TWI426634B - Working electrode of solar cell, method for making same and soalr cell - Google Patents

Working electrode of solar cell, method for making same and soalr cell Download PDF

Info

Publication number
TWI426634B
TWI426634B TW097148435A TW97148435A TWI426634B TW I426634 B TWI426634 B TW I426634B TW 097148435 A TW097148435 A TW 097148435A TW 97148435 A TW97148435 A TW 97148435A TW I426634 B TWI426634 B TW I426634B
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
oxide
metal
working electrode
Prior art date
Application number
TW097148435A
Other languages
Chinese (zh)
Other versions
TW201023410A (en
Inventor
Shao Kai Pei
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097148435A priority Critical patent/TWI426634B/en
Publication of TW201023410A publication Critical patent/TW201023410A/en
Application granted granted Critical
Publication of TWI426634B publication Critical patent/TWI426634B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

太陽能電池工作電極、其製造方法及太陽能電池Solar cell working electrode, manufacturing method thereof and solar cell

本發明涉及一種太陽能電池,尤其涉及一種染料敏化太陽能電池工作電極、其製造方法及染料敏化太陽能電池。The invention relates to a solar cell, in particular to a dye-sensitized solar cell working electrode, a manufacturing method thereof and a dye-sensitized solar cell.

太陽能電池係一種將太陽能直接轉化為電能之裝置。20世紀70年代,由美國貝爾實驗室首先研製出之矽太陽能電池逐步發展起來。這種矽太陽能電池之工作原理係基於半導體之光伏效應。雖然矽太陽能電池之光電轉化效率高,但其製造工藝複雜、價格昂貴、對材料要求苛刻,因而限制其廣泛應用。二十世紀九十年代應用奈米晶體開發之染料敏化太陽能電池,可望取代傳統之矽太陽能電池,成為該領域之研究熱點。A solar cell is a device that converts solar energy directly into electrical energy. In the 1970s, the solar cells first developed by Bell Labs in the United States gradually developed. The working principle of such tantalum solar cells is based on the photovoltaic effect of semiconductors. Although the photoelectric conversion efficiency of the solar cell is high, its manufacturing process is complicated, expensive, and demanding on materials, thus limiting its wide application. The dye-sensitized solar cell developed by nanocrystals in the 1990s is expected to replace the traditional solar cell and become a research hotspot in this field.

染料敏化太陽能電池採用形成於導電基底之半導體奈米晶膜,於其表面吸附一光敏染料,由此形成工作電極。染料敏化太陽能電池之工作原理為:當染料分子吸收太陽光時,其電子躍遷至激發態並迅速轉移至半導體,而空穴則留於染料中。電子隨後擴散至導電基底,經外電路轉移至對電極。而氧化態之染料被電解質還原,被氧化之電解質於對電極接受電子還原成基態,從而完成電子之整個傳輸過程。The dye-sensitized solar cell employs a semiconductor nanocrystalline film formed on a conductive substrate, and a photosensitive dye is adsorbed on the surface thereof, thereby forming a working electrode. Dye-sensitized solar cells work on the principle that when the dye molecules absorb sunlight, their electrons transition to the excited state and are rapidly transferred to the semiconductor, while the holes remain in the dye. The electrons then diffuse to the conductive substrate and are transferred to the counter electrode via an external circuit. The dye in the oxidized state is reduced by the electrolyte, and the oxidized electrolyte undergoes electron reduction to the ground state of the counter electrode, thereby completing the entire electron transport process.

影響染料敏化太陽能電池光電轉化性能之因素之一為光化學反應後電子嚮導電基底遷移之速率。目前可通過將半導體奈米晶膜之厚度降低使電子移動路徑減短,以增加 電子注入之速度並可迅速被導出於外部電路。然,如果薄膜厚度控制不好,會造成晶粒間界(grain boundary)效應,從而降低電子傳輸效率,降低光電轉換率。One of the factors affecting the photoelectric conversion performance of dye-sensitized solar cells is the rate at which electrons migrate to the conductive substrate after photochemical reaction. At present, the electron moving path can be shortened by reducing the thickness of the semiconductor nanocrystalline film to increase The speed of electron injection can be quickly derived from an external circuit. However, if the film thickness is not well controlled, a grain boundary effect is caused, thereby reducing electron transport efficiency and lowering the photoelectric conversion rate.

有鑒於此,有必要提供一種電子傳輸效率較高之太陽能電池工作電極、其製造方法及太陽能電池。In view of the above, it is necessary to provide a solar cell working electrode having high electron transport efficiency, a method of manufacturing the same, and a solar cell.

一種太陽能電池工作電極,其包括:一個導電基底及一層吸附有染料之半導體奈米晶膜,該太陽能電池工作電極進一步包括一層形成於該導電基底之金屬氧化物層、一層形成於該金屬氧化物層之銥-二氧化銥或釕-二氧化釕奈米棒膜層,該吸附有染料之半導體奈米晶膜形成於該銥-二氧化銥或釕-二氧化釕奈米棒膜層上。A solar cell working electrode comprising: a conductive substrate and a semiconductor nanocrystal film adsorbed with a dye, the solar cell working electrode further comprising a metal oxide layer formed on the conductive substrate, and a layer formed on the metal oxide The layer of germanium-cerium oxide or germanium-cerium oxide nanorod film layer is formed on the germanium-cerium oxide or germanium-cerium oxide nanorod film layer.

一種上述太陽能電池工作電極之製造方法,其包括以下步驟:提供一個導電基底;於該導電基底之表面形成一層第二金屬層;於該第二金屬層上形成一層二氧化銥或二氧化釕奈米棒膜層;於真空條件下,還原二氧化銥或二氧化釕,得到銥-二氧化銥或釕-二氧化釕奈米棒膜層,該第二金屬層被氧化為金屬氧化物層;於該銥-二氧化銥或釕-二氧化釕奈米棒膜層上形成一層吸附有染料之半導體奈米晶膜。A method for manufacturing a solar cell working electrode, comprising the steps of: providing a conductive substrate; forming a second metal layer on the surface of the conductive substrate; forming a layer of cerium oxide or cerium oxide on the second metal layer a bar layer; reducing cerium oxide or cerium oxide under vacuum to obtain a cerium-cerium oxide or cerium-cerium oxide nanorod film layer, the second metal layer being oxidized to a metal oxide layer; A layer of semiconductor nanocrystalline film adsorbed with dye is formed on the ruthenium-ruthenium dioxide or ruthenium-ruthenium dioxide nanorod film layer.

一種太陽能電池,其包括一個工作電極、一個對電極、及一層電解質層,該工作電極包括:一個導電基底及一層吸附有染料之半導體奈米晶膜,該電解質層位於對電極與吸附有染料之半導體奈米晶膜之間,該太陽能電池工作電 極進一步包括一層形成於該導電基底之金屬氧化物層、一層形成於該金屬氧化物層之銥-二氧化銥或釕-二氧化釕奈米棒膜層,該吸附有染料之半導體奈米晶膜形成於該銥-二氧化銥或釕-二氧化釕奈米棒膜層上。A solar cell comprising a working electrode, a counter electrode, and an electrolyte layer, the working electrode comprising: a conductive substrate and a semiconductor nanocrystal film adsorbed with a dye, the electrolyte layer being located at the counter electrode and adsorbing the dye Between the semiconductor nanocrystalline film, the solar cell operates Further comprising a metal oxide layer formed on the conductive substrate, a layer of germanium-cerium oxide or germanium-cerium oxide nanorod formed on the metal oxide layer, and the semiconductor nanocrystal adsorbed with the dye A film is formed on the ruthenium-ruthenium dioxide or ruthenium-ruthenium dioxide nanorod film layer.

相較於先前技術,該太陽能電池中之銥-二氧化銥或釕-二氧化釕奈米棒為一維奈米結構,比普通薄膜可更快速地將電子注入到導電基底中,電子傳輸效率得到提高,從而提高太陽能電池之光電轉換率。Compared with the prior art, the cerium-cerium oxide or cerium-cerium dioxide nanorod in the solar cell is a one-dimensional nanostructure, which can inject electrons into the conductive substrate more quickly than the ordinary film, and the electron transport efficiency It is improved to increase the photoelectric conversion rate of the solar cell.

下面將結合附圖,對本發明實施例作進一步之詳細說明。The embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

請參閱圖1,本發明實施例提供了一種染料敏化太陽能電池100。該染料敏化太陽能電池100包括一個工作電極20、一個對電極40及一層電解質層60。Referring to FIG. 1 , an embodiment of the present invention provides a dye-sensitized solar cell 100 . The dye-sensitized solar cell 100 includes a working electrode 20, a counter electrode 40, and an electrolyte layer 60.

對電極40通常包括一導電基底402和一形成於其上之金屬層404。導電基底402一般為導電玻璃,係於平板玻璃表面通過物理或者化學鍍膜之方法均勻之鍍上一層透明之導電氧化物薄膜,該導電氧化物可為氧化銦錫ITO(indium-doped tin oxide)或摻氟二氧化錫膜FTO(fluorine-doped tin oxide)。Counter electrode 40 typically includes a conductive substrate 402 and a metal layer 404 formed thereon. The conductive substrate 402 is generally a conductive glass which is uniformly coated with a transparent conductive oxide film by physical or chemical coating on the surface of the flat glass. The conductive oxide may be indium-doped tin oxide (ITO) or Fluorine-doped tin oxide film FTO (fluorine-doped tin oxide).

該金屬層404由金、鉑等惰性金屬組成,可通過鍍膜之方式形成於導電基底402與工作電極20相對之表面。當然,對電極40亦可為金、鉑等惰性金屬組成之金屬電極。The metal layer 404 is composed of an inert metal such as gold or platinum, and can be formed on the surface of the conductive substrate 402 opposite to the working electrode 20 by plating. Of course, the counter electrode 40 may also be a metal electrode composed of an inert metal such as gold or platinum.

該電解質層60為一薄層氧化還原液態電解質,如碘/ 碘化鋰電解質。電解質60亦可為固態電解質或凝固態電解質。The electrolyte layer 60 is a thin layer of redox liquid electrolyte such as iodine/ Lithium iodide electrolyte. The electrolyte 60 may also be a solid electrolyte or a solidified electrolyte.

該工作電極20包括一個導電基底202;一層形成於該導電基底202之第一金屬層203;一層形成於該第一金屬層203之金屬氧化物層204;一層形成於該金屬氧化物層204之銥(Ir)-二氧化銥(IrO2 )或釕(Ru)-二氧化釕(RuO2 )奈米棒膜層205;一層形成於該銥-二氧化銥或釕-二氧化釕奈米棒膜層205之吸附有染料207之半導體奈米晶膜206。其中,該電解質層60位於對電極40和吸附有染料之半導體奈米晶膜206之間。The working electrode 20 includes a conductive substrate 202; a first metal layer 203 formed on the conductive substrate 202; a metal oxide layer 204 formed on the first metal layer 203; and a layer formed on the metal oxide layer 204. An iridium (Ir)-niobium oxide (IrO 2 ) or ruthenium (Ru)-ruthenium dioxide (RuO 2 ) nanorod film layer 205; a layer formed on the bismuth-cerium oxide or lanthanum-cerium oxide nanorod The semiconductor nanocrystalline film 206 of the dye 207 is adsorbed on the film layer 205. The electrolyte layer 60 is located between the counter electrode 40 and the semiconductor nanocrystal film 206 to which the dye is adsorbed.

該第一金屬層203之材料為鎳(Ni)、鈀(Pd)、鉑(Pt)或金(Au)。該第一金屬層203具有催化作用。The material of the first metal layer 203 is nickel (Ni), palladium (Pd), platinum (Pt) or gold (Au). The first metal layer 203 has a catalytic action.

該金屬氧化物層204之材料為二氧化鈦(TiO2 )、氧化銅(CuO)、氧化鋁(Al2 O3 )、氧化鎂(MgO)、氧化鋅(ZnO)、氧化銀(Ag2 O)。The material of the metal oxide layer 204 is titanium oxide (TiO 2 ), copper oxide (CuO), aluminum oxide (Al 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), or silver oxide (Ag 2 O).

該銥-二氧化銥或釕-二氧化釕奈米棒膜層205具有一維奈米棒結構。該銥-二氧化銥或釕-二氧化釕奈米棒膜層205耐腐蝕,電流穩定性佳。The cerium-cerium oxide or cerium-niobium oxide nanorod film layer 205 has a one-dimensional nanorod structure. The ruthenium-ruthenium dioxide or ruthenium-niobium oxide nanorod film layer 205 is corrosion resistant and has excellent current stability.

該吸附有染料207之半導體奈米晶膜206中,半導體材料為二氧化鈦(TiO2 )、氧化鋅(ZnO)、硒化鎘(CdSe)、硫化鎘(CdS)、氧化鎢(WO3 )、氧化鐵(Fe2O3 )、氧化錫(SnO2 )或五氧化二鈮(Nb2 O5 )。於本實施例中,該半導體材料選用TiO2 。該染料207可為聯吡啶釕類配合物、卟啉配合物或酞菁配合物。於本實施例中,選用鋅酞菁染料 (Znic Phthalocyanine,ZnPc)。In the semiconductor nanocrystalline film 206 to which the dye 207 is adsorbed, the semiconductor material is titanium oxide (TiO 2 ), zinc oxide (ZnO), cadmium selenide (CdSe), cadmium sulfide (CdS), tungsten oxide (WO 3 ), oxidation. Iron (Fe2O 3 ), tin oxide (SnO 2 ) or tantalum pentoxide (Nb 2 O 5 ). In this embodiment, the semiconductor material is selected from TiO 2 . The dye 207 can be a bipyridylium complex, a porphyrin complex or a phthalocyanine complex. In the present embodiment, a zinc phthalocyanine dye (Znic Phthalocyanine, ZnPc) is used.

上述工作電極20可採用以下方法製造:The above working electrode 20 can be manufactured by the following method:

步驟一,採用磁控濺鍍(Magnetron Sputtering)法於導電基底202上形成第一金屬層203。In step one, a first metal layer 203 is formed on the conductive substrate 202 by a magnetron sputtering method.

步驟二,採用磁控濺鍍(Magnetron Sputtering)法於第一金屬層203上形成第二金屬層(圖未示)。該第二金屬層之材料為鈦(Ti)、銅(Cu)、鋁(Al)、鎂(Mg)、鋅(Zn)或銀(Ag)。In the second step, a second metal layer (not shown) is formed on the first metal layer 203 by a magnetron sputtering method. The material of the second metal layer is titanium (Ti), copper (Cu), aluminum (Al), magnesium (Mg), zinc (Zn) or silver (Ag).

步驟三,通過化學氣相沈積法(Chemical Vapor Deposition,CVD)於第二金屬層上形成二氧化銥或二氧化釕奈米棒膜層(圖未示)。優選地,CVD法採用有機化學氣相沈積法(Metal Organic Chemical Vapor Deposition,MOCVD)。Step 3, forming a ceria or cerium oxide nanorod film layer (not shown) on the second metal layer by chemical vapor deposition (CVD). Preferably, the CVD method employs Metal Organic Chemical Vapor Deposition (MOCVD).

步驟四,於溫度為500至600攝氏度,真空度小於6.67×10-3 Pa之條件下,以該第一金屬層203為催化劑,還原二氧化銥或二氧化釕,得到銥-二氧化銥或釕-二氧化釕奈米棒膜層205,該第二金屬層經過催化氧化轉化為金屬氧化物層204。Step 4: reducing the cerium oxide or cerium oxide with the first metal layer 203 as a catalyst at a temperature of 500 to 600 degrees Celsius and a vacuum degree of less than 6.67×10 −3 Pa to obtain cerium-cerium oxide or A bismuth-niobium oxide nanorod film layer 205 is converted into a metal oxide layer 204 by catalytic oxidation.

步驟五,通過超聲波噴霧裂解法(spray pyrolysis)於該銥-二氧化銥或釕-二氧化釕奈米棒膜層205上形成一半導體奈米晶膜。In step five, a semiconductor nanocrystalline film is formed on the bismuth-cerium oxide or cerium-cerium oxide nanorod film layer 205 by ultrasonic pyrolysis.

步驟六,將鋅酞菁染料配製成一定濃度之溶液或溶膠,通過浸漬塗佈(Dip Coating)之方法使其吸附於半導體奈米晶膜上,由此形成吸附有染料207之半導體奈米晶 膜206。In step 6, the zinc phthalocyanine dye is formulated into a solution or sol of a certain concentration, and is adsorbed on the semiconductor nanocrystalline film by dip coating, thereby forming a semiconductor nanometer to which the dye 207 is adsorbed. crystal Membrane 206.

由於該銥-二氧化銥或釕-二氧化釕奈米棒膜層205具有一維奈米棒結構,該半導體奈米晶膜206可依附該奈米棒結構形成一維成長,並可防止該銥-二氧化銥或釕-二氧化釕奈米棒膜層205被損壞及受潮。Since the cerium-cerium oxide or cerium-niobium oxide nanorod film layer 205 has a one-dimensional nanorod structure, the semiconductor nanocrystalline film 206 can form a one-dimensional growth by attaching the nanorod structure, and can prevent the The ruthenium-ruthenium dioxide or ruthenium-niobium oxide nanorod film layer 205 is damaged and damp.

當太陽光照射到該染料敏化太陽能電池100時,ZnPc染料207吸收合適之光子,躍遷到激發態,然後向二氧化鈦之導帶注入電子,接著電子注入銥-二氧化銥或釕-二氧化釕奈米棒膜層205、金屬氧化物層204、第一金屬層203,並迅速注入至導電基底402,經外電路轉移至對電極40。而氧化態之ZnPc染料被電解質還原,被氧化之電解質於對電極40接受電子還原成基態,從而完成電子之整個傳輸過程。When sunlight is irradiated onto the dye-sensitized solar cell 100, the ZnPc dye 207 absorbs a suitable photon, transitions to an excited state, and then injects electrons into the conduction band of the titanium oxide, followed by electron injection of ruthenium-ruthenium dioxide or ruthenium-ruthenium dioxide. The nanorod film layer 205, the metal oxide layer 204, and the first metal layer 203 are quickly implanted into the conductive substrate 402 and transferred to the counter electrode 40 via an external circuit. The oxidized ZnPc dye is reduced by the electrolyte, and the oxidized electrolyte is subjected to electron reduction to the ground state of the counter electrode 40, thereby completing the entire electron transport process.

相較於先前技術,該染料敏化太陽能電池100中之銥-二氧化銥或釕-二氧化釕奈米棒為一維奈米結構,比普通薄膜可更快速地將電子注入到導電基底402中,電子傳輸效率得到提高,從而提高染料敏化太陽能電池100之光電轉換率。Compared with the prior art, the cerium-cerium oxide or cerium-cerium dioxide nanorod in the dye-sensitized solar cell 100 is a one-dimensional nanostructure, and electrons can be injected into the conductive substrate 402 more quickly than the ordinary film. In the electron transport efficiency, the photoelectric conversion rate of the dye-sensitized solar cell 100 is improved.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

工作電極‧‧‧20Working electrode ‧‧20

染料敏化太陽能電池‧‧‧100Dye-sensitized solar cells ‧‧100

對電極‧‧‧40Counter electrode ‧‧40

電解質層‧‧‧60Electrolyte layer ‧‧60

導電基底‧‧‧402、202Conductive substrate ‧‧‧402,202

金屬層‧‧‧404Metal layer ‧ ‧ 404

第一金屬層‧‧‧203First metal layer ‧ ‧ 203

金屬氧化物層‧‧‧204Metal oxide layer ‧‧‧204

銥-二氧化銥或釕-二氧化釕奈米棒膜層‧‧‧205铱-cerium oxide or cerium-cerium oxide nanorod film layer ‧‧ 205

染料‧‧‧207Dye ‧‧‧207

半導體奈米晶膜‧‧‧206Semiconductor nanocrystalline film ‧‧‧206

圖1係本發明實施例提供之染料敏化太陽能電池之剖視示意圖。1 is a schematic cross-sectional view of a dye-sensitized solar cell provided by an embodiment of the present invention.

工作電極‧‧‧20Working electrode ‧‧20

染料敏化太陽能電池‧‧‧100Dye-sensitized solar cells ‧‧100

對電極‧‧‧40Counter electrode ‧‧40

電解質層‧‧‧60Electrolyte layer ‧‧60

導電基底‧‧‧402、202Conductive substrate ‧‧‧402,202

金屬層‧‧‧404Metal layer ‧ ‧ 404

第一金屬層‧‧‧203First metal layer ‧ ‧ 203

金屬氧化物層‧‧‧204Metal oxide layer ‧‧‧204

銥-二氧化銥或釕-二氧化釕奈米棒膜層‧‧‧205铱-cerium oxide or cerium-cerium oxide nanorod film layer ‧‧ 205

染料‧‧‧207Dye ‧‧‧207

半導體奈米晶膜‧‧‧206Semiconductor nanocrystalline film ‧‧‧206

Claims (13)

一種太陽能電池工作電極,其包括:一個導電基底及一層吸附有染料之半導體奈米晶膜,其改進在於,該太陽能電池工作電極進一步包括一層形成於該導電基底之金屬氧化物層、一層形成於該金屬氧化物層之銥-二氧化銥或釕-二氧化釕奈米棒膜層,該吸附有染料之半導體奈米晶膜形成於該銥-二氧化銥或釕-二氧化釕奈米棒膜層上。A solar cell working electrode comprising: a conductive substrate and a layer of semiconductor nano film with dye adsorbed thereon, wherein the solar cell working electrode further comprises a metal oxide layer formed on the conductive substrate, and a layer formed on a metal-oxide layer of a ruthenium-ruthenium dioxide or a ruthenium-ruthenium dioxide nanorod film layer formed on the ruthenium-ruthenium dioxide or ruthenium-ruthenium dioxide nanorod On the film layer. 如申請專利範圍第1項所述之太陽能電池工作電極,其中,該導電基底與該金屬氧化物層之間設有一層第一金屬層。The solar cell working electrode according to claim 1, wherein a first metal layer is disposed between the conductive substrate and the metal oxide layer. 如申請專利範圍第2項所述之太陽能電池工作電極,其中,該第一金屬層之材料為Ni、Pd、Pt或Au。The solar cell working electrode according to claim 2, wherein the material of the first metal layer is Ni, Pd, Pt or Au. 如申請專利範圍第1項所述之太陽能電池工作電極,其中,該金屬氧化物層之材料為TiO2 、CuO、Al2 O3 、MgO、ZnO、Ag2 O。The solar cell working electrode according to claim 1, wherein the material of the metal oxide layer is TiO 2 , CuO, Al 2 O 3 , MgO, ZnO, Ag 2 O. 如申請專利範圍第1項所述之太陽能電池工作電極,其中,該半導體奈米晶膜之材料為TiO2 、ZnO、CdSe、CdS、WO3 、Fe2 O3 、SnO2 或Nb2 O5The solar cell working electrode according to claim 1, wherein the material of the semiconductor nanocrystalline film is TiO 2 , ZnO, CdSe, CdS, WO 3 , Fe 2 O 3 , SnO 2 or Nb 2 O 5 . 一種如申請專利範圍第1項所述之太陽能電池工作電極之製造方法,其包括以下步驟:提供一個導電基底;於導電基底之表面形成一層第二金屬層;於第二金屬層上形成一層二氧化銥或二氧化釕奈米棒膜層; 於真空條件下,還原二氧化銥或二氧化釕,得到銥-二氧化銥或釕-二氧化釕奈米棒膜層,第二金屬層被氧化為金屬氧化物層;於銥-二氧化銥或釕-二氧化釕奈米棒膜層上形成一層吸附有染料之半導體奈米晶膜。A method for manufacturing a solar cell working electrode according to claim 1, comprising the steps of: providing a conductive substrate; forming a second metal layer on the surface of the conductive substrate; and forming a layer on the second metal layer a ruthenium oxide or ruthenium oxide nanorod film layer; Reducing cerium oxide or cerium oxide under vacuum to obtain a cerium-cerium oxide or cerium-cerium oxide nanorod film layer, the second metal layer being oxidized to a metal oxide layer; and cerium-cerium oxide Or a layer of semiconductor nano film with dye adsorbed on the ruthenium-ruthenium dioxide nanorod film layer. 如申請專利範圍第6項所述之製造方法,其中,進一步包括於該導電基底之表面與該第二金屬層之間形成一層第一金屬層之步驟。The manufacturing method of claim 6, further comprising the step of forming a first metal layer between the surface of the conductive substrate and the second metal layer. 如申請專利範圍第6項所述之製造方法,其中,二氧化銥或二氧化釕還原反應之溫度為500至600攝氏度。The manufacturing method according to claim 6, wherein the temperature of the cerium oxide or cerium oxide reduction reaction is 500 to 600 degrees Celsius. 一種太陽能電池,其包括一個工作電極、一個對電極、及一層電解質層,該工作電極包括:一個導電基底及一層吸附有染料之半導體奈米晶膜,該電解質層位於對電極與吸附有染料之半導體奈米晶膜之間,其中,該太陽能電池工作電極進一步包括一層形成於該導電基底之金屬氧化物層、一層形成於該金屬氧化物層之銥-二氧化銥或釕-二氧化釕奈米棒膜層,該吸附有染料之半導體奈米晶膜形成於該銥-二氧化銥或釕-二氧化釕奈米棒膜層上。A solar cell comprising a working electrode, a counter electrode, and an electrolyte layer, the working electrode comprising: a conductive substrate and a semiconductor nanocrystal film adsorbed with a dye, the electrolyte layer being located at the counter electrode and adsorbing the dye Between the semiconductor nanocrystalline films, wherein the solar cell working electrode further comprises a metal oxide layer formed on the conductive substrate, and a layer of germanium-cerium oxide or germanium-cerium oxide formed on the metal oxide layer. The rice rod film layer is formed on the germanium-cerium oxide or germanium-cerium oxide nanorod film layer. 如申請專利範圍第9項所述之太陽能電池,其中,該導電基底與該金屬氧化物層之間設有一層第一金屬層。The solar cell of claim 9, wherein a first metal layer is disposed between the conductive substrate and the metal oxide layer. 如申請專利範圍第10項所述之太陽能電池,其中,該第一金屬層之材料為Ni、Pd、Pt或Au。The solar cell of claim 10, wherein the material of the first metal layer is Ni, Pd, Pt or Au. 如申請專利範圍第9項所述之太陽能電池,其中,該半導體奈米晶膜之材料為TiO2 、ZnO、CdSe、CdS、WO3 、 Fe2 O3 、SnO2 或Nb2 O5The solar cell according to claim 9, wherein the material of the semiconductor nanocrystalline film is TiO 2 , ZnO, CdSe, CdS, WO 3 , Fe 2 O 3 , SnO 2 or Nb 2 O 5 . 如申請專利範圍第9項所述之太陽能電池,其中,該金屬氧化物層之材料為TiO2 、CuO、Al2 O3 、MgO、ZnO、Ag2 O。The solar cell according to claim 9, wherein the material of the metal oxide layer is TiO 2 , CuO, Al 2 O 3 , MgO, ZnO, Ag 2 O.
TW097148435A 2008-12-12 2008-12-12 Working electrode of solar cell, method for making same and soalr cell TWI426634B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097148435A TWI426634B (en) 2008-12-12 2008-12-12 Working electrode of solar cell, method for making same and soalr cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097148435A TWI426634B (en) 2008-12-12 2008-12-12 Working electrode of solar cell, method for making same and soalr cell

Publications (2)

Publication Number Publication Date
TW201023410A TW201023410A (en) 2010-06-16
TWI426634B true TWI426634B (en) 2014-02-11

Family

ID=44833365

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097148435A TWI426634B (en) 2008-12-12 2008-12-12 Working electrode of solar cell, method for making same and soalr cell

Country Status (1)

Country Link
TW (1) TWI426634B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095389A1 (en) * 2005-11-01 2007-05-03 Cho Sung H Transparent electrode for solar cells, manufacturing method thereof, and semiconductor electrode comprising the same
US20080041446A1 (en) * 2006-08-09 2008-02-21 Industrial Technology Research Institute Dye-sensitized solar cells and method for fabricating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070095389A1 (en) * 2005-11-01 2007-05-03 Cho Sung H Transparent electrode for solar cells, manufacturing method thereof, and semiconductor electrode comprising the same
US20080041446A1 (en) * 2006-08-09 2008-02-21 Industrial Technology Research Institute Dye-sensitized solar cells and method for fabricating same

Also Published As

Publication number Publication date
TW201023410A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
Balasingam et al. Metal substrate based electrodes for flexible dye-sensitized solar cells: fabrication methods, progress and challenges
Lee et al. Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes
Cao et al. Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells
Jasim Natural dye-sensitized solar cell based on nanocrystalline TiO2
Wang et al. Influence of compact TiO2 layer on the photovoltaic characteristics of the organometal halide perovskite-based solar cells
Liu et al. Composite photoanodes of Zn2SnO4 nanoparticles modified SnO2 hierarchical microspheres for dye-sensitized solar cells
WO2008004553A1 (en) Dye-sensitized solar cell module and method for fabricating same
Iwantono et al. Enhanced charge transfer activity in Au nanoparticles decorated ZnO nanorods photoanode
KR20150100216A (en) Solid Thin Film Solar Cell Based on Perovskite Sensitizer and Manufacturing Method Thereof
Mahalingam et al. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye‐sensitized solar cells: Recent advances and future outlook
JP4578786B2 (en) Method for producing dye-sensitized solar cell
KR20070072215A (en) Electrode for photoelectricity transformation element comprising metal mesh layer, process for preparing the same, and dye-sensitized solar cell using the electrode
US9129751B2 (en) Highly efficient dye-sensitized solar cells using microtextured electron collecting anode and nanoporous and interdigitated hole collecting cathode and method for making same
KR20130125335A (en) Dye-sensitized solar cell and fabrication method thereof
US20120024369A1 (en) Photo-chemical solar cell with nanoneedle electrode and method manufacturing the same
KR101897918B1 (en) Hydrogen production element of energy independence by solar power and method of manufacturing the same
JP2009009936A (en) Photoelectric conversion device
Ozel et al. Multi-layered blocking layers for dye sensitized solar cells
JP2011091032A (en) Manufacturing method of electrode for quantum dot sensitized solar cell, electrode for quantum dot sensitized solar cell, and quantum dot sensitized solar cell
JP2008277422A (en) Laminated photoelectric converter
KR20180008454A (en) A dye-sensitized solar cell having a collector electrode on a counter electrode
TWI500176B (en) Metal flexible dye-sensitized solar cell using double coating metal substrate and manufacturing method thereof
JP2005243379A (en) Photoelectric conversion device
TWI426634B (en) Working electrode of solar cell, method for making same and soalr cell
Nguu et al. Electrophoretic deposition and characterization of TiO2/Nb2O5 composite thin films for dye sensitized solar cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees