TWI429901B - Method and system for defect detection of 3d optical film - Google Patents
Method and system for defect detection of 3d optical film Download PDFInfo
- Publication number
- TWI429901B TWI429901B TW100119964A TW100119964A TWI429901B TW I429901 B TWI429901 B TW I429901B TW 100119964 A TW100119964 A TW 100119964A TW 100119964 A TW100119964 A TW 100119964A TW I429901 B TWI429901 B TW I429901B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- training
- region
- detected
- detection parameter
- Prior art date
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本發明是有關於一種自動光學檢測方法(Automated Optical Inspection,AOI),特別是指一種三維光學膜(3D optical film)的瑕疵(defect)檢測方法及系統。The present invention relates to an automated optical inspection (AOI), and more particularly to a method and system for detecting defects of a 3D optical film.
現有的光學膜瑕疵檢測技術,多半是針對表面不具紋理(texture)特性之產品進行檢測。請參閱圖1,以表面不具紋理特性之偏光片(polarized film)為例,根據偏光片分別對應的影像11、12在色彩空間(color space)上的特性,即可直接判斷出何者具有瑕疵;進一步來說,顏色變異微小的該影像11所對應的偏光片為無瑕疵(defect-free)的偏光片,顏色變異較大的該影像12所對應的偏光片為具有瑕疵的偏光片。The existing optical film detection technology is mostly for detecting products whose surface has no texture characteristics. Referring to FIG. 1 , taking a polarized film having no surface texture as an example, according to the characteristics of the color images of the corresponding images 11 and 12 of the polarizer, it is possible to directly determine which one has flaws; Further, the polarizer corresponding to the image 11 having a small color variation is a defect-free polarizer, and the polarizer corresponding to the image 12 having a large color variation is a polarizer having a flaw.
然而,三維光學膜屬於表面具有結構性紋理之產品,故無法利用其對應的影像在色彩空間上的特性來進行瑕疵檢測。However, the three-dimensional optical film belongs to a product having a structural texture on the surface, and therefore it is impossible to perform flaw detection using the characteristics of its corresponding image in the color space.
因此,本發明之目的,即在提供一種三維光學膜的瑕疵檢測方法。Accordingly, it is an object of the present invention to provide a flaw detection method for a three-dimensional optical film.
於是,本發明三維光學膜的瑕疵檢測方法,係利用一個處理單元配合一個影像擷取單元來執行,該影像擷取單元用以擷取對應於一個待檢測的三維光學膜的一個待檢測影像;該方法包含下列步驟:Therefore, the method for detecting the flaw of the three-dimensional optical film of the present invention is performed by using a processing unit and an image capturing unit for capturing a to-be-detected image corresponding to a three-dimensional optical film to be detected; The method consists of the following steps:
(A)接收該待檢測影像;(A) receiving the image to be detected;
(B)根據該待檢測影像中的至少一個區域,求得該區域於一個第一方向上的複數個第一投影量;(B) determining, according to at least one region of the image to be detected, a plurality of first projection amounts of the region in a first direction;
(C)根據步驟(B)所求得之該區域的該等第一投影量,求得對應於該區域的一個第一瑕疵檢測參數;(C) determining, according to the first projection amount of the region obtained in the step (B), a first detection parameter corresponding to the region;
(D)根據步驟(C)所求得之對應於該區域的該第一瑕疵檢測參數,判斷該待檢測影像中的該區域是否具有瑕疵;及(D) determining, according to the first detection parameter corresponding to the region, the step (C), determining whether the region in the image to be detected has flaws;
(E)輸出步驟(D)的判斷結果。(E) Output the judgment result of the step (D).
本發明之另一目的,即在提供一種三維光學膜的瑕疵檢測系統。Another object of the present invention is to provide a flaw detection system for a three-dimensional optical film.
於是,本發明三維光學膜的瑕疵檢測系統包含一個影像擷取單元,及一個處理單元。該影像擷取單元用以擷取對應於一個待檢測的三維光學膜的一個待檢測影像。該處理單元用以進行:接收該待檢測影像;根據該待檢測影像中的至少一個區域,求得該區域於一個第一方向上的複數個第一投影量;根據該區域的該等第一投影量,求得對應於該區域的一個第一瑕疵檢測參數;及根據對應於該區域的該第一瑕疵檢測參數,判斷該待檢測影像中的該區域是否具有瑕疵,並輸出判斷結果。Thus, the flaw detection system of the three-dimensional optical film of the present invention comprises an image capture unit and a processing unit. The image capturing unit is configured to capture a to-be-detected image corresponding to a three-dimensional optical film to be detected. The processing unit is configured to: receive the image to be detected; and determine, according to at least one region of the image to be detected, a plurality of first projection amounts of the region in a first direction; according to the first of the regions Deriving a first 瑕疵 detection parameter corresponding to the area; and determining whether the area in the image to be detected has 瑕疵 according to the first 瑕疵 detection parameter corresponding to the area, and outputting the determination result.
本發明之功效在於:藉由根據待檢測影像中的該區域的該等第一投影量所求得的該第一瑕疵檢測參數,可對具有紋理特性的三維光學膜進行瑕疵檢測。The invention has the effect that the three-dimensional optical film having the texture property can be detected by the first flaw detection parameter obtained from the first projection amount of the region in the image to be detected.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.
參閱圖2,本發明三維光學膜的瑕疵檢測系統2之較佳實施例包含一個光學鏡頭21、一個影像擷取單元22,及一個處理單元23。其中,該影像擷取單元22用以擷取對應於該光學鏡頭21下的一個三維光學膜的一個影像;該處理單元23用以根據對應於該三維光學膜的該影像進行瑕疵檢測。Referring to FIG. 2, a preferred embodiment of the flaw detection system 2 of the three-dimensional optical film of the present invention comprises an optical lens 21, an image capture unit 22, and a processing unit 23. The image capturing unit 22 is configured to capture an image corresponding to a three-dimensional optical film under the optical lens 21; the processing unit 23 is configured to perform flaw detection according to the image corresponding to the three-dimensional optical film.
以下配合本發明三維光學膜的瑕疵檢測方法的一個較佳實施例,說明該處理單元23所執行的步驟。其中,該三維光學膜的瑕疵檢測方法分為系統初始化階段,及系統檢測階段。The steps performed by the processing unit 23 will be described below in conjunction with a preferred embodiment of the method for detecting flaws in the three-dimensional optical film of the present invention. The detection method of the three-dimensional optical film is divided into a system initialization phase and a system detection phase.
首先,參閱圖2~圖5,該影像擷取單元22擷取對應於一個無瑕疵的三維光學膜的一個第一訓練(training)影像31,其中,該第一訓練影像31具有如圖3所示的結構性紋理特性。First, referring to FIG. 2 to FIG. 5, the image capturing unit 22 captures a first training image 31 corresponding to a flawless three-dimensional optical film, wherein the first training image 31 has the same as shown in FIG. The structural texture properties shown.
繼而,該處理單元23執行以下步驟,以得到一個最適區域大小(size)。Then, the processing unit 23 performs the following steps to obtain an optimum area size.
在步驟41中,該處理單元23接收該第一訓練影像31。In step 41, the processing unit 23 receives the first training image 31.
在步驟42中,該處理單元23將該第一訓練影像31進行二值化處理(thresholding),以得到二值化的該第一訓練影像31,其中,二值化的該第一訓練影像31為一個二元(binary)影像。In step 42, the processing unit 23 performs a binarization process on the first training image 31 to obtain the binarized first training image 31, wherein the first training image 31 is binarized. Is a binary image.
在步驟43中,該處理單元23根據二值化的該第一訓練影像31,求得至少一個水平紋理週期,及至少一個垂直紋理週期。In step 43, the processing unit 23 obtains at least one horizontal texture period and at least one vertical texture period based on the binarized first training image 31.
該水平紋理週期及該垂直紋理週期配合圖5所示的一個二元範例影像51進一步說明如後;其中,該二元範例影像51包括其二元值為0的複數個畫素(pixel)511,及其二元值為1的複數個畫素512。在本較佳實施例中,該處理單元23係根據式子(1)~(2)的計算結果,以得到該水平紋理週期及該垂直紋理週期。The horizontal texture period and the vertical texture period are further described in conjunction with a binary example image 51 shown in FIG. 5; wherein the binary example image 51 includes a plurality of pixels 511 whose binary value is 0. And a plurality of pixels 512 whose binary value is 1. In the preferred embodiment, the processing unit 23 obtains the horizontal texture period and the vertical texture period according to the calculation results of the equations (1) to (2).
令該二元範例影像51的大小以m ×n 表示;且令該二元範例影像51中每一個畫素511、512的二維座標以(x ,y )表示其中,該二元範例影像51中最左上角的畫素511的二維座標為(1,1),最右下角的畫素511的二維座標為(m ,n );P (x ,y )代表其二維座標為(x ,y )的畫素511、512之二元值。Let the size of the binary example image 51 be represented by m × n ; and let the two-dimensional coordinates of each of the pixels 511, 512 in the binary sample image 51 be represented by ( x , y ), the binary example image 51 The two-dimensional coordinates of the pixel 511 in the upper left corner are (1, 1), and the two-dimensional coordinates of the pixel 511 in the lower right corner are ( m , n ); P ( x , y ) represents its two-dimensional coordinates ( The binary values of pixels 511 and 512 of x , y ).
其中,i =1,2,...,m -1,j =1,2,...,n -1。Where i = 1, 2, ..., m -1, j = 1, 2, ..., n - 1.
為了便於說明,將式子(1)~(2)的計算結果分別以一個第一曲線圖52及一個第二曲線圖53來示意;由該第一曲線圖52可得知SUM H _ diff (4)=SUM H _ diff (8)=SUM H _ diff (12)=0,其對應的物理意義為:該二元範例影像51於水平方向上紋理的重複週期為4、8、12;類似地,由該第二曲線圖53可得知SUM V _ diff (4)=SUM V _ diff (8)=SUM V _ diff (12)=0,其對應的物理意義為:該二元範例影像51於垂直方向上紋理的重複週期為4、8、12。令水平紋理週期以H _period 表示,垂直紋理週期以V _period 表示,則在本範例中,得到三個水平紋理週期與三個垂直紋理週期;即,H _period =4,8,12,V _period =4,8,12。For convenience of explanation, the calculation results of the equations (1) to (2) are respectively illustrated by a first graph 52 and a second graph 53; from the first graph 52, SUM H _ diff ( 4) = SUM H _ diff (8) = SUM H _ diff (12) = 0, the corresponding physical meaning is: the repetition period of the texture of the binary example image 51 in the horizontal direction is 4, 8, 12; Ground, from the second graph 53, it can be seen that SUM V _ diff (4) = SUM V _ diff (8) = SUM V _ diff (12) = 0, and its corresponding physical meaning is: the binary example image The repetition period of the texture in the vertical direction of 51 is 4, 8, and 12. Let the horizontal texture period be represented by H _ period and the vertical texture period be represented by V _ period . In this example, three horizontal texture periods and three vertical texture periods are obtained; that is, H _ period = 4, 8, 12, V _ period = 4, 8, 12.
更廣義言之,只要分別找出該第一曲線圖52及該第二曲線圖53中的波谷,即可得到水平紋理週期(H _period )及垂直紋理週期(V _period );換句話說,根據式子(1)~(2)的計算結果,配合預設的一個第一門檻值(以thr 1 表示)及一個第二門檻值(以thr 2 表示),即可得到H _period 及V _period ;其中,SUM H _ diff (H _period )與thr 1 ,及SUM V _ diff (V _period )與thr 2 之關係式進一步表示如式子(3)~(4)。More generally speaking, as long as the valleys in the first graph 52 and the second graph 53 are respectively found, a horizontal texture period ( H _ period ) and a vertical texture period ( V _ period ) can be obtained; in other words According to the calculation results of equations (1) to (2), with a preset first threshold value (expressed as thr 1 ) and a second threshold value (expressed as thr 2 ), H _ period and V _ period ; wherein the relationship between SUM H _ diff ( H _ period ) and thr 1 , and SUM V _ diff ( V _ period ) and thr 2 is further expressed as equations (3) to (4).
SUM H_diff (H _period )<thr 1 …………………………………‥(3) SUM H_diff ( H _ period )< thr 1 ...................................(3)
SUM V _ diff (V _period )<thr 2 ……………………………………(4) SUM V _ diff ( V _ period )< thr 2 ....................................(4)
在步驟44中,該處理單元23根據該水平紋理週期及該垂直紋理週期,決定該最適區域大小。令該最適區域大小以w ×h 表示;在本較佳實施例中,係以最小的該水平紋理週期,及最小的該垂直紋理週期來決定該最適區域大小;即,w =min(H _period ),h =min(V _period )。In step 44, the processing unit 23 determines the optimal region size based on the horizontal texture period and the vertical texture period. Let the optimum region size be represented by w × h ; in the preferred embodiment, the optimal region size is determined by the minimum horizontal texture period and the minimum vertical texture period; that is, w =min( H _ Period ), h =min( V _ period ).
然後,參閱圖2、圖3及圖6,該影像擷取單元22擷取對應於一個具有瑕疵的三維光學膜的一個第二訓練影像32,該處理單元23接著執行以下步驟,以得到一個第一瑕疵檢測參數上限值、一個第一瑕疵檢測參數下限值、一個第二瑕疵檢測參數上限值,及一個第二瑕疵檢測參數下限值。Then, referring to FIG. 2, FIG. 3 and FIG. 6, the image capturing unit 22 captures a second training image 32 corresponding to a three-dimensional optical film having a defect, and the processing unit 23 then performs the following steps to obtain a first A detection parameter upper limit value, a first 瑕疵 detection parameter lower limit value, a second 瑕疵 detection parameter upper limit value, and a second 瑕疵 detection parameter lower limit value.
在步驟61中,該處理單元23接收該第二訓練影像32。In step 61, the processing unit 23 receives the second training image 32.
在步驟62中,該處理單元23將該第二訓練影像32進行二值化處理,以得到二值化的該第二訓練影像32。In step 62, the processing unit 23 performs binarization processing on the second training image 32 to obtain the binarized second training image 32.
在步驟63中,該處理單元23根據預先求得的該最適區域大小(w ×h ),將二值化的該第二訓練影像32分割為複數個訓練區域;其中,每一訓練區域的大小等於該最適區域大小。In step 63, the processing unit 23 divides the binarized second training image 32 into a plurality of training regions according to the optimal region size ( w × h ) obtained in advance; wherein the size of each training region Equal to the optimal area size.
在步驟64中,該處理單元23根據二值化的該第二訓練影像32中的該等訓練區域,求得每一訓練區域於一第一方向上的複數個第一訓練投影量,及於一第二方向上的複數個第二訓練投影量。在本較佳實施例中,該第一方向為一水平方向,該第二方向為一垂直方向,該第二方向係垂直於該第一方向;每一訓練區域的該等第一、二訓練投影量係利用式子(5)~(6)來計算。In step 64, the processing unit 23 obtains a plurality of first training projection amounts in a first direction of each training region according to the training regions in the binarized second training image 32, and a plurality of second training projections in a second direction. In the preferred embodiment, the first direction is a horizontal direction, the second direction is a vertical direction, and the second direction is perpendicular to the first direction; the first and second trainings of each training area The projection amount is calculated using equations (5) to (6).
其中,對於每一訓練區域,Hp (y )代表該訓練區域的該等第一訓練投影量,Vp (x )代表該訓練區域的該等第二訓練投影量;y =1,2,...,h ,x =1,2,...,w ;P (x ,y )代表在該訓練區域中,其二維座標為(x ,y )的畫素之二元值。Wherein, for each training region, Hp ( y ) represents the first training projection amount of the training region, and Vp ( x ) represents the second training projection amount of the training region; y =1, 2, .. , h , x =1, 2,..., w ; P ( x , y ) represents the binary value of the pixel whose two-dimensional coordinates are ( x , y ) in the training region.
在步驟65中,該處理單元23根據每一訓練區域的該等第一訓練投影量,及該等第二訓練投影量,計算對應於每一訓練區域的一個第一訓練標準差,及一個第二訓練標準差;其計算如式子(7)~(8)所示。In step 65, the processing unit 23 calculates a first training standard deviation corresponding to each training region according to the first training projection amount of each training region, and the second training projection amount, and a first The second training standard deviation; its calculation is as shown in equations (7) ~ (8).
其中,對於每一訓練區域,Hp _Std 代表對應於該訓練區域的該第一訓練標準差,Vp_Std 代表對應於該訓練區域的該第二訓練標準差;Hp avg 代表該訓練區域的該等第一訓練投影量的一平均值,Vp avg 代表該訓練區域的該等第二訓練投影量的一平均值。Wherein, for each training area, Hp _ Std corresponding to the first representative of the standard training training zone difference, Vp_Std corresponding to the second training on behalf of the standard training area difference; Hp avg training on behalf of those of the first region An average of a training projection amount, Vp avg representing an average of the second training projections of the training region.
在步驟66中,該處理單元23根據分別對應於該等訓練區域的該等第一訓練標準差及該等第二訓練標準差,求得該第一瑕疵檢測參數上、下限值,及該第二瑕疵檢測參數上、下限值;其計算如式子(9)~(12)所示。In step 66, the processing unit 23 determines the upper and lower limit values of the first detection parameter according to the first training standard deviation corresponding to the training regions and the second training standard deviation respectively. The second parameter detects the upper and lower limits of the parameter; the calculation is as shown in equations (9)~(12).
Hp _thr u =Hp _Std avg +k ×Hp _Std std ………………………‥‥(9) Hp _ thr u = Hp _ Std avg + k × Hp _ Std std ...............................(9)
Hp _thr l =Hp _Std avg -k ×Hp _Std std ………………………‥‥(10) Hp _ thr l = Hp _ Std avg - k × Hp _ Std std ...............................(10)
Vp _thr u =Vp _Std avg +k ×Vp _Std std …………………………‥(11) Vp _ thr u = Vp _ Std avg + k × Vp _ Std std ................................(11)
Vp _thr l =Vp _Std avg -k ×Vp _Std std ……………………………(12) Vp _ thr l = Vp _ Std avg - k × Vp _ Std std .................................(12)
其中,Hp _thr u 代表該第一瑕疵檢測參數上限值、Hp _Std avg 代表該等第一訓練標準差的一個平均值、Hp _Std std 代表該等第一訓練標準差的一個標準差、Hp _thr l 代表該第一瑕疵檢測參數下限值、Vp _thr u 代表該第二瑕疵檢測參數上限值、Vp _Std avg 代表該等第二訓練標準差的一個平均值、Vp _Std std 代表該等第二訓練標準差的一個標準差、Vp _thr 1 代表該第二瑕疵檢測參數下限值,k 為一個預設常數。在本較佳實施例中,k =3。Where Hp _ thr u represents the first 瑕疵 detection parameter upper limit value, Hp _ Std avg represents an average value of the first training standard deviations, and Hp _ Std std represents a standard deviation of the first training standard deviations Hp _ thr l represents the first 瑕疵 detection parameter lower limit value, Vp _ thr u represents the second 瑕疵 detection parameter upper limit value, Vp _ Std avg represents an average value of the second training standard deviation, Vp _ Std std represents a standard deviation of the second training standard deviation, Vp _ thr 1 represents the second 瑕疵 detection parameter lower limit value, and k is a preset constant. In the preferred embodiment, k = 3.
參閱圖2及圖7,在進行完系統初始化階段後,即可將預先求得的該最適區域大小(w ×h )、該第一瑕疵檢測參數上、下限值(Hp _thr u 、Hp _thr 1 ),及該第二瑕疵檢測參數上、下限值(Vp _thr u 、Vp _thr 1 )應用於三維光學膜的瑕疵檢測。Referring to FIG. 2 and FIG. 7 , after the system initialization phase is completed, the optimum region size ( w × h ) obtained in advance, the first detection parameter upper and lower limit values ( Hp _ thr u , Hp) _thr 1 ), and the upper and lower limit values ( Vp _ thr u , Vp _ thr 1 ) of the second 瑕疵 detection parameter are applied to the 瑕疵 detection of the three-dimensional optical film.
該影像擷取單元22持續擷取對應於待檢測的三維光學膜的待檢測影像。The image capturing unit 22 continuously captures an image to be detected corresponding to the three-dimensional optical film to be detected.
在步驟71中,該處理單元23接收一個待檢測影像。In step 71, the processing unit 23 receives an image to be detected.
在步驟72中,該處理單元23將該待檢測影像進行二值化處理,以得到二值化的該待檢測影像。In step 72, the processing unit 23 performs binarization processing on the image to be detected to obtain a binarized image to be detected.
在步驟73中,該處理單元23根據該最適區域大小(w ×h ),將二值化的該待檢測影像分割為複數個區域;其中,每一區域的大小等於該最適區域大小。In step 73, the processing unit 23 divides the binarized image to be detected into a plurality of regions according to the optimal region size ( w × h ); wherein the size of each region is equal to the optimal region size.
在步驟74中,該處理單元23根據二值化的該待檢測影像中的該等區域,求得每一區域於該第一方向(水平方向)上的複數個第一投影量,及於該第二方向(垂直方向)上的複數個第二投影量;其計算類似於式子(5)~(6),故不再贅述。In step 74, the processing unit 23 obtains a plurality of first projection amounts of each region in the first direction (horizontal direction) according to the binarized regions in the image to be detected, and A plurality of second projection amounts in the second direction (vertical direction); the calculation is similar to the equations (5) to (6), and therefore will not be described again.
在步驟75中,該處理單元23根據每一區域的該等第一投影量,及該等第二投影量,計算對應於每一區域的一個第一瑕疵檢測參數(以H d 表示),及一個第二瑕疵檢測參數(以V d 表示);在本較佳實施例中,該處理單元23係根據每一區域的該等第一投影量計算一第一標準差作為對應於該區域的該第一瑕疵檢測參數,並根據每一區域的該等第二投影量計算一第二標準差作為對應於該區域的該第二瑕疵檢測參數,其計算類似於式子(7)~(8),故不再贅述。In step 75, the processing unit 23 calculates a first detection parameter (indicated by H d ) corresponding to each region according to the first projection amounts of each region and the second projection amounts, and a second flaw detection parameter (expressed in V d); in the present preferred embodiment, the system processing unit 23 calculates a first standard deviation of each region in accordance with such an amount as corresponding to a first projection in the region of the First detecting parameters, and calculating a second standard deviation according to the second projection amounts of each region as the second chirp detection parameter corresponding to the region, the calculation is similar to the equations (7)~(8) Therefore, it will not be repeated.
在步驟76中,該處理單元23根據對應於每一區域的該第一瑕疵檢測參數及該第二瑕疵檢測參數,並配合該第一瑕疵檢測參數上、下限值(Hp_thr u 、Hp_thr l ),及該第二瑕疵檢測參數上、下限值(Vp_thr u 、Vp_thr l ),以判斷該待檢測影像中的每一區域是否具有瑕疵。其中,對於每一區域,若其第一瑕疵檢測參數及第二瑕疵檢測參數兩者其中任一者不符合關係式(11)~(12),則代表該區域具有瑕疵;否則,代表該區域為無瑕疵。In step 76, the processing unit 23 cooperates with the first detection parameter and the second detection parameter corresponding to each area, and cooperates with the upper and lower limit values ( Hp_thr u , Hp_thr l ) of the first detection parameter. And the second and second detection parameter upper and lower limit values ( Vp_thr u , Vp_thr l ) to determine whether each region in the image to be detected has flaws. Wherein, for each region, if any one of the first detection parameter and the second detection parameter does not conform to the relationship (11) to (12), it represents that the region has 瑕疵; otherwise, represents the region For innocent.
Hp_thr l <H d <Hp_thr u ……………………………………‥(11) Hp_thr l < H d < Hp_thr u ......................................(11)
Vp_thr l <V d <Vp_thr u ……………………………………‥‥(12) Vp_thr l < V d < Vp_thr u ........................................(12)
在步驟77中,該處理單元23輸出步驟76的判斷結果,即,關於該等區域是否具有瑕疵的檢測結果;然後,回到步驟71繼續接收對應於下一個(next)待檢測的三維光學膜的下一個待檢測影像。In step 77, the processing unit 23 outputs the result of the determination of step 76, that is, whether the regions have detection results of 瑕疵; then, returning to step 71 to continue receiving the three-dimensional optical film corresponding to the next (next) to be detected. The next image to be tested.
值得一提的是,由步驟76的判斷結果,可得知待檢測的三維光學膜中瑕疵區域的比例;再者,由於該三維光學膜的瑕疵檢測系統2的該光學鏡頭21之架設位置為已知,故該待檢測影像與該待檢測的三維光學膜之幾何對應關係亦為已知,因此,由該待檢測影像中該等區域的檢測結果,即可對應得知該待檢測的三維光學膜中瑕疵發生的相關位置。It is worth mentioning that, by the judgment result of the step 76, the proportion of the 瑕疵 region in the three-dimensional optical film to be detected can be known; further, the erection position of the optical lens 21 of the 瑕疵 detection system 2 of the three-dimensional optical film is It is known that the geometrical correspondence between the image to be detected and the three-dimensional optical film to be detected is also known. Therefore, the detection result of the regions in the image to be detected can be correspondingly known to the three-dimensional to be detected. The relevant position in the optical film where enthalpy occurs.
綜上所述,藉由收對應於該待檢測的三維光學膜的該待檢測影像中分別對應於該等區域的該等第一、二瑕疵檢測參數,可對具有紋理特性的三維光學膜進行瑕疵檢測;更進一步來說,配合預先求得的該最適區域大小、該第一瑕疵檢測參數上、下限值,及該第二瑕疵檢測參數上、下限值,可對具有紋理特性的三維光學膜進行全自動的瑕疵檢測,故確實能達成本發明之目的。In summary, the three-dimensional optical film having the texture property can be performed by receiving the first and second detection parameters corresponding to the regions in the image to be detected corresponding to the three-dimensional optical film to be detected.瑕疵 detection; further, matching the pre-determined optimal region size, the first 瑕疵 detection parameter upper and lower limits, and the second 瑕疵 detection parameter upper and lower limits, may be three-dimensional with texture characteristics The optical film is subjected to a fully automatic flaw detection, so that the object of the present invention can be achieved.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.
2‧‧‧三維光學膜的瑕疵檢測系統2‧‧‧Three-dimensional optical film flaw detection system
21‧‧‧光學鏡頭21‧‧‧Optical lens
22‧‧‧影像擷取單元22‧‧‧Image capture unit
23‧‧‧處理單元23‧‧‧Processing unit
31‧‧‧第一訓練影像31‧‧‧First training image
32‧‧‧第二訓練影像32‧‧‧Second training image
41~44‧‧‧步驟41~44‧‧‧Steps
51‧‧‧二元範例影像51‧‧‧ binary sample image
511‧‧‧畫素511‧‧ ‧ pixels
512‧‧‧畫素512‧‧ ‧ pixels
52‧‧‧第一曲線圖52‧‧‧First graph
53‧‧‧第二曲線圖53‧‧‧Second graph
61~66‧‧‧步驟61~66‧‧‧Steps
71~77‧‧‧步驟71~77‧‧‧Steps
圖1是一示意圖,說明一個無瑕疵的偏光片,及一個具有瑕疵的偏光片,兩者分別對應的影像;Figure 1 is a schematic view showing a flawless polarizer and a polarizer having a cymbal, respectively corresponding to the image;
圖2是一方塊圖,說明本發明三維光學膜的瑕疵檢測系統之一個較佳實施例;Figure 2 is a block diagram showing a preferred embodiment of the flaw detection system of the three-dimensional optical film of the present invention;
圖3是一示意圖,說明對應於一個無瑕疵的三維光學膜的一個第一訓練影像,及對應於一個具有瑕疵的三維光學膜的一個第二訓練影像;Figure 3 is a schematic view showing a first training image corresponding to a flawless three-dimensional optical film, and a second training image corresponding to a three-dimensional optical film having a flaw;
圖4是一流程圖,說明在本發明三維光學膜的瑕疵檢測方法之一個較佳實施例的系統初始化階段中,用於求得一最適區域大小的步驟;4 is a flow chart showing the steps for determining an optimum region size in a system initialization phase of a preferred embodiment of the flaw detection method of the three-dimensional optical film of the present invention;
圖5是一示意圖,說明一個二元範例影像、一個第一曲線圖及一個第二曲線圖;Figure 5 is a schematic diagram showing a binary example image, a first graph, and a second graph;
圖6是一流程圖,說明在該系統初始化階段中,用於求得一個第一瑕疵檢測參數上限值、一個第一瑕疵檢測參數下限值、一個第二瑕疵檢測參數上限值,及一個第二瑕疵檢測參數下限值的步驟;及6 is a flow chart for illustrating a first flaw detection parameter upper limit value, a first flaw detection parameter lower limit value, and a second flaw detection parameter upper limit value in the system initialization phase, and a second step of detecting a lower limit of the parameter; and
圖7是一流程圖,說明本發明三維光學膜的瑕疵檢測方法之該較佳實施例的系統檢測階段所包括的步驟。Figure 7 is a flow chart showing the steps involved in the system detection phase of the preferred embodiment of the flaw detection method of the three-dimensional optical film of the present invention.
71~77...步驟71~77. . . step
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100119964A TWI429901B (en) | 2011-06-08 | 2011-06-08 | Method and system for defect detection of 3d optical film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100119964A TWI429901B (en) | 2011-06-08 | 2011-06-08 | Method and system for defect detection of 3d optical film |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201250235A TW201250235A (en) | 2012-12-16 |
TWI429901B true TWI429901B (en) | 2014-03-11 |
Family
ID=48139229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119964A TWI429901B (en) | 2011-06-08 | 2011-06-08 | Method and system for defect detection of 3d optical film |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI429901B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785535B (en) * | 2021-03-15 | 2022-12-01 | 住華科技股份有限公司 | Method, device and system for detecting optical film |
-
2011
- 2011-06-08 TW TW100119964A patent/TWI429901B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785535B (en) * | 2021-03-15 | 2022-12-01 | 住華科技股份有限公司 | Method, device and system for detecting optical film |
Also Published As
Publication number | Publication date |
---|---|
TW201250235A (en) | 2012-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620477B2 (en) | Method and program for detecting cracks in concrete | |
KR101604037B1 (en) | method of making three dimension model and defect analysis using camera and laser scanning | |
WO2016208606A1 (en) | Surface flaw detection device, surface flaw detection method, and manufacturing method for steel material | |
JP5421192B2 (en) | Crack detection method | |
Kim et al. | Automated concrete crack evaluation using stereo vision with two different focal lengths | |
KR20160119170A (en) | Defect detection and classification based on attributes determined from a standard reference image | |
CN110596120A (en) | Glass boundary defect detection method, device, terminal and storage medium | |
WO2015100777A1 (en) | Display panel defect detecting method and defect detecting device | |
CN104574393A (en) | Three-dimensional pavement crack image generation system and method | |
JP2008139285A (en) | Construct using picture processing technique, and crack width measuring method of product | |
WO2016208626A1 (en) | Surface flaw detection method, surface flaw detection device, and manufacturing method for steel material | |
EP3867866A1 (en) | Automated inspection for sheet parts of arbitrary shape from manufactured film | |
JPH03160349A (en) | Device for detecting crack | |
JP6894361B2 (en) | Crack direction identification method, crack direction identification device, crack direction identification system and program on concrete surface | |
JP2008267943A (en) | Crack detecting method | |
CN102288619B (en) | Method and system for detecting defects of three-dimensional optical film | |
TWI429901B (en) | Method and system for defect detection of 3d optical film | |
CN108280825A (en) | A kind of liquid crystal display emargintion detection method | |
CN105572133A (en) | Flaw detection method and device | |
JP2007081513A (en) | Blot defect detecting method for solid-state imaging element | |
Hsu et al. | 3D modeling for steel billet images | |
KR101637977B1 (en) | Feature point detecting method of welding joint using laser vision system | |
JP4956077B2 (en) | Defect inspection apparatus and defect inspection method | |
JP4863050B2 (en) | Color unevenness defect inspection method and apparatus | |
TWI757590B (en) | Luminance uniform detection system and luminance uniform detection method |