TWI432783B - Stereoscopic display module, manufacture method thereof, and manufacture system thereof - Google Patents

Stereoscopic display module, manufacture method thereof, and manufacture system thereof Download PDF

Info

Publication number
TWI432783B
TWI432783B TW100138921A TW100138921A TWI432783B TW I432783 B TWI432783 B TW I432783B TW 100138921 A TW100138921 A TW 100138921A TW 100138921 A TW100138921 A TW 100138921A TW I432783 B TWI432783 B TW I432783B
Authority
TW
Taiwan
Prior art keywords
display module
phase retardation
retardation film
stereoscopic display
film
Prior art date
Application number
TW100138921A
Other languages
Chinese (zh)
Other versions
TW201234049A (en
Inventor
Lang Chin Lin
Chun Jung Chen
Chao Hsu Tsai
Tzuan Ren Jeng
Gol Den Tiao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US13/363,388 priority Critical patent/US8520176B2/en
Publication of TW201234049A publication Critical patent/TW201234049A/en
Application granted granted Critical
Publication of TWI432783B publication Critical patent/TWI432783B/en

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

立體顯示模組、其製作方法及其製作系統Stereoscopic display module, manufacturing method thereof and production system thereof

本發明是有關於一種立體顯示模組、其製作方法及其製作系統。The invention relates to a stereoscopic display module, a manufacturing method thereof and a manufacturing system thereof.

隨著顯示技術的進步,畫質更佳、色彩更豐富、效果更好的顯示器不斷地推陳出新。近年來,立體顯示技術更有從電影院推廣至家用顯示器的趨勢。立體顯示的關鍵在於讓左眼與右眼分別看到視角不同的左眼畫面與右眼畫面,因此習知戴眼鏡式的立體顯示技術多半是採用讓使用者配戴特製的眼鏡,以篩選左眼畫面與右眼畫面。With the advancement of display technology, displays with better picture quality, richer colors and better effects are constantly being introduced. In recent years, stereoscopic display technology has a tendency to be promoted from cinemas to home displays. The key to stereoscopic display is to let the left eye and the right eye separately see the left eye image and the right eye image with different viewing angles. Therefore, the stereoscopic display technology of the glasses is mostly used to allow the user to wear special glasses to filter the left. Eye picture and right eye picture.

戴眼鏡式的立體顯示技術可分為主動式與被動式兩種。主動式立體顯示技術其中之一為讓顯示器交替地顯示左眼畫面與右眼畫面,而使用者則是配戴具有液晶快門(liquid crystal shutter)的眼鏡。置於左眼的液晶快門與置於右眼的液晶快門則交替開啟,以讓使用者的左眼與右眼分別接收到左眼畫面與右眼畫面,進而在使用者的大腦中產生立體影像。然而,主動式立體顯示技術所採用的液晶快門之成本較高,且須供應電源給液晶快門。另外,為了使立體顯示器的左眼畫面與右眼畫面的切換與液晶快門的開啟及關閉的時間同步,亦會使立體顯示器及眼鏡的成本提升。成本的上升易影響立體顯示器的普及化。Stereoscopic display technology with glasses can be divided into active and passive. One of the active stereoscopic display technologies is to have the display alternately display the left eye picture and the right eye picture, and the user wears glasses with a liquid crystal shutter. The liquid crystal shutter placed in the left eye and the liquid crystal shutter placed in the right eye are alternately opened, so that the left eye and the right eye of the user respectively receive the left eye image and the right eye image, thereby generating a stereoscopic image in the user's brain. . However, the liquid crystal shutter used in the active stereoscopic display technology is relatively expensive, and it is necessary to supply power to the liquid crystal shutter. In addition, in order to synchronize the switching of the left eye screen and the right eye screen of the stereoscopic display with the time of opening and closing of the liquid crystal shutter, the cost of the stereoscopic display and the glasses is also increased. The increase in cost is likely to affect the popularity of stereoscopic displays.

被動式立體顯示技術之一是在顯示器上貼附微相位延遲膜(micro-retarder)。微相位延遲膜會將畫面的影像分成兩個偏振方向不同的影像,而使用者所配戴的眼鏡則包括兩個偏振方向不同的偏光鏡,以分別篩選這兩個偏振方向不同的影像。由於被動式立體顯示技術所採用的偏光片較主動式立體顯示技術所採用的液晶快門便宜,且被動式立體顯示技術所採用的眼鏡可以不用通電,且可以不用作與畫面同步的切換,因此被動式立體顯示器的成本較為便宜,較可能被一般消費者所接受。如此一來,便有助於將立體顯示技術推廣至家用領域。One of the passive stereo display technologies is to attach a micro-retarder to the display. The micro-phase retardation film divides the image of the picture into two images with different polarization directions, and the glasses worn by the user include two polarizers with different polarization directions to separately screen the two images with different polarization directions. Since the polarizer used in the passive stereoscopic display technology is cheaper than the liquid crystal shutter used in the active stereoscopic display technology, and the glasses used in the passive stereoscopic display technology can be used without switching, and can be used not for switching with the screen, the passive stereoscopic display The cost is cheaper and more likely to be accepted by the average consumer. As a result, it helps to promote stereoscopic display technology to the home field.

本發明之一實施例提出一種立體顯示模組的製作方法,包括下列步驟。提供一顯示模組。利用一耐熱黏著層將一第一相位延遲膜貼附於顯示模組上。在利用耐熱黏著層將第一相位延遲膜貼附於顯示模組上之後,對第一相位延遲膜的部分區域加熱,以破壞部分區域的相位延遲特性,其中部分區域包括間隔配置的複數個子區域。An embodiment of the present invention provides a method for fabricating a stereoscopic display module, including the following steps. A display module is provided. A first phase retardation film is attached to the display module by a heat resistant adhesive layer. After attaching the first phase retardation film to the display module by using the heat resistant adhesive layer, a partial region of the first phase retardation film is heated to break phase retardation characteristics of the partial region, wherein the partial region includes a plurality of subregions spaced apart .

本發明之另一實施例提出一種立體顯示模組,包括一顯示模組、一圖案化相位延遲膜及一耐熱黏著層。圖案化相位延遲膜配置於顯示模組上,其中圖案化相位延遲膜包括複數個相位延遲區及複數個透光區,且這些相位延遲區與這些透光區交替配置。耐熱黏著層配置於顯示模組與圖案化相位延遲膜之間,以將圖案化相位延遲膜貼附於顯示模組上。Another embodiment of the present invention provides a stereoscopic display module including a display module, a patterned phase retardation film, and a heat resistant adhesive layer. The patterned phase retardation film is disposed on the display module, wherein the patterned phase retardation film includes a plurality of phase retardation regions and a plurality of light transmissive regions, and the phase retardation regions are alternately disposed with the light transmissive regions. The heat resistant adhesive layer is disposed between the display module and the patterned phase retardation film to attach the patterned phase retardation film to the display module.

本發明之又一實施例提出一種立體顯示模組的製作系統,用以將一顯示模組製成一立體顯示模組。立體顯示模組的製作系統包括一位移控制承載平台、一加熱裝置、一對位裝置及一控制單元。位移控制承載平台用以承載及移動顯示模組。加熱裝置用以對貼附於顯示模組上的一相位延遲膜加熱。對位裝置用以將顯示模組與加熱裝置對位。控制單元藉由控制位移控制承載平台及加熱裝置的相對位置而使加熱裝置對相位延遲膜的部分區域加熱,其中部分區域包括間隔配置的複數個子區域。Another embodiment of the present invention provides a system for manufacturing a stereoscopic display module, which is used to form a display module into a stereoscopic display module. The manufacturing system of the stereoscopic display module comprises a displacement control bearing platform, a heating device, a pair of positioning devices and a control unit. The displacement control carrier platform is used to carry and move the display module. The heating device is for heating a phase retardation film attached to the display module. The alignment device is used to align the display module with the heating device. The control unit heats the partial region of the phase retardation film by controlling the relative position of the displacement control bearing platform and the heating device, wherein the partial region includes a plurality of sub-regions spaced apart.

為讓本發明之上述特徵能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-described features of the present invention more comprehensible, the following detailed description of the embodiments will be described in detail below.

圖1A至圖1D為繪示本發明之一實施例之立體顯示模組的製作方法的流程之示意圖,其中圖1A與圖1B為剖面示意圖,而圖1C與圖1D為立體示意圖。本實施例之立體顯示模組的製作方法包括下列步驟。首先,請參照圖1A,提供一顯示模組100,顯示模組100例如為一般用以顯示二維畫面的顯示模組。在本實施例中,顯示模組100為一液晶顯示面板。具體而言,顯示模組100可包括一主動元件陣列基板110、一液晶層120、一對向基板130、一第一偏振膜140及一第二偏振膜150,其中液晶層120配置於主動元件陣列基板110與對向基板130之間,主動元件陣列基板110配置於第一偏振膜140與液晶層120之間,且對向基板130配置於第二偏振膜150與該液晶層120之間。在本實施例中,第一偏振膜140貼附於主動元件陣列基板110上,且第二偏振膜150貼附於對向基板130上。主動元件陣列基板110例如為薄膜電晶體陣列基板(thin film transistor array substrate),其上設有多個畫素結構。對向基板130例如為彩色濾光陣列基板(color filter array substrate)。然而,在其他實施例中,顯示模組亦可以是其他螢幕上貼附有偏振膜的電漿顯示面板(plasma display panel,PDP)、有機發光二極體面板(organic light-emitting diode panel,OLED panel)或其他適當的顯示模組。1A and FIG. 1D are schematic diagrams showing a flow of a method for fabricating a stereoscopic display module according to an embodiment of the present invention, wherein FIGS. 1A and 1B are schematic cross-sectional views, and FIGS. 1C and 1D are perspective views. The manufacturing method of the stereoscopic display module of this embodiment includes the following steps. First, referring to FIG. 1A, a display module 100 is provided. The display module 100 is, for example, a display module generally used for displaying a two-dimensional picture. In this embodiment, the display module 100 is a liquid crystal display panel. Specifically, the display module 100 can include an active device array substrate 110, a liquid crystal layer 120, a pair of substrates 130, a first polarizing film 140, and a second polarizing film 150, wherein the liquid crystal layer 120 is disposed on the active device. Between the array substrate 110 and the opposite substrate 130, the active device array substrate 110 is disposed between the first polarizing film 140 and the liquid crystal layer 120, and the opposite substrate 130 is disposed between the second polarizing film 150 and the liquid crystal layer 120. In the embodiment, the first polarizing film 140 is attached to the active device array substrate 110, and the second polarizing film 150 is attached to the opposite substrate 130. The active device array substrate 110 is, for example, a thin film transistor array substrate on which a plurality of pixel structures are provided. The opposite substrate 130 is, for example, a color filter array substrate. However, in other embodiments, the display module may also be a plasma display panel (PDP) to which a polarizing film is attached, and an organic light-emitting diode panel (OLED). Panel) or other suitable display module.

接著,請參照圖1B,利用一耐熱黏著層210將一第一相位延遲膜220貼附於顯示模組100上。具體而言,可將第一相位延遲膜220貼附於顯示模組100的第二偏振膜150上。然而,在另一實施例中,可將顯示模組100倒置,且藉由耐熱黏著層210將第一相位延遲膜220貼附於第一偏振膜140上,此時第一偏振膜140位於主動元件陣列基板110與第一相位延遲膜220之間,且耐熱黏著層210位於第一偏振膜140與第一相位延遲膜220之間。在本實施例中,耐熱黏著層210的耐熱溫度大於或等於攝氏80度。舉例而言,耐熱黏著層210例如為一無基材雙面膠,且耐熱黏著層210的材質例如為無基材光學膠。此外,在本實施例中,耐熱黏著層210的厚度大於30微米。另外,在本實施例中,當耐熱黏著層210固化後,會實質上呈現透明無色,而適於讓光穿透。再者,在本實施例中,第一相位延遲膜220例如為半波長相位延遲膜,亦即二分之一波片(half-wave plate)。Next, referring to FIG. 1B, a first phase retardation film 220 is attached to the display module 100 by a heat resistant adhesive layer 210. Specifically, the first phase retardation film 220 can be attached to the second polarizing film 150 of the display module 100. However, in another embodiment, the display module 100 can be inverted, and the first phase retardation film 220 is attached to the first polarizing film 140 by the heat resistant adhesive layer 210, and the first polarizing film 140 is actively disposed. The element array substrate 110 is interposed between the first phase retardation film 220 and the heat resistant adhesive layer 210 is located between the first polarizing film 140 and the first phase retardation film 220. In the present embodiment, the heat resistant adhesive layer 210 has a heat resistant temperature greater than or equal to 80 degrees Celsius. For example, the heat resistant adhesive layer 210 is, for example, a substrateless double-sided tape, and the material of the heat-resistant adhesive layer 210 is, for example, a substrate-free optical adhesive. Further, in the present embodiment, the heat-resistant adhesive layer 210 has a thickness of more than 30 μm. In addition, in the present embodiment, when the heat-resistant adhesive layer 210 is cured, it is substantially transparent and colorless, and is suitable for light to pass through. Furthermore, in the present embodiment, the first phase retardation film 220 is, for example, a half-wavelength phase retardation film, that is, a half-wave plate.

之後,請參照圖1C,在利用耐熱黏著層210將第一相位延遲膜220貼附於顯示模組100上之後,對第一相位延遲膜220的部分區域222加熱,以破壞部分區域222的相位延遲特性,其中部分區域222包括間隔配置的複數個子區域224。在本實施例中,這些子區域224呈條紋狀。第一相位延遲膜220內可具有雙折射性材料,材料特性形成快軸和慢軸兩種折射率,相位延遲的關係是由入射光波長與雙折射材料厚度的控制,因此第一相位延遲膜220具有相位延遲的特性。當第一相位延遲膜220的部分區域222被加熱時,會使這些雙折射性材料的相位延遲特性消失,如此一來,部分區域222的相位喪失延遲效果。Thereafter, referring to FIG. 1C, after the first phase retardation film 220 is attached to the display module 100 by the heat resistant adhesive layer 210, the partial region 222 of the first phase retardation film 220 is heated to break the phase of the partial region 222. The delay characteristic, wherein the partial region 222 includes a plurality of sub-regions 224 that are spaced apart. In the present embodiment, these sub-regions 224 are stripe-shaped. The first phase retardation film 220 may have a birefringent material, and the material characteristics form two refractive indexes, a fast axis and a slow axis. The phase retardation relationship is controlled by the wavelength of the incident light and the thickness of the birefringent material, and thus the first phase retardation film 220 has the characteristics of phase delay. When the partial region 222 of the first phase retardation film 220 is heated, the phase retardation characteristics of these birefringent materials are eliminated, and as a result, the phase of the partial region 222 loses the retardation effect.

在本實施例中,對第一相位延遲膜220的部分區域222加熱的步驟包括以雷射光束312加熱部分區域222。然而,在其他實施例中,對第一相位延遲膜220的部分區域222加熱的步驟亦可以是包括熱壓印部分區域222、以熱阻絲加熱部分區域222或是任何可使部分區域222的相位延遲特性喪失的加熱方式。In the present embodiment, the step of heating the partial region 222 of the first phase retardation film 220 includes heating the partial region 222 with the laser beam 312. However, in other embodiments, the step of heating the partial region 222 of the first phase retardation film 220 may also include heating the embossed portion region 222, heating the partial region 222 with the thermal resistance wire, or any portion 222 of the portion 222. A heating method in which the phase delay characteristic is lost.

當將所有的部分區域222加熱完畢後,即是將第一相位延遲膜220圖案化成如圖1D之圖案化相位延遲膜220a,且即形成如圖1D所繪示之立體顯示模組200。立體顯示模組200包括顯示模組100、一圖案化相位延遲膜220a及耐熱黏著層210。圖案化相位延遲膜220a配置於顯示模組100上,其中圖案化相位延遲膜220a包括複數個相位延遲區226及複數個透光區,其中透光區即為被加熱後的子區域224,而相位延遲區226即由原本第一相位延遲膜220之未被加熱的區域所形成。這些相位延遲區226與這些透光區交替配置。換言之,在本實施例中,圖案化相位延遲膜220a即為微相位差膜。耐熱黏著層210配置於顯示模組100與圖案化相位延遲膜220a之間,以將圖案化相位延遲膜220a貼附於顯示模組100上。After all the partial regions 222 are heated, the first phase retardation film 220 is patterned into the patterned phase retardation film 220a as shown in FIG. 1D, and the stereoscopic display module 200 as shown in FIG. 1D is formed. The stereoscopic display module 200 includes a display module 100, a patterned phase retardation film 220a, and a heat resistant adhesive layer 210. The patterned phase retardation film 220a is disposed on the display module 100, wherein the patterned phase retardation film 220a includes a plurality of phase retardation regions 226 and a plurality of light transmission regions, wherein the light transmission region is the heated sub-region 224, and The phase delay region 226 is formed by the unheated region of the original first phase retardation film 220. These phase delay regions 226 are alternately arranged with these light transmitting regions. In other words, in the present embodiment, the patterned phase retardation film 220a is a micro retardation film. The heat resistant adhesive layer 210 is disposed between the display module 100 and the patterned phase retardation film 220a to attach the patterned phase retardation film 220a to the display module 100.

在另一實施例中,若在製作過程中藉由耐熱黏著層210將第一相位延遲膜220貼附於第一偏振膜140上,則圖案化相位延遲膜220a藉由耐熱黏著層210貼附於第一偏振膜140上,亦即第一偏振膜140位於主動元件陣列基板110與圖案化相位延遲膜220a之間,且耐熱黏著層210位於第一偏振膜140與圖案化相位延遲膜220a之間。In another embodiment, if the first phase retardation film 220 is attached to the first polarizing film 140 by the heat resistant adhesive layer 210 during the manufacturing process, the patterned phase retardation film 220a is attached by the heat resistant adhesive layer 210. On the first polarizing film 140, that is, the first polarizing film 140 is located between the active device array substrate 110 and the patterned phase retardation film 220a, and the heat resistant adhesive layer 210 is located between the first polarizing film 140 and the patterned phase retardation film 220a. between.

當立體顯示模組200的一側(例如是靠近第一偏振膜140的一側,即圖1A之下方)設有背光源時,背光源所發出的光會依序通過第一偏振膜140、主動元件陣列基板110、液晶層120、對向基板130及第二偏振膜150,因此由顯示模組100出射的光為偏振光,例如為線偏振光。由顯示模組100出射的部分的光會通過透光區(即被加熱後的子區域224),由於透光區沒有相位延遲的特性,因此這部分的光仍會維持原先的偏振狀態。另一方面,由顯示模組100出射的另一部分的光會通過相位延遲區226,相位延遲區226會改變此另一部分的光的偏振狀態。舉例而言,相位延遲區226例如為半波長相位延遲區,且由顯示模組100出射的光為線偏振光時,相位延遲區226會使此光的線偏振方向旋轉90度。如此一來,通過透光區的光之線偏振方向便會與通過相位延遲區226的光的線偏振方向相差90度。當使用者配戴偏光眼鏡,而此偏光眼鏡的兩片偏光鏡的穿透軸方向相差90度而分別與通過透光區的光之線偏振方向及通過相位延遲區226的線偏振方向對應時,則使用者之左眼與右眼之一會看到來自透光區的光所搭載的影像,而使用者的左眼與右眼之另一則會看到來自相位延遲區226的光所搭載的影像,如此便可在使用者的大腦中產生立體影像。When a side of the stereoscopic display module 200 (for example, a side close to the first polarizing film 140, that is, a lower side of FIG. 1A) is provided with a backlight, the light emitted by the backlight sequentially passes through the first polarizing film 140, Since the active device array substrate 110, the liquid crystal layer 120, the counter substrate 130, and the second polarizing film 150 are polarized light, for example, linearly polarized light. The portion of the light emitted by the display module 100 passes through the light-transmissive region (i.e., the heated sub-region 224). Since the light-transmitting region has no phase delay characteristics, this portion of the light still maintains the original polarization state. On the other hand, another portion of the light emitted by the display module 100 passes through the phase delay region 226, which changes the polarization state of the light of the other portion. For example, the phase delay region 226 is, for example, a half-wavelength phase delay region, and when the light emitted by the display module 100 is linearly polarized light, the phase delay region 226 rotates the linear polarization direction of the light by 90 degrees. As a result, the linear polarization direction of the light passing through the light transmitting region is different from the linear polarization direction of the light passing through the phase retardation region 226 by 90 degrees. When the user wears the polarized glasses, and the two axes of the polarizing glasses have a transmission axis direction that is different by 90 degrees and respectively correspond to the linear polarization direction of the light passing through the light transmitting region and the linear polarization direction of the phase delay region 226. Then, one of the left eye and the right eye of the user will see the image carried by the light from the light transmitting area, and the other of the left eye and the right eye of the user will see the light from the phase delay zone 226. The image so that a stereoscopic image can be produced in the user's brain.

在本實施例之立體顯示模組200的製作方法中,由於第一相位延遲膜220是先貼附於顯示模組100上之後,以影像感測器340(請參照圖2)與顯示模組100的畫素影像作對位(例如是與紅色、綠色或藍色子畫素的影像作對位)之後,才被加熱而圖案化,因此由第一相位延遲膜220所製成的圖案化相位延遲膜220a的透光區及相位延遲區226與顯示模組100的畫素已被對準。換言之,當加熱第一相位延遲模220而形成圖案化相位延遲膜220a的同時,圖案化相位延遲膜220a的透光區及相位延遲區226即已自我對準(self-align)於顯示模組100的畫素。如此一來,立體顯示模組200的製作方法可以不需後續再封裝的步驟,這樣可以簡化立體顯示模組200的製作方法的流程。此外,讓透光區及相位延遲區226自我對準於顯示模組100的畫素的方式可有效降低透光區與相位延遲區226相對於畫素的位置誤差。反之,若是先將第一相位延遲膜220加熱而圖案化成圖案化相位延遲膜220a,然後再將圖案化相位延遲膜220a貼附於顯示模組100上時,則往往因為貼附時會有誤差存在,而使得透光區及相位延遲區226與顯示模組100的畫素之對位精確度降低,且需要有精密的對位系統輔助顯示模組100及圖案化相位延遲膜220a的封裝。In the manufacturing method of the stereoscopic display module 200 of the present embodiment, after the first phase retardation film 220 is attached to the display module 100, the image sensor 340 (refer to FIG. 2) and the display module are used. After the pixel image of 100 is aligned (for example, with respect to the image of the red, green or blue sub-pixel), it is heated and patterned, so the patterned phase delay made by the first phase retardation film 220 The light transmissive region of the film 220a and the phase retardation region 226 are aligned with the pixels of the display module 100. In other words, while the first phase retardation mode 220 is heated to form the patterned phase retardation film 220a, the light transmissive region and the phase retardation region 226 of the patterned phase retardation film 220a are self-aligned to the display module. 100 pixels. In this way, the manufacturing method of the stereoscopic display module 200 can eliminate the step of re-packaging, which can simplify the flow of the manufacturing method of the stereoscopic display module 200. In addition, the manner in which the light transmissive region and the phase retardation region 226 are self-aligned to the pixels of the display module 100 can effectively reduce the positional error of the light transmissive region and the phase retardation region 226 with respect to the pixels. On the other hand, if the first phase retardation film 220 is first heated to be patterned into the patterned phase retardation film 220a, and then the patterned phase retardation film 220a is attached to the display module 100, there is often an error in the attachment. The alignment accuracy of the pixels of the transparent region and the phase delay region 226 and the display module 100 is reduced, and the precision alignment system auxiliary display module 100 and the patterned phase retardation film 220a are required to be packaged.

另一方面,由於第一相位延遲膜220是藉由耐熱黏著層210貼附於顯示模組100上,因此當第一相位延遲膜220受熱時,耐熱黏著層210仍然能夠維持穩定性,而不至於使第一相位延遲膜220從顯示模組100上脫落。On the other hand, since the first phase retardation film 220 is attached to the display module 100 by the heat resistant adhesive layer 210, when the first phase retardation film 220 is heated, the heat resistant adhesive layer 210 can maintain stability without The first phase retardation film 220 is detached from the display module 100.

再者,由於本實施例之立體顯示模組200具有耐熱黏著層210,因此可使立體顯示模組200中的顯示模組100與圖案化相位延遲膜220a的對位較為精準,進而提升立體顯示模組200的顯示品質。In addition, since the stereoscopic display module 200 of the present embodiment has the heat-resistant adhesive layer 210, the alignment between the display module 100 and the patterned phase retardation film 220a in the stereoscopic display module 200 can be accurately adjusted, thereby enhancing the stereoscopic display. The display quality of the module 200.

在本實施例中,可在立體顯示模組200的下方(即第一偏振膜140那一側)設置一背光模組,以提供背光源給立體顯示模組200。如此,立體顯示模組200與背光模組便可形成一立體顯示器。然而,當顯示模組200不是液晶顯示面板,而是螢幕上貼附有偏振膜的電漿顯示面板或有機發光二極體面板等自發光顯示模組時,則顯示模組200下方可以不用設置背光模組。In this embodiment, a backlight module can be disposed under the stereoscopic display module 200 (ie, the side of the first polarizing film 140) to provide a backlight to the stereoscopic display module 200. Thus, the stereoscopic display module 200 and the backlight module can form a stereoscopic display. However, when the display module 200 is not a liquid crystal display panel, but a self-luminous display module such as a plasma display panel or an organic light-emitting diode panel to which a polarizing film is attached on the screen, the display module 200 may not be disposed below. Backlight module.

圖2為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。請參照圖2,在本實施例中,在對第一相位延遲膜220的部分區域222加熱之前且在利用耐熱黏著層210將第一相位延遲膜220貼附於顯示模組100上之後,亦即在圖1B與圖1C這兩個步驟之間,可將顯示模組100與一加熱裝置310對位,其中加熱裝置310用以對部分區域222加熱。在本實施例中,加熱裝置310例如為一雷射產生器,其用以產生雷射光束312。雷射產生器例如為氣體雷射產生器、固態雷射產生器或其他適當的雷射產生器。在其他實施例中,加熱裝置亦可以是一熱壓印器,以熱壓印部分區域222。或者,加熱裝置亦可以是一熱阻絲,以加熱部分區域222。FIG. 2 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention. Referring to FIG. 2, in the present embodiment, after the partial region 222 of the first phase retardation film 220 is heated and after the first phase retardation film 220 is attached to the display module 100 by the heat resistant adhesive layer 210, That is, between the two steps of FIG. 1B and FIG. 1C, the display module 100 can be aligned with a heating device 310 for heating the partial region 222. In the present embodiment, the heating device 310 is, for example, a laser generator for generating a laser beam 312. The laser generator is for example a gas laser generator, a solid state laser generator or other suitable laser generator. In other embodiments, the heating device can also be a hot stamp to thermally emboss the partial region 222. Alternatively, the heating device can also be a thermal resistance wire to heat the partial region 222.

此外,在本實施例中,在將顯示模組100與加熱裝置310對位之前,且在利用耐熱黏著層210將第一相位延遲膜220貼附於顯示模組100上之後,可將顯示模組100粗略固定於一位移控制承載平台320上。In addition, in this embodiment, after the display module 100 is aligned with the heating device 310, and after the first phase retardation film 220 is attached to the display module 100 by using the heat-resistant adhesive layer 210, the display mode can be displayed. The group 100 is roughly fixed to a displacement control carrying platform 320.

在本實施例中,將顯示模組100與加熱裝置310對位的步驟可包括下列步驟。首先,提供一光源330以照亮顯示模組100。在本實施例中,光源330例如為一面光源,以提供背光給顯示模組100。接著,利用至少一影像感測器340定位顯示模組100。影像感測器340可感測顯示模組100的影像,例如是感測顯示模組100的畫素影像,更具體而言例如是感測顯示模組100的紅色、綠色或藍色子畫素的影像。在本實施例中,影像感測器340例如為電荷耦合元件(charge coupled device,CCD),其前方可設置有具放大影像的功能之鏡頭,以將顯示模組100的影像放大而成像於電荷耦合元件上。在其他實施例中,亦可採用互補式金氧半導體感測器(complementary metal oxide semiconductor sensor,CMOS sensor)或其他影像感測器來取代電荷耦合元件。舉例而言,影像感測器340與光源330可分別配置於顯示模組100的相對兩側,因此當光源330開啟時,影像感測器340便可更為容易地感測到顯示模組100的畫素結構,進而根據畫素結構來對顯示模組100定位。或者,在另一實施例中,亦可利用顯示模組100的至少一對位標記160(圖2中是以兩個對位標記為例)來將顯示模組100與加熱裝置310對位。換言之,影像感測器340可感測對位標記160,進而可根據對位標記160來對顯示模組100定位。在其他實施例中,亦可在顯示模組100的四個角落設置對位標記160,以藉此讓顯示模組100與加熱裝置310對位。在本實施例中,可利用影像感測器340定位顯示模組100上的至少二個位置,例如利用圖2所繪示的兩個影像感測器340分別定位顯示模組100上的二個位置,即顯示模組100的左端與右端兩個位置。然而,在其他實施例中,影像感測器340亦可定位顯示模組100上的三個位置,例如定位顯示模組100的左端、右端及上端(即圖2的左側),或者定位顯示模組100的左端、右端與下端(即圖2的右側)。或者,影像感測器340亦可定位顯示模組100上的四個以上的位置。In this embodiment, the step of aligning the display module 100 with the heating device 310 may include the following steps. First, a light source 330 is provided to illuminate the display module 100. In the embodiment, the light source 330 is, for example, a light source to provide backlight to the display module 100. Next, the display module 100 is positioned by at least one image sensor 340. The image sensor 340 can sense the image of the display module 100, for example, the pixel image of the sensing display module 100, and more specifically, for example, the red, green or blue sub-pixel of the sensing display module 100. Image. In this embodiment, the image sensor 340 is, for example, a charge coupled device (CCD), and a lens having a function of magnifying the image may be disposed in front of the image sensor to enlarge the image of the display module 100 and image the charge. On the coupling element. In other embodiments, a complementary metal oxide semiconductor sensor (CMOS sensor) or other image sensor may be used instead of the charge coupled device. For example, the image sensor 340 and the light source 330 can be respectively disposed on opposite sides of the display module 100. Therefore, when the light source 330 is turned on, the image sensor 340 can more easily sense the display module 100. The pixel structure is further positioned by the display module 100 according to the pixel structure. Alternatively, in another embodiment, the display module 100 can be aligned with the heating device 310 by using at least one pair of bit marks 160 of the display module 100 (the two alignment marks are taken as an example in FIG. 2). In other words, the image sensor 340 can sense the alignment mark 160, and thus can position the display module 100 according to the alignment mark 160. In other embodiments, the alignment mark 160 may be disposed at four corners of the display module 100 to thereby align the display module 100 with the heating device 310. In this embodiment, the image sensor 340 can be used to locate at least two positions on the display module 100. For example, two image sensors 340 are used to position two of the display modules 100. The position, that is, the position of the left end and the right end of the display module 100. However, in other embodiments, the image sensor 340 can also position three positions on the display module 100, such as positioning the left end, the right end, and the upper end of the display module 100 (ie, the left side of FIG. 2), or positioning the display mode. The left end, the right end, and the lower end of the group 100 (ie, the right side of Figure 2). Alternatively, the image sensor 340 can also position more than four locations on the display module 100.

在本實施例中,可採用一控制單元350來控制顯示模組100的定位過程。控制單元350電性連接至加熱裝置310、影像感測器340及位移控制承載平台320。在本實施例中,位移控制承載平台320包括一承載平台322及一致動器324。致動器324與承載平台322連接,且致動器324驅使承載平台322移動。此外,在本實施例中,控制單元350電性連接至致動器324。在本實施例中,加熱裝置310例如是沿著一第一方向(例如圖2所繪示的x方向)掃描,而致動器324例如是驅使承載平台322沿著一第二方向(例如圖2所繪示的y方向)移動,其中第一方向(x方向)實質上垂直於第二方向(y方向)。然而,在其他實施例中,亦可以是加熱裝置310可沿著第一方向掃描,且可沿著第二方向移動,而承載平台322則保持不動。或者,亦可以是加熱裝置310保持不動,而承載平台322可沿著第一方向及第二方向移動。在本實施例中,控制單元350可控制承載平台322的移動速度與位移量,因此本實施例之立體顯示模組的製作方法可適用於各種尺寸的立體顯示模組的製作。In this embodiment, a control unit 350 can be used to control the positioning process of the display module 100. The control unit 350 is electrically connected to the heating device 310, the image sensor 340, and the displacement control bearing platform 320. In the present embodiment, the displacement control carrying platform 320 includes a carrying platform 322 and an actuator 324. The actuator 324 is coupled to the carrier platform 322 and the actuator 324 drives the carrier platform 322 to move. Further, in the present embodiment, the control unit 350 is electrically connected to the actuator 324. In the present embodiment, the heating device 310 is scanned, for example, along a first direction (such as the x direction depicted in FIG. 2), and the actuator 324, for example, drives the carrier platform 322 along a second direction (eg, The y direction shown in FIG. 2 moves, wherein the first direction (x direction) is substantially perpendicular to the second direction (y direction). However, in other embodiments, it is also possible that the heating device 310 can scan along the first direction and can move in the second direction while the carrier platform 322 remains stationary. Alternatively, it is also possible that the heating device 310 remains stationary and the carrier platform 322 is movable in the first direction and the second direction. In this embodiment, the control unit 350 can control the moving speed and displacement of the carrying platform 322. Therefore, the manufacturing method of the stereoscopic display module of the present embodiment can be applied to the production of stereoscopic display modules of various sizes.

在本實施例中,將顯示模組100與加熱裝置310對位的步驟包括將影像感測器340所產生的訊號回授至位移控制承載平台320,以使位移控制承載平台320根據訊號來移動,進而將顯示模組100與加熱裝置310對位。舉例而言,控制單元350可根據影像感測器340所傳來的影像訊號來移動位移控制承載平台320。具體而言,控制單元350可藉由判斷影像感測器340所傳來的訊號而得到顯示模組100的位置,進而決定如何控制位移控制承載平台320的移動,以使顯示模組100與加熱裝置310對位。詳細來說,控制單元350發出控制訊號至位移控制承載平台320的致動器324,以命令致動器324將承載平台322驅動至適當的位置。In this embodiment, the step of aligning the display module 100 with the heating device 310 includes feeding back the signal generated by the image sensor 340 to the displacement control carrier platform 320, so that the displacement control carrier platform 320 moves according to the signal. In turn, the display module 100 is aligned with the heating device 310. For example, the control unit 350 can move the displacement control carrier platform 320 according to the image signal transmitted by the image sensor 340. Specifically, the control unit 350 can determine the position of the display module 100 by determining the signal transmitted by the image sensor 340, and then determine how to control the movement of the displacement control carrier platform 320 to make the display module 100 and the heating. Device 310 is aligned. In detail, control unit 350 sends a control signal to actuator 324 of displacement control carrier platform 320 to command actuator 324 to drive carrier platform 322 to the appropriate position.

在本實施例中,立體顯示模組的製作方法可利用一立體顯示模組的製作系統300來執行。製作系統300用以將顯示模組100製成立體顯示模組200。製作系統300包括位移控制承載平台320、加熱裝置310、對位裝置(在本實施例中例如為影像感測器340)及控制單元350。位移控制承載平台320用以承載及移動顯示模組100。加熱裝置310用以對貼附於顯示模組100上的第一相位延遲膜220加熱。對位裝置(例如影像感測器340)用以將顯示模組100與加熱裝置310對位。控制單元350藉由控制位移控制承載平台320及加熱裝置310的相對位置而使加熱裝置310對第一相位延遲膜220的部分區域222加熱。In this embodiment, the method for fabricating the stereoscopic display module can be performed by using the production system 300 of the stereoscopic display module. The production system 300 is used to form the display module 100 into the stereoscopic display module 200. The production system 300 includes a displacement control carrying platform 320, a heating device 310, a registration device (such as image sensor 340 in this embodiment), and a control unit 350. The displacement control carrier platform 320 is used to carry and move the display module 100. The heating device 310 is configured to heat the first phase retardation film 220 attached to the display module 100. A registration device (eg, image sensor 340) is used to align display module 100 with heating device 310. The control unit 350 causes the heating device 310 to heat the partial region 222 of the first phase retardation film 220 by controlling the relative positions of the displacement control carrier platform 320 and the heating device 310.

在本實施例中,由於在加熱裝置310對部分區域222加熱之前,先使加熱裝置310與顯示模組100對位,因此所加熱而成的透光區與相位延遲區226能夠更為精確地與顯示模組100的畫素對位,進而能夠有效改善立體顯示裝置的疊紋(moire)現象,以提升立體顯示裝置的影像品質。In the present embodiment, since the heating device 310 is aligned with the display module 100 before the heating device 310 heats the partial region 222, the heated light transmitting region and the phase retarding region 226 can be more accurately By aligning with the pixels of the display module 100, the moire phenomenon of the stereoscopic display device can be effectively improved to improve the image quality of the stereoscopic display device.

在實施例之立體顯示模組的製作系統300中,由於採用對位裝置以將顯示模組100與加熱裝置310對位,因此第一相位延遲膜220可在貼附於顯示模組100之後再作圖案化的處理,進而使顯示模組100與圖案化相位延遲膜220a的對位更為精準,以提升立體顯示模組200的顯示品質。In the manufacturing system 300 of the stereoscopic display module of the embodiment, since the alignment device is used to align the display module 100 with the heating device 310, the first phase retardation film 220 can be attached to the display module 100. The patterning process further improves the alignment of the display module 100 and the patterned phase retardation film 220a to improve the display quality of the stereoscopic display module 200.

圖3為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。請參照圖3,在本實施例中,可在對第一相位延遲膜220的部分區域222加熱以形成圖案化相位延遲膜220a之後,即在圖1D的步驟之後,在第一相位延遲膜220上貼附一保護層230,亦即在圖案化相位延遲膜220a上貼附保護層230,其中保護層230可用以保護圖案化相位延遲膜220a。在本實施例中,保護層230包括硬膜層、抗反射膜、抗炫光膜、抗油污膜及抗指印膜之至少其中之一。如此,即完成如圖3之立體顯示模組200b。FIG. 3 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention. Referring to FIG. 3, in the present embodiment, after the partial region 222 of the first phase retardation film 220 is heated to form the patterned phase retardation film 220a, that is, after the step of FIG. 1D, the first phase retardation film 220 is formed. A protective layer 230 is attached thereon, that is, a protective layer 230 is attached on the patterned phase retardation film 220a, wherein the protective layer 230 can be used to protect the patterned phase retardation film 220a. In the embodiment, the protective layer 230 includes at least one of a hard coat layer, an anti-reflection film, an anti-glare film, an anti-oil film, and an anti-finger film. Thus, the stereoscopic display module 200b of FIG. 3 is completed.

圖4為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。請參照圖4,在本實施例中,在對第一相位延遲膜220的部分區域222加熱以形成圖案化相位延遲膜220a之後,即在圖1D的步驟之後,可在第一相位延遲膜220上貼附一第二相位延遲膜240,亦即是在圖案化相位延遲膜220a上貼附第二相位延遲膜240。在本實施例中,可利用一黏著層250將第二相位延遲膜240貼附於圖案化相位延遲膜220a上。之後,可在第二相位延遲膜240上形成如圖3之保護層230,以保護第二相位延遲膜240,如此即可形成圖4之立體顯示模組200c。FIG. 4 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention. Referring to FIG. 4, in the present embodiment, after the partial region 222 of the first phase retardation film 220 is heated to form the patterned phase retardation film 220a, that is, after the step of FIG. 1D, the first phase retardation film 220 may be A second phase retardation film 240 is attached to the second phase retardation film 240, that is, the second phase retardation film 240 is attached to the patterned phase retardation film 220a. In the present embodiment, the second phase retardation film 240 may be attached to the patterned phase retardation film 220a by an adhesive layer 250. Thereafter, a protective layer 230 as shown in FIG. 3 can be formed on the second phase retardation film 240 to protect the second phase retardation film 240, so that the stereoscopic display module 200c of FIG. 4 can be formed.

第二相位延遲膜240例如為四分之一波長相位延遲膜。在本實施例中,當來自顯示模組100的光經過圖案化相位延遲膜220a後,會產生兩種線偏振方向互相垂直的光,當經過四分之一波長相位延遲膜之後,可將這兩種線偏振方向互相垂直的光分別轉換成兩種偏振方向不同的圓偏振光,例如左旋偏振與右旋偏振。如此一來,使用者所配戴的偏光眼鏡的兩個鏡片便可以是左旋圓偏振片與右旋圓偏振片,如此仍能夠讓使用者的左眼與右眼分別看到兩種不同的影像,進而在使用者的大腦產生立體影像。由於圖1D之立體顯示模組200是產生兩種線偏振方向互相垂直的光來分別搭載兩種不同的畫面,因此當使用者配戴兩種穿透軸互相垂直的線偏光鏡片但頭部歪斜時,則會使得線偏光鏡片的濾光效果不佳,導致看到立體影像有嚴重的光干擾(Cross-talk)現象。相較之下,由於圖4之立體顯示模組200c是產生兩種圓偏振方向不同的光,使用者所配戴的兩種偏振方向不同的圓偏振鏡片無論是處於何種角度,對圓偏振光的濾光效果都相同,因此即使使用者的頭部歪斜,亦可看到清楚的立體影像。如此一來,便能夠提升使用者觀賞畫面時的舒適度。The second phase retardation film 240 is, for example, a quarter-wave phase retardation film. In this embodiment, when the light from the display module 100 passes through the patterned phase retardation film 220a, two kinds of light having mutually perpendicular directions of linear polarization are generated, and after passing through the quarter-wave phase retardation film, this can be Two kinds of light whose polarization directions are perpendicular to each other are respectively converted into two circularly polarized lights having different polarization directions, such as left-handed polarization and right-handed polarization. In this way, the two lenses of the polarized glasses worn by the user can be a left-handed circular polarizing plate and a right-handed circular polarizing plate, so that the user can see two different images for the left eye and the right eye respectively. And then generate a stereoscopic image in the user's brain. Since the stereoscopic display module 200 of FIG. 1D generates two kinds of light beams having mutually perpendicular polarization directions to respectively carry two different screens, when the user wears two kinds of linear polarized lenses whose transmission axes are perpendicular to each other, the head is skewed. At this time, the filtering effect of the linear polarizing lens is not good, and the stereoscopic image has a serious cross-talk phenomenon. In contrast, since the stereoscopic display module 200c of FIG. 4 generates two kinds of light having different circular polarization directions, the two polarized lenses with different polarization directions worn by the user are at any angle and circular polarization. The light filtering effect is the same, so even if the user's head is skewed, a clear stereoscopic image can be seen. In this way, the user's comfort when viewing the picture can be improved.

圖5為繪示本發明之另一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。請參照圖5,本實施例之立體顯示模組的製作方法類似於圖2之立體顯示模組的製作方法,而兩者的差異如下所述。本實施例不是採用如圖2之利用影像感測器340的對位方式,取而代之的是,在本實施例中,將顯示模組100與加熱裝置310對位的步驟包括將顯示模組100承靠於一承載平台322d的一精密承靠面323d上。當顯示模組100精密承靠於精密承靠面323d時,即完成顯示模組100與加熱裝置310的對位,這是因承載平台322d及精密承靠面323d與加熱裝置310在整個系統中原本就已對位好,因此只要顯示模組100與精密承靠面323d對位好,即完成顯示模組100與加熱裝置310的對位。換言之,在本實施例中,對位裝置為位移控制承載平台320上的精密承靠面323d。FIG. 5 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to another embodiment of the present invention. Referring to FIG. 5, the manufacturing method of the stereoscopic display module of this embodiment is similar to the manufacturing method of the stereoscopic display module of FIG. 2, and the difference between the two is as follows. In this embodiment, instead of using the image sensor 340 as shown in FIG. 2, in the embodiment, the step of aligning the display module 100 with the heating device 310 includes replacing the display module 100. It is placed on a precision bearing surface 323d of a carrying platform 322d. When the display module 100 is accurately supported by the precision bearing surface 323d, the alignment between the display module 100 and the heating device 310 is completed, because the bearing platform 322d and the precision bearing surface 323d and the heating device 310 are in the whole system. Originally, the alignment of the display module 100 and the heating device 310 is completed as long as the display module 100 is aligned with the precision bearing surface 323d. In other words, in the present embodiment, the alignment device is the precision bearing surface 323d on the displacement control carrying platform 320.

綜上所述,在本發明之實施例之立體顯示模組的製作方法中,由於第一相位延遲膜是先貼附於顯示模組上之後,才被加熱而圖案化,因此由第一相位延遲膜所製成的圖案化相位延遲膜的透光區及相位延遲區在加熱時可與顯示模組的畫素自我對準,進而提升立體顯示模組的顯示品質,且能夠簡化立體顯示模組的製作流程。由於本發明之實施例之立體顯示模組具有耐熱黏著層,因此可使立體顯示模組中的顯示模組在進行相位延遲膜加熱過程不會破壞顯示模組的結構,進而提升立體顯示模組的顯示品質。在本發明之實施例之立體顯示模組的製作系統中,由於採用對位裝置以將顯示模組與加熱裝置對位,因此第一相位延遲膜可在貼附於顯示模組之後再作圖案化的處理,進而使顯示模組與圖案化相位延遲膜的對位更為精準,而提升立體顯示模組的顯示品質。In summary, in the method for fabricating the stereoscopic display module according to the embodiment of the present invention, since the first phase retardation film is first attached to the display module, it is heated and patterned, and thus the first phase is The light-transmissive region and the phase retardation region of the patterned phase retardation film made of the retardation film can self-align with the pixels of the display module when heated, thereby improving the display quality of the stereoscopic display module and simplifying the stereoscopic display mode. The production process of the group. Since the stereoscopic display module of the embodiment of the present invention has a heat-resistant adhesive layer, the display module in the stereoscopic display module can not damage the structure of the display module during the phase delay film heating process, thereby improving the stereoscopic display module. Display quality. In the manufacturing system of the stereoscopic display module according to the embodiment of the present invention, since the alignment device is used to align the display module with the heating device, the first phase retardation film can be patterned after being attached to the display module. The processing further improves the alignment of the display module and the patterned phase retardation film, and improves the display quality of the stereoscopic display module.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...顯示模組100. . . Display module

110...主動元件陣列基板110. . . Active device array substrate

120...液晶層120. . . Liquid crystal layer

130...對向基板130. . . Counter substrate

140...第一偏振膜140. . . First polarizing film

150...第二偏振膜150. . . Second polarizing film

160...對位標記160. . . Alignment mark

200、200b、200c...立體顯示模組200, 200b, 200c. . . Stereo display module

210...耐熱黏著層210. . . Heat resistant adhesive layer

220...第一相位延遲膜220. . . First phase retardation film

220a...圖案化相位延遲膜220a. . . Patterned phase retardation film

222...部分區域222. . . partial area

224...子區域224. . . Subregion

226...相位延遲區226. . . Phase delay zone

230...保護層230. . . The protective layer

240...第二相位延遲膜240. . . Second phase retardation film

250...黏著層250. . . Adhesive layer

300...製作系統300. . . Production system

310...加熱裝置310. . . heating equipment

312...雷射光束312. . . Laser beam

320...位移控制承載平台320. . . Displacement control bearing platform

322、322d...承載平台322, 322d. . . Carrier platform

323d...精密承靠面323d. . . Precision bearing surface

324...致動器324. . . Actuator

330...光源330. . . light source

340...影像感測器340. . . Image sensor

350...控制單元350. . . control unit

x...方向x. . . direction

y...方向y. . . direction

圖1A至圖1D為繪示本發明之一實施例之立體顯示模組的製作方法的流程之示意圖。1A to 1D are schematic diagrams showing the flow of a method for fabricating a stereoscopic display module according to an embodiment of the present invention.

圖2為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。FIG. 2 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention.

圖3為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。FIG. 3 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention.

圖4為繪示本發明之一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。FIG. 4 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to an embodiment of the present invention.

圖5為繪示本發明之另一實施例之立體顯示模組的製作方法的其中一個步驟的示意圖。FIG. 5 is a schematic diagram showing one step of a method for fabricating a stereoscopic display module according to another embodiment of the present invention.

100...顯示模組100. . . Display module

110...主動元件陣列基板110. . . Active device array substrate

120...液晶層120. . . Liquid crystal layer

130...對向基板130. . . Counter substrate

140...第一偏振膜140. . . First polarizing film

150...第二偏振膜150. . . Second polarizing film

210...耐熱黏著層210. . . Heat resistant adhesive layer

220...第一相位延遲膜220. . . First phase retardation film

222...部分區域222. . . partial area

224...子區域224. . . Subregion

226...相位延遲區226. . . Phase delay zone

310...加熱裝置310. . . heating equipment

312...雷射光束312. . . Laser beam

Claims (37)

一種立體顯示模組的製作方法,包括:提供一顯示模組;利用一耐熱黏著層將一第一相位延遲膜貼附於該顯示模組上;以及在利用該耐熱黏著層將該第一相位延遲膜貼附於該顯示模組上之後,對該第一相位延遲膜的部分區域加熱,以破壞該部分區域的相位延遲特性,其中該部分區域包括間隔配置的複數個子區域。A method for manufacturing a stereoscopic display module, comprising: providing a display module; attaching a first phase retardation film to the display module by using a heat resistant adhesive layer; and using the heat resistant adhesive layer to form the first phase After the retardation film is attached to the display module, a partial region of the first phase retardation film is heated to destroy phase retardation characteristics of the partial region, wherein the partial region includes a plurality of sub-regions arranged at intervals. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中對該第一相位延遲膜的該部分區域加熱的步驟包括以雷射光束加熱該部分區域、熱壓印該部分區域或以熱阻絲加熱該部分區域。The method of manufacturing the stereoscopic display module of claim 1, wherein the step of heating the partial region of the first phase retardation film comprises heating the partial region with a laser beam, thermally imprinting the portion of the region, or The partial area is heated by a thermal resistance wire. 如申請專利範圍第1項所述之立體顯示模組的製作方法,更包括:在對該第一相位延遲膜的該部分區域加熱之前且在利用該耐熱黏著層將該第一相位延遲膜貼附於該顯示模組上之後,將該顯示模組與一加熱裝置對位,其中該加熱裝置用以對該部分區域加熱。The method for fabricating a stereoscopic display module according to claim 1, further comprising: pasting the first phase retardation film with the heat resistant adhesive layer before heating the partial region of the first phase retardation film After being attached to the display module, the display module is aligned with a heating device, wherein the heating device is used to heat the partial region. 如申請專利範圍第3項所述之立體顯示模組的製作方法,其中將該顯示模組與該加熱裝置對位的步驟包括:提供一光源以照亮該顯示模組;以及利用至少一影像感測器定位該顯示模組。The method for manufacturing a stereoscopic display module according to claim 3, wherein the step of aligning the display module with the heating device comprises: providing a light source to illuminate the display module; and utilizing at least one image The sensor positions the display module. 如申請專利範圍第4項所述之立體顯示模組的製作方法,更包括利用該影像感測器定位該顯示模組上的至少二個位置。The method for fabricating the stereoscopic display module of claim 4, further comprising positioning the at least two locations on the display module by using the image sensor. 如申請專利範圍第5項所述之立體顯示模組的製作方法,更包括:在將該顯示模組與該加熱裝置對位之前,且在利用該耐熱黏著層將該第一相位延遲膜貼附於該顯示模組上之後,將該顯示模組粗略固定於一位移控制承載平台上。The method for manufacturing a stereoscopic display module according to claim 5, further comprising: before the display module is aligned with the heating device, and applying the first phase retardation film by using the heat resistant adhesive layer After being attached to the display module, the display module is roughly fixed on a displacement control bearing platform. 如申請專利範圍第6項所述之立體顯示模組的製作方法,其中將該顯示模組與該加熱裝置對位的步驟包括:將該影像感測器所產生的訊號回授至該位移控制承載平台,以使該位移控制承載平台根據該訊號來移動,進而將該顯示模組與該加熱裝置對位。The method for manufacturing a stereoscopic display module according to claim 6, wherein the step of aligning the display module with the heating device comprises: feeding back the signal generated by the image sensor to the displacement control The platform is supported such that the displacement control carrier moves according to the signal, and the display module is aligned with the heating device. 如申請專利範圍第3項所述之立體顯示模組的製作方法,其中將該顯示模組與該加熱裝置對位的步驟包括將該顯示模組承靠於一承載平台的一精密承靠面上。The method for manufacturing a stereoscopic display module according to claim 3, wherein the step of aligning the display module with the heating device comprises supporting the display module against a precision bearing surface of a carrying platform on. 如申請專利範圍第3項所述之立體顯示模組的製作方法,其中將該顯示模組與該加熱裝置對位的步驟包括利用該顯示模組上的對位標記來將該顯示模組與該加熱裝置對位。The method for manufacturing a stereoscopic display module according to claim 3, wherein the step of aligning the display module with the heating device comprises using the alignment mark on the display module to display the display module with The heating device is in position. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該第一相位延遲膜為一半波長相位延遲膜。The method of fabricating a stereoscopic display module according to claim 1, wherein the first phase retardation film is a half-wavelength phase retardation film. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該顯示模組為一液晶顯示面板。The method for manufacturing a stereoscopic display module according to claim 1, wherein the display module is a liquid crystal display panel. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該些子區域呈條紋狀。The method for fabricating a stereoscopic display module according to claim 1, wherein the sub-regions are stripe-shaped. 如申請專利範圍第1項所述之立體顯示模組的製作方法,更包括:在對該第一相位延遲膜的該部分區域加熱後,在該第一相位延遲膜上貼附一保護層。The method for fabricating a stereoscopic display module according to claim 1, further comprising: after heating the partial region of the first phase retardation film, attaching a protective layer to the first phase retardation film. 如申請專利範圍第13項所述之立體顯示模組的製作方法,其中該保護層包括硬膜層、抗反射膜、抗炫光膜、抗油污膜及抗指印膜之至少其中之一。The method for manufacturing a stereoscopic display module according to claim 13, wherein the protective layer comprises at least one of a hard coat layer, an anti-reflection film, an anti-glare film, an anti-oil film, and an anti-finger film. 如申請專利範圍第1項所述之立體顯示模組的製作方法,更包括:在對該第一相位延遲膜的該部分區域加熱後,在該第一相位延遲膜上貼附一第二相位延遲膜。The method for fabricating a stereoscopic display module according to claim 1, further comprising: attaching a second phase to the first phase retardation film after heating the partial region of the first phase retardation film Delayed film. 如申請專利範圍第15項所述之立體顯示模組的製作方法,其中該第二相位延遲膜為四分之一波長相位延遲膜。The method of fabricating a stereoscopic display module according to claim 15, wherein the second phase retardation film is a quarter-wave phase retardation film. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該耐熱黏著層的厚度大於30微米。The method for fabricating a stereoscopic display module according to claim 1, wherein the heat resistant adhesive layer has a thickness greater than 30 micrometers. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該耐熱黏著層的耐熱溫度大於或等於攝氏80度。The method for fabricating a stereoscopic display module according to claim 1, wherein the heat resistant adhesive layer has a heat resistance temperature greater than or equal to 80 degrees Celsius. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該顯示模組包括一主動元件陣列基板、一液晶層、一對向基板、一第一偏振膜及一第二偏振膜,該液晶層配置於該主動元件陣列基板與該對向基板之間,該主動元件陣列基板配置於該第一偏振膜與該液晶層之間,該對向基板配置於該第二偏振膜與該液晶層之間,且利用該耐熱黏著層將該第一相位延遲膜貼附於該顯示模組上的步驟為藉由該耐熱黏著層將該第一相位延遲膜貼附於該第二偏振膜上。The method of manufacturing the stereoscopic display module of claim 1, wherein the display module comprises an active device array substrate, a liquid crystal layer, a pair of substrates, a first polarizing film and a second polarizing film. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate, the active device array substrate is disposed between the first polarizing film and the liquid crystal layer, and the opposite substrate is disposed on the second polarizing film Between the liquid crystal layers, the step of attaching the first phase retardation film to the display module by using the heat resistant adhesive layer, the first phase retardation film is attached to the second polarization by the heat resistant adhesive layer On the membrane. 如申請專利範圍第1項所述之立體顯示模組的製作方法,其中該顯示模組包括一主動元件陣列基板、一液晶層、一對向基板、一第一偏振膜及一第二偏振膜,該液晶層配置於該主動元件陣列基板與該對向基板之間,該主動元件陣列基板配置於該第一偏振膜與該液晶層之間,該對向基板配置於該第二偏振膜與該液晶層之間,且利用該耐熱黏著層將該第一相位延遲膜貼附於該顯示模組上的步驟為藉由該耐熱黏著層將該第一相位延遲膜貼附於該第一偏振膜上。The method of manufacturing the stereoscopic display module of claim 1, wherein the display module comprises an active device array substrate, a liquid crystal layer, a pair of substrates, a first polarizing film and a second polarizing film. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate, the active device array substrate is disposed between the first polarizing film and the liquid crystal layer, and the opposite substrate is disposed on the second polarizing film Between the liquid crystal layers, the step of attaching the first phase retardation film to the display module by using the heat resistant adhesive layer, the first phase retardation film is attached to the first polarization by the heat resistant adhesive layer On the membrane. 一種立體顯示模組,包括:一顯示模組;一圖案化相位延遲膜,配置於該顯示模組上,其中該圖案化相位延遲膜包括複數個相位延遲區及複數個透光區,且該些相位延遲區與該些透光區交替配置;以及一耐熱黏著層,配置於該顯示模組與該圖案化相位延遲膜之間,以將該圖案化相位延遲膜貼附於該顯示模組上。A stereoscopic display module includes: a display module; a patterned phase retardation film disposed on the display module, wherein the patterned phase retardation film includes a plurality of phase delay regions and a plurality of light transmissive regions, and the The phase retardation region is alternately disposed with the light-transmissive regions; and a heat-resistant adhesive layer is disposed between the display module and the patterned phase retardation film to attach the patterned phase retardation film to the display module on. 如申請專利範圍第21項所述之立體顯示模組,更包括一保護層,配置於該圖案化相位延遲膜上。The stereoscopic display module of claim 21, further comprising a protective layer disposed on the patterned phase retardation film. 如申請專利範圍第22項所述之立體顯示模組,其中該保護層包括硬膜層、抗反射膜、抗炫光膜、抗油污膜及抗指印膜之至少其中之一。The stereoscopic display module of claim 22, wherein the protective layer comprises at least one of a hard coat layer, an anti-reflection film, an anti-glare film, an anti-oil film, and an anti-finger film. 如申請專利範圍第21項所述之立體顯示模組,更包括一相位延遲膜,配置於該圖案化相位延遲膜上。The stereoscopic display module of claim 21, further comprising a phase retardation film disposed on the patterned phase retardation film. 如申請專利範圍第24項所述之立體顯示模組,其中該配置於該圖案化相位延遲膜上之相位延遲膜為四分之一波長相位延遲膜。The stereoscopic display module of claim 24, wherein the phase retardation film disposed on the patterned phase retardation film is a quarter-wave phase retardation film. 如申請專利範圍第21項所述之立體顯示模組,其中該圖案化相位延遲膜所包括的該些相位延遲區為半波長相位延遲區。The stereoscopic display module of claim 21, wherein the phase retardation regions included in the patterned phase retardation film are half-wavelength phase delay regions. 如申請專利範圍第21項所述之立體顯示模組,其中該耐熱黏著層的厚度大於30微米。The stereoscopic display module of claim 21, wherein the heat resistant adhesive layer has a thickness greater than 30 micrometers. 如申請專利範圍第21項所述之立體顯示模組,其中該耐熱黏著層的耐熱溫度大於或等於攝氏80度。The stereoscopic display module of claim 21, wherein the heat resistant adhesive layer has a heat resistance temperature greater than or equal to 80 degrees Celsius. 如申請專利範圍第21項所述之立體顯示模組,其中該顯示模組為一液晶顯示面板。The stereoscopic display module of claim 21, wherein the display module is a liquid crystal display panel. 如申請專利範圍第21項所述之立體顯示模組,其中該顯示模組包括一主動元件陣列基板、一液晶層、一對向基板、一第一偏振膜及一第二偏振膜,該液晶層配置於該主動元件陣列基板與該對向基板之間,該主動元件陣列基板配置於該第一偏振膜與該液晶層之間,該對向基板配置於該第二偏振膜與該液晶層之間,且該圖案化相位延遲膜藉由該耐熱黏著層貼附於該第二偏振膜上。The stereoscopic display module of claim 21, wherein the display module comprises an active device array substrate, a liquid crystal layer, a pair of substrates, a first polarizing film and a second polarizing film, the liquid crystal The layer is disposed between the active device array substrate and the opposite substrate, the active device array substrate is disposed between the first polarizing film and the liquid crystal layer, and the opposite substrate is disposed on the second polarizing film and the liquid crystal layer And the patterned phase retardation film is attached to the second polarizing film by the heat resistant adhesive layer. 如申請專利範圍第21項所述之立體顯示模組,其中該顯示模組包括一主動元件陣列基板、一液晶層、一對向基板、一第一偏振膜及一第二偏振膜,該液晶層配置於該主動元件陣列基板與該對向基板之間,該主動元件陣列基板配置於該第一偏振膜與該液晶層之間,該對向基板配置於該第二偏振膜與該液晶層之間,且該圖案化相位延遲膜藉由該耐熱黏著層貼附於該第一偏振膜上。The stereoscopic display module of claim 21, wherein the display module comprises an active device array substrate, a liquid crystal layer, a pair of substrates, a first polarizing film and a second polarizing film, the liquid crystal The layer is disposed between the active device array substrate and the opposite substrate, the active device array substrate is disposed between the first polarizing film and the liquid crystal layer, and the opposite substrate is disposed on the second polarizing film and the liquid crystal layer And the patterned phase retardation film is attached to the first polarizing film by the heat resistant adhesive layer. 一種立體顯示模組的製作系統,用以將一顯示模組製成一立體顯示模組,該立體顯示模組的製作系統包括:一位移控制承載平台,用以承載及移動該顯示模組;一加熱裝置,用以對貼附於該顯示模組上的一相位延遲膜加熱;一對位裝置,用以將該顯示模組與該加熱裝置對位;以及一控制單元,藉由控制該位移控制承載平台及該加熱裝置的相對位置而使該加熱裝置對該相位延遲膜的部分區域加熱,其中該部分區域包括間隔配置的複數個子區域。A stereoscopic display module manufacturing system for forming a display module into a stereoscopic display module, the stereoscopic display module manufacturing system comprising: a displacement control bearing platform for carrying and moving the display module; a heating device for heating a phase retardation film attached to the display module; a pair of bit devices for aligning the display module with the heating device; and a control unit for controlling the Displacement controls the relative position of the load bearing platform and the heating device such that the heating device heats a portion of the phase retardation film, wherein the partial region includes a plurality of sub-regions spaced apart. 如申請專利範圍第32項所述之立體顯示模組的製作系統,其中該加熱裝置為雷射產生器、熱阻絲或熱壓印器。The manufacturing system of the stereoscopic display module according to claim 32, wherein the heating device is a laser generator, a thermal resistance wire or a hot stamp. 如申請專利範圍第32項所述之立體顯示模組的製作系統,其中該對位裝置包括一影像感測器,用以感測該顯示模組的畫素影像。The system for manufacturing a stereoscopic display module according to claim 32, wherein the alignment device comprises an image sensor for sensing a pixel image of the display module. 如申請專利範圍第34項所述之立體顯示模組的製作系統,其中該控制單元根據該影像感測器所傳來的影像訊號來移動該位移控制承載平台。The manufacturing system of the stereoscopic display module of claim 34, wherein the control unit moves the displacement control carrier platform according to the image signal transmitted by the image sensor. 如申請專利範圍第34項所述之立體顯示模組的製作系統,其中該顯示模組具有至少一對位標記,且該影像感測器用以感測該對位標記。The system for manufacturing a stereoscopic display module according to claim 34, wherein the display module has at least one pair of bit marks, and the image sensor is configured to sense the alignment mark. 如申請專利範圍第32項所述之立體顯示模組的製作系統,其中該對位裝置為該位移控制承載平台上的一精密承靠面,且當該顯示模組承靠於該精密承靠面時即完成該顯示模組與該加熱裝置的對位。The manufacturing system of the stereoscopic display module according to claim 32, wherein the alignment device is a precision bearing surface on the displacement control bearing platform, and when the display module bears against the precision bearing The alignment of the display module with the heating device is completed.
TW100138921A 2011-02-01 2011-10-26 Stereoscopic display module, manufacture method thereof, and manufacture system thereof TWI432783B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/363,388 US8520176B2 (en) 2011-02-01 2012-02-01 Stereoscopic display module, method for manufacturing the same and manufacturing system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161438262P 2011-02-01 2011-02-01

Publications (2)

Publication Number Publication Date
TW201234049A TW201234049A (en) 2012-08-16
TWI432783B true TWI432783B (en) 2014-04-01

Family

ID=46587284

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138921A TWI432783B (en) 2011-02-01 2011-10-26 Stereoscopic display module, manufacture method thereof, and manufacture system thereof

Country Status (2)

Country Link
CN (1) CN102628998A (en)
TW (1) TWI432783B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197536B1 (en) * 2014-08-18 2020-12-31 엘지디스플레이 주식회사 3d display device for reducing moving flicker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055103A (en) * 1997-06-28 2000-04-25 Sharp Kabushiki Kaisha Passive polarisation modulating optical element and method of making such an element
TW473654B (en) * 1999-12-24 2002-01-21 Ind Tech Res Inst Micro-retarder
CN101183177A (en) * 2007-12-13 2008-05-21 友达光电股份有限公司 Steroscopic display and manufacturing method thereof
TWI413801B (en) * 2008-01-04 2013-11-01 Ind Tech Res Inst System for manufacturing micro-retarder and method for manufacturing the same
KR100939214B1 (en) * 2008-06-12 2010-01-28 엘지디스플레이 주식회사 Systme and method for aligning 3 dimension image display
CN101290370B (en) * 2008-06-13 2011-05-11 友达光电股份有限公司 Phase difference film and preparation method for stereo developing LCD employing same
CN101819328B (en) * 2010-04-30 2012-01-25 友达光电股份有限公司 Stereoscopic display

Also Published As

Publication number Publication date
TW201234049A (en) 2012-08-16
CN102628998A (en) 2012-08-08

Similar Documents

Publication Publication Date Title
TWI381191B (en) Three-dimensional display device and fabricating method thereof
US6498679B2 (en) Micro-retarder plate
US8228449B2 (en) 3D glasses for stereoscopic display device and stereoscopic display device including the same
WO2015027603A1 (en) Array substrate and manufacturing method thereof, and 3d display device
JPH10253824A (en) Optical element and manufacture therefor and image display device using the same
JP2011137853A (en) Retardation plate for stereoscopic image display, polarizing element, and method for producing them, and stereoscopic image display device
US8520176B2 (en) Stereoscopic display module, method for manufacturing the same and manufacturing system thereof
JP5793746B2 (en) Micro retarder film
JP6004157B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional liquid crystal display device
EP3505992B1 (en) Display device having an eyepiece
KR101772505B1 (en) Optical plate, method of manufacturing the optical plate. display device and method of manufacturing the display device
JP3901970B2 (en) Plate filter, display device, filter alignment method, and filter alignment device
WO2013143325A1 (en) 3d display and manufacturing method therefor
TWI432783B (en) Stereoscopic display module, manufacture method thereof, and manufacture system thereof
JP2007072476A (en) Method for producing substrate with parallax barrier layer
US20160246067A1 (en) Method for manufacturing pattern retarder
JP5953071B2 (en) Polarizing film laminating device
KR20130051706A (en) Stereoscopic image display and method for manufacturing of the same
US11340474B2 (en) Integrated display panel, manufacturing method thereof, and display device
KR101659333B1 (en) System for measuring total-pitch of optical film thereof
US20090103019A1 (en) Color filter substrate and fabricating method thereof and liquid crystal display panel
KR101706579B1 (en) Method of fabricating retarder for image display device
KR101987188B1 (en) Three-dimensional image Display
JP6110667B2 (en) 3D image display device
TW201109788A (en) Filter unit and its related manufacturing method, and display panel and display apparatus thereof