processing module

40...終端裝置40. . . Terminal device

401...人機操作介面401. . . Man-machine interface

Claims (6)

一種多通道生理訊號量測系統,包括:一訊號輸入模組,用以接收複數組生理訊號及一參考電壓,該訊號輸入模組包括複數個訊號傳輸通道及一參考電壓傳輸通道,該訊號傳輸通道輸出該生理訊號至該前置處理模組,該參考電壓傳輸通道輸出該前置放大單元所需的該參考電壓,該參考電壓傳輸通道為DRL電路;一前置處理模組,耦接於該訊號輸入模組,該前置處理模組具有複數個前置放大單元,且每一該前置放大單元是對應接收一組該生理訊號,並提供訊號放大處理以相對輸出一組生理放大訊號;以及一數位處理模組,耦接於該前置處理模組,以分時多工方式接收該些前置放大單元輸出的該些組生理放大訊號的至少其中一組,並對接收到的該組生理放大訊號以一訊號放大單元提供訊號放大以及以一類比/數位轉換單元提供訊號轉換以相對輸出一組數位生理訊號;其中該前置放大單元具有對該生理訊號進行放大的一差動放大單元,該差動放大單元包括:一儀表放大器,具有一第一輸入端及一第二輸入端以及一回授端;一第一交流訊號耦合單元,包括一第一電容及一第一電阻,其中該第一電容的第一端接收一差動訊號,該第一電容的第二端連接於該第一電阻的第一端與該第一輸入端;一第二交流訊號耦合單元,包括一第二電容及一第二電阻,其中該第二電容的第一端接收該差動訊號,該第二 電容的第二端連接於該第二電阻的第一端與該第二輸入端,該差動訊號為該生理訊號;以及一偏壓投入單元,包括一第三電阻、一第四電阻、一第五電阻及一第三電容,其中該第三電阻的第一端接收該參考電壓傳輸通道提供的一電壓,該第三電阻的第二端連接於該第一電阻的第二端、該第二電阻的第二端與該第三電容的第一端,該第三電容的第二端連接於該第四電阻的第一端與該第五電阻的第一端,該第四電阻的第二端與該第五電阻的第二端分別連接於該儀表放大器,該偏壓投入單元根據該第三電阻的第一端接收的電壓調整輸入至該儀表放大器之差動訊號的輸入偏移電壓值。 A multi-channel physiological signal measuring system includes: a signal input module for receiving a complex array of physiological signals and a reference voltage, the signal input module comprising a plurality of signal transmission channels and a reference voltage transmission channel, the signal transmission The channel outputs the physiological signal to the pre-processing module, the reference voltage transmission channel outputs the reference voltage required by the preamplifier unit, the reference voltage transmission channel is a DRL circuit; and a pre-processing module coupled to the The signal input module has a plurality of preamplifier units, and each of the preamplifier units receives a set of the physiological signals and provides signal amplification processing to output a set of physiological amplification signals. And a digital processing module coupled to the pre-processing module to receive at least one of the group of physiological amplification signals output by the preamplifier units in a time division multiplexing manner and received The physiological amplification signal provides signal amplification by a signal amplification unit and signal conversion by a analog/digital conversion unit to relatively output a set of digits. a physiological signal; wherein the preamplifier unit has a differential amplifying unit that amplifies the physiological signal, the differential amplifying unit includes: an instrumentation amplifier having a first input end and a second input end and a feedback a first alternating current signal coupling unit includes a first capacitor and a first resistor, wherein the first end of the first capacitor receives a differential signal, and the second end of the first capacitor is coupled to the first resistor The first end and the first input end; a second AC signal coupling unit, comprising a second capacitor and a second resistor, wherein the first end of the second capacitor receives the differential signal, the second The second end of the capacitor is connected to the first end of the second resistor and the second input end, the differential signal is the physiological signal; and a bias input unit includes a third resistor, a fourth resistor, and a a fifth resistor and a third capacitor, wherein the first end of the third resistor receives a voltage provided by the reference voltage transmission channel, and the second end of the third resistor is coupled to the second end of the first resistor, the first a second end of the second resistor and a first end of the third capacitor, the second end of the third capacitor being connected to the first end of the fourth resistor and the first end of the fifth resistor, the fourth resistor The second end and the second end of the fifth resistor are respectively connected to the instrumentation amplifier, and the bias input unit adjusts an input offset voltage of the differential signal input to the instrumentation amplifier according to the voltage received by the first end of the third resistor. value. 如申請專利範圍第1項所述之多通道生理訊號量測系統,其中該前置放大單元還包括:一濾波單元,耦接於該差動放大單元;一準位調整單元,耦接於該濾波單元,用以提供訊號準位調整。 The multi-channel physiological signal measuring system of claim 1, wherein the preamplifying unit further comprises: a filtering unit coupled to the differential amplifying unit; and a level adjusting unit coupled to the A filtering unit for providing signal level adjustment. 如申請專利範圍第1項所述之多通道生理訊號量測系統,其中該數位處理模組包括:一數位訊號處理單元;一訊號混合單元,耦接於該數位訊號處理單元,並根據該數位訊號處理單元的控制接收該些組生理放大訊號,且以分時多工方式輸出該些組生理放大訊號的至少其中一組;該訊號放大單元,耦接於該數位訊號處理單元及該訊號混合單元,並根據該數位訊號處理單元的控制對該訊號混合單元輸出訊號提供放大處理; 該類比/數位轉換單元,耦接於該數位訊號處理單元及該訊號放大單元,並根據該數位訊號處理單元的控制對該訊號放大單元輸出的訊號提供類比轉數位的訊號處理。 The multi-channel physiological signal measuring system of claim 1, wherein the digital processing module comprises: a digital signal processing unit; a signal mixing unit coupled to the digital signal processing unit, and based on the digital The control unit of the signal processing unit receives the set of physiological amplification signals, and outputs at least one of the group of physiological amplification signals in a time division multiplexing manner; the signal amplification unit is coupled to the digital signal processing unit and the signal mixing And providing an amplification process to the signal mixing unit output signal according to the control of the digital signal processing unit; The analog/digital conversion unit is coupled to the digital signal processing unit and the signal amplifying unit, and provides analog signal processing for the signal output from the signal amplifying unit according to the control of the digital signal processing unit. 如申請專利範圍第3項所述之多通道生理訊號量測系統,更包括:一終端裝置,具有一人機操作介面,該人機操作介面用以提供一設定參數給該數位處理模組,使該數位訊號處理單元根據該設定參數控制該訊號放大單元的放大倍率。 The multi-channel physiological signal measurement system of claim 3, further comprising: a terminal device having a human-machine interface for providing a setting parameter to the digital processing module, The digital signal processing unit controls the magnification of the signal amplifying unit according to the setting parameter. 一種如申請專利範圍第1項所述之多通道生理訊號的多通道生理訊號量測方法,包括:透過該訊號輸入模組取得複數組生理訊號;透過該前置處理模組以分別對該些組生理訊號提供放大處理以相對輸出複數組生理放大訊號;透過該數位處理模組接收該些組生理放大訊號,並以分時多工方式輸出該些組生理放大訊號的至少其中一組以進行訊號轉換以相對輸出一組數位生理訊號;透過該第一交流訊號耦合單元及該第一交流訊號耦合單元對稱之高通濾波電路,以將該組生理訊號之一低頻雜訊濾除,並將該組生理訊號之一高頻成分通過;以及透過該偏壓投入單元對該參考電壓傳輸通道提供的電壓與該儀表放大器產生的一共模訊號的耦合,以產生一共模點訊號,並由該儀表放大器進行放大以得到該生理放大訊號。 A method for measuring a multi-channel physiological signal of a multi-channel physiological signal as described in claim 1, comprising: obtaining a complex array of physiological signals through the signal input module; and separately using the pre-processing module The physiological signals of the group provide amplification processing to output the complex array of physiological amplification signals; receive the physiological amplification signals of the groups through the digital processing module, and output at least one of the group of physiological amplification signals in a time division multiplexing manner to perform The signal is converted to output a set of digital physiological signals; the first alternating current signal coupling unit and the first alternating current signal coupling unit are symmetric high-pass filter circuits to filter out a low frequency noise of the set of physiological signals, and the Passing a high frequency component of one of the physiological signals; and coupling the voltage supplied by the bias voltage input unit to a common mode signal generated by the instrumentation amplifier to generate a common mode signal, and the instrumentation amplifier Amplification is performed to obtain the physiological amplification signal. 如申請專利範圍第5項所述之多通道生理訊號量測方法,其中該數位處理模組是接收一終端裝置提供的一設定參數,並根據該設定參數設定該訊號混合單元以分時多 工方式輸出該些組生理放大訊號。 The multi-channel physiological signal measurement method according to claim 5, wherein the digital processing module receives a setting parameter provided by a terminal device, and sets the signal mixing unit according to the setting parameter to divide the time. The working mode outputs the group of physiological amplification signals.
TW100125265A 2011-07-18 2011-07-18 Multi-channel physiological signal measure system and method thereof TWI434670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100125265A TWI434670B (en) 2011-07-18 2011-07-18 Multi-channel physiological signal measure system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100125265A TWI434670B (en) 2011-07-18 2011-07-18 Multi-channel physiological signal measure system and method thereof

Publications (2)

Publication Number Publication Date
TW201304742A TW201304742A (en) 2013-02-01
TWI434670B true TWI434670B (en) 2014-04-21

Family

ID=48168878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125265A TWI434670B (en) 2011-07-18 2011-07-18 Multi-channel physiological signal measure system and method thereof

Country Status (1)

Country Link
TW (1) TWI434670B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500383B (en) * 2013-06-20 2015-09-21 Kwantex Res Inc Detection device for detecting sign of life for aquatic animal and detection method thereof

Also Published As

Publication number Publication date
TW201304742A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
TWI408377B (en) Differential sensing system and method for using the same
CN101732054A (en) Portable all-purpose otoacoustic emission detecting system
CN101822540A (en) Myoelectricity amplifier and method for sampling myoelectricity signals
JP2018094412A (en) Wearable biological sensor and noise cancel circuit
Thakkar et al. Wrist pulse acquisition and recording system
CN115192182A (en) Irreversible electroporation therapy apparatus and bioimpedance measurement method
CN113040777B (en) Multimode physiological signal sensor interface chip, detector and brain state monitor
TWI434670B (en) Multi-channel physiological signal measure system and method thereof
Koutsoftidis et al. Myolink: A 128-Channel, $\text {18 nV}/\sqrt {\text {Hz}} $, Embedded Recording System, Optimized for High-Density Surface Electromyogram Acquisition
Jadhav et al. Design and development of smart phone based ECG monitoring system
Peng et al. A low noise, non-contact capacitive cardiac sensor
KR20170026914A (en) Portable small impedence measurement modules
CN103584859B (en) A kind of Electroglottography device
KR20080059822A (en) Bio-signal amplifying circuit
CN201968675U (en) ARM (Advanced RISC Machine)-based body surface stomach electric signal collecting analyzer
Mahajan et al. Performance analysis of a DRL-less AFE for battery-powered wearable EEG
CN217408828U (en) Electroencephalogram data acquisition system based on NB-Iot
Eilebrecht et al. A capacitive ECG array with visual patient feedback
Szakacs-Simon et al. Signal conditioning techniques for health monitoring devices
Yang et al. A multi-parameter bio-electric ASIC sensor with integrated 2-wire data transmission protocol for wearable healthcare system
CN109464144B (en) Handheld myoelectricity acquisition device
CN107157478B (en) Multichannel cortex electroencephalogram acquisition system based on capacitive electrodes
CN106859607B (en) Multi-parameter monitoring system
RU197456U1 (en) Portable electroencephalograph
CN102908138B (en) Fetus electrocardio amplifying circuit based on AD620 and OP90

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees