TWI432834B - Touch panel and touch display device - Google Patents
Touch panel and touch display device Download PDFInfo
- Publication number
- TWI432834B TWI432834B TW98146002A TW98146002A TWI432834B TW I432834 B TWI432834 B TW I432834B TW 98146002 A TW98146002 A TW 98146002A TW 98146002 A TW98146002 A TW 98146002A TW I432834 B TWI432834 B TW I432834B
- Authority
- TW
- Taiwan
- Prior art keywords
- touch
- liquid crystal
- electrode layer
- dielectric layer
- coordinate
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Description
本發明係關於一種觸控面板及觸控顯示裝置。 The invention relates to a touch panel and a touch display device.
隨著平板顯示技術之蓬勃發展及製造成本之日益降低,具有輻射低、厚度小、功耗低等優點之平板顯示裝置越來越受到消費者之青睞,因此被廣泛地應用在電子產品中。 With the rapid development of flat panel display technology and the decreasing manufacturing cost, flat panel display devices with low radiation, small thickness and low power consumption are increasingly favored by consumers, and thus are widely used in electronic products.
為了符合現代人對於更加便利、更加直觀之人機界面之需要,近年來市場上逐漸推出各種各樣具有觸控功能之平板顯示裝置,即觸控顯示裝置。通常,觸控顯示裝置可分為外置式及內嵌式兩種。其中,外置式觸控顯示裝置在傳統之平板顯示裝置基礎上附加一觸控面板;而內置式觸控顯示裝置是直接將觸控面板通過內嵌之方式整合至顯示面板(比如液晶面板)之中。目前之觸控面板種類繁多,包括電阻式、電容式、紅外線式及表面聲波式等多種類型。 In order to meet the needs of modern people for a more convenient and more intuitive human-machine interface, various flat panel display devices with touch functions, namely touch display devices, have been gradually introduced in the market in recent years. Generally, the touch display device can be divided into an external type and an in-line type. The external touch display device is attached with a touch panel on the basis of the conventional flat display device; and the built-in touch display device directly integrates the touch panel into the display panel (such as the liquid crystal panel) by means of in-line integration. in. At present, there are many types of touch panels, including resistive, capacitive, infrared, and surface acoustic wave types.
習知之觸控顯示裝置一般採用二維觸控技術,使用者可以通過手指或者觸控筆向其觸控面板施加觸控動作以下達操作命令。在被施加觸控動作時,該觸控顯示裝置內部之功能模組可偵測出該觸控動作所指向位置(即觸控位置)之平面(二維)座標,即X座標及Y座標,並根據該平面座標提供相應之控制訊號控制該觸控顯示裝置或者使用該觸控顯示裝置之電子產品進行相應之操作。 The conventional touch display device generally adopts a two-dimensional touch technology, and the user can apply a touch action to the touch panel through a finger or a stylus to obtain an operation command. When the touch action is applied, the function module inside the touch display device can detect the plane (two-dimensional) coordinates of the position (ie, the touch position) pointed by the touch action, that is, the X coordinate and the Y coordinate. And correspondingly controlling the signal according to the plane coordinate to control the touch display device or using the electronic product of the touch display device to perform corresponding operations.
採用二維觸控技術之觸控顯示裝置雖可實現直觀、方便地人機操作介面,不過其主要適用在平面顯示技術中。隨著三維(立體)顯示技術之發展,先前技術中採用二維觸控技術之觸控面板及觸控顯示裝置難以滿足三維顯示技術之操控需要。 The touch display device using the two-dimensional touch technology can realize an intuitive and convenient man-machine interface, but it is mainly used in the flat display technology. With the development of three-dimensional (stereo) display technology, the touch panel and the touch display device using the two-dimensional touch technology in the prior art are difficult to meet the control needs of the three-dimensional display technology.
有鑑於此,有必要提供一種可實現三維觸控之觸控面 板及觸控顯示裝置。 In view of this, it is necessary to provide a touch surface that can realize three-dimensional touch. Board and touch display device.
一種觸控面板,其包括一第一電極層、一電介質層及一第二電極層,其中該電介質層設置在該第一電極層及第二電極層之間,且該電介質層包括高分子分散液晶薄膜。 A touch panel includes a first electrode layer, a dielectric layer and a second electrode layer, wherein the dielectric layer is disposed between the first electrode layer and the second electrode layer, and the dielectric layer comprises a polymer dispersion Liquid crystal film.
一種觸控顯示裝置,其包括一觸控面板及一檢測電路,該觸控面板包括一第一電極層、一電介質層及一第二電極層,該電介質層設置在該第一電極層及第二電極層之間,該電介質層包括高分子分散液晶材質,該檢測電路連接到該第一電極層及第二電極層之一,且其用於檢測觸控位置之三維座標。 A touch display device includes a touch panel and a detecting circuit. The touch panel includes a first electrode layer, a dielectric layer and a second electrode layer. The dielectric layer is disposed on the first electrode layer and Between the two electrode layers, the dielectric layer comprises a polymer dispersed liquid crystal material, and the detecting circuit is connected to one of the first electrode layer and the second electrode layer, and is used for detecting a three-dimensional coordinate of the touch position.
與先前技術相比較,本發明之觸控面板及觸控顯示裝置通過在該第一電極層及第二電極層之間之介電常數隨厚度之變化而相對應地發生改變之電介質層,比如高分子分散液晶薄膜,便可實現三維觸控,從而滿足使用者在三維顯示技術之觸控操作需要。 Compared with the prior art, the touch panel and the touch display device of the present invention change the dielectric layer correspondingly by the change of the dielectric constant between the first electrode layer and the second electrode layer, for example, The polymer-dispersed liquid crystal film can realize three-dimensional touch, thereby satisfying the user's touch operation requirements in the three-dimensional display technology.
請參閱圖1,其示意性地表示本發明觸控面板一種實施例之結構分解圖。該觸控面板100包括自下而上依次層疊設置之第一基板11、第一電極層12、電介質層13、第二電極層14及第二基板15。其中,該第二基板15之外表面(即遠離該第二電極層14之表面)作為該觸控面板100之觸控表面,使用者可通過該觸控表面向該觸控面板100施加觸控動作,以向其下達操作命令。 Please refer to FIG. 1, which is a schematic exploded view of an embodiment of a touch panel of the present invention. The touch panel 100 includes a first substrate 11 , a first electrode layer 12 , a dielectric layer 13 , a second electrode layer 14 , and a second substrate 15 which are stacked in this order from bottom to top. The outer surface of the second substrate 15 (ie, the surface away from the second electrode layer 14) serves as a touch surface of the touch panel 100, and the user can apply touch to the touch panel 100 through the touch surface. Action to give an operation command to it.
該第一基板11及第二基板15均為絕緣基板,其中,該第二基板15在外力作用下可發生形變,比如,當使用者向其觸控表面之某一位置施加一觸控動作時,該觸控動作所指向之位置將朝該第一基板11方向發生凹陷。具體地,該第二基板15所採用之材質可以為以下材質之一:聚對苯二甲酸乙二脂(Poly Ethylene Terephthalate,PET)、聚碳酸脂(Poly Carbonate,PC)、聚甲基丙烯酸甲脂(Poly Methyl Meth Acrylate,PMMA)、聚亞醯胺(Poly Imide,PI)、聚乙烯(Poly Ethylene,PE)。該第一基板11之材質可以與該第二基板相同。 The first substrate 11 and the second substrate 15 are both insulating substrates, wherein the second substrate 15 can be deformed by an external force, for example, when a user applies a touch action to a position of the touch surface thereof. The position pointed by the touch action will be recessed toward the first substrate 11. Specifically, the material used for the second substrate 15 may be one of the following materials: Poly Ethylene Terephthalate (PET), Polycarbonate (PC), Polymethyl methacrylate Fat (Poly Methyl Meth) Acrylate, PMMA), Poly Imide (PI), Poly Ethylene (PE). The material of the first substrate 11 can be the same as the second substrate.
請一併參閱圖2-4,其中圖2及3分別為該第一電極層12及第二電極層14之平面結構示意圖,圖4為該第一電極層12及第二電極層14合併示意圖。 Referring to FIG. 2-4, FIG. 2 and FIG. 3 are schematic diagrams showing the planar structure of the first electrode layer 12 and the second electrode layer 14, respectively, and FIG. 4 is a schematic diagram of the first electrode layer 12 and the second electrode layer 14 being merged. .
該第一電極層12包括複數平行間隔設置之第一電極線121,該第二電極層14包括複數平面間隔設置並與該第一電極線121相垂直之第二電極線141。具體地,在本實施例中,該第一電極線121延第一方向(Y軸方向)延伸,該第二電極線141延第二方向(X軸方向延伸)。由此,該第一電極線121及該第二電極線141之間形成了複數交疊區域。假定該第一電極線121及該第二電極線141之線寬均為w,則該交疊區域之面積S大約為w2。即,對於該觸控面板100而言,該交疊區域之面積為一固定值。 The first electrode layer 12 includes a plurality of first electrode lines 121 arranged in parallel, and the second electrode layer 14 includes a plurality of second electrode lines 141 spaced apart from each other and perpendicular to the first electrode lines 121. Specifically, in the present embodiment, the first electrode line 121 extends in the first direction (Y-axis direction), and the second electrode line 141 extends in the second direction (extending in the X-axis direction). Thereby, a plurality of overlapping regions are formed between the first electrode line 121 and the second electrode line 141. Assuming that the line widths of the first electrode line 121 and the second electrode line 141 are both w, the area S of the overlap region is approximately w2. That is, for the touch panel 100, the area of the overlapping area is a fixed value.
在該觸控面板100中,每個交疊區域可以作為一個觸控感測點。並且,在每個交疊區域中,該第一電極線121、第二電極線141及夾於二者之間之電介質層13相互配合形成一交疊電容16。假定在該交疊區域中,該電介質層13之介電常數為ε且其厚度為d,則該交疊電容16之電容值C可以通過以下公式計算得出:C=ε s/4 π kd,其中,k為介電常數,該電介質層13之介電常數ε是指沿該交疊電容16之電場方向之介電常數,於本實施方式中,該電介質層13之介電常數ε是指該電介質層13沿垂直方向之介電常數。由於該交疊電容16之面積s為固定值,該交疊電容之電容值C主要由該電介質層13在該交疊區域中之介電常數ε及厚度d決定。 In the touch panel 100, each overlapping area can serve as a touch sensing point. Moreover, in each of the overlapping regions, the first electrode line 121, the second electrode line 141, and the dielectric layer 13 sandwiched therebetween form an overlapping capacitor 16. Assuming that the dielectric constant of the dielectric layer 13 is ε and its thickness is d in the overlap region, the capacitance C of the overlap capacitor 16 can be calculated by the following formula: C = ε s / 4 π kd Wherein k is a dielectric constant, and the dielectric constant ε of the dielectric layer 13 is a dielectric constant along the direction of the electric field of the overlapping capacitor 16. In the present embodiment, the dielectric constant ε of the dielectric layer 13 is Refers to the dielectric constant of the dielectric layer 13 in the vertical direction. Since the area s of the overlap capacitor 16 is a fixed value, the capacitance value C of the overlap capacitor is mainly determined by the dielectric constant ε and the thickness d of the dielectric layer 13 in the overlap region.
本發明中,該電介質層13在外力作用下其厚度會發生改變,比如:當使用者施加一觸控動作時,該電介質層13之厚度將減小,並且,該電介質層13之介電常數ε可隨著 其厚度之減小而增大。通過採用具有上述特性之材質,可使得該交疊電容16之電容值C隨該電介質層13厚度之變化而相對應地發生改變。 In the present invention, the thickness of the dielectric layer 13 changes under the action of an external force. For example, when a user applies a touch action, the thickness of the dielectric layer 13 is reduced, and the dielectric constant of the dielectric layer 13 is reduced. ε can follow Its thickness increases as it decreases. By using the material having the above characteristics, the capacitance value C of the overlap capacitor 16 can be correspondingly changed in accordance with the change in the thickness of the dielectric layer 13.
請一併參閱圖5,其為該電介質層13之結構示意圖,該電介質層13可以為高分子分散液晶薄膜。該高分子分散液晶薄膜主要包括高分子材質及液晶材質,其中該高分子材質可以為對向列型(Twisted Nematic,TN)液晶具有垂直配向功能之材質。 Please refer to FIG. 5 , which is a schematic structural diagram of the dielectric layer 13 . The dielectric layer 13 may be a polymer dispersed liquid crystal film. The polymer dispersed liquid crystal film mainly comprises a polymer material and a liquid crystal material, wherein the polymer material may be a material having a vertical alignment function to a Twisted Nematic (TN) liquid crystal.
具體地,該高分子分散薄膜可通過以下方式制取得到:首先,將高分子預聚物與向列型液晶材質相混合;接著,對該高分子及液晶混合物進行聚合處理,在聚合過程中,該高分子聚合物將與該液晶材質會相互分離;並且,在聚合處理完成之後,該液晶材質將以微滴方式分散在該高分子材質內部。通過對上述聚合過程之工藝參數控制,可使得該液晶微滴131呈圓球狀,且該液晶微滴131之尺寸約為微米量級。 Specifically, the polymer dispersed film can be obtained by first mixing a polymer prepolymer with a nematic liquid crystal material; then, polymerizing the polymer and the liquid crystal mixture during the polymerization. The polymer is separated from the liquid crystal material; and after the polymerization process is completed, the liquid crystal material is dispersed in the polymer material by droplets. The liquid crystal droplets 131 can be made into a spherical shape by controlling the process parameters of the above polymerization process, and the size of the liquid crystal droplets 131 is on the order of micrometers.
在該高分子分散液晶薄膜中,每個液晶微滴131包括複數液晶分子。由於該高分子材質對該液晶材質具有垂直配向功能,因此,在每個圓球狀之液晶微滴131中,該液晶分子將呈中心輻射排列。 In the polymer dispersed liquid crystal film, each of the liquid crystal droplets 131 includes a plurality of liquid crystal molecules. Since the polymer material has a vertical alignment function to the liquid crystal material, the liquid crystal molecules will be arranged in a central radiation in each of the spherical liquid crystal droplets 131.
當該電介質層13受到外力作用(比如使用者對該觸控面板100施加觸控動作)時,如圖6所示,受該外力之影響,該電介質層13在該外力指向之位置之厚度將變小,從而迫使所述位置之液晶微滴131將發生形變(請參閱圖7),且形變之程度由該外力之大小決定。由此,該液晶微滴131將從圓球狀變為橢球狀,由於該高分子材質對該液晶材質具有垂直配向功能,當該液晶微滴131從圓球狀向橢球狀轉變時,其內部之液晶分子之排列方式將從中心輻射排列向垂直之平行排列過渡。另外,由於液晶分子具有介電常數各向異性之特性,當該液晶微滴131內部之液晶分子排 列方式發生改變時,該電介質層13之介電常數ε也將隨之發生變化。 When the dielectric layer 13 is subjected to an external force (for example, a user applies a touch action to the touch panel 100), as shown in FIG. 6, the thickness of the dielectric layer 13 at the position pointed by the external force is affected by the external force. It becomes smaller, thereby forcing the liquid crystal droplets 131 at the position to be deformed (see Fig. 7), and the degree of deformation is determined by the magnitude of the external force. Thereby, the liquid crystal droplets 131 are changed from a spherical shape to an ellipsoidal shape, and since the polymer material has a vertical alignment function to the liquid crystal material, when the liquid crystal droplets 131 are changed from a spherical shape to an ellipsoidal shape, The arrangement of the liquid crystal molecules inside thereof will shift from the central radiation arrangement to the vertical parallel arrangement. In addition, since the liquid crystal molecules have the property of dielectric anisotropy, when the liquid crystal molecules inside the liquid crystal droplets 131 are arranged When the column mode is changed, the dielectric constant ε of the dielectric layer 13 also changes.
具體而言,當該電介質層13受到外力作用時,該外力所指向位置之液晶微滴131將從圓球狀向橢球狀轉變,此將導致該電介質層13在所述位置之沿垂直方向之介電常數增大,即所述位置之介電常數ε增大。並且,該介電常數ε之增大量與該液晶微滴131之形變程度相關,即,該介電常數ε之增大量由該外力之大小所決定。 Specifically, when the dielectric layer 13 is subjected to an external force, the liquid crystal droplets 131 at which the external force is directed will change from a spherical shape to an ellipsoidal shape, which will cause the dielectric layer 13 to be vertically in the position. The dielectric constant increases, that is, the dielectric constant ε at the position increases. Further, the amount of increase in the dielectric constant ε is related to the degree of deformation of the liquid crystal droplets 131, that is, the amount of increase in the dielectric constant ε is determined by the magnitude of the external force.
根據公式C=ε s/4 π kd可以看出,當使用者向該觸控面板施加觸控動作而導致該電介質層13在對應觸控位置之厚度變小時,對於與該觸控位置相對應之交疊電容而言,夾在該第一電極線121及第二電極線141之間之電介質之厚度d減小,該介電常數ε增大,由此使得該交疊電容16之電容值C增大。並且,該電容值C之增大量是由該電介質層13在該觸控位置之厚度減小量相對應的。 According to the formula C=ε s/4 π kd, it can be seen that when the user applies a touch action to the touch panel, the thickness of the dielectric layer 13 at the corresponding touch position becomes small, corresponding to the touch position. In the case of the overlapping capacitance, the thickness d of the dielectric sandwiched between the first electrode line 121 and the second electrode line 141 is decreased, and the dielectric constant ε is increased, thereby causing the capacitance value of the overlapping capacitor 16 C increases. Moreover, the amount of increase in the capacitance value C corresponds to the amount of thickness reduction of the dielectric layer 13 at the touch position.
基於以上結構,該觸控面板100中由該第一電極層12及第二電極層14之間之相互交疊形成複數交疊電容16中,越接近觸控動作所指向之位置之中心點,相對應之液晶微滴131之形變程度越大,則其電容值C之變化量越大。因此,通過檢測該觸控面板100中之電容值C之變化量最大之交疊電容16,便可獲取該觸控動作所指向之觸控位置之平面座標,即X座標及Y座標。另一方面,通過檢測該觸控位置對應之交疊電容之具體電容值C,便可計算出該電介質層13在該觸控位置之厚度減小量,即計算出該觸控動作所指向之觸控位置之Z座標。 Based on the above structure, in the touch panel 100, the first electrode layer 12 and the second electrode layer 14 overlap each other to form a plurality of overlapping capacitors 16 , and the closer to the center point of the position pointed by the touch action, The greater the degree of deformation of the corresponding liquid crystal droplets 131, the greater the amount of change in the capacitance value C. Therefore, by detecting the overlap capacitance 16 with the largest change in the capacitance value C in the touch panel 100, the plane coordinates of the touch position pointed by the touch action, that is, the X coordinate and the Y coordinate can be obtained. On the other hand, by detecting the specific capacitance value C of the overlapping capacitance corresponding to the touch position, the thickness reduction of the dielectric layer 13 at the touch position can be calculated, that is, the touch action is calculated. Z coordinate of the touch position.
由此可見,本發明之觸控面板100通過在該第一電極層12及第二電極層14之間設置介電常數隨厚度之變化而相對應地發生改變之電介質層13,比如高分子分散液晶薄膜,便可實現三維觸控,從而滿足使用者在三維顯示技術之觸控操作需要。 It can be seen that the touch panel 100 of the present invention has a dielectric layer 13 corresponding to a change in dielectric constant with a change in thickness between the first electrode layer 12 and the second electrode layer 14, such as polymer dispersion. The liquid crystal film can realize three-dimensional touch, thereby satisfying the user's touch operation requirements in the three-dimensional display technology.
請參閱圖8,其為本發明觸控顯示裝置一種實施例之電路結構示意圖。該觸控顯示裝置10可包括以上實施例該之觸控面板100及用於對該觸控面板100進行三維座標檢測之週邊電路。其中,該觸控面板100之結構可參閱以上實施例之具體描述,此處不再贅述。該週邊電路可包括驅動電路21、檢測電路22及控制電路23。其中,該驅動電路21連接到該觸控面板100之第一電極線121,用於依序輸出掃描訊號至該第一電極線121。該檢測電路22連接到該觸控面板之第二電極線141,用於檢測該第二電極線141之輸出訊號,並根據該輸出訊號計算出使用者施加之觸控動作所指向之觸控位置之三維座標。該控制電路23分別連接至該驅動電路21及檢測電路22,其一方面用於控制該驅動電路21之掃描時序,另一方面還用於根據該檢測電路22提供之三維座標資訊,生成對應之控制訊號。 Please refer to FIG. 8 , which is a schematic structural diagram of a circuit of an embodiment of a touch display device according to the present invention. The touch display device 10 can include the touch panel 100 of the above embodiment and a peripheral circuit for performing three-dimensional coordinate detection on the touch panel 100. For the structure of the touch panel 100, refer to the detailed description of the above embodiments, and details are not described herein again. The peripheral circuit may include a drive circuit 21, a detection circuit 22, and a control circuit 23. The driving circuit 21 is connected to the first electrode line 121 of the touch panel 100 for sequentially outputting the scanning signal to the first electrode line 121. The detecting circuit 22 is connected to the second electrode line 141 of the touch panel for detecting the output signal of the second electrode line 141, and calculating the touch position pointed by the touch action applied by the user according to the output signal. The three-dimensional coordinates. The control circuit 23 is respectively connected to the driving circuit 21 and the detecting circuit 22, and is used for controlling the scanning timing of the driving circuit 21 on the one hand, and for generating corresponding correspondence according to the three-dimensional coordinate information provided by the detecting circuit 22 on the other hand. Control signal.
另外,在具體實施例中,該觸控顯示裝置10還可以進一步包括一顯示面板,其可連接至該控制電路23。該顯示面板可以為液晶面板或者其他平面顯示面板,其可接收該控制電路23根據提供之控制訊號,並根據該控制訊號顯示對應之畫面。 In addition, in a specific embodiment, the touch display device 10 may further include a display panel connectable to the control circuit 23. The display panel can be a liquid crystal panel or other flat display panel, and can receive the control signal according to the control signal provided by the control circuit 23, and display the corresponding picture according to the control signal.
當該觸控顯示裝置10進行工作時,該控制電路23生成時序訊號並分別提供給該驅動電路21及檢測電路22。該驅動電路21根據該時序訊號,產生掃描訊號並分別提供給該第一電極線121。在該觸控面板100沒有被施加觸控動作時,其內部每個交疊電容16分別具有一初始電容值。在該掃描訊號作用下,該交疊電容16將通過其對應之第二電極線141向該檢測電路22輸出一感應訊號,比如,一電壓訊號。 When the touch display device 10 is in operation, the control circuit 23 generates timing signals and supplies them to the driving circuit 21 and the detecting circuit 22, respectively. The driving circuit 21 generates scan signals according to the timing signals and supplies them to the first electrode lines 121 respectively. When the touch panel 100 is not touch-applied, each of the internal overlapping capacitors 16 has an initial capacitance value. Under the action of the scanning signal, the overlapping capacitor 16 outputs an inductive signal, such as a voltage signal, to the detecting circuit 22 through its corresponding second electrode line 141.
當使用者向該觸控面板100施加一觸控動作時,受該觸控動作所提供之外力之作用,該電介質層13在觸控動作所指向之位置(即觸控位置)處將發生凹陷,使得該電介質 層13在該觸控位置之厚度減小、介電常數ε增大,從而導致該觸控位置對應之交疊電容16之電容值增大。由此,該交疊電容16通過該第二電極線141向該檢測電路22輸出之感應訊號將發生改變,且該感應訊號之改變量對應於該交疊電容16受該觸控動作影響而發生之電容值之增大量。該檢測電路22根據該複數第二電極線141輸出感應訊號,並結合該控制電路23提供之時序訊號,可獲取各個觸控感測點輸出之感應訊號之改變量,並根據該感應訊號改變量計算出其對應之交疊電容16之電容值改變量。進一步地,該檢測電路22可從上述計算結果中電容值改變量最大之觸控感測點,並對其進行位址解析,從而得到該觸控位置對應之X座標及Y座標。另外,由於該電介質層13之介電常數ε是受其厚度d影響之,通過查找預先設置之電介質層之介電常數ε及厚度d之對應關係表,並結合公式C=ε s/4 π kd,便可計算出該電介質層13在該觸控位置處之厚度改變量,從而得到該觸控位置度應之Z座標。 When the user applies a touch action to the touch panel 100, the dielectric layer 13 will be recessed at the position (ie, the touch position) pointed by the touch action by the external force provided by the touch action. To make the dielectric The thickness of the layer 13 is reduced at the touch position, and the dielectric constant ε is increased, so that the capacitance value of the overlap capacitor 16 corresponding to the touch position is increased. Therefore, the sensing signal outputted by the overlapping capacitor 16 to the detecting circuit 22 through the second electrode line 141 is changed, and the amount of change of the sensing signal corresponds to the overlapping capacitor 16 being affected by the touch action. The amount of increase in capacitance. The detecting circuit 22 outputs an inductive signal according to the plurality of second electrode lines 141, and combined with the timing signal provided by the control circuit 23, the amount of change of the sensing signal outputted by each touch sensing point is obtained, and the amount of the sensing signal is changed according to the sensing signal. The capacitance value change amount of the corresponding overlap capacitor 16 is calculated. Further, the detecting circuit 22 can perform the address sensing from the touch sensing point with the largest change in the capacitance value from the above calculation result, and obtain the X coordinate and the Y coordinate corresponding to the touch position. In addition, since the dielectric constant ε of the dielectric layer 13 is affected by the thickness d thereof, by looking up the correspondence table of the dielectric constant ε and the thickness d of the dielectric layer set in advance, and combining the formula C=ε s/4 π Kd, the thickness change of the dielectric layer 13 at the touch position can be calculated, thereby obtaining the Z coordinate of the touch position.
該檢測電路22可將其檢測到之三維座標(X,Y,Z)提供給該控制電路23。該控制電路23可進一步根據該三維座標(X,Y,Z)獲知使用者施加之觸控動作之具體內容,並據此輸出對應之控制訊號以控制顯示面板顯示對應之畫面。 The detection circuit 22 can supply the detected three-dimensional coordinates (X, Y, Z) to the control circuit 23. The control circuit 23 can further know the specific content of the touch action applied by the user according to the three-dimensional coordinates (X, Y, Z), and output corresponding control signals to control the display panel to display the corresponding picture.
綜上所述,本發明確已符合發明專利之要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,本發明之範圍並不以上述實施例為限,該舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and those skilled in the art will be able to make equivalent modifications or variations in accordance with the spirit of the present invention. All should be covered by the following patent application.
100‧‧‧觸控面板 100‧‧‧ touch panel
11‧‧‧第一基板 11‧‧‧First substrate
12‧‧‧第一電極層 12‧‧‧First electrode layer
13‧‧‧電介質層 13‧‧‧ dielectric layer
14‧‧‧第二電極層 14‧‧‧Second electrode layer
15‧‧‧第二基板 15‧‧‧second substrate
16‧‧‧交叠電容 16‧‧‧Overlapped capacitor
121‧‧‧第一電極線 121‧‧‧First electrode line
131‧‧‧液晶微滴 131‧‧‧LCD droplets
141‧‧‧第二電極線 141‧‧‧Second electrode line
21‧‧‧驅動電路 21‧‧‧Drive circuit
22‧‧‧檢測電路 22‧‧‧Detection circuit
23‧‧‧控制電路 23‧‧‧Control circuit
圖1為本發明觸控面板一種實施例之結構分解示意圖。 1 is a schematic exploded view of an embodiment of a touch panel of the present invention.
圖2-4為圖1所示觸控面板之第一電極層及第二電極層之平面結構示意圖。 2-4 are schematic diagrams showing the planar structure of the first electrode layer and the second electrode layer of the touch panel shown in FIG.
圖5為圖1所示之觸控面板之電介質層之結構示意圖。 FIG. 5 is a schematic structural view of a dielectric layer of the touch panel shown in FIG. 1. FIG.
圖6為圖1所示觸控面板被施加觸控動作時側面結構示意圖。 6 is a schematic side view showing the touch panel of FIG. 1 when a touch action is applied.
圖7為圖1所示之觸控面板被施加觸控動作時電介質層之液晶微滴之變化過程示意圖。 FIG. 7 is a schematic diagram showing a process of changing liquid crystal droplets of a dielectric layer when the touch panel shown in FIG. 1 is touched.
圖8為本發明觸控顯示裝置一種實施例之電路結構示意圖。 FIG. 8 is a schematic structural diagram of a circuit of an embodiment of a touch display device according to the present invention.
100‧‧‧觸控面板 100‧‧‧ touch panel
11‧‧‧第一基板 11‧‧‧First substrate
12‧‧‧第一電極層 12‧‧‧First electrode layer
13‧‧‧電介質層 13‧‧‧ dielectric layer
14‧‧‧第二電極層 14‧‧‧Second electrode layer
15‧‧‧第二基板 15‧‧‧second substrate
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98146002A TWI432834B (en) | 2009-12-30 | 2009-12-30 | Touch panel and touch display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98146002A TWI432834B (en) | 2009-12-30 | 2009-12-30 | Touch panel and touch display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201122646A TW201122646A (en) | 2011-07-01 |
TWI432834B true TWI432834B (en) | 2014-04-01 |
Family
ID=45046278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98146002A TWI432834B (en) | 2009-12-30 | 2009-12-30 | Touch panel and touch display device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI432834B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI475441B (en) * | 2012-10-19 | 2015-03-01 | Au Optronics Corp | In-cell touch display panel and driving method thereof |
TWI481938B (en) * | 2013-06-14 | 2015-04-21 | Au Optronics Corp | In-cell touch display panel |
CN104423738A (en) * | 2013-08-30 | 2015-03-18 | 天津富纳源创科技有限公司 | Control method of capacitive touch device |
-
2009
- 2009-12-30 TW TW98146002A patent/TWI432834B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201122646A (en) | 2011-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10444891B2 (en) | Touch panel and display device including the same | |
TWI605369B (en) | Mutual capacitive force sensor and touch display device with force sensing function and force sensing method thereof | |
TWI621986B (en) | Pressure sensing touch display device | |
TWI278690B (en) | Input-sensor-integrated liquid crystal display panel | |
TWI444957B (en) | Display device, method and naked eye solid display device | |
WO2015180335A1 (en) | Embedded touchscreen and display device | |
TWI514228B (en) | Display apparatus with touch sensor and method for manufacturing the same | |
TW201308154A (en) | Touch sensor for curved or flexible surfaces | |
WO2014190672A1 (en) | Array substrate, touch panel, and display apparatus | |
US8581860B2 (en) | Touch panel with PDLC film and touch-sensitive display device using same | |
TW201135689A (en) | Display panel | |
CN204833200U (en) | Contactor control device | |
TW201712504A (en) | Touch display device | |
US10503949B2 (en) | Touch screen and electronic device having the same | |
TWI595390B (en) | Touch device | |
TWI432834B (en) | Touch panel and touch display device | |
TWI684118B (en) | Display device with pressure sensing | |
US20110227869A1 (en) | Bistable display device | |
CN101727224A (en) | Touch type flat panel display and touch method | |
TWI459079B (en) | Touch panel structure | |
WO2017219425A1 (en) | Touch control display screen and electronic device | |
CN102236446A (en) | Slim touch device | |
TWI408631B (en) | Touch display device | |
TW201335819A (en) | Touch device | |
EP3267242B1 (en) | Terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |