TWI426309B - An optoelectronic package - Google Patents

An optoelectronic package Download PDF

Info

Publication number
TWI426309B
TWI426309B TW95141806A TW95141806A TWI426309B TW I426309 B TWI426309 B TW I426309B TW 95141806 A TW95141806 A TW 95141806A TW 95141806 A TW95141806 A TW 95141806A TW I426309 B TWI426309 B TW I426309B
Authority
TW
Taiwan
Prior art keywords
optoelectronic
optical
optical signal
vertical cavity
cavity surface
Prior art date
Application number
TW95141806A
Other languages
Chinese (zh)
Other versions
TW200718993A (en
Inventor
Michael Steib
Hongyu Deng
Ralph Johnson
Original Assignee
Finisar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Finisar Corp filed Critical Finisar Corp
Publication of TW200718993A publication Critical patent/TW200718993A/en
Application granted granted Critical
Publication of TWI426309B publication Critical patent/TWI426309B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Description

光電封裝及其合格審定方法 Photoelectric package and its certification method

本發明係關於一種光電封裝結構,尤其係關於一種包含被動光學組件的光電封裝結構,其中被動光學組件用於控制光學背向反射(back reflection),從而能夠改善裝設於光電封裝內的光電裝置的性能。 The present invention relates to an optoelectronic package structure, and more particularly to an optoelectronic package structure including a passive optical component, wherein the passive optical component is used to control optical back reflection, thereby improving an optoelectronic device mounted in the optoelectronic package. Performance.

光電封裝用於光纖通訊領域以裝設光電裝置。此外,光電封裝中還可以裝設與此光電裝置有關的其他光學及電氣組件。一種光電封裝的實例係為電晶體型封裝(transistor outline;TO),通常稱為圓柱式封裝(TO-can)。裝設於光電封裝內的光電裝置係為轉換器,用於轉換光資料訊號為電資料訊號,或者轉換電資料訊號為光資料訊號。光電裝置的實例包含側射型雷射,例如法布立-拍若(Fabry-Perot)雷射、分散式回饋雷射以及面射型雷射,例如垂直共振腔面射型雷射(vertical cavity surface emitting lasers;VCSEL)以及長波長垂直共振腔面射型雷射。 Optoelectronic packaging is used in the field of optical fiber communication to install optoelectronic devices. In addition, other optics and electrical components associated with the optoelectronic device can be incorporated into the optoelectronic package. An example of an optoelectronic package is a transistor outline (TO), commonly referred to as a cylindrical package (TO-can). The optoelectronic device installed in the optoelectronic package is a converter for converting the optical data signal into an electrical data signal or converting the electrical data signal into an optical data signal. Examples of optoelectronic devices include side-emitting lasers such as Fabry-Perot lasers, decentralized feedback lasers, and surface-emitting lasers, such as vertical cavity surface-emitting lasers (vertical cavity) Surface emitting lasers; VCSEL) and long-wavelength vertical cavity surface-emitting lasers.

光電封裝中的一個共同的問題係為光學背向反射(optical back reflection;OBR)。光學背向反射可導致光資料訊號間的干擾,此現象通常稱為〞雜訊〞。某些類型的側射型雷射以及面射型雷射,例如長波長垂直共振腔面射型雷射,對光學背向反射尤其敏感。 A common problem in optoelectronic packages is optical back reflection (OBR). Optical back reflections can cause interference between optical data signals, a phenomenon commonly referred to as noise. Some types of side-shooting lasers and surface-emitting lasers, such as long-wavelength vertical cavity surface-emitting lasers, are particularly sensitive to optical back reflections.

一種降低光電封裝中光學背向反射產生的雜訊的方法是採用光隔離器。光隔離器的功能係阻擋光學背向反射到達裝設於光電封裝內的光電裝置。雖然光隔離器的使用能夠有助於防止光學背向反射到達裝設於光電封裝內的光電裝置,從而維持雜訊於可接受的標準以下,但是光隔離器的造價非常昂貴。 One method of reducing the noise generated by optical back reflection in an optoelectronic package is to use an optical isolator. The function of the optical isolator is to block the optical back reflection from reaching the optoelectronic device mounted in the optoelectronic package. While the use of optical isolators can help prevent optical back reflections from reaching optoelectronic devices housed in optoelectronic packages, thereby maintaining noise below acceptable standards, optical isolators are expensive to manufacture.

通常,本發明的實施例係關於一種包含兩個或多個被動光學組件的光電封裝,其中被動光學組件用於控制到達光電封裝內裝設的光電裝置的光學背向反射的數量。透過這種方式控制光學背向反射,可以相應地控制光電封裝內的雜訊,從而有助於改善光電封裝的性能。 In general, embodiments of the present invention are directed to an optoelectronic package including two or more passive optical components for controlling the amount of optical back reflection that reaches the optoelectronic device disposed within the optoelectronic package. By controlling the optical back reflection in this way, the noise in the optoelectronic package can be controlled accordingly, thereby contributing to the improvement of the performance of the optoelectronic package.

實施例中,光電封裝包含一個光電裝置、一個波片(wave plate)以及一個線偏光片。光電裝置用於沿光徑發射光訊號。波片位於光電裝置的光徑上。線偏光片也位於光電裝置與波片之間的光電裝置的光徑上。 In an embodiment, the optoelectronic package comprises an optoelectronic device, a wave plate, and a linear polarizer. Optoelectronic devices are used to emit optical signals along the optical path. The wave plate is located on the optical path of the photovoltaic device. The linear polarizer is also located on the optical path of the optoelectronic device between the optoelectronic device and the wave plate.

另一實施例中,長波長垂直共振腔面射型雷射的光電封裝包含一個長波長(long wavelength;LW)垂直共振腔面射型雷射(vertical cavity surface-emitting laser;VCSEL)、一個四分之一波片(quarter wave plate;QWP)以及一個線偏光片。長波長垂直共振腔面射型雷射用於沿光徑發射光訊號。發射的光訊號包含特定的偏光(polarization)。四分之一波片位於長波長垂直空腔面射型 雷射的光徑上。四分之一波片包含一個快軸,偏離長波長垂直共振腔面射型雷射發射的光訊號之偏光方向約45度。線偏光片位於長波長垂直共振腔面射型雷射的光徑上的長波長垂直共振腔面射型雷射與四分之一波片之間。線偏光片實質上對位於長波長垂直共振腔面射型雷射發射的光訊號的偏光方向。 In another embodiment, the long-wavelength vertical cavity surface-emitting laser optoelectronic package comprises a long wavelength (LW) vertical cavity surface-emitting laser (VCSEL), a four A quarter wave plate (QWP) and a linear polarizer. Long-wavelength vertical cavity surface-emitting lasers are used to emit optical signals along the optical path. The emitted optical signal contains a specific polarization. Quarter wave plate is located in long wavelength vertical cavity surface type The laser's light path. The quarter-wave plate contains a fast axis that deviates from the long-wavelength vertical cavity surface-emitting laser beam by a polarization direction of about 45 degrees. The linear polarizer is located between the long-wavelength vertical cavity surface-emitting laser and the quarter-wave plate on the optical path of the long-wavelength vertical cavity surface-emitting laser. The linear polarizer substantially aligns with the polarization direction of the optical signal of the long-wavelength vertical cavity surface-emitting laser emission.

實施例中,一種光電封裝的合格審定方法包含若干步驟。首先,使用光電裝置產生光訊號。然後,極化此光訊號至第一線偏光狀態。接下來,經過極化的光訊號被轉換為具有快軸與慢軸間相位移90度之圓偏光,以使快軸與經過極化的光訊號之偏光方向為45度。然後,相移後的光訊號之部分被反射回光電裝置。再者,被反射的部分光訊號從圓偏光狀態被相移至第二線偏光狀態,此第二線偏光狀態係偏離第一線偏光狀態約90度。然後,被相移的光訊號的反射部分被偏光至第一線偏光狀態。隨之,測量光電裝置的相對雜訊強度。然後,將測量的相對雜訊強度與協定所規定的相對雜訊強度相比較。最後,如果測量的相對雜訊強度處於協定所規定的相對雜訊強度的最大可接受偏差內,則判定此光電封裝合格。 In an embodiment, a method of certification of an optoelectronic package comprises several steps. First, an optoelectronic device is used to generate an optical signal. Then, the optical signal is polarized to the first line polarization state. Next, the polarized optical signal is converted into a circularly polarized light having a phase shift of 90 degrees between the fast axis and the slow axis such that the polarization direction of the fast axis and the polarized optical signal is 45 degrees. Then, the portion of the phase shifted optical signal is reflected back to the optoelectronic device. Furthermore, the reflected partial optical signal is phase-shifted from the circularly polarized state to the second linearly polarized state, and the second linearly polarized state is about 90 degrees from the first linearly polarized state. Then, the reflected portion of the phase-shifted optical signal is polarized to the first line polarization state. Accordingly, the relative noise intensity of the photovoltaic device is measured. The measured relative noise strength is then compared to the relative noise strength specified by the agreement. Finally, if the measured relative noise strength is within the maximum acceptable deviation of the relative noise intensity specified by the agreement, then the optoelectronic package is determined to pass.

本發明實施例的上述及其他方面將在下面的說明書以及所附的申請專利範圍中體現得更加明顯。 The above and other aspects of the embodiments of the present invention will be more apparent from the following description and the appended claims.

如上所述,本發明之實施例係關於一種包含兩個或多個被動 光學組件的光電封裝,其中的被動光學組件用於控制到達裝設於光電封裝內的光電裝置的光學背向反射的數量。透過這種方式控制光學背向反射,可以相應地控制光電封裝內的雜訊,從而有助於改善光電封裝的性能。 As described above, embodiments of the present invention relate to one that includes two or more passive An optoelectronic package of optical components, wherein the passive optical components are used to control the amount of optical back reflections that reach the optoelectronic devices housed within the optoelectronic package. By controlling the optical back reflection in this way, the noise in the optoelectronic package can be controlled accordingly, thereby contributing to the improvement of the performance of the optoelectronic package.

本說明書使用的術語〞光電封裝〞係指容納光電裝置的任何封裝。本說明書使用的術語〞光電裝置〞係指電-光或者光-電轉換器。本說明書揭露的光電裝置可用於發送或者接收多種線速率的多個協定的光訊號。例如,本說明書揭露的光電裝置可用於處理如下的光訊號:光纖高速乙太網路、光纖超高速乙太網路、1x光纖通道、2x光纖通道、4x光纖通道、同步光纖網路(Synchronous Optical Network;SONET)光學載體(Optical Carrier;OC)-3、SONET OC-12、SONET OC-48、SONET OC-192、SONET OC-768、10x光纖通道或者100億位元乙太網路。類似地,本說明書揭露的光電裝置可作業於以下標稱速率:155Mb/s、200Mb/s、622Mb/s、1.25Gb/s、2.125Gb/s、2.67Gb/s、4.25Gb/s、10.3Gb/s、10.5Gb/s、10.7Gb/s或者11.1Gb/s。 The term "optical package" as used in this specification refers to any package that houses an optoelectronic device. The term "optoelectronic device" as used in this specification refers to an electro-optical or optical-to-electrical converter. The optoelectronic device disclosed in the present specification can be used to transmit or receive a plurality of protocol optical signals of various line rates. For example, the optoelectronic device disclosed in the present specification can be used to process optical signals such as: fiber optic high-speed Ethernet, fiber ultra-high-speed Ethernet, 1x Fibre Channel, 2x Fibre Channel, 4x Fibre Channel, and Synchronous Optical Network (Synchronous Optical) Network; SONET) Optical Carrier (OC)-3, SONET OC-12, SONET OC-48, SONET OC-192, SONET OC-768, 10x Fibre Channel or 10 billion bit Ethernet. Similarly, the optoelectronic device disclosed in the present specification can operate at the following nominal rates: 155 Mb/s, 200 Mb/s, 622 Mb/s, 1.25 Gb/s, 2.125 Gb/s, 2.67 Gb/s, 4.25 Gb/s, 10.3. Gb/s, 10.5 Gb/s, 10.7 Gb/s or 11.1 Gb/s.

I.光電封裝的實例I. Examples of optoelectronic packages

現在請參考「第1圖」,圖中表示光電封裝100的實例。光電封裝100包含外殼102。外殼102係為密封的電晶體型外殼,通常稱為〞圓柱式封裝〞。如此,外殼102可結合到光發射次模組(transmitter optical subassembly;TOSA)中(圖中未表示)。 Referring now to "FIG. 1", an example of an optoelectronic package 100 is shown. The optoelectronic package 100 includes a housing 102. The outer casing 102 is a sealed, crystal-type outer casing, commonly referred to as a cylindrical cylindrical package. As such, the housing 102 can be incorporated into a transmitter optical subassembly (TOSA) (not shown).

外殼102包含一個圓柱式封裝的頭座104,其中包含電氣元件105,並且裝設有一個光電裝置106。一個或多個電氣元件用於接收電資料訊號,且傳輸此電資料訊號通過頭座104至光電裝置106。一個或多個電氣元件還用於接收電流,且傳輸此電流通過頭座104以提供電源至光電裝置106。一個或多個電氣元件更用於接收控制訊號,且傳輸此控制訊號通過頭座104至光電裝置106。這個實例中,光電裝置106係為長波長垂直共振腔面射型雷射。本說明書使用的術語〞長波長垂直共振腔面射型雷射〞係指發射的光資料訊號波長約介於1200奈米與1900奈米之間,或者甚至更長的波長。本發明的保護範圍並非限制於長波長垂直共振腔面射型雷射,其他類型的光電裝置也可用於本發明的實施例中。 The housing 102 includes a cylindrical package header 104 containing electrical components 105 and an optoelectronic device 106. One or more electrical components are used to receive the electrical data signal and transmit the electrical data signal through the headstock 104 to the optoelectronic device 106. One or more electrical components are also used to receive current and transmit this current through the headstock 104 to provide power to the optoelectronic device 106. One or more electrical components are further used to receive the control signal and transmit the control signal through the header 104 to the optoelectronic device 106. In this example, the optoelectronic device 106 is a long wavelength vertical cavity surface-emitting laser. As used in this specification, the term "long-wavelength vertical cavity" surface-emitting laser ray refers to a wavelength of light data transmitted between approximately 1200 nm and 1900 nm, or even longer wavelengths. The scope of protection of the present invention is not limited to long-wavelength vertical cavity surface-emitting lasers, and other types of optoelectronic devices can be used in embodiments of the present invention.

實施例中,光電裝置106係為長波長垂直共振腔面射型雷射,成長於使用分子束磊晶(molecular beam epitaxy;MBE)的砷化鎵基板之上。長波長垂直共振腔面射型雷射的主動區域包含三個55埃(Å)的氮砷化鎵銦(InGaAsN)量子井,透過砷化鎵間隔層(spacer layer)而分離。長波長垂直共振腔面射型雷射的主動區域夾於p型砷化鎵傳導層及n型砷化鎵傳導層之間。p型砷化鎵傳導層位於主動區域之上,n型砷化鎵傳導層位於主動區域之下。p型及n型砷化鎵傳導層作為長波長垂直共振腔面射型雷射的內腔接觸點。p型及n型砷化鎵傳導層夾置於底部的37對非摻雜型砷化鋁鎵/砷化鎵的分散式布瑞格反射器(distributed Bragg reflector;DBR)以 及頂部的8對介電質分散式布瑞格反射器之間。 In the embodiment, the photovoltaic device 106 is a long-wavelength vertical cavity surface-emitting laser grown on a gallium arsenide substrate using molecular beam epitaxy (MBE). The active region of the long-wavelength vertical cavity surface-emitting laser contains three 55-Å (Å) gallium indium arsenide (InGaAsN) quantum wells separated by a gallium arsenide spacer layer. The active region of the long-wavelength vertical cavity surface-emitting laser is sandwiched between the p-type gallium arsenide conductive layer and the n-type gallium arsenide conductive layer. The p-type gallium arsenide conductive layer is above the active region and the n-type gallium arsenide conductive layer is below the active region. The p-type and n-type gallium arsenide conductive layers serve as internal cavity contact points for long-wavelength vertical cavity surface-emitting lasers. The p-type and n-type gallium arsenide conductive layers are sandwiched at the bottom of 37 pairs of undoped aluminum gallium arsenide/arsenide gallium dispersive Bragg reflectors (DBR). And between the top 8 pairs of dielectric dispersed Bragg reflectors.

光電裝置106作為電-光轉換器。於此,光電裝置106透過電氣元件接收的電資料訊號作為輸入,發射相應的光資料訊號108作為輸出。光電裝置106更用於沿光徑發射光資料訊號108,其中此光徑藉由「第1圖」所示的箭頭表示。此外,光電裝置106發射具有已知偏光的光資料訊號108。 The optoelectronic device 106 acts as an electro-optical converter. Here, the optoelectronic device 106 receives the electrical data signal received by the electrical component as an input, and transmits the corresponding optical data signal 108 as an output. The optoelectronic device 106 is further configured to emit an optical data signal 108 along the optical path, wherein the optical path is indicated by an arrow shown in FIG. In addition, optoelectronic device 106 emits an optical data signal 108 having a known polarization.

取決於特定應用的需求,光電裝置106用於發射多種波長之一的光資料訊號108。例如,光電裝置106可以發射波長為1310奈米或者1550奈米的光資料訊號108。此外,光電裝置106可作業於多種資料速率。例如,光電裝置106可以作業於標稱速率為約4.25Gb/s或者約10Gb/s,甚至更高。 Optoelectronic device 106 is used to emit optical data signal 108 of one of a plurality of wavelengths, depending on the needs of the particular application. For example, optoelectronic device 106 can emit optical data signal 108 having a wavelength of 1310 nm or 1550 nm. In addition, optoelectronic device 106 can operate at a variety of data rates. For example, optoelectronic device 106 can operate at a nominal rate of about 4.25 Gb/s or about 10 Gb/s, or even higher.

請繼續參考「第1圖」,光電封裝100更包含一個透鏡110、一個線偏光片112、一個波片114以及一個窗口116,每個組件均位於光資料訊號108的光徑上。下面將輪流描述這些組件的功能。 Please refer to FIG. 1 again. The optoelectronic package 100 further includes a lens 110, a linear polarizer 112, a wave plate 114 and a window 116. Each component is located on the optical path of the optical data signal 108. The functions of these components will be described in turn below.

這個實例中,透鏡110係為非球面透鏡,但是並非限制於此,也可以使用其他透鏡,包含球形透鏡或者半球形透鏡。當光資料訊號108通過透鏡110時,透鏡110用於聚焦此光資料訊號108。另一實施例中,透鏡110可與一個或多個附加的透鏡組合,從而進一步聚焦或者以其他方式處理光資料訊號108。在一實施例中,可除去透鏡110,光資料訊號108可無需首先通過透鏡而從光電裝置106傳遞至線偏光片112。 In this example, the lens 110 is an aspherical lens, but is not limited thereto, and other lenses may be used, including a spherical lens or a hemispherical lens. When the optical data signal 108 passes through the lens 110, the lens 110 is used to focus the optical data signal 108. In another embodiment, lens 110 can be combined with one or more additional lenses to further focus or otherwise process optical data signal 108. In one embodiment, the lens 110 can be removed and the optical data signal 108 can be transmitted from the optoelectronic device 106 to the linear polarizer 112 without first passing through the lens.

當光資料訊號108通過線偏光片112時,線偏光片112用於極化光資料訊號108。實施例中,線偏光片112實質上可對準光電裝置106的已知偏光狀態,所以光資料訊號108通過線偏光片112的衰減相對較小。 When the optical data signal 108 passes through the linear polarizer 112, the linear polarizer 112 is used to polarize the optical data signal 108. In the embodiment, the linear polarizer 112 can be substantially aligned with the known polarization state of the optoelectronic device 106, so the attenuation of the optical data signal 108 through the linear polarizer 112 is relatively small.

當光資料訊號108通過波片114時,波片114用於相移光資料訊號108。通常,波片係為光學裝置,用以改變通過此波片之光波的偏光狀態。實施例中,波片114係為四分之一波片,當光資料訊號108通過四分之一波片時,用於相移光資料訊號108約90度。於是,當光資料訊號108通過四分之一波片時,四分之一波片使得光資料訊號108相移四分之一波長。本實施例中,四分之一波片的快軸偏離光電裝置106的已知偏光狀態約45度。當光資料訊號108通過四分之一波片時,光資料訊號108從一個線偏光的光資料訊號轉換為一個圓偏光的光資料訊號。 When the optical data signal 108 passes through the wave plate 114, the wave plate 114 is used to phase shift the optical data signal 108. Typically, the wave plate is an optical device that changes the polarization state of the light waves passing through the wave plate. In the embodiment, the wave plate 114 is a quarter wave plate. When the optical data signal 108 passes through the quarter wave plate, it is used to phase shift the optical data signal 108 by about 90 degrees. Thus, when the optical data signal 108 passes through the quarter-wave plate, the quarter-wave plate causes the optical data signal 108 to phase shift by a quarter wavelength. In this embodiment, the fast axis of the quarter wave plate is offset from the known polarization state of the optoelectronic device 106 by about 45 degrees. When the optical data signal 108 passes through the quarter wave plate, the optical data signal 108 is converted from a linearly polarized optical data signal into a circularly polarized optical data signal.

窗口116允許光資料訊號108離開密封的外殼102。通常,窗口116可由任何能夠維持外殼102之密封的光傳輸材料製成。另一實施例中,外殼102並無密封,窗口116不需要能夠維持密封,或者完全可以除去窗口116。 Window 116 allows optical data signal 108 to exit sealed enclosure 102. Generally, the window 116 can be made of any light transmitting material that is capable of maintaining the seal of the outer casing 102. In another embodiment, the outer casing 102 is not sealed and the window 116 need not be capable of maintaining a seal or the window 116 can be completely removed.

II.光電封裝的實施例的作業II. Operation of an embodiment of an optoelectronic package

作業時,藉由簡單便宜的光學組件,光電封裝100控制到達光電封裝100內之光電裝置的光學背向反射。尤其是,光電封裝100的實施例係使用簡單便宜的組件例如前述的線偏光片112以及 波片114,從而提供相對較少的到達光電裝置106的光學背向反射。 During operation, the optoelectronic package 100 controls the optical back reflection of the optoelectronic devices that reach the optoelectronic package 100 by simple and inexpensive optical components. In particular, embodiments of optoelectronic package 100 use simple and inexpensive components such as the aforementioned linear polarizer 112 and Wave plate 114, thereby providing relatively less optical back reflection to optoelectronic device 106.

實施例中,波片係為四分之一波片,當光學背向反射朝向光電裝置106時,圓偏光的光資料訊號108的任何部分被向後反射,雖然被反射為光學背向反射,但是光電裝置106發射的圓偏光的光資料訊號108實質上仍然維持。 In an embodiment, the wave plate is a quarter wave plate. When the optical back reflection is toward the optoelectronic device 106, any portion of the circularly polarized optical data signal 108 is reflected back, although reflected as optical back reflection, but The circularly polarized optical data signal 108 emitted by the optoelectronic device 106 remains substantially maintained.

尤其地,當光學背向反射通過四分之一波片時,圓偏光的光學背向反射被轉換為線偏光的光學背向反射,其方向與光資料訊號108的初始線偏振約成90度。當線偏光的光學背向反射到達線偏光片112時,線偏光片112實質上阻擋所有的光學背向反射。結果,到達光電裝置106的光學背向反射的數量被降低到透過其他方式實現的程度以下。透過這種方式控制光學背向反射,相應地降低光電封裝100內的雜訊的程度。光電封裝100內的雜訊程度的降低可使得光電封裝100與另一光學裝置之間的光通訊的錯誤率較低。 In particular, when the optical back reflection passes through the quarter wave plate, the optical back reflection of the circularly polarized light is converted into an optical back reflection of the linearly polarized light, the direction of which is approximately 90 degrees from the initial linear polarization of the optical data signal 108. . When the optical back reflection of the line polarization reaches the line polarizer 112, the line polarizer 112 substantially blocks all optical back reflections. As a result, the amount of optical back reflection that reaches the optoelectronic device 106 is reduced below the extent that is achieved by other means. In this way, the optical back reflection is controlled, and the degree of noise in the optoelectronic package 100 is correspondingly reduced. The reduction in the degree of noise within the optoelectronic package 100 can result in a lower error rate of optical communication between the optoelectronic package 100 and another optical device.

雖然本說明書揭露的光電封裝100的實例中裝設的是長波長垂直共振腔面射型雷射,然而,光電封裝100的組態亦可應用於裝設其他類型的光電裝置的其他光電封裝。例如,裝設側射型雷射或其他類型的面射型雷射的光電封裝可受益於線偏光片112以及波片114的排列。因此,本發明的保護範圍並非限制於裝設長波長垂直共振腔面射型雷射的光電封裝,本發明也不限制於「第1圖」所示之組件的類型、數目或者排列。 Although the example of the optoelectronic package 100 disclosed in the present specification is provided with a long-wavelength vertical cavity surface-emitting laser, the configuration of the optoelectronic package 100 can also be applied to other optoelectronic packages in which other types of optoelectronic devices are mounted. For example, optoelectronic packages incorporating side-emitting lasers or other types of surface-emitting lasers may benefit from the arrangement of linear polarizers 112 and wave plates 114. Therefore, the scope of protection of the present invention is not limited to an optoelectronic package in which a long-wavelength vertical cavity surface-emitting laser is mounted, and the present invention is not limited to the type, number, or arrangement of components shown in FIG.

III.實驗裝置的實例III. Examples of experimental devices

「第2圖」揭露的實驗裝置中,光電封裝200與上述光電封裝100的實例類似。光電封裝200包含垂直共振腔面射型雷射202,裝設於高速測試片上。直流電流源204用以驅動垂直共振腔面射型雷射。位元誤碼率測試器(bit error rate tester;BERT)206透過偏壓T型接頭(bias tee)208調變直流電流源204。垂直共振腔面射型雷射202產生的光訊號210藉由非球面透鏡214耦合於角度劈裂(角度研磨接觸型;Angled Polished/Physical Contact;APC)的單模光纖(single mode fiber;SMF)212。線偏光片216鄰接且位於垂直共振腔面射型雷射202發射的光訊號210的路徑上,線偏光片216可裝設且對位於光訊號210的偏光狀態。四分之一波片218其快軸與光訊號210的偏振約成45度。本實施例中,進入單模光纖212的耦合效率(coupling efficiency;CE)維持於3dB。到達反射鏡224之前,單模光纖212通過偏光片控制器220以及衰減器222。第二單模光纖226係自單模光纖212分支而出。第二單模光纖226可使光電封裝200連接至光學量測設備,例如數位通訊分析儀(digital communications analyzer;DCA)228、光譜分析儀(optical spectrum analyzer;OSA)230或電功率計(power meter)232。然後,光訊號被反射鏡反射,沿單模光纖212朝向垂直共振腔面射型雷射。有效返回光電封裝200的光線量取決於單模光纖212的光耦合損耗以及通過其他光徑的衰減。在此裝置中, 進入光電封裝200的反射光線量範圍從-7dB至-60dB。 In the experimental apparatus disclosed in "Fig. 2", the optoelectronic package 200 is similar to the above-described example of the optoelectronic package 100. The optoelectronic package 200 includes a vertical cavity surface-emitting laser 202 mounted on a high speed test strip. The DC current source 204 is used to drive a vertical cavity surface-emitting laser. A bit error rate tester (BERT) 206 modulates the DC current source 204 through a bias tee 208. The optical signal 210 generated by the vertical cavity surface-emitting laser 202 is coupled to the single mode fiber (SMF) of the angle splitting (angled contact type; Angled Polished/Physical Contact; APC) by the aspherical lens 214. 212. The line polarizer 216 is adjacent to and located on the path of the optical signal 210 emitted by the vertical cavity surface type laser 202. The line polarizer 216 can be disposed and disposed in a polarized state of the optical signal 210. The quarter-wave plate 218 has a fast axis that is about 45 degrees from the polarization of the optical signal 210. In this embodiment, the coupling efficiency (CE) of the single mode fiber 212 is maintained at 3 dB. The single mode fiber 212 passes through the polarizer controller 220 and the attenuator 222 before reaching the mirror 224. The second single mode fiber 226 is branched from the single mode fiber 212. The second single mode fiber 226 can connect the optoelectronic package 200 to an optical metrology device, such as a digital communications analyzer (DCA) 228, an optical spectrum analyzer (OSA) 230, or a power meter. 232. The optical signal is then reflected by the mirror and is directed along the single mode fiber 212 toward the vertical cavity surface. The amount of light that is effectively returned to the optoelectronic package 200 depends on the optical coupling loss of the single mode fiber 212 and the attenuation through other optical paths. In this device, The amount of reflected light entering the optoelectronic package 200 ranges from -7 dB to -60 dB.

IV.實驗結果IV. Experimental results

「第3圖」表示不同程度的光學背向反射下於若干偏壓電流時的光電封裝200內的垂直共振腔面射型雷射的相對雜訊強度(relative intensity noise;RIN)。相對雜訊強度係與光功率的雜訊及平均功率有關,其可表示為: 其中P(t)係為既定偏光狀態下與時間相依的垂直共振腔面射型雷射之輸出功率,而係為此偏光狀態下的垂直共振腔面射型雷射之平均功率。 "Fig. 3" shows the relative intensity noise (RIN) of the vertical cavity surface-emitting laser in the optoelectronic package 200 at different bias currents under different degrees of optical back reflection. Relative noise strength and optical power noise and average power Related, it can be expressed as: Where P ( t ) is the output power of a time-dependent vertical cavity surface-emitting laser in a given polarization state, and This is the average power of the vertical cavity surface-emitting laser in this polarized state.

在以一光電封裝200所執行的實驗中,當各種數量的光學背向反射引入光電封裝200時,長波長垂直共振腔面射型雷射係由6毫安培至10毫安培的直流偏壓電流提供電源。測量光電封裝中對應的相對雜訊強度,且與2x光纖通道規範的要求相比較。經由參考,2x光纖通道的規範要求最大RIN12(OMA)為-120分貝/赫,大概對應於直流偏壓下的最大相對雜訊強度規格為-138分貝/赫。當範圍從-7分貝至-60分貝的光學背向反射通過四分之一波片以及線偏光片時,測量光電封裝內的相對雜訊強度。甚至測量最差情況下,光學背向反射為-7分貝時,2x光纖通道的規格要求亦滿足適當的界限。請參閱「第3圖」,圖表300揭露了此實驗的結果。 In an experiment performed in an optoelectronic package 200, when various amounts of optical back reflection are introduced into the optoelectronic package 200, the long-wavelength vertical cavity surface-emitting laser system has a DC bias current of 6 mA to 10 mA. Provide power. The corresponding relative noise strength in the optoelectronic package is measured and compared to the requirements of the 2x Fibre Channel specification. By reference, the 2x Fibre Channel specification requires a maximum RIN 12 (OMA) of -120 dB/Hz, which corresponds to a maximum relative noise strength specification of -138 dB/Hz under DC bias. The relative noise intensity in the optoelectronic package is measured when the optical back reflection ranges from -7 decibels to -60 decibels through the quarter wave plate and the line polarizer. Even in the worst case measurement, when the optical back reflection is -7 dB, the 2x Fibre Channel specifications also meet the appropriate limits. Please refer to "Figure 3". Figure 300 reveals the results of this experiment.

此實驗證實「第1圖」所示之光電裝置106、線偏光片112以 及波片115的排列可有效地用於控制到達光電裝置106的光學背向反射量。光學背向反射的降低能夠減少光電封裝100中的雜訊程度,從而改善光電裝置106的性能。 This experiment confirmed that the photovoltaic device 106 and the linear polarizer 112 shown in "Fig. 1" The arrangement of the waveplates 115 can be effectively used to control the amount of optical back reflection that reaches the optoelectronic device 106. The reduction in optical back reflection can reduce the level of noise in the optoelectronic package 100, thereby improving the performance of the optoelectronic device 106.

IV.合格審定光電封裝的方法的實例IV. Examples of methods for certification of optoelectronic packaging

現在請參考「第4圖」,圖中揭露了光電封裝之合格審定方法400的實例。方法400的實例包含多個步驟,可用於審定合格或駁回光電封裝,例如本說明書揭露的光電封裝100或者光電封裝200。 Referring now to Figure 4, an example of a method 400 for certification of optoelectronic packages is disclosed. The example of method 400 includes a number of steps that can be used to validate or reject an optoelectronic package, such as optoelectronic package 100 or optoelectronic package 200 as disclosed herein.

方法400的實例包含使用一光電裝置以產生一個光訊號(步驟402)。例如,光電封裝200的垂直共振腔面射型雷射202可用於產生光訊號210。 An example of method 400 includes using an optoelectronic device to generate an optical signal (step 402). For example, the vertical cavity surface-emitting laser 202 of the optoelectronic package 200 can be used to generate the optical signal 210.

方法400還包含極化此光訊號為第一線偏光狀態(步驟404)。例如,線偏光片216可用於極化光訊號210為第一線偏光狀態。 The method 400 also includes polarizing the optical signal to a first line polarization state (step 404). For example, the line polarizer 216 can be used to polarize the optical signal 210 to a first line polarization state.

方法400的實例更包含相移經極化的光訊號約90度,以產生一圓偏光狀態(步驟406)。例如,四分之一波片218可用於相移經極化的光訊號約90度,以從第一線偏光狀態轉換至圓偏光狀態。 An example of method 400 further includes phase shifting the polarized optical signal by about 90 degrees to produce a circularly polarized state (step 406). For example, the quarter wave plate 218 can be used to phase shift the polarized optical signal by about 90 degrees to transition from the first linear polarization state to the circular polarization state.

方法400的實例還包含將部分經過相移的光訊號反射回光電裝置(步驟408)。例如,反射鏡224可用於將部分經過相移的光訊號反射回光電裝置。 An example of method 400 further includes reflecting a portion of the phase shifted optical signal back to the optoelectronic device (step 408). For example, mirror 224 can be used to reflect a portion of the phase shifted optical signal back to the optoelectronic device.

方法400的實例更包含相移經過反射的部分光訊號,以從圓偏光狀態轉換至第二線偏光狀態,此第二線偏光狀態係偏離第一 線偏光狀態約90度(步驟410)。例如,四分之一波片218可用於相移光訊號210的反射部分,以從圓偏光狀態轉換至第二線偏光狀態,此第二線偏光狀態係偏離第一線偏光狀態約90度。 An example of the method 400 further includes phase shifting the reflected partial optical signal to switch from a circularly polarized state to a second linearly polarized state, the second linear polarization state being offset from the first The line polarization state is about 90 degrees (step 410). For example, a quarter wave plate 218 can be used to phase shift the reflected portion of the optical signal 210 to transition from a circularly polarized state to a second linearly polarized state that is about 90 degrees from the first linearly polarized state.

方法400的實例還包含極化經過相移的光訊號的反射部分至第一線偏光狀態(步驟412)。例如,線偏光片216可用於偏光經過相移的光訊號210的反射部分至第一線偏光狀態。因為,經過相移的光訊號的反射部分偏離第一線偏光狀態約90度,線偏光片216實質上阻擋了所有經過相移的光訊號的反射部分。 An example of method 400 further includes polarizing the reflected portion of the phase shifted optical signal to a first line polarized state (step 412). For example, the line polarizer 216 can be used to polarize the reflected portion of the phase-shifted optical signal 210 to the first line polarized state. Because the reflected portion of the phase shifted optical signal is about 90 degrees from the first line polarized state, the linear polarizer 216 substantially blocks the reflected portion of all phase shifted optical signals.

方法400的實例還包含測量光電裝置的相對雜訊強度(步驟414)。例如,可測量垂直共振腔面射型雷射202的相對雜訊強度。 An example of method 400 also includes measuring the relative noise intensity of the optoelectronic device (step 414). For example, the relative noise intensity of the vertical cavity surface-emitting laser 202 can be measured.

方法400的實例還包含比較測量的相對雜訊強度與協定提供的相對雜訊強度(步驟416)。例如,測量的垂直共振腔面射型雷射202的相對雜訊強度可與此處揭露的任何協定規定的相對雜訊強度相比較,例如2x光纖通道協定。 An example of method 400 also includes comparing the measured relative noise strength to the relative noise strength provided by the agreement (step 416). For example, the relative noise intensity of the measured vertical cavity surface-emitting laser 202 can be compared to the relative noise strength specified by any of the agreements disclosed herein, such as the 2x Fibre Channel protocol.

方法400的實例還包含判斷測量的相對雜訊強度是否處於協定規定的相對雜訊強度的可接受最大偏差之內(步驟418)。如果處於可接受的最大偏差之內,方法400的實例則執行步驟420,審定此光電封裝合格。如果未處於可接受的最大偏差之內,方法400的實例則執行步驟422,駁回此光電封裝。例如,如果測量的垂直共振腔面射型雷射202的相對雜訊強度位於2x光纖通道規定的相對雜訊強度的最大可接受偏差之內,可判定光電封裝200符合2x 光纖通道。另一方面,如果測量的垂直共振腔面射型雷射202的相對雜訊強度並不位於2x光纖通道規定的相對雜訊強度的最大可接受偏差之內,可駁回光電封裝200,因為不符合2x光纖通道協定。這裡提到的〞最大可接受偏差〞係為預設值,例如可由特定的協定規定或者由使用者指定。 An example of method 400 further includes determining whether the measured relative noise strength is within an acceptable maximum deviation of the agreed relative noise strength (step 418). If within the acceptable maximum deviation, the example of method 400 proceeds to step 420 to verify that the optoelectronic package is acceptable. If not within the acceptable maximum deviation, the example of method 400 proceeds to step 422 to reject the optoelectronic package. For example, if the measured relative noise intensity of the vertical cavity surface-emitting laser 202 is within the maximum acceptable deviation of the relative noise intensity specified by the 2x fiber channel, it can be determined that the optoelectronic package 200 conforms to 2x. Fibre Channel. On the other hand, if the relative noise intensity of the measured vertical cavity surface-emitting laser 202 is not within the maximum acceptable deviation of the relative noise intensity specified by the 2x fiber channel, the optoelectronic package 200 can be rejected because it does not match 2x Fibre Channel protocol. The maximum acceptable deviation 〞 referred to herein is a preset value, for example, may be specified by a specific agreement or specified by a user.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍之內。關於本發明所界定之保護範圍請參照所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

100‧‧‧光電封裝 100‧‧‧Optoelectronic packaging

102‧‧‧外殼 102‧‧‧Shell

104‧‧‧頭座 104‧‧‧ head seat

105‧‧‧電氣元件 105‧‧‧Electrical components

106‧‧‧光電裝置 106‧‧‧Optoelectronic devices

108‧‧‧光資料訊號 108‧‧‧Light information signal

110‧‧‧透鏡 110‧‧‧ lens

112‧‧‧線偏光片 112‧‧‧Line polarizer

114‧‧‧波片 114‧‧‧ Wave Plate

116‧‧‧窗口 116‧‧‧ window

200‧‧‧光電封裝 200‧‧‧Optoelectronic packaging

202‧‧‧垂直共振腔面射型雷射 202‧‧‧Vertical cavity surface-emitting laser

204‧‧‧直流電流源 204‧‧‧DC current source

206‧‧‧位元誤碼率測試器 206‧‧‧ bit error rate tester

208‧‧‧偏壓T型接頭 208‧‧‧ bias T-joint

210‧‧‧光訊號 210‧‧‧Optical signal

212‧‧‧單模光纖 212‧‧‧ single mode fiber

214‧‧‧非球面透鏡 214‧‧‧Aspherical lens

216‧‧‧線偏光片 216‧‧‧Line polarizer

218‧‧‧四分之一波片 218‧‧‧ quarter wave plate

220‧‧‧偏光片控制器 220‧‧‧ Polarizer controller

222‧‧‧衰減器 222‧‧‧ attenuator

224‧‧‧反射鏡 224‧‧‧Mirror

226‧‧‧第二單模光纖 226‧‧‧Second single mode fiber

228‧‧‧數位通訊分析儀 228‧‧‧Digital Communication Analyzer

230‧‧‧光譜分析儀 230‧‧‧Spectral Analyzer

232‧‧‧電功率計 232‧‧‧Electric power meter

300‧‧‧圖表 300‧‧‧ Chart

400‧‧‧光電封裝的合格審定方法 400‧‧‧Qualification method for optoelectronic packaging

步驟402‧‧‧使用光電裝置產生光訊號 Step 402‧‧‧ Use optoelectronic devices to generate optical signals

步驟404‧‧‧極化光訊號至第一線偏光狀態 Step 404‧‧‧Polarized optical signal to the first line polarization state

步驟406‧‧‧相移經極化的光訊號之分量約90度,以產生圓偏光狀態 Step 406‧‧‧ phase shifting the component of the polarized optical signal by approximately 90 degrees to produce a circularly polarized state

步驟408‧‧‧將一部分經相移之光訊號反射回光電裝置 Step 408‧‧‧ Reflecting a portion of the phase-shifted optical signal back to the optoelectronic device

步驟410‧‧‧相移光訊號之反射部分之分量從圓偏光狀態至一第二線偏光狀態,此第二線偏光狀態約90度偏離第一線偏光狀態 Step 410‧‧‧ The component of the reflected portion of the phase-shifted optical signal is from a circularly polarized state to a second-line polarized state, and the second-line polarized state is about 90 degrees away from the first-line polarized state

步驟412‧‧‧極化經相移之光訊號之反射部分至第一線偏光狀態 Step 412‧‧‧Position of the reflected portion of the phase-shifted optical signal to the first line polarization state

步驟414‧‧‧測量光電裝置之相對雜訊強度 Step 414‧‧‧Measure the relative noise intensity of the optoelectronic device

步驟416‧‧‧比較經測量之相對雜訊強度與一協定規定之相對雜訊強度 Step 416‧‧‧Compare the relative noise intensity measured and the relative noise intensity specified in a protocol

步驟418‧‧‧是否測量的相對雜訊強度位於協定規定之相對雜訊強度的最大可接受偏差內? Step 418‧‧ Is the measured relative noise strength within the maximum acceptable deviation of the relative noise strength specified in the agreement?

步驟420‧‧‧判定光電封裝合格 Step 420‧‧‧Determining that the optoelectronic package is qualified

步驟422‧‧‧駁回光電封裝 Step 422‧‧‧Rejected optoelectronic package

第1圖所示係為本發明之光電封裝之實施例;第2圖所示係為測試光電封裝之實驗裝置之實施例;第3圖所示係為使用第2圖所示之實驗裝置的實驗產生的結果;以及第4圖所示係為本發明之判定光電封裝之方法實施例。 1 is an embodiment of the optoelectronic package of the present invention; FIG. 2 is an embodiment of an experimental apparatus for testing an optoelectronic package; and FIG. 3 is an experiment apparatus using the apparatus shown in FIG. The results produced by the experiment; and Fig. 4 show an embodiment of the method for determining the optoelectronic package of the present invention.

100‧‧‧光電封裝 100‧‧‧Optoelectronic packaging

102‧‧‧外殼 102‧‧‧Shell

104‧‧‧頭座 104‧‧‧ head seat

105‧‧‧電氣元件 105‧‧‧Electrical components

106‧‧‧光電裝置 106‧‧‧Optoelectronic devices

108‧‧‧光資料訊號 108‧‧‧Light information signal

110‧‧‧透鏡 110‧‧‧ lens

112‧‧‧線偏光片 112‧‧‧Line polarizer

114‧‧‧波片 114‧‧‧ Wave Plate

116‧‧‧窗口 116‧‧‧ window

Claims (12)

一種長波長垂直共振腔面射型雷射的光電封裝,包含有:一長波長垂直共振腔面射型雷射,用於發射沿一光徑之一光訊號;一四分之一波片(quarter wave plate;QWP),位於該光徑上,該四分之一波片包含一快軸,約45度偏離該光訊號之一偏光狀態;以及一線偏光片,位於該長波長垂直共振腔面射型雷射與該四分之一波片之間的該光徑上,該線偏光片對位於該光訊號之該偏光狀態。 A long-wavelength vertical cavity surface-emitting laser photoelectric package comprising: a long-wavelength vertical cavity surface-emitting laser for emitting an optical signal along a light path; a quarter-wave plate ( a quarter wave plate; QWP), located on the optical path, the quarter wave plate includes a fast axis, about 45 degrees offset from a polarization state of the optical signal; and a linear polarizer located on the long wavelength vertical cavity surface On the optical path between the laser and the quarter-wave plate, the pair of polarizers is located in the polarized state of the optical signal. 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射、該線偏光片以及該四分之一波片被封裝於電晶體型封裝(transistor outline;TO)內,用於結合至一光發射次模組(TOSA)。 The optoelectronic package of claim 1, wherein the long-wavelength vertical cavity surface-emitting laser, the line polarizer, and the quarter-wave plate are packaged in a transistor outline (TO) ) for bonding to a Light Emitting Secondary Module (TOSA). 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射發射一光資料訊號,該光資料訊號具有約1310奈米或約1550奈米之波長。 The optoelectronic package of claim 1, wherein the long-wavelength vertical cavity surface-emitting laser emits an optical data signal having a wavelength of about 1310 nm or about 1550 nm. 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射包含:一主動區域,包含三個厚度為55埃(Å)之氮砷化鎵銦(InGaAsN)量子井,該等氮砷化鎵銦(InGaAsN)量子井係透過砷化鎵間隔層而分離; 一p型砷化鎵傳導層,位於該主動區域之上;以及一n型砷化鎵傳導層,位於該主動區域之下。 The optoelectronic package of claim 1, wherein the long-wavelength vertical cavity surface-emitting laser comprises: an active region comprising three indium arsenide arsenide (InGaAsN) having a thickness of 55 Å (Å) Quantum wells, the indium gallium arsenide (InGaAsN) quantum wells are separated by a gallium arsenide spacer; A p-type gallium arsenide conductive layer is disposed over the active region; and an n-type gallium arsenide conductive layer is located under the active region. 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射更包含:一底部分散式布瑞格反射器(distributed Bragg reflector;DBR),位於該n型砷化鎵傳導層之下;以及一頂部八對介電質分散式布瑞格反射器,位於該n型砷化鎵傳導層之上。 The optoelectronic package of claim 1, wherein the long-wavelength vertical cavity surface-emitting laser further comprises: a distributed Bragg reflector (DBR) located in the n-type arsenic. Below the gallium conduction layer; and a top eight-pair dielectric dispersion Bragg reflector located above the n-type gallium arsenide conductive layer. 如申請專利範圍第5項所述之光電封裝,其中該底部分散式布瑞格反射器包含三十七對非摻雜之砷化鋁鎵或砷化鎵。 The optoelectronic package of claim 5, wherein the bottom dispersion type Bragg reflector comprises thirty-seven pairs of undoped aluminum gallium arsenide or gallium arsenide. 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射相容於每秒4.25G位元及每秒10G位元之標稱資料速率。 The optoelectronic package of claim 1, wherein the long wavelength vertical cavity surface-emitting laser is compatible with a nominal data rate of 4.25 Gbits per second and 10 Gbits per second. 如申請專利範圍第1項所述之光電封裝,其中該長波長垂直共振腔面射型雷射於一光學背向反射在該四分之一波片處大於約-20分貝時實質上符合2x光纖通道的規定。 The optoelectronic package of claim 1, wherein the long-wavelength vertical cavity surface-emitting laser is substantially in compliance with 2x when an optical back reflection is greater than about -20 decibels at the quarter-wave plate. Fibre Channel regulations. 一種合格審定光電封裝之方法,該方法包含:使用一光電裝置產生一光訊號;使用一線偏光片,使該光訊號極化至一第一線偏光狀態;使用一四分之一波片相移經極化之該光訊號之分量約90度,以產生一圓偏光狀態,其中該四分之一波片包含一快軸, 45度偏離該光訊號之一偏光狀態;將一部分經相移之該光訊號反射回該光電裝置;使用該四分之一波片,相移該光訊號之反射部分之分量從該圓偏光狀態至一第二線偏光狀態,該第二線偏光狀態約90度偏離該第一線偏光狀態;極化經相移之該光訊號之反射部分至該第一線偏光狀態;測量該光電裝置之相對雜訊強度;比較經測量之該相對雜訊強度與一協定規定之相對雜訊強度;以及如果經測量之相對雜訊強度位於該協定規定的相對雜訊強度之最大可接受偏差內,判定該光電封裝合格。 A method for verifying an optoelectronic package, the method comprising: generating an optical signal using an optoelectronic device; using a linear polarizer to polarize the optical signal to a first linear polarization state; using a quarter wave plate phase shift The component of the polarized optical signal is about 90 degrees to produce a circularly polarized state, wherein the quarter-wave plate includes a fast axis. 45 degrees deviating from a polarization state of the optical signal; reflecting a portion of the phase-shifted optical signal back to the optoelectronic device; using the quarter-wave plate, phase shifting a component of the reflective portion of the optical signal from the circularly polarized state a second line polarization state, the second line polarization state is offset from the first line polarization state by about 90 degrees; polarization is reflected by the phase shifting of the reflected portion of the optical signal to the first line polarization state; measuring the photoelectric device Relative noise strength; comparing the measured relative noise strength with a relative noise intensity as specified by the agreement; and determining if the measured relative noise strength is within the maximum acceptable deviation of the relative noise strength specified in the agreement The optoelectronic package is qualified. 如申請專利範圍第9項所述之方法,其中於將一部分經相移之該光訊號反射回該光電裝置之步驟,係將約-7分貝至約-60分貝之經相移之光訊號反射回該光電裝置。 The method of claim 9, wherein the step of reflecting a portion of the phase-shifted optical signal back to the optoelectronic device reflects the phase-shifted optical signal from about -7 decibels to about -60 decibels. Return to the optoelectronic device. 如申請專利範圍第9項所述之方法,其中於使用一光電裝置產生一光訊號之步驟,包含使用供應電源為介於6毫安培至10毫安培的直流偏壓電流之光電裝置以產生一長波長光訊號。 The method of claim 9, wherein the step of generating an optical signal using an optoelectronic device comprises using a photovoltaic device that supplies a DC bias current between 6 mA and 10 mA to generate a Long wavelength optical signal. 如申請專利範圍第9項所述之方法,其中於比較經測量之相對雜訊強度與一協定規定的相對雜訊強度之步驟,其中該協定規定的相對雜訊強度係為2x光纖通道規範所規定之相對雜訊強度。 The method of claim 9, wherein the comparing the measured relative noise strength with a predetermined relative noise intensity, wherein the relative noise intensity specified by the agreement is a 2x Fibre Channel specification The relative noise intensity specified.
TW95141806A 2005-11-14 2006-11-10 An optoelectronic package TWI426309B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73646305P 2005-11-14 2005-11-14

Publications (2)

Publication Number Publication Date
TW200718993A TW200718993A (en) 2007-05-16
TWI426309B true TWI426309B (en) 2014-02-11

Family

ID=51542558

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141806A TWI426309B (en) 2005-11-14 2006-11-10 An optoelectronic package

Country Status (1)

Country Link
TW (1) TWI426309B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842467B1 (en) * 2000-03-08 2005-01-11 Finisar Corporation Fiber optic laser transmitter with reduced near end reflections
US6898215B2 (en) * 2001-04-11 2005-05-24 Optical Communication Products, Inc. Long wavelength vertical cavity surface emitting laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842467B1 (en) * 2000-03-08 2005-01-11 Finisar Corporation Fiber optic laser transmitter with reduced near end reflections
US6898215B2 (en) * 2001-04-11 2005-05-24 Optical Communication Products, Inc. Long wavelength vertical cavity surface emitting laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Eugene Hecht, and Alfred Zajac, "Optics", Addison-Wesley, 1974. *

Also Published As

Publication number Publication date
TW200718993A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US9910230B2 (en) Integrally formed coupling module
JP6680924B2 (en) Laser device having optical isolator function
US11749968B2 (en) Dual grating-coupled lasers
US6842467B1 (en) Fiber optic laser transmitter with reduced near end reflections
US6697414B1 (en) Light emitting apparatus
CN109716599A (en) Optical fiber-coupled laser source pump with wavelength division multiplexer, isolator, tap filter and photodetector
US11705692B2 (en) Laser side mode suppression ratio control
CN218728198U (en) Optical module
CN115712179A (en) Optical module
CN111290089A (en) Multi-wavelength coupling light emitting device
US10700494B2 (en) Data center transmission systems
US7961770B1 (en) Optoelectronic module with integrated monitoring photodiode array for a parallel optical transmitter
CN115718351A (en) Optical module
CN115728884A (en) Optical module
US6977763B1 (en) Free-space optical isolator with integrated quarter-wave plate
US7505501B2 (en) Optoelectronic package
TWI426309B (en) An optoelectronic package
US7204647B2 (en) Monitoring a semiconductor laser utilizing an incorporated beam splitter device
US20130222908A1 (en) Optically isolated to-can
KR102458485B1 (en) Laser Device with optical isolator
CN115728886A (en) Optical module
RU2005102091A (en) ELECTRO-OPTICAL INTERFACE INSISTENT TO REVERSE REFLECTION AND METHOD FOR CONNECTING IT WITH A WAVEGUIDE
JP2015035480A (en) Semiconductor optical element module
Tiemeijer et al. Packaged high gain unidirectional 1300 nm MQW laser amplifiers
WO2015113246A1 (en) Device for coupling laser and optical fiber and optical signal transmission system and method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees