TWI425188B - Microscope system and imaging interferometer system - Google Patents

Microscope system and imaging interferometer system Download PDF

Info

Publication number
TWI425188B
TWI425188B TW99128413A TW99128413A TWI425188B TW I425188 B TWI425188 B TW I425188B TW 99128413 A TW99128413 A TW 99128413A TW 99128413 A TW99128413 A TW 99128413A TW I425188 B TWI425188 B TW I425188B
Authority
TW
Taiwan
Prior art keywords
detector
interference
light
microscope
light source
Prior art date
Application number
TW99128413A
Other languages
Chinese (zh)
Other versions
TW201129775A (en
Inventor
Leslie L Deck
Groot Peter De
Mark Davidson
Jan Liesener
De Lega Xavier Colonna
Original Assignee
Zygo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/551,308 external-priority patent/US8379218B2/en
Application filed by Zygo Corp filed Critical Zygo Corp
Publication of TW201129775A publication Critical patent/TW201129775A/en
Application granted granted Critical
Publication of TWI425188B publication Critical patent/TWI425188B/en

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

顯微鏡系統和成像干涉儀系統Microscope system and imaging interferometer system

本發明係有關於干涉技術(interferometry)。The present invention relates to interference techniques.

干涉技術(interferometric techniques)經常用以取得有關於待測物(test object)的資訊,例如測量待測物的表面輪廓(profile)。為了測量待測物的表面輪廓,干涉儀(interferometer)將從待測物表面反射回來的量測光(measurement light)與從參考面(reference surface)反射回來的參考光(reference light)混合後產生干涉譜(interferogram)。干涉譜中的條紋表示待測物表面和參考面之間的空間變化。Interferometric techniques are often used to obtain information about a test object, such as measuring the surface profile of a test object. In order to measure the surface profile of the object to be tested, an interferometer is generated by mixing measurement light reflected from the surface of the object to be tested with reference light reflected from the reference surface. Interferogram. The fringes in the interference spectrum represent spatial variations between the surface of the object to be tested and the reference surface.

多種干涉技術已經能夠用於描繪待測物的特性。這些技術包括低同調性掃描技術(low coherence scanning techniques)和相位移干涉技術(phase-shifting interferometry,PSI)。A variety of interference techniques have been used to characterize the object under test. These techniques include low coherence scanning techniques and phase-shifting interferometry (PSI).

關於PSI,代表參考光波前(wavefronts)和測試光(test light)波前之間的多重相位移的每一者的光學干涉圖案都被記錄下來,用以產生一系列的光學干涉圖案。舉例而言,一系列的光學干涉圖案至少持續了光學干涉的一半週期(例如從建設性干涉至破壞性干涉)。光學干涉圖案的每一個空間位置定義了一系列的強度數值,其中每一系列的強度數值都與相位移之間都具有正弦關係,相位移具有相位偏差(phase offset),其等於混合後之測試光波前和參考光波前在該空間位置之相位差值。使用數值(numerical)技術,每一個空間位置的相位偏差就能夠由強度數值的正弦關係中被求出,用以提供與參考面有關的待測物表面輪廓。這些數值方法通常稱為相移演算法。With respect to PSI, optical interference patterns representing each of the multiple phase shifts between the reference wavefronts and the test light wavefront are recorded to produce a series of optical interference patterns. For example, a series of optical interference patterns last at least half of the period of optical interference (eg, from constructive interference to destructive interference). Each spatial position of the optical interference pattern defines a series of intensity values, wherein each series of intensity values has a sinusoidal relationship with the phase displacement, and the phase shift has a phase offset equal to the post-mixing test. The phase difference between the optical wavefront and the reference optical wavefront at the spatial position. Using a numerical technique, the phase deviation of each spatial position can be found from the sinusoidal relationship of the intensity values to provide the surface profile of the object to be tested associated with the reference surface. These numerical methods are often referred to as phase shift algorithms.

相位移干涉技術中的相位移能夠藉由改變從待測物表面至干涉儀與從參考面至干涉儀之間的相對光程長度(optical path length)而被產生。舉例而言,參考面能夠相對於待測物表面而被移動。另外一種方法是藉由改變量測光和參考光的波長所得到之常數且非零的光程差(optical path difference,OPD)來產生相位移。最近有一種稱為波長調整式相位移干涉技術(wavelength tuning PSI)已經被發明,請參考G. E. Sommargren的發明(美國專利號:4,594,003)。The phase shift in the phase shift interference technique can be generated by varying the relative optical path length from the surface of the object to be measured to the interferometer and from the reference surface to the interferometer. For example, the reference surface can be moved relative to the surface of the object to be tested. Another method is to generate a phase shift by changing the constant and non-zero optical path difference (OPD) obtained by measuring the wavelength of the light and the reference light. Recently, a wavelength tuning PSI has been invented, please refer to the invention of G. E. Sommargren (U.S. Patent No. 4,594,003).

另一方面,在等於(即使得發生干涉條紋之處至少具有同調性波封的些許調變)或大於互相干涉之測試光和參考光之同調長度(coherence length)的範圍之內,低同調性掃描技術藉由掃描參考光與干涉儀的量測光延遲之間的光程差來為每一個相機畫素(camera pixel)產生掃描式干涉訊號,每一個相機畫素被用來測量干涉譜。相較於PSI所使用的光同調長度和低同調性掃描技術之OPD掃描的範圍,低同調性掃描技術所使用的光同調長度是比較短的。舉例而言,白光光源能夠產生具有低同調性長度的光,這又稱為掃描式白光干涉技術(white light interferometry,SWLI)。典型的SWLI訊號是位於零光程差之處附近的數個條紋。SWLI訊號的特徵是具有鐘形條紋對比度封包的正弦載波調變(即『條紋』)(sinusoidal carrier modulation with bell-shaped fringe-contrast envelop)。使用低同調性干涉技術來測量表面輪廓是要利用條紋的局限化(localization)。On the other hand, within a range equal to (i.e., having at least some modulation of the homology wave seal where the interference fringes occur) or greater than the coherence length of the test light and the reference light interfering with each other, low coherence The scanning technique produces a scanning interferometric signal for each camera pixel by scanning the optical path difference between the reference light and the interferometer's measured optical delay, each camera pixel being used to measure the interference spectrum. The optical coherence length used by low coherence scanning techniques is relatively short compared to the range of OPD scans used by PSI for optical coherence length and low homology scanning techniques. For example, a white light source can produce light with a low coherence length, which is also known as white light interferometry (SWLI). A typical SWLI signal is a number of stripes located near the zero path difference. The SWLI signal is characterized by a sinusoidal carrier modulation with bell-shaped fringe-contrast envelop. The use of low coherence interference techniques to measure surface contours is to take advantage of the localization of the fringes.

低同調干涉技術處理訊號主要有兩種方法。第一種方法是標記(locate)波封的峰值(peak)或中心(center)位置,假設這個位置對應於雙光束干涉儀的零光程差位置,其中一個光束反射自待測物表面。第二種方法是將訊號轉換至頻域(frequency domain)並隨著波長計算相位的改變率,假設一個大致上線性的斜率是正比於待測物位置。舉例而言,請參考Peter de Groot的專利(美國專利號:5,398,113)。第二種方法稱為頻域分析(frequency domain analysis,FDA)。There are two main methods for processing signals with low coherence interference techniques. The first method is to locate the peak or center position of the envelope, assuming that this position corresponds to the zero path difference position of the two-beam interferometer, one of which is reflected from the surface of the object to be tested. The second method is to convert the signal to the frequency domain and calculate the rate of change of the phase with the wavelength, assuming that a substantially linear slope is proportional to the position of the object to be tested. For example, please refer to the Peter de Groot patent (US Patent No. 5,398,113). The second method is called frequency domain analysis (FDA).

低同調性掃瞄干涉技術用以測量表面樣貌(surface topology)及/或具有複雜表面結構之待測物的其他特性,例如薄膜、異質材料(dissimilar materials)的個別結構,或是干涉顯微鏡之光學解析度無法解析的個別結構。這些量測有關於平面顯示器元件的特性、半導體晶圓的量測,以及即時的(in-situ)薄膜或異質材料分析。舉例而言,請參考Peter de Groot等人一篇名為”Profiling Complex Surface Structures Using Scanning Interferometry”的專利(美國專利公開號:US-2004-0189999-A1;公開日期:2004/09/30),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容,以及Peter de Groot一篇名為”Interferometry Method for Ellipsometry,Reflectometry,and Scatterometry Measurements,including Characterization of Thin Film Structures”的專利(美國專利公開號:US-2004-0085544-A1;公開日期:2004/05/06),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容。Low coherence scanning interferometry is used to measure surface topologies and/or other properties of the object under test with complex surface structures, such as thin films, individual structures of dissimilar materials, or interference microscopy. Individual structures that cannot be resolved by optical resolution. These measurements relate to the characteristics of flat panel display components, the measurement of semiconductor wafers, and in-situ film or heterogeneous material analysis. For example, please refer to a patent entitled "Profiling Complex Surface Structures Using Scanning Interferometry" by Peter de Groot et al. (US Patent Publication No.: US-2004-0189999-A1; publication date: 2004/09/30). The above-referenced patent references are hereby incorporated by reference in their entirety in their entireties in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all No.: US-2004-0085544-A1; publication date: 2004/05/06), the entire disclosure of each of the above-referenced patents is hereby incorporated by reference.

一般而言,本發明相關於用以減少干涉量測中之不確定性的方法和系統。具體而言,在量測期間,當介於兩個連續的偵測器畫框之間的實際光程差增量背離理論(nominal)光程差增量時,本發明的方法和系統用以減少會在低同調干涉量測增加的誤差。這種誤差來自於振動並且被稱為掃描誤差。In general, the present invention relates to methods and systems for reducing uncertainty in interferometric measurements. Specifically, during the measurement, the method and system of the present invention are used when the actual optical path difference increment between two consecutive detector frames deviates from the nominal optical path difference increment. Reduce the error that will increase in low coherence interference measurements. This error comes from vibration and is called scanning error.

一種解決掃描誤差問題的可能方法是量化(characterize)或監測儀器之真正的掃描歷史,並將這些資訊用於訊號的處理以校正這些資訊。一種收集這些資訊的方法是在使用干涉儀之後,接著使用雷射位移量測干涉儀。更一般地說,掃描歷史能夠使用監測干涉訊號而被取得,監測干涉訊號是使用具有大於光程差掃描範圍之同調長度的光源所取得的。雖然掃描歷史的資訊能夠使用習知的PSI演算法而從監測干涉訊號被取得,但是申請人認為當振動頻率高於干涉儀之偵測器的頻率時,上述方法將無法取得掃描誤差的資訊。然而,在多重監測訊號被取得且具有不同相位之處,監測訊號能夠用來決定由高頻振動導致之掃描誤差的資訊。One possible way to solve the scanning error problem is to characterize or monitor the true scan history of the instrument and use this information for signal processing to correct this information. One way to collect this information is to use an interferometer and then use a laser displacement measurement interferometer. More generally, the scan history can be obtained using a monitor interfer signal that is obtained using a source having a coherence length greater than the scan range of the optical path difference. Although the scan history information can be obtained from the monitoring interfering signal using the conventional PSI algorithm, the applicant believes that the above method will not be able to obtain the scan error information when the vibration frequency is higher than the interferometer's detector frequency. However, where multiple monitoring signals are acquired and have different phases, the monitoring signal can be used to determine the information of the scanning error caused by the high frequency vibration.

因此,在低同調干涉訊號的資料擷取期間,本發明的系統會同時在可視區的一些點收集干涉資料,干涉資料具有一個範圍的相位偏差或干涉頻率偏差,使用相同於低同調干涉資料擷取時所用的干涉儀光學組件,但是上述干涉儀光學組件具有操作於單一波長(或讓光源具有足夠大之同調長度的波段)之分立的偵測器或等效的偵測裝置。處理器根據監測干涉資料來決定掃描移動歷史,包括在一振動頻率範圍之外(包括低或高振動頻率)的振動。接著,在進行任何的處理之前,這個資訊用來校正寬頻帶的干涉資料。Therefore, during the data acquisition of the low-coherent interference signal, the system of the present invention simultaneously collects interference data at some points in the visible area, and the interference data has a range of phase deviation or interference frequency deviation, using the same low-coherence interference data. The interferometer optics are used, but the interferometer optics have separate detectors or equivalent detection devices that operate at a single wavelength (or a band that has a sufficiently large coherence length). The processor determines the scan movement history based on the monitored interference data, including vibrations outside of the vibration frequency range (including low or high vibration frequencies). This information is then used to correct the interference data for the wideband before any processing is performed.

一般而言,本發明的方法和系統能夠用於將待測物成像至偵測器的干涉顯微鏡(習知的成像),或是在偵測器中之位置相應於待測物之特定入射角的干涉顯微鏡(例如將顯微鏡之光瞳平面成像在偵測器)。這種後來的組態被稱為光瞳平面之白光干涉技術(PUPS)。舉例而言,習知的成像系統提供待測物之表面特徵元件的三維資料。在另一方面,PUPS則提供表面微小面積之詳細的結構資訊,包括多層膜厚度、折射率分析以及在量測範圍中無法被光學解析的尺寸。上述兩種量測模式通常在可視區中使用多重偵測器元件(例如相機)來收集資料,可視區則涵蓋了表面影像或光瞳平面影像。In general, the method and system of the present invention can be used to image an object to be imaged to an interferometric microscope (conventional imaging) of the detector, or the position in the detector corresponds to a particular angle of incidence of the object to be tested. Interferometric microscope (for example, imaging the pupil plane of the microscope in the detector). This later configuration is called the white plane interference technology (PUPS) of the pupil plane. For example, conventional imaging systems provide three-dimensional data of surface features of the object under test. On the other hand, PUPS provides detailed structural information on the small surface area, including multilayer film thickness, refractive index analysis, and dimensions that cannot be optically resolved in the measurement range. The above two measurement modes usually use multiple detector elements (such as cameras) to collect data in the visible area, and the visible area covers surface images or pupil plane images.

在習知的成像或PUPS中,資料通常是在1/10秒至數秒內被取得的,並且上述兩種量測模式都是對資料擷取時的機械振動敏感的,其中掃描誤差造成系統雜訊的上升。In conventional imaging or PUPS, data is typically acquired in 1/10 second to several seconds, and both of the above measurement modes are sensitive to mechanical vibration during data acquisition, where scanning errors cause system miscellaneous The rise of the news.

在因為無法被光學解析而使用PUPS的量測中,系統之尺寸解析度反比於干涉訊號中頻譜振幅的雜訊,其中干涉訊號是振動和掃瞄誤差的複數函式。一般認為,若能降低因振動和掃瞄誤差所造成的雜訊,則PUPS工具的解析度會大幅地提升,有助於PUPS系統(例如半導體製程量測)能夠跟上特徵元件尺寸的縮小速度。In the measurement using PUPS because it cannot be optically resolved, the size resolution of the system is inversely proportional to the noise of the spectral amplitude in the interfering signal, where the interfering signal is a complex function of vibration and scanning error. It is generally believed that if the noise caused by vibration and scanning errors can be reduced, the resolution of the PUPS tool will be greatly improved, which will help the PUPS system (such as semiconductor process measurement) to keep up with the size reduction of the feature components. .

低同調性干涉量測廣泛地用於具有極差之環境控制的生產環境中,上述生產環境產生極大的振動雜訊。由於需要在上述環境中使用先進的3D光學量測,所以亟需振動的解決方案,如本發明所揭露之方法和系統。Low coherence interference measurements are widely used in production environments with very poor environmental control, which produces extremely large vibrational noise. Because of the need to use advanced 3D optical metrology in the above environments, solutions that require vibration, such as the methods and systems disclosed herein, are needed.

在另一型態中,本方法包括在取得掃描誤差資料之後,校正低同調干涉資料。當使用上述技術取得掃描誤差資訊時,其他方法也是可能的。舉例而言,掃描誤差的資訊能夠以多種方法取得,例如使用加速度計、接觸探針、電容計、氣壓計、光學編碼器及/或是以低同調性干涉訊號為基礎的技術。In another version, the method includes correcting low homology interference data after obtaining scan error data. Other methods are also possible when using the above techniques to obtain scan error information. For example, information on scan errors can be obtained in a variety of ways, such as using accelerometers, contact probes, capacitance meters, barometers, optical encoders, and/or techniques based on low coherence interference signals.

一般而言,當取得掃描誤差資訊之後,資訊被進一步用於資料的處理,儘可能地產生接近未受擾動之系統之資料的資料。一般而言,掃描誤差的資料具有多種使用方式,用以改善掃瞄干涉量測的正確性。In general, after the scan error information is obtained, the information is further used for processing the data, as much as possible to produce data that is close to the data of the undisturbed system. In general, the scanning error data can be used in a variety of ways to improve the correctness of the scanning interference measurement.

在一些實施例中,資料處理與使用掃描移動資訊並藉此取代一部份之習知離散傳立葉(DFT)的頻譜分析方法有關。然而,頻譜分析方法被廣泛地用於各種未均勻取樣的資料,並非僅限於本發明實施例的一些型態。In some embodiments, data processing is associated with a spectral analysis method that uses scanning mobile information and thereby replacing a portion of conventional discrete Fourier (DFT). However, spectral analysis methods are widely used for various non-uniformly sampled materials, and are not limited to some versions of the embodiments of the present invention.

在一些實施例中,演算法始於產生一組基底函式,基底函式對應於被已知且不均勻增量取樣之不同頻率之純振動訊號的基底函式。這些基底函式表示失真的弦波。類似於使用一般的DFT計算之均勻取樣之資料集合的結果,藉由求解一線性方程式系統,訊號能夠被分解為基底函式,並且產生訊號的頻譜分量。In some embodiments, the algorithm begins by generating a set of basis functions that correspond to the basis functions of purely vibratory signals of different frequencies that are known and unevenly incremented. These basal functions represent distorted sine waves. Similar to the result of a uniformly sampled data set using a general DFT calculation, by solving a linear equation system, the signal can be decomposed into a basis function and the spectral components of the signal are generated.

求解線性方程式系統可以藉由求反矩陣的方法而被計算,其中矩陣的行為基底函式。接著,反矩陣被乘上包括進行頻譜分析後之資料的向量。Solving a linear equation system can be computed by inverting the matrix, where the matrix acts as a basis function. Next, the inverse matrix is multiplied by a vector including the data after spectral analysis.

當分析來自於習知影像之低同調性干涉訊號時,要注意的是,應該對所有的畫素使用相同的反矩陣。因此,頻譜分析被簡化為矩陣的反矩陣運算,以及將反矩陣乘以一向量的P次方,其中P為畫素個數。關於計算的速度,這種方法不會比執行一般的DFT來的快,這是因為已經有用於離散傅立葉轉換(DFT)之高度優化的演算法,在另一實施例中,本發明能夠用於當在干涉儀之可視區之不同位置被記錄的訊號具有不同(但已知)的取樣增量時。舉例而言,在一些情況中,增量分佈能夠表示為干涉腔之偏轉(tilt)擾動和活塞運動(piston)擾動的組合。When analyzing low-homology interfering signals from conventional images, it is important to note that the same inverse matrix should be used for all pixels. Therefore, the spectrum analysis is simplified to the inverse matrix operation of the matrix, and the inverse matrix is multiplied by the P-th power of a vector, where P is the number of pixels. Regarding the speed of the calculation, this method is not faster than performing a general DFT because there is already a highly optimized algorithm for Discrete Fourier Transform (DFT), and in another embodiment, the present invention can be used for When the signals recorded at different locations in the viewable area of the interferometer have different (but known) sample increments. For example, in some cases, the incremental distribution can be represented as a combination of a tilt disturbance and a piston motion disturbance of the interference cavity.

藉由些許的改變,本方法能夠補償光源(例如顯微鏡中的光源)強度的變動。基底函式則是在已知取樣位置被取樣的純振動訊號,其中每一個數值乘上一個正比於相應光源強度的因子,相應光源強度在一獨立的量測中是已知的。With a few changes, the method is capable of compensating for variations in the intensity of a light source, such as a light source in a microscope. The basal function is a purely vibratory signal that is sampled at a known sampling position, where each value is multiplied by a factor proportional to the intensity of the corresponding source, and the corresponding source intensity is known in a separate measurement.

在一些實施例中,複合參考面用以決定有關於掃描誤差的資訊。復合參考物是具有至少二種參考面的參考物。舉例而言,參考面為光學元件的表面、兩種光學元件之間的介面、一光學元件與一鍍膜層之間的介面或是光學元件之兩種鍍膜層之間的介面。主參考面作為習知的參考面,提供干涉系統中的參考光來檢視待測物表面,例如表面高度或其他特徵。一般而言,主參考面產生之干涉條紋是能夠被主相機或他種成像裝置所偵測的,其中主相機或他種成像裝置係連接於計算機或其他資料擷取或處理裝置。In some embodiments, the composite reference plane is used to determine information about scan errors. A composite reference is a reference having at least two reference faces. For example, the reference surface is the interface between the surface of the optical element, the interface between the two optical elements, the interface between an optical element and a coating layer, or the interface between the two coating layers of the optical element. The primary reference plane serves as a conventional reference surface that provides reference light in the interference system to view the surface of the object to be tested, such as surface height or other features. In general, the interference fringes produced by the primary reference surface can be detected by a primary camera or other imaging device that is coupled to a computer or other data capture or processing device.

當掃描干涉顯微鏡的光程差時,第二參考面用提供資訊,使得待測物相對於干涉顯微鏡的移動能夠被監測。一般而言,第一和第二參考面是彼此機械式地固定住的。換言之,在資料擷取期間,第二參考面關於主參考面的相對位置和偏轉是維持不變的。主參考面和第二參考面的效應提供關於可視區(FOV)的複數有效反射率,其中在系統的FOV中,複數有效反射率至少有相位是會變動的。一般而言,求出有效反射率將有助於決定干涉影像之整體的或低空間頻率的相位偏移。When scanning the optical path difference of the interference microscope, the second reference surface provides information so that the movement of the analyte relative to the interference microscope can be monitored. In general, the first and second reference faces are mechanically secured to each other. In other words, the relative position and deflection of the second reference plane with respect to the primary reference plane remains constant during data capture. The effects of the primary reference plane and the second reference plane provide a complex effective reflectivity with respect to the visible area (FOV), wherein in the FOV of the system, the complex effective reflectivity at least has a phase that varies. In general, determining the effective reflectivity will help determine the phase shift of the overall or low spatial frequency of the interference image.

在一些實施例中,複合參考面之第二參考面的干涉結果是能夠被第二相機(也稱為監測相機)所偵測的,但卻是無法被主相機所偵測的,主相機僅能監測到主參考面反射與物體表面反射之間的干涉。In some embodiments, the interference result of the second reference surface of the composite reference plane is detectable by the second camera (also referred to as a monitoring camera), but is not detectable by the main camera, and the main camera only Interference between the primary reference plane reflection and the surface reflection of the object can be monitored.

在一些實施例中,主參考面和第二參考面之間具有相對的偏轉,因而在偏轉的方向上產生相位驟變的有效反射率。In some embodiments, there is a relative deflection between the primary reference surface and the second reference surface, thereby producing an effective reflectance of phase sudden changes in the direction of deflection.

一般而言,僅根據監測相機監測之第二參考面所進行的干涉結果分析會提供資訊,其有助於僅根據主相機監測之主參考面所進行的干涉效應分析。In general, analysis of the interference results based only on the second reference surface monitored by the monitoring camera provides information that facilitates analysis of the interference effects based only on the primary reference plane monitored by the primary camera.

為了分辨主參考面和第二參考面的干涉結果,監測相機能夠操作於主頻譜,主頻譜不同於主相機操作的頻譜。舉例而言,監測相機僅能偵測到窄頻帶的光(例如單色光),而主相機則能夠偵測到寬頻帶的光。在另一實施例中,監測相機能夠監測到入射至主相機之外之不同波長的光。In order to resolve the interference results of the primary reference plane and the second reference plane, the monitoring camera is capable of operating in the main spectrum, which is different from the spectrum of the main camera operation. For example, a surveillance camera can only detect narrow-band light (such as monochromatic light), while a main camera can detect broadband light. In another embodiment, the monitoring camera is capable of detecting light of different wavelengths incident outside of the main camera.

在另一實施例中,第二參考面能夠被調整,而使其相對於主參考面具有足夠的夾角或其他幾何特性,用以讓其分離的反射僅能被監測相機所偵測。舉例而言,從第二參考面反射回來的光會沿著被主相機阻擋的路徑傳播。In another embodiment, the second reference surface can be adjusted such that it has sufficient included angle or other geometrical characteristics relative to the primary reference surface for the separate reflections to be detected by the monitoring camera. For example, light reflected from the second reference surface will propagate along a path blocked by the main camera.

在一些實施例中,掃描誤差的資訊是使用位移量測干涉儀(DMI)而被決定的。光纖式DMI包括使用商用元件(例如通訊元件)而形成之簡單暨接觸式的感測器。一般而言,光纖式感測器系統係獨立於干涉系統而被操作的,並且能夠藉由使用一共用處理器而被同步,共用處理器用以控制系統。獨立的感測器是藉由一共用光源和一共用參考腔而多工的。感測器的例子包括提供照射光、外差、光分佈以及相位提取的元件。在一些實施例中,感測器系統的感測器被附加於干涉系統的不同部分,用以監測在量測過程中產生的多種掃描移動(自由度)。光纖式DMI能夠用於干涉系統(例如干涉顯微鏡)的自動聚焦。In some embodiments, the information of the scan error is determined using a displacement measurement interferometer (DMI). Fiber optic DMIs include simple and contact sensors formed using commercial components such as communication components. In general, fiber optic sensor systems are operated independently of the interferometric system and can be synchronized by using a common processor that is used to control the system. The separate sensors are multiplexed by a common source and a common reference cavity. Examples of sensors include elements that provide illumination, heterodyne, light distribution, and phase extraction. In some embodiments, the sensors of the sensor system are attached to different portions of the interference system to monitor the various scan movements (degrees of freedom) produced during the measurement process. Fiber-optic DMI can be used for autofocusing of interference systems such as interference microscopes.

本發明的多種形態摘要如下。A summary of various aspects of the invention follows.

一般而言,在一型態中,本發明提供一種裝置,包括一寬頻帶掃瞄干涉系統,寬頻帶掃瞄干涉系統包括干涉儀光學組件,用以結合來自於一待測物的測試光和來自於一參考物的參考光,而在一偵測器中形成一干涉圖案,其中測試光和參考光來自於一共用光源。干涉系統更包括一掃瞄平台,用以掃描介於測試光和參考光之間之從共用光源至偵測器的一光程差,以及包括偵測器之一偵測器系統,用以紀錄一系列之光程差增量之每一者的干涉圖案,其中每一個光程差增量的頻率定義一畫框頻率。干涉儀光學組件更用以產生至少二個監測干涉訊號,當掃描光程差時,監測干涉訊號之每一者表示光程差的變化,其中偵測系統更用以紀錄監測干涉訊號。本裝置也包括一電子處理器,電子處理器電性耦接於偵測系統和掃瞄平台,在大於上述畫框頻率的頻率,用以決定光程差增量對擾動靈敏度的資訊。In general, in one form, the present invention provides an apparatus comprising a broadband scanning interferometric system comprising an interferometer optical component for combining test light from a test object and From the reference light of a reference object, an interference pattern is formed in a detector, wherein the test light and the reference light are from a common light source. The interference system further includes a scanning platform for scanning an optical path difference between the test light and the reference light from the common light source to the detector, and a detector system including one of the detectors for recording one The interference pattern for each of the series of optical path difference increments, wherein the frequency of each optical path difference increment defines a frame frequency. The interferometer optical component is further configured to generate at least two monitoring interference signals. When scanning the optical path difference, each of the monitoring interference signals represents a change in the optical path difference, wherein the detecting system is further configured to record the monitoring interference signal. The device also includes an electronic processor electrically coupled to the detection system and the scanning platform for determining the sensitivity of the optical path difference increment to the disturbance sensitivity at a frequency greater than the frame frequency.

本裝置之實施例包括一或多個以下特徵裝置及/或其他型態的特徵裝置。舉例而言,掃描平台用以在大於共用光源之一同調長度的範圍中掃描光程差。掃描平台藉由改變干涉儀光學組件相對於待測物之焦距來掃描光程差。掃描平台在不改變干涉儀光學組件相對於待測物之焦距之下來掃描光程差。掃描平台藉由改變與干涉儀光學組件有關之參考物的位置來掃描光程差。Embodiments of the device include one or more of the following features and/or other features. For example, the scanning platform is configured to scan the optical path difference in a range greater than one of the common light sources. The scanning platform scans the optical path difference by changing the focal length of the interferometer optical component relative to the object under test. The scanning platform scans the optical path difference without changing the focal length of the interferometer optical component relative to the object under test. The scanning platform scans the optical path difference by changing the position of the reference associated with the interferometer optical component.

在一些實施例中,干涉儀光學組件包括Mirau物鏡或Linnik物鏡。干涉儀光學組件將待測物成像至偵測器。In some embodiments, the interferometer optical component comprises a Mirau objective or a Linnik objective. The interferometer optical component images the object to be detected to the detector.

干涉儀光學組件定義光瞳平面並且用以將光瞳平面成像至偵測器。掃描平台用以掃描光程差,其中光程差係根據光瞳平面中之位置變化,並且決定光程差增量的資訊的步驟包括考慮干涉圖案的位置相關性。在一些實施例中,掃描平台在不改變干涉儀光學組件相對於待測物之焦距之下來掃描光程差。The interferometer optical component defines a pupil plane and is used to image the pupil plane to the detector. The scanning platform is configured to scan the optical path difference, wherein the optical path difference is changed according to the position in the pupil plane, and the step of determining the information of the optical path difference increment includes considering the positional correlation of the interference pattern. In some embodiments, the scanning platform scans the optical path difference without changing the focal length of the interferometer optical component relative to the object under test.

干涉儀光學組件包括一光學元件,用以根據輸出光產生監測光,輸出光是由干涉儀光學組件所產生的,其中輸出光包括測試光和參考光。光學元件為分光鏡,用以將輸出光的一部份導引至偵測器,以及將輸出光的另一部分導引至第二偵測器,第二偵測器用以紀錄監測干涉訊號。在另一實施例中,光學元件包括頻譜濾光器,用以將輸出光的一部份導引至偵測器系統,其中監測干涉訊號是根據輸出光的一部份而被偵測的。輸出光的一部份為輸出光的單色光部分。監測光來自於共用光源。監測光相應測試光和參考光的一頻譜分量。干涉圖案相應於輸出光的強度資料。監測光來自於一第二光源,第二光源不同於共用光源。監測光源的同調長度大於共用光源的同調長度。The interferometer optical assembly includes an optical component for generating monitoring light from the output light, the output light being produced by the interferometer optical component, wherein the output light comprises test light and reference light. The optical component is a beam splitter for directing a portion of the output light to the detector and for directing another portion of the output light to the second detector, the second detector for recording the monitoring interference signal. In another embodiment, the optical component includes a spectral filter for directing a portion of the output light to the detector system, wherein the monitoring interference signal is detected based on a portion of the output light. A portion of the output light is the monochromatic portion of the output light. The monitoring light comes from a shared light source. A spectral component of the light corresponding to the test light and the reference light is monitored. The interference pattern corresponds to the intensity data of the output light. The monitoring light is from a second source that is different from the common source. The coherence length of the monitoring source is greater than the coherence length of the shared source.

在一些實施例中,電子處理器藉由使用一相應的正弦函式對至少二個監測干涉訊號之每一者作擬合,用以決定光程差增量的資訊。監測干涉訊號之每一者包括複數取樣資料點,取樣資料點是在掃描光程差時使用偵測器所取得的,使用上述正弦函式對監測干涉訊號作擬合的步驟包括對取樣資料點作內插以提供一內插訊號。將正弦函式對監測干涉訊號作擬合更包括根據內插訊號將一理論干涉相位與每一個干涉訊號相關聯。決定光程差增量的資訊的步驟更包括根據相應的理論干涉相位來計算監測干涉訊號之一已量測相位中的一偏移。In some embodiments, the electronic processor determines the information of the optical path difference increment by fitting each of the at least two monitoring interference signals using a corresponding sinusoidal function. Each of the monitoring interfering signals includes a plurality of sampling data points, and the sampling data points are obtained by using a detector when scanning the optical path difference, and the step of fitting the monitoring interference signals using the sinusoidal function includes sampling the data points. Interpolated to provide an interpolated signal. Fitting the sinusoidal function to the monitoring interfering signal further includes associating a theoretical interferometric phase with each interfering signal based on the interpolated signal. The step of determining information of the optical path difference increment further includes calculating an offset in the measured phase of one of the monitored interference signals based on the corresponding theoretical interference phase.

至少二監測干涉訊號具有不同的相位。至少二監測干涉訊號具有不同的頻率。At least two monitor the interference signals with different phases. At least two monitor the interference signals with different frequencies.

在一些實施例中,第二偵測器為一多重元件偵測器,用以讓每一個元件紀錄至少二相應的監測干涉訊號。In some embodiments, the second detector is a multi-component detector for each component to record at least two corresponding monitoring interference signals.

偵測器系統包括分立於主偵測器的一第二偵測器,第二偵測器用以紀錄至少二監測干涉訊號。第二偵測器為一多重元件偵測器,用以讓每一個元件紀錄一相應的監測干涉訊號。The detector system includes a second detector that is separate from the main detector, and the second detector records at least two monitoring interference signals. The second detector is a multi-component detector for each component to record a corresponding monitoring interference signal.

電子處理器更用以根據一相應於干涉圖案的主干涉訊號來決定待測物的資訊,干涉圖案是使用偵測器而被記錄的。決定資訊的步驟包括根據光程差增量的資訊來減少資訊的不確定性。The electronic processor is further configured to determine information of the object to be tested according to a main interference signal corresponding to the interference pattern, and the interference pattern is recorded using the detector. The step of determining the information includes reducing the uncertainty of the information based on the information of the optical path difference increment.

一般而言,在另一實施例中,本方法包括提供提供一低同調干涉訊號,低同調干涉訊號是由一掃瞄干涉系統所產生,其中當掃描一系列之光程差增量之介於測試光和參考光之間之一光程差時,掃描干涉系統使用干涉儀光學組件將來自於一待測物的測試光和來自於一參考物的參考光互相結合,用以產生低同調干涉訊號,並且在一偵測器中形成一干涉圖案,偵測器用以紀錄干涉圖案,每一個光程差增量的頻率定義一畫框頻率。本方法更包括提供至少二監測干涉訊號,監測干涉訊號之每一者是由干涉儀光學組件所產生,當掃描光程差時,監測干涉訊號之每一者表示光程差的變化。本發明更包括根據監測干涉訊號,決定在大於畫框頻率的頻率時光程差增量對擾動靈敏度的資訊。In general, in another embodiment, the method includes providing a low coherent interference signal generated by a scan interferometric system, wherein when scanning a series of optical path difference increments, the test is performed. When the optical path difference between the light and the reference light is different, the scanning interference system uses the interferometer optical component to combine the test light from a test object and the reference light from a reference object to generate a low coherent interference signal. And forming an interference pattern in a detector, the detector is used to record the interference pattern, and the frequency of each optical path difference increment defines a frame frequency. The method further includes providing at least two monitoring interference signals, each of which is generated by the interferometer optical component, and each of the monitoring interference signals represents a change in the optical path difference when the scanning optical path is poor. The invention further includes determining information on the sensitivity of the optical path difference increment to the disturbance sensitivity at a frequency greater than the frame frequency based on the monitoring interference signal.

本方法之實施例包括一或多個以下特徵裝置及/或其他型態的特徵裝置。舉例而言,測試光和參考光產生自一共用光源,並且光程差是在一大於共用光源之同調長度的範圍被掃瞄的。掃描光程差包括改變參考物之有關於干涉儀光學組件的位置。提供低同調性干涉訊號的步驟包括將待測物成像至偵測器。Embodiments of the method include one or more of the following features and/or other features. For example, the test light and the reference light are generated from a common light source, and the optical path difference is scanned over a range greater than the coherence length of the shared light source. Scanning the optical path difference includes changing the position of the reference object with respect to the interferometer optical component. The step of providing a low homology interference signal includes imaging the object to be detected to the detector.

在一些實施例中,干涉儀光學組件定義光瞳平面並且提供低同調性干涉訊號,提供低同調性干涉訊號的步驟包括將光瞳平面成像至偵測器。決定光程差增量的資訊的步驟包括考慮上述干涉圖案的位置相關性。In some embodiments, the interferometer optical component defines a pupil plane and provides a low homology interference signal, and the step of providing a low homology interference signal includes imaging the pupil plane to the detector. The step of determining the information of the optical path difference increment includes considering the positional correlation of the interference pattern described above.

提供至少二監測干涉訊號的步驟包括產生由干涉儀光學組件提供之輸出光,其中輸出光包括測試光和參考光。監測光是使用偵測器而被偵測的。監測光是使用第二偵測器而被偵測的,第二偵測器不同於用以紀錄干涉圖案的偵測器。產生監測光的步驟包括將輸出光進行頻譜濾光(spectrally filtering)。在一些實施例中,監測光產生自相同於測試光和參考光的光源。在一些實施例中,監測光產生自不同於測試光和參考光的光源。監測光源的同調長度大於測試光和參考光源的同調長度。The step of providing at least two monitoring interference signals includes generating output light provided by the interferometer optical component, wherein the output light comprises test light and reference light. The monitoring light is detected using a detector. The monitoring light is detected using a second detector that is different from the detector used to record the interference pattern. The step of generating the monitor light includes spectrally filtering the output light. In some embodiments, the monitoring light is generated from a light source that is the same as the test light and the reference light. In some embodiments, the monitoring light is generated from a source other than the test light and the reference light. The coherence length of the monitoring light source is greater than the coherence length of the test light and the reference light source.

決定光程差增量的資訊的步驟包括使用一相應的正弦函式對上述至少二個監測干涉訊號之每一者作擬合。每一個監測干涉訊號包括複數取樣資料點,並且使用正弦函式對監測干涉訊號作擬合的步驟包括對取樣資料點作內插以提供一內插訊號。使用正弦函式對監測干涉訊號作擬合的步驟更包括根據內插訊號將理論干涉相位與每一個干涉訊號相關聯。The step of determining information of the optical path difference increment includes fitting a respective one of the at least two monitored interference signals using a corresponding sinusoidal function. Each of the monitoring interfering signals includes a plurality of sampled data points, and the step of fitting the monitoring interfering signals using the sinusoidal function includes interpolating the sampled data points to provide an interpolated signal. The step of fitting the monitoring interference signal using the sinusoidal function further includes associating the theoretical interference phase with each of the interference signals based on the interpolated signal.

至少二監測干涉訊號具有不同的干涉相位。至少二監測干涉訊號具有不同的頻率。At least two monitoring interference signals have different interference phases. At least two monitor the interference signals with different frequencies.

本方法更包括根據相應於干涉圖案之一主干涉訊號來決定待測物的資訊,干涉圖案被記錄在偵測器中。決定資訊的步驟是根據光程差增量的資訊來減少資訊的不確定性。The method further includes determining information of the object to be tested according to one of the main interference signals corresponding to the interference pattern, and the interference pattern is recorded in the detector. The step in determining the information is to reduce the uncertainty of the information based on the information of the optical path difference increment.

在另一型態中,本發明提供一種程序,用以製造一顯示面板,包括提供顯示面板的元件;藉由與前述型態討論有關的方法或下述討論的裝置來決定裝置的資訊;以及使用裝置來製造顯示面板。此裝置包括以一間隙互相間隔的一對基板,且上述資訊包括間隙的資訊。形成顯示面板的步驟包括根據資訊調整間隙。形成顯示面板的步驟包括以一液晶材料填充間隙。In another form, the present invention provides a program for fabricating a display panel comprising elements for providing a display panel; determining information of the device by a method related to the above-discussed discussion or a device discussed below; A device is used to manufacture the display panel. The device includes a pair of substrates spaced apart from each other by a gap, and the information includes information of the gap. The step of forming the display panel includes adjusting the gap based on the information. The step of forming the display panel includes filling the gap with a liquid crystal material.

上述元件包括一基板以及基板上之光阻層。上述資訊包括光阻層厚度的資訊。光阻層為己圖案化層,並且資訊包括已圖案化層之一特徵元件的尺寸誤差或重疊誤差。形成顯示器的步驟包括蝕刻光阻層下的一層材料。The above components include a substrate and a photoresist layer on the substrate. The above information includes information on the thickness of the photoresist layer. The photoresist layer is a patterned layer, and the information includes dimensional errors or overlay errors of one of the features of the patterned layer. The step of forming the display includes etching a layer of material under the photoresist layer.

上述元件包括一基板,且基板包括間隔物。上述資訊包括間隔物的資訊。形成顯示器的步驟包括根據資訊修正間隔物。The above component includes a substrate, and the substrate includes a spacer. The above information includes information on the spacers. The step of forming the display includes correcting the spacer based on the information.

一般而言,在另一實施例中,本方法包括提供一待測物之一或多個干涉訊號,其中干涉訊號相應於一系列之光程差數值,一系列之光程差數值是因為雜訊而未被等間距的。本方法更包括提供有關於一系列光程差數值之未等間距的資訊;將每一個干涉訊號分解為複數基底函式的一貢獻,每一個基底函式相應於不同的頻率並且被未等間距的光程差數值所取樣;以及使用每一個干涉訊號對於多重基底函式的每一者之貢獻的資訊來決定待測物的資訊。In general, in another embodiment, the method includes providing one or more interfering signals of an object to be tested, wherein the interfering signal corresponds to a series of optical path difference values, and the series of optical path difference values are due to miscellaneous The news is not equally spaced. The method further includes providing information about the unequal spacing of the values of the plurality of optical path differences; decomposing each of the interfering signals into a contribution of the complex basis function, each of the basis functions corresponding to a different frequency and being equally spaced The optical path difference value is sampled; and information on the contribution of each of the multiple base functions is determined using information of each of the interference signals.

本方法之實施例包括一或多個以下特徵裝置及/或其他型態的特徵裝置。將每一個干涉訊號分解為基底函式的貢獻包括干涉訊號之基底函式之每一者之振幅和相位的資訊。每一個基底函式是被未等間距的光程差數值所取樣的一正弦基底函式。上述分解為一線性分解。Embodiments of the method include one or more of the following features and/or other features. The contribution of decomposing each of the interfering signals into a basis function includes information on the amplitude and phase of each of the basis functions of the interfering signals. Each basal function is a sinusoidal base function sampled by unequal spacing optical path difference values. The above decomposition is a linear decomposition.

一或多個干涉訊號包括相應於待測物之不同位置的多重干涉訊號。一或多個干涉訊號包括相應於一物鏡之一光瞳平面之不同位置的多重干涉訊號,物鏡用以照射待測物以產生干涉訊號。每一個干涉訊號被分解為相同基底函式的貢獻。The one or more interfering signals include multiple interfering signals corresponding to different locations of the object to be tested. The one or more interfering signals include multiple interfering signals corresponding to different positions of a pupil plane of an objective lens, and the objective lens is used to illuminate the object to be tested to generate an interference signal. Each interfering signal is broken down into contributions from the same basis function.

每一個干涉訊號相應於干涉訊號強度,干涉強度數值是當來自於待測物之測試光和參考光在一偵測器中結合時所量測到的,其中測試光和參考光來自於一共用光源,並且光程差是介於測試光和參考光之從共用光源至偵測器的光程差。Each of the interference signals corresponds to the intensity of the interference signal, and the value of the interference intensity is measured when the test light and the reference light from the object to be tested are combined in a detector, wherein the test light and the reference light are from a common one. The light source, and the optical path difference is the optical path difference between the test light and the reference light from the common light source to the detector.

多重基底函式包括非正交的基底函式。多重基底函式包括為線性獨立的基底函式。The multiple basis functions include non-orthogonal basis functions. The multiple basis functions include linearly independent basis functions.

分解干涉訊號的步驟包括形成一矩陣,矩陣的每一行相應於一基底函式;求出矩陣的反矩陣;以及將反矩陣用於每一個干涉訊號。每一個基底函式的矩陣單元數目大於基底函式的數目。The step of decomposing the interfering signal includes forming a matrix, each row of the matrix corresponding to a basis function; finding an inverse matrix of the matrix; and applying the inverse matrix to each of the interfering signals. The number of matrix elements per base function is greater than the number of base functions.

每一個干涉訊號相應於干涉訊號強度,干涉強度數值是當來自於待測物之測試光和參考光在一偵測器中結合時所量測到的,其中測試光和參考光來自於一共用光源,並且每一個基底函式表示量測後之上述干涉強度數值與一理論數值之間的變動,上述理論數值相應於一沒有誤差的干涉訊號。變動係起因於光源之一強度準位的變動。變動係起因於偵測器之有限積分時間。Each of the interference signals corresponds to the intensity of the interference signal, and the value of the interference intensity is measured when the test light and the reference light from the object to be tested are combined in a detector, wherein the test light and the reference light are from a common one. The light source, and each of the base functions represents a variation between the measured interference intensity value and a theoretical value after the measurement, the theoretical value corresponding to an interference signal having no error. The change is caused by a change in the intensity level of one of the light sources. The change is due to the finite integration time of the detector.

提供有關於一系列光程差數值之未等間距的資訊的步驟包括提供表示光程差變化之至少一監測干涉訊號,其中監測干涉訊號產生於當取得相應於一系列光程差的干涉訊號時。監測干涉訊號能夠使用相同的干涉儀光學組件而產生,干涉儀光學組件用以產生相應於一系列光程差值的干涉訊號。The step of providing information on the unequal spacing of the series of optical path difference values includes providing at least one monitoring interference signal indicative of a change in optical path difference, wherein the monitoring interference signal is generated when an interfering signal corresponding to a series of optical path differences is obtained . The monitoring interferometric signal can be generated using the same interferometer optical component that is used to generate an interfering signal corresponding to a series of optical path differences.

使用資訊的步驟包括根據每一個多重基底函式對每一個上述干涉訊號之貢獻的資訊來產生一校正後的干涉訊號;以及根據校正後的干涉訊號來決定上述待測物的資訊。The step of using the information includes generating a corrected interference signal according to the information of each of the multiple base functions on each of the interference signals; and determining the information of the object to be tested according to the corrected interference signal.

有關於一系列光程差數值之未等間距的資訊是藉由一感測器所產生的,例如一位移量測干涉儀、一加速度計、一接觸探針、一電容計、一氣壓計以及一光學編碼器。Information about the unequal spacing of a series of optical path difference values is generated by a sensor, such as a displacement measuring interferometer, an accelerometer, a contact probe, a capacitance meter, a barometer, and An optical encoder.

在另一型態中,本發明提供一種程序,用以製造一顯示面板,包括提供顯示面板的元件;藉由與前述型態討論有關的方法或下述討論的裝置來決定裝置的資訊;以及使用裝置來形成顯示面板。上述裝置包括以一間隙互相間隔的一對基板且上述資訊包括間隙的資訊。形成顯示面板的步驟包括根據資訊調整間隙。形成顯示面板的步驟包括以一液晶材料填充間隙。In another form, the present invention provides a program for fabricating a display panel comprising elements for providing a display panel; determining information of the device by a method related to the above-discussed discussion or a device discussed below; A device is used to form the display panel. The above apparatus includes a pair of substrates spaced apart from each other by a gap and the information includes information of the gap. The step of forming the display panel includes adjusting the gap based on the information. The step of forming the display panel includes filling the gap with a liquid crystal material.

上述元件包括一基板以及基板上之一光阻層。上述資訊包括光阻層厚度的資訊。光阻層為已圖案化層,並且資訊包括已圖案化層之一特徵元件的尺寸誤差或重疊誤差。形成顯示器的步驟包括蝕刻光阻層下的一層材料。The above component includes a substrate and a photoresist layer on the substrate. The above information includes information on the thickness of the photoresist layer. The photoresist layer is a patterned layer, and the information includes dimensional errors or overlay errors of one of the features of the patterned layer. The step of forming the display includes etching a layer of material under the photoresist layer.

上述元件包括一基板,且基板包括間隔物,上述資訊包括間隔物的資訊。形成顯示器的步驟包括根據資訊來修正間隔物。The component includes a substrate, and the substrate includes a spacer, and the information includes information of the spacer. The step of forming the display includes correcting the spacer based on the information.

一般而言,在另一型態中,本裝置更包括一感測器,用以一干涉系統以及電子處理器。干涉系統包括干涉儀光學組件,用以結合來自於一待測物的測試光和來自於一參考物的參考光,而在一偵測器中形成一干涉圖案,其中測試光和參考光來自於一共用光源。干涉系統更包括一掃瞄平台,用以掃描介於測試光和參考光之間之從共用光源至偵測器的一光程差,以及包括上述偵測器之一偵測器系統,用以紀錄一系列之光程差增量之每一者的干涉圖案,藉此提供一或多個干涉訊號。電子處理器,耦接於偵測系統和掃瞄平台,根據上述一或多個干涉訊號來決定待測物的資訊。一系列之光程差增量是因為雜訊而未被等間距的,並且電子處理器藉由將每一個干涉訊號分解為複數基底函式的一貢獻來決定待測物的資訊,每一個基底函式相應於不同的頻率並且被未等間距的光程差數值所取樣。In general, in another form, the apparatus further includes a sensor for an interference system and an electronic processor. The interference system includes an interferometer optical component for combining test light from a test object and reference light from a reference object to form an interference pattern in a detector, wherein the test light and the reference light are from A common light source. The interference system further includes a scanning platform for scanning an optical path difference between the test light and the reference light from the common light source to the detector, and a detector system including the detector for recording An interference pattern for each of a series of optical path difference increments, thereby providing one or more interfering signals. The electronic processor is coupled to the detection system and the scanning platform, and determines the information of the object to be tested according to the one or more interference signals. A series of optical path difference increments are not equally spaced due to noise, and the electronic processor determines the information of the object to be tested by decomposing each of the interference signals into a contribution of the complex basis function, each of the substrates. The function corresponds to different frequencies and is sampled by unequal spacing optical path difference values.

本裝置之實施例包括一或多個以下特徵裝置及/或其他型態的特徵裝置。舉例而言,干涉儀光學組件將待測物成像至偵測器。干涉儀光學組件定義一光瞳平面並且將光瞳平面成像至偵測器。干涉儀是干涉顯微鏡的一部份。掃描平台用以在大於共用光源之同調長度的範圍掃描光程差。Embodiments of the device include one or more of the following features and/or other features. For example, the interferometer optical component images the object to be detected to the detector. The interferometer optics define a pupil plane and image the pupil plane to the detector. The interferometer is part of the interference microscope. The scanning platform is configured to scan the optical path difference over a range greater than the coherence length of the shared light source.

在一些實施例中,本裝置更包括與電子處理器通訊的一感測器,感測器提供未等間距之光程差增量的資訊至電子處理器。感測器藉由干涉儀光學組件來導引監測光束從待測物反射。感測器為一位移量測干涉儀、一加速度計、一接觸探針、一電容計、一氣壓計或一光學編碼器。在一些實施例中,感測器定義一畫框頻率,並且電子處理器用以決定在大於畫框頻率的頻率時光程差增量對擾動靈敏度的資訊。掃描干涉系統藉由干涉儀光學組件來產生至少一監測干涉訊號。In some embodiments, the apparatus further includes a sensor in communication with the electronic processor, the sensor providing information of the unequal spacing optical path difference increments to the electronic processor. The sensor guides the monitoring beam from the object to be tested by the interferometer optical component. The sensor is a displacement measuring interferometer, an accelerometer, a contact probe, a capacitance meter, a barometer or an optical encoder. In some embodiments, the sensor defines a frame frequency and the electronic processor is operative to determine information about the optical path difference increment versus disturbance sensitivity at frequencies greater than the frame frequency. The scanning interferometric system generates at least one monitoring interference signal by the interferometer optical component.

一般而言,在另一型態中,本發明裝置包括一掃描干涉系統以及一電子處理器,掃描干涉系統包括干涉儀光學組件用以導引具有不同入射角的測試光至一待測物,並且將從待測物反射回來的測試光與來自於一參考物的參考光結合,用以在一多重元件偵測器中形成一干涉圖案,其中測試光和參考光來自於一共用光源,並且干涉儀光學組件將結合後的光之至少一部分導引至偵測器,使得偵測器的不同元件相應於待測物被測試光所照射的不同入射角。干涉系統更包括一掃瞄平台,用以掃描介於測試光和參考光之間之從共用光源至偵測器的一光程差,以及包括偵測器之一偵測器系統,用以紀錄一系列之光程差增量之每一者的干涉圖案,干涉儀光學組件更用以產生至少一個監測干涉訊號,當掃描光程差時,監測干涉訊號表示光程差的變化。電子處理器,電性耦接於偵測系統和掃瞄平台,用以決定光程差增量對擾動靈敏度的資訊。In general, in another form, the apparatus of the present invention includes a scanning interference system and an electronic processor, the scanning interference system including an interferometer optical component for directing test light having different incident angles to a test object, And combining the test light reflected from the object to be tested with reference light from a reference object to form an interference pattern in a multi-element detector, wherein the test light and the reference light are from a common light source, And the interferometer optical component directs at least a portion of the combined light to the detector such that different elements of the detector correspond to different angles of incidence illuminated by the test object to be tested. The interference system further includes a scanning platform for scanning an optical path difference between the test light and the reference light from the common light source to the detector, and a detector system including one of the detectors for recording one The interference pattern of each of the series of optical path difference increments is used to generate at least one monitoring interference signal. When scanning the optical path difference, the monitoring interference signal indicates a change in the optical path difference. The electronic processor is electrically coupled to the detection system and the scanning platform to determine information on the sensitivity of the optical path difference increment to the disturbance.

本裝置之實施例包括包括其他型態之一或多個特徵裝置。舉例而言,干涉儀光學組件定義一光瞳平面並且將光瞳平面成像至偵測器。掃描干涉系統是寬頻帶的掃描干涉系統。掃描平台用以在大於或小於共用光源之同調長度的範圍掃描光程差。當掃描光程差時,掃描干涉系統更用以產生至少二監測干涉訊號,每一個監測干涉訊號表示光程差的變化。每一個光程差增量的頻率定義一畫框頻率,並且電子處理器用以決定在大於上述畫框頻率的頻率時上述光程差增量對擾動靈敏度的資訊。掃描干涉系統藉由干涉光學組件來產生至少一監測干涉訊號。Embodiments of the apparatus include one or more of the other types of features. For example, the interferometer optical component defines a pupil plane and images the pupil plane to the detector. The scanning interferometric system is a broadband scanning interferometric system. The scanning platform is configured to scan the optical path difference over a range greater than or less than the coherence length of the shared light source. When scanning the optical path difference, the scanning interference system is further configured to generate at least two monitoring interference signals, each of which monitors the interference signal to indicate a change in the optical path difference. The frequency of each optical path difference increment defines a frame frequency, and the electronic processor determines information about the sensitivity of the optical path difference increment to the disturbance sensitivity at a frequency greater than the frame frequency. The scanning interferometric system generates at least one monitoring interference signal by interfering with the optical component.

一般而言,在另一型態中,本發明提供一種裝置,包括一干涉顯微鏡,干涉顯微鏡包括一物鏡以及一平台,平台是能夠相對物鏡而移動的。本裝置也包括一感測器,感測器產生輸入光的一第一波前與一第二波前並且將第一和第二波前結合以提供輸出光,輸出光包括第一和第二波前路徑間之光程差的資訊,感測器包括設置於第一波前路徑中的一反射式元件,反射式元件被設置於物鏡或平台。本裝置也包括一光纖波導,用以產生入射至感測器的輸入光或從感測器產生從感測器至一相應偵測器的輸出光。電子處理器根據感測器的資訊來監測平台相對於物鏡的位移。In general, in another form, the present invention provides an apparatus comprising an interference microscope comprising an objective lens and a platform movable relative to the objective lens. The device also includes a sensor that generates a first wavefront of the input light and a second wavefront and combines the first and second wavefronts to provide output light, the output light comprising first and second The information of the optical path difference between the wavefront paths, the sensor includes a reflective element disposed in the first wavefront path, and the reflective element is disposed on the objective lens or the platform. The device also includes a fiber optic waveguide for generating input light incident to the sensor or outputting light from the sensor to the respective detector from the sensor. The electronic processor monitors the displacement of the platform relative to the objective lens based on information from the sensor.

本裝置之實施例包括其他型態之一或多個特徵裝置。舉例而言,干涉顯微鏡為低同調干涉掃描干涉顯微鏡。干涉顯微鏡包括干涉儀光學組件以及偵測器,干涉儀光學組件用以將設置於平台的待測物成像至偵測器。干涉顯微鏡包括干涉儀光學組件以及偵測器,其中干涉儀光學組件定義光瞳平面且用以將光瞳平面成像至偵測器。Embodiments of the device include one or more of the other types of features. For example, an interference microscope is a low coherence interference scanning interference microscope. The interference microscope includes an interferometer optical component and a detector, and the interferometer optical component is used to image the object to be tested disposed on the platform to the detector. The interference microscope includes an interferometer optical component and a detector, wherein the interferometer optical component defines a pupil plane and is used to image the pupil plane to the detector.

物鏡為Mirau物鏡或Linnik物鏡。The objective lens is a Mirau objective or a Linnik objective.

在另一型態中,本發明提供一種干涉系統,包括一偵測器子系統、掃描平台以及一電子處理器。偵測器子系統包括一監測偵測器以及干涉儀光學組件,干涉儀光學組件將來自於一待測物的測試光與來自於第一和第二參考面的主參考光和第二參考光結合,用以在一監測偵測器中形成一第一干涉圖案,其中第一和第二參考面是彼此機械式地固定住的。當偵測器子系統紀錄一系列之光程差之每一者的監測干涉訊號時,掃描平台用以掃描測試光與主參考光和第二參考光至監測偵測器的光程差。電子處理器電性耦接於偵測器子系統與掃描平台,電子處理器用以根據偵測到的監測干涉圖案來決定光程差增量的資訊。In another form, the present invention provides an interference system including a detector subsystem, a scanning platform, and an electronic processor. The detector subsystem includes a monitoring detector and an interferometer optical component. The interferometer optical component combines the test light from a test object with the primary reference light and the second reference light from the first and second reference faces. The combination is for forming a first interference pattern in a monitoring detector, wherein the first and second reference surfaces are mechanically fixed to each other. When the detector subsystem records the monitoring interference signal of each of a series of optical path differences, the scanning platform scans the optical path difference between the test light and the primary reference light and the second reference light to the monitoring detector. The electronic processor is electrically coupled to the detector subsystem and the scanning platform, and the electronic processor is configured to determine the information of the optical path difference increment according to the detected monitoring interference pattern.

本干涉系統之實施例包括其他型態之一或多種特徵裝置。舉例而言,偵測器子系統包括主偵測器以及干涉儀光學組件,干涉儀光學組件將測試光和第一參考光結合,用以在主偵測器中形成主干涉圖案,主干涉圖案不同於監測干涉圖案。電子處理器用以根據偵測到之主干涉圖案來決定待測物的資訊。決定待測物的資訊的步驟包括根據光程差增量的資訊來減少待測物因振動所導致之待測物的資料不確定性。Embodiments of the present interference system include one or more of the other types of features. For example, the detector subsystem includes a main detector and an interferometer optical component, and the interferometer optical component combines the test light and the first reference light to form a main interference pattern in the main detector, the main interference pattern. Unlike monitoring interference patterns. The electronic processor is configured to determine information of the object to be tested according to the detected main interference pattern. The step of determining the information of the object to be tested includes reducing the data uncertainty of the object to be tested due to the vibration of the object to be tested according to the information of the optical path difference increment.

干涉儀光學組件用來讓主偵測器無法接收第二參考光。干涉儀光學組件包括視場光欄,用以將測試光和主參考光傳送至主偵測器,但是阻擋來自主偵測器的第二參考光。干涉儀光學組件包括波長濾光器,用以將測試光和主參考光傳送至主偵測器,但是阻擋來自主偵測器的第二參考光。The interferometer optics are used to prevent the main detector from receiving the second reference light. The interferometer optical component includes a field of view light bar for transmitting test light and primary reference light to the main detector but blocking the second reference light from the main detector. The interferometer optical component includes a wavelength filter for transmitting the test light and the primary reference light to the primary detector but blocking the second reference light from the primary detector.

監測偵測器為多重元件偵測器,並且第一和第二參考面被安置用以讓主參考光和第二參考光之一相對相位差能夠在多重元件偵測器的可視區中變動。The monitor detector is a multi-element detector, and the first and second reference planes are arranged to allow a relative phase difference between the primary reference light and the second reference light to be varied in the viewable area of the multi-element detector.

第一和第二參考面被安置用以讓主參考光和第二參考光沿著監測偵測器的非平行路徑傳播。第一和第二參考面為表面。第一和第二參考面對應於一共用光學元件的相對表面。共用光學元件為光楔(wedge)。第一和第二參考面對應於不同光學元件的表面。The first and second reference planes are positioned to propagate the primary reference light and the second reference light along a non-parallel path of the monitoring detector. The first and second reference faces are surfaces. The first and second reference faces correspond to opposing surfaces of a common optical component. The shared optical component is a wedge. The first and second reference faces correspond to surfaces of different optical elements.

第二參考面為一平面的介面。舉例而言,主參考面為一平面。在一些實施例中,主參考面為一非平面。非平面的介面為一球面。主參考面為一非球面。The second reference surface is a planar interface. For example, the primary reference plane is a plane. In some embodiments, the primary reference plane is a non-planar. The non-planar interface is a spherical surface. The main reference plane is an aspherical surface.

干涉儀光學組件定義一光軸,以及相對於光軸而被不同角度偏轉的第一和第二參考面。The interferometer optical component defines an optical axis and first and second reference faces that are deflected at different angles relative to the optical axis.

干涉系統包括一光源子系統,用以產生測試光、主參考光以及第二參考光。光源子系統包括一共用光源,用以產生測試光、主參考光以及第二參考光。在一些實施例中,共用光源為寬頻帶光源。光源子系統包括一主光源以及一監測光源,主光源用以提供測試光和主參考光,監測光源用以提供第二參考光。主光源為寬頻帶光源。監測光源為窄頻帶光源(例如單色光源)。The interference system includes a light source subsystem for generating test light, primary reference light, and second reference light. The light source subsystem includes a common light source for generating test light, primary reference light, and second reference light. In some embodiments, the shared light source is a broadband light source. The light source subsystem includes a primary light source for providing test light and primary reference light, and a monitoring light source for providing a second reference light. The main source is a broadband source. The monitoring source is a narrowband source (eg, a monochromatic source).

光源子系統包括一光源以及一掃描平台,光源用以提供至少一測試光與一主參考光,掃描平台用以在大於光源之同調長度的範圍掃描光程差。光源子系統包括一光源以及一掃描平台,光源用以提供至少一測試光與一主參考光,掃描平台用以在小於光源之同調長度的範圍掃描光程差。The light source subsystem includes a light source for providing at least one test light and a main reference light, and a scanning platform for scanning the optical path difference over a range of coherent lengths of the light source. The light source subsystem includes a light source for providing at least one test light and a main reference light, and a scanning platform for scanning the optical path difference in a range smaller than a coherence length of the light source.

干涉儀光學組件將待測物成像至偵測器子系統中的多重元件偵測器。干涉儀光學組件定義一光瞳,並且干涉儀光學組件將光瞳成像至偵測器子系統中的多重元件偵測器。多重元件偵測器為監測偵測器。The interferometer optics image the object under test to a multi-element detector in the detector subsystem. The interferometer optics define an aperture and the interferometer optics image the pupil to a multi-element detector in the detector subsystem. The multi-element detector is a monitor detector.

干涉儀光學組件被設置為Fizeau干涉儀、Linnik干涉儀或Mirau干涉儀。The interferometer optical component is configured as a Fizeau interferometer, a Linnik interferometer or a Mirau interferometer.

一般而言,在另一型態中,本發明提供一種方法,包括將來自於一待測物的測試光與來自於第一和第二參考面的主參考光和第二參考光結合,用以在一監測偵測器中形成一第一監測干涉圖案,其中第一和第二參考面是彼此機械式地固定住的;掃描測試光與主參考光和第二參考光至監測偵測器的光程差;紀錄一系列之光程差增量之每一者的監測干涉圖案;以及根據偵測到之監測干涉圖案來決定光程差增量的資訊。本方法的裝置包括其他型態的特徵裝置。In general, in another form, the present invention provides a method comprising combining test light from a test object with primary reference light and second reference light from first and second reference faces, Forming a first monitoring interference pattern in a monitoring detector, wherein the first and second reference surfaces are mechanically fixed to each other; scanning the test light and the main reference light and the second reference light to the monitoring detector The optical path difference; a monitoring interference pattern for each of a series of optical path difference increments; and information for determining the optical path difference increment based on the detected monitoring interference pattern. The apparatus of the method includes other types of features.

一般而言,在另一型態中,本發明提供一種干涉系統,包括干涉儀光學組件以及一電子處理器。干涉儀光學組件將來自於一待測物的測試光與來自於第一和第二參考面的主參考光和第二參考光結合,用以在一監測偵測器中形成一第一干涉圖案,干涉儀光學組件也將測試光與主參考光結合,用以在一主偵測器中形成一第二干涉圖案,其中第一和第二參考面是彼此機械式地固定住的。電子處理器耦接於主偵測器和監測偵測器,電子處理器根據第二干涉圖案來決定待測物的資訊,並且決定帶測物的資訊的步驟包括根據第一干涉圖案的資訊來減少待測物因掃描誤差所導致的不確定性。本干涉系統的實施例包括其他型態的特徵裝置。In general, in another form, the present invention provides an interference system comprising an interferometer optical component and an electronic processor. The interferometer optical component combines test light from a test object with primary reference light and second reference light from the first and second reference planes to form a first interference pattern in a monitor detector The interferometer optical assembly also combines the test light with the primary reference light to form a second interference pattern in a primary detector, wherein the first and second reference faces are mechanically secured to each other. The electronic processor is coupled to the main detector and the monitoring detector. The electronic processor determines the information of the object to be tested according to the second interference pattern, and the step of determining the information of the object to be tested includes the information according to the first interference pattern. Reduce the uncertainty caused by the scanning error of the object under test. Embodiments of the present interference system include other types of feature devices.

一般而言,在另一型態中,本發明提供一種方法,包括將來自於一待測物的測試光與來自於第一和第二參考面的主參考光和第二參考光結合,用以在一監測偵測器中形成一第一干涉圖案;將測試光與主參考光結合,用以在一主偵測器中形成一第二干涉圖案,其中第一和第二參考面是彼此機械式地固定住的;以及根據第二干涉圖案來決定待測物的資訊,其中決定待測物的資訊的步驟包括根據第一干涉圖案的資訊來減少待測物因掃描誤差所導致的不確定性。本干涉系統的實施例包括其他型態的特徵裝置。In general, in another form, the present invention provides a method comprising combining test light from a test object with primary reference light and second reference light from first and second reference faces, Forming a first interference pattern in a monitoring detector; combining the test light with the main reference light to form a second interference pattern in a main detector, wherein the first and second reference planes are each other Mechanically fixed; and determining information of the object to be tested according to the second interference pattern, wherein the step of determining information of the object to be tested includes reducing information of the object to be tested due to scanning error according to information of the first interference pattern Certainty. Embodiments of the present interference system include other types of feature devices.

一般而言,在另一型態中,本發明提供一種裝置,包括一顯微鏡以及一感測器系統。平台用以將一待測物相對於一或多個光學元件作定位,平台能夠相對於一或多個光學元件而移動,感測器系統包括一感測器光源、一干涉感測器、一光纖波導、一可調整光學腔以及一電子控制器。干涉感測器接收來自感測器光源的光;產生光之一第一部分和一第二部份之間的一光程差,每一個光程差有關於物鏡和平台之間的距離;以及將光的第一部分和第二部份結合來提供輸出光。偵測器偵測來自於干涉感測器的光。光纖波導將輸入光傳送至感測器光源、干涉感測器與感測器之間。可調整光學腔是在從感測光源至干涉感測器之光路中。電子控制器與偵測器通訊,根據來自於每一個干涉感測器所偵測到的輸出光來決定光程差的資訊。In general, in another form, the present invention provides an apparatus comprising a microscope and a sensor system. The platform is configured to position a test object relative to the one or more optical components, and the platform is movable relative to the one or more optical components, the sensor system includes a sensor light source, an interference sensor, and a A fiber optic waveguide, an adjustable optical cavity, and an electronic controller. The interference sensor receives light from the sensor light source; generates an optical path difference between the first portion and the second portion of the light, each optical path difference having a distance between the objective lens and the platform; The first portion and the second portion of the light combine to provide output light. The detector detects light from the interference sensor. The fiber waveguide transmits the input light to the sensor source, the interference sensor, and the sensor. The adjustable optical cavity is in the optical path from the sensing source to the interference sensor. The electronic controller communicates with the detector to determine the optical path difference information based on the output light detected by each of the interference sensors.

本裝置之實施例包括以下特徵裝置及/或其他型態的特徵裝置。舉例而言,電子控制器根據資訊來調整一顯微鏡之一焦距。顯微鏡為一干涉顯微鏡。干涉顯微鏡為掃描式白光干涉技術(SWLI)顯微鏡。干涉顯微鏡為光瞳平面SWLI顯微鏡。物鏡可以是Mirau物鏡、Linnik物鏡或Michelson物鏡。干涉顯微鏡使用測試光照射一待測物用以決定設置在平台上之待測物的資訊,並將測試光與來自於一參考物的參考光結合,用以在一偵測器中形成一干涉圖案,其中測試光和參考光來自於共用光源,並且本裝置根據與感測器光程差有關之已決定的資訊來減少待測物因掃描誤差所導致的不確定性。Embodiments of the device include the following features and/or other features. For example, the electronic controller adjusts the focal length of one of the microscopes based on the information. The microscope is an interference microscope. The interference microscope is a scanning white light interference technique (SWLI) microscope. The interference microscope is a pupil plane SWLI microscope. The objective lens can be a Mirau objective, a Linnik objective or a Michelson objective. The interference microscope uses the test light to illuminate a test object to determine the information of the object to be tested disposed on the platform, and combines the test light with reference light from a reference object to form an interference in a detector. A pattern in which the test light and the reference light are from a common light source, and the apparatus reduces the uncertainty of the object to be detected due to the scanning error based on the determined information related to the optical path difference of the sensor.

在一些實施例中,感測器系統包括一或多個額外的干涉感測器,每一個額外的干涉感測器接收來自感測器光源的光。每一個干涉感測器產生其所發出之相應光在兩個元件間的光程差,每一個光程差有關於物鏡和平台間沿著一相應軸的一相應位移。電子控制器根據決定至少二個干涉感測器之有關於相應光程差的步驟來決定平台相對於物鏡之偏轉角度的資訊。感測系統包括一或多個額外的偵測器,每一個偵測器從相應的干涉感測器接收輸出光。每一個額外的干涉感測器藉由相應的光纖波導從感測器光源接收光並將輸出光導引至其相應的感測器。可調整光學腔是在從感測光源至干涉感測器之光路中。In some embodiments, the sensor system includes one or more additional interference sensors, each of which receives light from the sensor source. Each of the interferometric sensors produces an optical path difference between the two elements of the corresponding light emitted by it, each optical path difference having a corresponding displacement along the respective axis between the objective lens and the platform. The electronic controller determines information about the deflection angle of the platform relative to the objective lens based on the steps of determining the respective optical path differences of the at least two interference sensors. The sensing system includes one or more additional detectors, each of which receives output light from a respective interference sensor. Each additional interference sensor receives light from the sensor source by a corresponding fiber waveguide and directs the output light to its respective sensor. The adjustable optical cavity is in the optical path from the sensing source to the interference sensor.

干涉感測器包括一透鏡,透鏡用以接收離開光纖波導的光並將光聚焦至一腰部。透鏡是一漸變折射率透鏡。透鏡被附加於物鏡。在另一實施例中,透鏡被附加於平台。在一些實施例中,光纖波導是具有熱膨脹纖芯的光纖。The interference sensor includes a lens for receiving light exiting the fiber waveguide and focusing the light to a waist. The lens is a graded index lens. A lens is attached to the objective lens. In another embodiment, the lens is attached to the platform. In some embodiments, the fiber waveguide is an optical fiber having a thermally expanded core.

顯微鏡包括一顯微鏡光源以及一物鏡,物鏡包括一或多個光學元件。顯微鏡從顯微鏡光源產生光入射待測物,並且一或多個光學元件收集來自待測物的光,並且干涉感測器藉由物鏡的一或多個光學元件而將光導引至平台。The microscope includes a microscope light source and an objective lens, the objective lens including one or more optical elements. The microscope produces light from the microscope source that is incident on the object under test, and one or more optical elements collect light from the object under test, and the interference sensor directs light to the platform by one or more optical elements of the objective lens.

感測器光源為一寬頻帶光源。感測器光源在波長介於900nm至1,600nm具有最大強度。感測器光源的半寬高在50nm或以下。感測器光源的同調長度在約100nm或以下。The sensor source is a broadband source. The sensor source has maximum intensity at wavelengths between 900 nm and 1,600 nm. The sensor light source has a half width at 50 nm or less. The coherent length of the sensor source is about 100 nm or less.

可調整光學腔包括光的兩個路徑,每一個路徑包括一光纖延伸模組。感測器光源和偵測器是在一個外罩(housing)中,外罩與顯微鏡分隔開來。The adjustable optical cavity includes two paths of light, each path including a fiber extension module. The sensor source and detector are in a housing that is separated from the microscope.

上述資訊可以是物鏡和平台間沿著軸之位移的資訊。顯微鏡掃瞄平行於上述軸的平台。上述資訊可以是物鏡和平台間一絕對位移的資訊。在另一實施例中,資訊可以是物鏡和平台間一相對位移的資訊。The above information can be information about the displacement of the objective lens and the platform along the axis. The microscope scans the platform parallel to the above axis. The above information can be an absolute displacement between the objective lens and the platform. In another embodiment, the information may be information about a relative displacement between the objective lens and the platform.

顯微鏡包括一顯微鏡光源,顯微鏡從顯微鏡光源產生光入射至安置於平台上的待測物,其中顯微鏡光源最大強度的波長約為100nm或大於偵測器光源最大強度的波長。顯微鏡光源最大強度的波長範圍為300nm至700nm,並且偵測器光源最大強度的波長範圍為900nm至1,600nm。The microscope includes a microscope light source that produces light from the microscope source to the object to be tested placed on the platform, wherein the maximum intensity of the microscope source is about 100 nm or greater than the maximum intensity of the detector source. The maximum intensity of the microscope source ranges from 300 nm to 700 nm, and the maximum intensity of the detector source ranges from 900 nm to 1,600 nm.

一般而言,在另一型態中,本發明提供一種裝置,包括一成像干涉儀以及一感測器系統。成像干涉儀包括一或多個光學元件以及一平台,平台用以將一待測物相對於一或多個光學元件作定位,平台能夠相對於一或多個光學元件而移動。感測器系統包括一感測器光源、一干涉感測器、一光纖波導、一可調整光學腔以及一電子控制器。干涉感測器接收來自感測器光源的光;產生光之一第一部分和一第二部份之間的一光程差,每一個光程差有關於物鏡和平台之間的距離;以及將光的第一部分和第二部份結合來提供相應的輸出光。每一個偵測器偵測來自於一相應干涉感測器的光。可調整光學腔是在從感測光源至干涉感測器之光路中。電子控制器與偵測器通訊,用以根據來自於每一個干涉感測器所偵測到的輸出光來決定光程差的資訊。In general, in another form, the present invention provides an apparatus comprising an imaging interferometer and a sensor system. The imaging interferometer includes one or more optical components and a platform for positioning a test object relative to one or more optical components, the platform being movable relative to the one or more optical components. The sensor system includes a sensor light source, an interference sensor, a fiber waveguide, an adjustable optical cavity, and an electronic controller. The interference sensor receives light from the sensor light source; generates an optical path difference between the first portion and the second portion of the light, each optical path difference having a distance between the objective lens and the platform; The first portion and the second portion of the light combine to provide a corresponding output light. Each detector detects light from a corresponding interference sensor. The adjustable optical cavity is in the optical path from the sensing source to the interference sensor. The electronic controller communicates with the detector to determine the optical path difference information based on the output light detected by each of the interference sensors.

本裝置之實施例包括以下特徵裝置及/或其他型態的特徵裝置。舉例而言,成像干涉儀係為一干涉顯微鏡。成像干涉儀係為SWLI干涉儀或PUPS干涉儀。Embodiments of the device include the following features and/or other features. For example, the imaging interferometer is an interference microscope. The imaging interferometer is a SWLI interferometer or a PUPS interferometer.

一般而言,在另一型態中,本發明提供一種裝置,包括一成像干涉儀以及一感測器系統。成像干涉儀包括一或多個光學元件以及一平台,平台用以將一待測物相對於一或多個光學元件作定位,平台能夠相對於一或多個光學元件而移動。感測器系統包括一感測器光源、複數干涉感測器、複數偵測器、一可調整光學腔以及一電子控制器。每一個干涉感測器接收來自感測器光源的光;產生光之一第一部分和一第二部份之間的一光程差,每一個光程差有關於物鏡和平台之間的距離;以及將光的第一部分和第二部份結合來提供相應的輸出光。每一個偵測器偵測來自於一相應干涉感測器的光。可調整光學腔是在從感測光源至干涉感測器之光路中。電子控制器與偵測器通訊,用以根據來自於每一個干涉感測器所偵測到的輸出光來決定光程差的資訊。本裝置之實施例包括其他型態的一或多種特徵裝置。In general, in another form, the present invention provides an apparatus comprising an imaging interferometer and a sensor system. The imaging interferometer includes one or more optical components and a platform for positioning a test object relative to one or more optical components, the platform being movable relative to the one or more optical components. The sensor system includes a sensor light source, a plurality of interference sensors, a complex detector, an adjustable optical cavity, and an electronic controller. Each of the interference sensors receives light from the sensor light source; generates an optical path difference between the first portion and the second portion of the light, each optical path difference being related to a distance between the objective lens and the platform; And combining the first portion and the second portion of the light to provide corresponding output light. Each detector detects light from a corresponding interference sensor. The adjustable optical cavity is in the optical path from the sensing source to the interference sensor. The electronic controller communicates with the detector to determine the optical path difference information based on the output light detected by each of the interference sensors. Embodiments of the device include one or more feature devices of other types.

一般而言,在另一型態中,本發明提供一種裝置,包括一顯微鏡以及一感測器系統。顯微鏡包括一物鏡以及一平台,平台用以將一待測物相對於物鏡作定位,平台能夠相對於物鏡而移動。感測器系統包括一感測器光源、複數干涉感測器、複數偵測器、一可調整光學腔以及一電子控制器。每一個干涉感測器接收來自感測光源的光;產生光之一第一部分和一第二部份之間的一光程差,每一個光程差有關於物鏡和平台之間的距離;以及將光的第一部分和第二部份結合來提供相應的輸出光。每一個偵測器偵測來自於一相應干涉感測器的光。可調整光學腔是在從感測光源至干涉感測器之光路中。電子控制器與偵測器通訊,用以根據來自於每一個干涉感測器所偵測到的輸出光來決定光程差的資訊。本裝置之實施例包括其他型態的一或多種特徵裝置。In general, in another form, the present invention provides an apparatus comprising a microscope and a sensor system. The microscope includes an objective lens and a platform for positioning a test object relative to the objective lens, and the platform is movable relative to the objective lens. The sensor system includes a sensor light source, a plurality of interference sensors, a complex detector, an adjustable optical cavity, and an electronic controller. Each of the interference sensors receives light from the sensing source; produces an optical path difference between the first portion and a second portion of the light, each optical path difference having a distance between the objective lens and the platform; The first portion and the second portion of the light are combined to provide corresponding output light. Each detector detects light from a corresponding interference sensor. The adjustable optical cavity is in the optical path from the sensing source to the interference sensor. The electronic controller communicates with the detector to determine the optical path difference information based on the output light detected by each of the interference sensors. Embodiments of the device include one or more feature devices of other types.

在另一方面,本發明提供一種系統,包括如前述之裝置,包括偵測器系統、一或多個顯微鏡,每一顯微鏡包括一相應的物鏡和一相應的平台,其中偵測器裝置包括一或多個干涉偵測器,每一干涉偵測器與與顯微鏡中之一者相關,干涉偵測器用以接收偵測器光源所發出的光。In another aspect, the present invention provides a system comprising the apparatus as described above, comprising a detector system, one or more microscopes, each microscope comprising a respective objective lens and a corresponding platform, wherein the detector device comprises a Or a plurality of interference detectors, each of which is associated with one of the microscopes, the interference detectors for receiving light emitted by the detector light source.

每個上述干涉偵測器用以產生上述所發出的光之一相應的第一部分和一相應的第二部分之間的一光程差,光程差係有關於相應的物鏡和相應的平台的距離,並且干涉偵測器將上述所發出的光之相應的第一部分和相應的第二部分結合起來提供輸出光。偵測器系統包括一或多個檢測器,每一檢測器用以檢測來自於相應的干涉偵測器的輸出光。在某些實施例中,偵測器系統包括一或多個光纖波導,用以引導偵測器光源、干涉偵測器和檢測器間的光。Each of the above-mentioned interference detectors is configured to generate an optical path difference between a corresponding first portion and a corresponding second portion of the emitted light, the optical path difference being related to the distance between the corresponding objective lens and the corresponding platform And the interference detector combines the corresponding first portion of the emitted light and the corresponding second portion to provide output light. The detector system includes one or more detectors, each detector for detecting output light from a corresponding interference detector. In some embodiments, the detector system includes one or more fiber waveguides for directing light between the detector source, the interference detector, and the detector.

每個顯微鏡用以檢測不同的帶測物(例如不同的LCD面板基板)。Each microscope is used to detect different strips (eg different LCD panel substrates).

一般來說,在另一方面,本發明提供一種系統包括複數顯微鏡,每一顯微鏡包括一相應的物鏡和一相應的平台,相應的平台用以將一待測物相對於相應的物鏡作定位;以及一偵測器子系統,包括:一偵測器光源、複數干涉偵測器、一或多個光纖波導和複數干涉偵測器,光纖波導用以將偵測器光源引導至干涉偵測器,每個干涉偵測器係對應於顯微鏡之一者;偵測器子系統,更包括複數檢測器和一電子控制器,每一檢測器用以接收來自干涉偵測器的光,電子控制器用以與偵測器通訊;其中在操作期間,偵測器光源引導光經由光纖波導至每個干涉偵測器,每個干涉偵測器引導一輸出光至相應的檢測器,輸出光包括一干涉相位,干涉相位係有關於相應的物鏡和顯微鏡之相應的平台間的距離,顯微鏡係與干涉偵測器有關,以及電子控制器根據已檢測的輸出光來決定相應的物鏡與相應的平台間的距離之資訊。In general, in another aspect, the present invention provides a system comprising a plurality of microscopes, each microscope comprising a corresponding objective lens and a corresponding platform, the corresponding platform for positioning a test object relative to the corresponding objective lens; And a detector subsystem comprising: a detector light source, a complex interference detector, one or more fiber waveguides and a complex interference detector, and the fiber waveguide is used to guide the detector light source to the interference detector Each of the interference detectors corresponds to one of the microscopes; the detector subsystem further includes a complex detector and an electronic controller, each detector for receiving light from the interference detector, and the electronic controller is used for Communicating with the detector; wherein during operation, the detector light source directs light to each of the interference detectors via the fiber waveguide, and each of the interference detectors directs an output light to the corresponding detector, the output light including an interference phase The interference phase has a distance between the corresponding objective lens and the corresponding platform of the microscope, the microscope system is related to the interference detector, and the electronic controller is based on the detected output light. Decision information corresponding distance between the objective lens and the appropriate platform.

一些參考文獻被引用作為本說明書的揭示內容。當與上述參考文獻不同時,當以本發明為準。Some references are cited as disclosures of this specification. When different from the above references, the present invention will prevail.

上述一或多個實施例的細節將如所附圖式與以下實施方式說明。根據實施方式、所附圖式以及申請專利範圍,本發明其他特徵和優點是能夠明顯地被得知的。The details of one or more of the above-described embodiments are set forth in the accompanying drawings. Other features and advantages of the present invention will be apparent from the description, appended claims and appended claims.

參考第1圖,低同調性干涉系統100包括干涉顯微鏡110,干涉顯微鏡110用以研究待測物175。干涉顯微鏡110是與通用型的計算機192作通訊,計算機192用以分析來自干涉顯微鏡110的資料訊號,以便提供關於待測物175的資訊。笛卡爾座標(Cartesian coordinate)系統被提供來作為參考座標。Referring to FIG. 1, the low coherence interference system 100 includes an interference microscope 110 for studying the object to be tested 175. The interference microscope 110 is in communication with a general purpose computer 192 for analyzing the data signals from the interference microscope 110 to provide information about the object 175 to be tested. A Cartesian coordinate system is provided as a reference coordinate.

干涉顯微鏡110包括干涉物鏡167和分光鏡170,分光鏡170將來自干涉顯微鏡110之光源子系統的光束經由干涉物鏡167反射至待測物175,並將從待測物175反射回來的穿透光束傳送至偵測器子系統以供後續的偵測。干涉物鏡167是Mirau物鏡並且包括物鏡177、分光鏡179以及參考面181。The interference microscope 110 includes an interference objective lens 167 and a beam splitter 170 that reflects the light beam from the light source subsystem of the interference microscope 110 to the object to be tested 175 via the interference objective lens 167, and transmits the transmitted light beam reflected from the object to be tested 175. Transfer to the detector subsystem for subsequent detection. The interference objective 167 is a Mirau objective and includes an objective lens 177, a beam splitter 179, and a reference surface 181.

光源子系統包括主光源163、第二光源197,以及光束結合器164,光束結合器164將來自主光源163和第二光源197的光結合之後,再將結合後的光經由光學中繼器169和171導引至分光鏡170。如同稍後的詳細說明,主光源163提供低同調性的光以進行低同調性干涉量測,而第二光源提供具有較長之同調長度的光,用以在掃描期間監測掃描歷史。The light source subsystem includes a main light source 163, a second light source 197, and a beam combiner 164. After combining the light of the autonomous light source 163 and the second light source 197, the combined light is passed through the optical repeater 169 and 171 is guided to the beam splitter 170. As will be explained in more detail later, primary light source 163 provides low coherence light for low coherence interference measurements, while second source provides light with a longer coherence length to monitor scan history during scanning.

主光源163是空間擴展寬頻帶(spatially-extended broadband)光源,用以提供具有寬頻帶之波長範圍的照射光束(例如半寬高(FWHM)超過50nm的發射光譜,或是最好超過100nm)。舉例而言,主光源163是白光發光二極體、鹵素燈的燈絲、弧光燈(例如氙弧燈),或是被稱為超連續光源的光源,超連續光源藉由光學材料的非線性效應來產生寬頻帶的光源光譜(例如FWHM在200nm(或以上)的光譜)。The primary light source 163 is a spatially-extended broadband source for providing an illumination beam having a wide wavelength range (e.g., an emission spectrum with a full width at half maximum (FWHM) of more than 50 nm, or preferably more than 100 nm). For example, the main light source 163 is a white light emitting diode, a filament of a halogen lamp, an arc lamp (such as a xenon arc lamp), or a light source called a supercontinuum source, and the nonlinear effect of the supercontinuum source by optical materials To produce a broadband source spectrum (eg, a spectrum of FWHM at 200 nm (or above)).

第二光源197的同調長度大於主光源163的同調長度。在一些實施例中,第二光源197是高同調性的光源,例如單模雷射光源。第二光源197是單色光源。The coherence length of the second light source 197 is greater than the coherence length of the main light source 163. In some embodiments, the second source 197 is a high coherence source, such as a single mode laser source. The second light source 197 is a monochromatic light source.

偵測器子系統也包括光強度監測器161,耦接於主光源163。光強度監測器161提供主光源163的光強度資訊,使得低同調性干涉系統100能夠估計光強度的變動。The detector subsystem also includes a light intensity monitor 161 coupled to the primary light source 163. The light intensity monitor 161 provides light intensity information of the primary light source 163 such that the low coherence interference system 100 is capable of estimating the variation in light intensity.

偵測器子系統包括主偵測器191、第二偵測器199,以及分光鏡198,分光鏡198將來自干涉物鏡167的光導引至主偵測器和第二偵測器。主偵測器191和第二偵測器199都是多重元件偵測器(例如多重元件CCD或CMOS偵測器)。偵測器子系統選擇性地包括帶通濾光器101,帶通濾光器101將射入第二偵測器199的光加以濾光,使得只有來自第二光源197的光能夠到達第二偵測器199。The detector subsystem includes a main detector 191, a second detector 199, and a beam splitter 198 that directs light from the interference objective 167 to the main detector and the second detector. The main detector 191 and the second detector 199 are multi-element detectors (for example, multi-element CCD or CMOS detectors). The detector subsystem selectively includes a band pass filter 101 that filters light incident on the second detector 199 such that only light from the second source 197 can reach the second Detector 199.

在低同調性干涉系統100的操作期間,主光源163提供輸入光165,經由光學中繼器169/171和分光鏡170至干涉物鏡167。來自第二光源197的光藉由光束結合器而與輸入光165結合。干涉物鏡167和光學中繼器189將從待測物175反射回來的光線183和187導引至主偵測器191,在主偵測器191的可視區(field of view,FOV)中形成待測物175的影像。分光鏡198也將來自干涉物鏡167之部分的光導引至第二偵測器199。要注意的是,邊緣光線以元件符號183表示,主光線以元件符號187表示。During operation of the low coherence interference system 100, the primary light source 163 provides input light 165 via optical repeaters 169/171 and beam splitter 170 to the interference objective 167. Light from the second source 197 is combined with the input light 165 by a beam combiner. The interference objective 167 and the optical repeater 189 guide the light rays 183 and 187 reflected from the object to be tested 175 to the main detector 191, and form a field in the field of view (FOV) of the main detector 191. Image of the object 175. The beam splitter 198 also directs light from portions of the interference objective 167 to the second detector 199. It is to be noted that the edge rays are represented by the symbol 183 and the chief ray is represented by the symbol 187.

分光鏡179導引部份的光(以光線185表示)至參考面181,並且將從參考面181反射回來的光與從待測物反射回來的光線185加以重新混合。在偵測器191,從待測物175反射回來之光(稱為測試光)與從參考面181反射回來之光(稱為參考光)的混合光會在偵測器191形成光學干涉圖案。因為干涉顯微鏡100用於一般成像,所以光學干涉圖案(又稱為干涉譜或干涉影像)對應於待測物表面的影像。The beam splitter 179 guides a portion of the light (indicated by light 185) to the reference surface 181 and re-mixes the light reflected from the reference surface 181 with the light 185 reflected from the object under test. In the detector 191, the mixed light of light reflected from the object to be tested 175 (referred to as test light) and light reflected from the reference surface 181 (referred to as reference light) forms an optical interference pattern in the detector 191. Since the interference microscope 100 is used for general imaging, an optical interference pattern (also referred to as an interference spectrum or an interference image) corresponds to an image of the surface of the object to be tested.

干涉顯微鏡110也包括調制器193,調制器193控制干涉物鏡167相對於待測物175的位置。舉例而言,調制器193是耦接於干涉物鏡167的壓電轉換器,用以調整待測物175和干涉物鏡167之間在Z方向的距離。因為這種類型的相對移動所掃瞄的是干涉物鏡167相對於待測物175的焦平面位置,所以其又稱為焦平面掃描。The interference microscope 110 also includes a modulator 193 that controls the position of the interference objective 167 relative to the object under test 175. For example, the modulator 193 is a piezoelectric transducer coupled to the interference objective 167 for adjusting the distance between the object to be tested 175 and the interference objective 167 in the Z direction. Since this type of relative movement scans the focal plane position of the interference objective 167 relative to the object 175, it is also referred to as a focal plane scan.

在操作期間,調制器193控制干涉物鏡相對於待測物175的掃描,藉此改變測試光和參考光之間的OPD,測試光和參考光之間的OPD在偵測器的每一個偵測元件都會產生干涉訊號。調制器193藉由連接線195連接於計算機192,其中計算機192能夠控制資料擷取期間的掃描速度。此外,調制器193提掃描移動的資訊(例如預期的掃描增量)至計算機192。During operation, the modulator 193 controls the scanning of the interference objective relative to the object under test 175, thereby changing the OPD between the test light and the reference light, and detecting each of the OPD between the test light and the reference light in the detector. The component will generate an interference signal. Modulator 193 is coupled to computer 192 by a connection line 195 that is capable of controlling the scanning speed during data capture. In addition, modulator 193 provides for scanning of mobile information (eg, expected scan increments) to computer 192.

對於單一掃描位置而言,第2圖顯示在主偵測器191中典型的光學干涉圖案,其顯示有關於待測物在X和Y方向之表面高度調變的干涉條紋。光學干涉圖案的強度數值是由主偵測器191的不同偵測元件所量測並且被提供至計算機192的微電子處理器以進一步分析。偵測器的每一個偵測元件在取樣頻率為畫框頻率的情況下來取得光強度資料(例如約30Hz或以上、約50Hz或以上、約100Hz或以上),其中在掃描期間畫框頻率通常為常數(constant)。光強度的數值形成低同調性干涉訊號,光強度的數值是由偵測器量測到的並且有關於測試光和參考光之間的OPD數值序列。For a single scanning position, Figure 2 shows a typical optical interference pattern in the main detector 191 that shows interference fringes about the height modulation of the surface of the object in the X and Y directions. The intensity values of the optical interference pattern are measured by different detection elements of the main detector 191 and provided to the microelectronic processor of computer 192 for further analysis. Each detecting component of the detector obtains light intensity data (for example, about 30 Hz or more, about 50 Hz or more, about 100 Hz or more) when the sampling frequency is the frame frequency, wherein the frame frequency is usually during scanning. Constant (constant). The value of the light intensity forms a low homology interference signal, the value of the light intensity being measured by the detector and relating to the sequence of OPD values between the test light and the reference light.

對於偵測器191的單一偵測元件而言,第3圖為其偵測到的強度(Ij )與掃描位置之函式關係的圖示。在測試光和參考光的零OPD位置,第3圖顯示典型的低同調性干涉訊號,其具有被高斯封包調變的正弦干涉條紋。高斯封包的寬度與主光源163的同調長度有關。OPD掃描長度的範圍大於主光源的同調長度。For a single detecting component of the detector 191, Figure 3 is a graphical representation of the relationship between the detected intensity (I j ) and the scanning position. At the zero OPD position of the test and reference light, Figure 3 shows a typical low-coherence interference signal with sinusoidal interference fringes modulated by Gaussian packets. The width of the Gaussian packet is related to the coherence length of the primary light source 163. The range of OPD scan length is greater than the coherence length of the primary source.

當主偵測器191取得低同調性干涉訊號時,第二偵測器199根據來自第二光源197的同調光來取得干涉訊號。對於第二偵測器199的單一畫素(偵測器元件)而言,第4圖為(高同調性)干涉訊號的圖示,其為掃描位置Z之函式。使用第二偵測器199所取得的干涉訊號稱為監測訊號。When the main detector 191 obtains a low coherence interference signal, the second detector 199 obtains an interference signal according to the same dimming light from the second light source 197. For a single pixel (detector element) of the second detector 199, FIG. 4 is an illustration of a (highly homophonic) interference signal, which is a function of the scanning position Z. The interference signal obtained by using the second detector 199 is called a monitoring signal.

一般而言,OPD掃描是在常速度(constant velocity)進行的,並且資料點是以等時距方式取得的。理論上來說,每一個資料點是在OPD的等位移增量的情況下所取得的。然而,雖然掃描通常被假設是常速度進行的,但是由於機械的缺陷或移動的干擾振動,所以掃瞄移動經常導致線性的移動。因此,取得的干涉訊號包括有關於非均勻掃描的誤差,其中非均勻掃描造成實際掃描位置的偏移(deviations),這使得實際掃描位置由理論掃描位置移動至有關於量測之強度值的實際掃描位置。In general, OPD scanning is performed at constant velocity, and data points are acquired in an isochronous manner. In theory, each data point is obtained in the case of an equal displacement increment of the OPD. However, although scanning is usually assumed to be performed at a constant speed, scanning movement often results in linear movement due to mechanical defects or moving interference vibrations. Thus, the interfering signals obtained include errors with respect to non-uniform scanning, where non-uniform scanning causes deviations of the actual scanning position, which causes the actual scanning position to be moved from the theoretical scanning position to the actual value of the measured intensity value. Scan location.

這種誤差稱為『掃描誤差』,如第5圖的圖示。第5圖顯示z為時間之函式的圖示,其中z為待測物175和干涉物鏡167之間的相對位移。大致上而言,z對應於測試光和參考光之間的OPD。第5圖顯示代表常速度掃描的一直線。4個取樣時間為t1 -t4 。在不發生掃描誤差的情況下,待測物的位置z會位於直線上。然而,掃描誤差造成在取樣時間,待測物之介於理論和實際掃描位置之間的偏移,使得待測物的實際掃描位置偏離了直線,如第5圖所示之資料點。在每一個取樣時間,掃描誤差的數值如所示為εi ,其中i=1…4。This error is called "scanning error", as shown in Figure 5. Figure 5 shows an illustration of z as a function of time, where z is the relative displacement between the object under test 175 and the interference objective 167. In general, z corresponds to the OPD between the test light and the reference light. Figure 5 shows a straight line representing a constant speed scan. The four sampling times are t 1 -t 4 . In the case where no scanning error occurs, the position z of the object to be tested will lie on a straight line. However, the scanning error causes an offset between the theoretical and actual scanning positions of the object to be tested at the sampling time, so that the actual scanning position of the object to be tested deviates from a straight line, such as the data point shown in FIG. At each sampling time, the value of the scanning error is shown as ε i , where i = 1...4.

一般而言,低同調性干涉系統100進行量測的靈敏度需視掃描誤差來源的頻率而定。舉例而言,系統靈敏度會隨著系統的振動頻率而改變。舉例而言,如第6圖所示,對於低同調性干涉系統而言,其對於振動的相對靈敏度Sv 是振動頻率fvib 的函式,其中系統的操作參數:平均波長為570nm、FWHM為200nm、低數值孔徑之干涉物鏡、取樣掃瞄間距為71.5nm,且主偵測器的畫框頻率為100Hz。當系統的振動頻率在20-30Hz和70-80Hz時,靈敏度很低,當振動頻率介於20-30Hz和70-80Hz之間時,靈敏度相對較高。對於SWLI而言,典型的條紋載波頻率約為25Hz,因此主偵測器對每一個條紋每秒取樣4次。一般認為,振動頻率小於25Hz所對應的高靈敏度區域有關於掃描速度的誤差,而振動頻率大於25Hz所對應的高靈敏度區域有關於掃描增量中由振動所導致的失真。當擷取資料時,失真會在相鄰的掃描位置之間快速地改變極性,例如從已記錄之相機畫框的極性變成另一個相機畫框的極性。一般而言,本文所謂”低頻”掃描誤差來源(即低頻振動)表示小於或等於偵測器(即主偵測器191)之畫框頻率的頻率,其中偵測器用以取得低同調性干涉訊號。”高頻”掃描誤差來源(即高頻振動)表示高於偵測器(即主偵測器191)之畫框頻率的頻率,其中偵測器用以取得低同調性干涉訊號。In general, the sensitivity of the low coherence interference system 100 for measurement depends on the frequency of the source of the scan error. For example, system sensitivity will vary with the frequency of vibration of the system. For example, as shown in Fig. 6, for a low-coherence interference system, its relative sensitivity to vibration S v is a function of the vibration frequency f vib , where the operating parameters of the system are: average wavelength is 570 nm, FWHM is The 200 nm, low numerical aperture interference objective, sampling scan spacing is 71.5 nm, and the main detector frame frequency is 100 Hz. When the vibration frequency of the system is 20-30Hz and 70-80Hz, the sensitivity is very low. When the vibration frequency is between 20-30Hz and 70-80Hz, the sensitivity is relatively high. For SWLI, the typical fringe carrier frequency is about 25 Hz, so the main detector samples 4 times per second for each stripe. It is generally considered that a high-sensitivity region corresponding to a vibration frequency of less than 25 Hz has an error with respect to a scanning speed, and a high-sensitivity region corresponding to a vibration frequency of more than 25 Hz has a distortion caused by vibration in a scanning increment. When capturing data, the distortion quickly changes polarity between adjacent scan positions, such as from the polarity of the recorded camera frame to the polarity of another camera frame. In general, the so-called "low frequency" scanning error source (ie, low frequency vibration) herein refers to a frequency less than or equal to the frame frequency of the detector (ie, the main detector 191), wherein the detector is used to obtain low homology interference signals. . The source of the "high frequency" scan error (i.e., high frequency vibration) represents a frequency higher than the frame frequency of the detector (i.e., main detector 191), wherein the detector is used to obtain low homology interference signals.

當使用低同調性干涉系統100進行量測時,為了減少掃描誤差的影響,計算機192使用第二偵測器199取得之監測訊號的資訊,用以減少使用主偵測器193來取得低同調性干涉訊號之掃描誤差的影響。因為監測訊號來自於同調性光源(第二光源197),所以條紋會擴展超過掃描長度和提供相位資訊之說明的範圍(以及超過對應地提供相對位移資訊的範圍)。如同稍後的詳細說明,一般而言,對於第二偵測器199的FOV中的許多點進行監測訊號的分析可決定出掃瞄誤差,此誤差包括由振動造成的掃描誤差,特別是在上述定義之高頻區域的掃描誤差。When using the low coherence interference system 100 for measurement, in order to reduce the influence of the scanning error, the computer 192 uses the information of the monitoring signal obtained by the second detector 199 to reduce the use of the main detector 193 to achieve low homology. The effect of the scanning error of the interference signal. Because the monitoring signal is from a coherent light source (second light source 197), the fringes extend beyond the scan length and provide a description of the phase information (and a range that exceeds the relative displacement information provided accordingly). As will be explained in more detail later, in general, the analysis of the monitoring signals at many points in the FOV of the second detector 199 can determine the scanning error, which includes the scanning error caused by the vibration, especially in the above. The scanning error of the defined high frequency region.

假設掃描後的監測訊號相位在FOV中具有相位差,則相位發散(例如至少一些監測訊號之不同的相位偏移)便能夠用於系統誤差的校正,用以說明隨著掃瞄位置不同而快速變化的掃描誤差。因此,當相位發散被正確地分析時,上述特徵使得高頻振動能夠被正確地量測,而在沒有提供相位發散之許多量測的情況下,高頻振動會被錯誤地量測。對監測訊號而言,提供影像點的選擇也包括高度圖案化的表面,例如半導體晶圓。Assuming that the phase of the monitored signal after scanning has a phase difference in the FOV, phase divergence (eg, different phase offsets of at least some of the monitoring signals) can be used to correct the system error to indicate that the scanning position is different. Varying scan error. Therefore, when the phase divergence is correctly analyzed, the above characteristics enable the high frequency vibration to be correctly measured, and in the case where many measurements of the phase divergence are not provided, the high frequency vibration is erroneously measured. For monitoring signals, the choice of providing image points also includes highly patterned surfaces, such as semiconductor wafers.

因此,在計算機192決定掃描移動歷史之後,真正的(或至少較正確的)掃描移動就能夠根據監測訊號而被決定,以便取得低同調干涉訊號。由主偵測器191所收集之低同調干涉訊號的進一步處理(例如三次方折線內差法或其他演算法)會減少資料中之掃描誤差的影響。監測訊號資料和低同調干涉訊號資料的資料分析如以下詳述。Thus, after the computer 192 determines the scan movement history, the true (or at least more accurate) scan movement can be determined based on the monitoring signal to obtain a low coherent interference signal. Further processing of the low coherent interference signals collected by the main detector 191 (e.g., the cubic line internal difference method or other algorithms) reduces the effects of scanning errors in the data. Data analysis of monitoring signal data and low coherent interference signal data is detailed below.

光瞳平面掃描干涉系統(PUPS Interferometry Systems)Optical Plane Scanning Interferometry System (PUPS Interferometry Systems)

雖然上述討論有關於將待測物成像至偵測器的干涉物鏡,但是掃描誤差校正也能用於其他組態。舉例而言,在一些實施例中,干涉物鏡將顯微鏡的光瞳平面成像於偵測器。這種組態稱為『光瞳平面掃描(PUPS)』組態。這種操作模式非常有用,例如其可以用來決定待測物表面上複雜的反射率(complex reflectivity)。Although the above discussion relates to the interference objective that images the object to the detector, the scan error correction can be used for other configurations. For example, in some embodiments, the interference objective mirrors the pupil plane of the microscope to the detector. This configuration is called the "Plan Plane Scanning (PUPS)" configuration. This mode of operation is very useful, for example, it can be used to determine the complex reflectivity on the surface of the object under test.

第7圖顯示PUPS干涉系統200,其多數元件均相同於第1圖的低同調性干涉系統100。然而,與低同調性干涉系統100不同的是,PUPS干涉系統200包括用於光瞳平面成像的管狀透鏡213和偏振器215,偏振器215設置於干涉物鏡167和分光鏡170之間。在PUPS干涉系統200中,光瞳平面217被成像至主偵測器191。視場光欄219將取樣光束限制為待測物175上的微小區域。低同調性干涉系統200取得資料的方式和低同調性干涉系統100取得資料的方式相同,如上所述。Figure 7 shows a PUPS interferometric system 200, most of which are identical to the low coherence interference system 100 of Figure 1. However, unlike the low coherence interference system 100, the PUPS interference system 200 includes a tubular lens 213 and a polarizer 215 for pupil planar imaging, the polarizer 215 being disposed between the interference objective 167 and the beam splitter 170. In the PUPS interferometric system 200, the pupil plane 217 is imaged to the main detector 191. The field diaphragm 219 limits the sample beam to a small area on the object to be tested 175. The low homology interference system 200 acquires the data in the same manner as the low homology interference system 100 acquires the data, as described above.

為了進行分析,電子計算機192將來自主偵測器191的干涉訊號轉換至頻域,並且取得主光源163之不同波長分量的相位和振幅資訊。因為主光源是寬頻帶的,所以能夠計算出許多獨立的頻譜分量。振幅和相位的資料直接相關於待測物表面上複雜的反射率,其中振幅和相位的資料也能夠用以決定待測物的資訊。For analysis, the computer 192 converts the interference signal of the autonomous detector 191 to the frequency domain, and obtains phase and amplitude information of different wavelength components of the main light source 163. Because the primary source is wideband, many independent spectral components can be calculated. The amplitude and phase data are directly related to the complex reflectivity on the surface of the object to be tested, and the amplitude and phase data can also be used to determine the information of the object to be tested.

因為PUPS干涉系統200的設置方式,主偵測器191的每一個偵測元件能夠提供特定入射角和偏振狀態(根據偏振器215)之多波長量測。因此,將偵測器元件集合便能夠涵蓋一個範圍的入射角、偏振狀態,以及波長。Because of the manner in which the PUPS interfering system 200 is configured, each of the detection elements of the main detector 191 is capable of providing a multi-wavelength measurement of a particular angle of incidence and polarization (according to the polarizer 215). Thus, the detector component set can cover a range of angles of incidence, polarization states, and wavelengths.

第8圖顯示焦平面(focus plane)229(例如待測物)上的光和光瞳平面217上的光之間的關係。因為照射到光瞳平面217的每一個光源點都會讓照射待測物之測試光產生平面波前,光瞳平面217中光源點的徑向位置便定義出入射光束與待測物法線之間的入射角。因此,距離光軸固定距離r的所有光源點均對應固定的入射角θ,物鏡藉此將測試光聚焦至待測物。對於數值孔徑為NA 之用於光瞳平面成像的管狀透鏡以及最大徑向距離為r max 之光來說,在光瞳平面217上,距離光軸OA之距離為r的點與焦平面229之入射角θ的關係可以用sin(θ)=(r/r max )NA 表示。Figure 8 shows the relationship between the light on the focus plane 229 (e.g., the object under test) and the light on the pupil plane 217. Since each of the light source points irradiated to the pupil plane 217 causes the test light that illuminates the object to be tested to generate a plane wavefront, the radial position of the light source point in the pupil plane 217 defines the relationship between the incident beam and the normal of the object to be tested. Angle of incidence. Therefore, all the light source points at a fixed distance r from the optical axis correspond to a fixed incident angle θ, by which the objective lens focuses the test light onto the object to be tested. For a tubular lens for pupil plane imaging with a numerical aperture of NA and light having a maximum radial distance r max , on the pupil plane 217, the distance from the optical axis OA is the point of r and the focal plane 229 The relationship of the incident angle θ can be expressed by sin(θ)=(r/ r max ) NA .

光程長度掃描(Path-length Scanning)Path-length Scanning

用來說明第1圖和第6圖之關係的上述實施例都是使用Mirau物鏡以進行焦平面掃描。一般而言,其他組態也是可行的。舉例而言,包括Linnik物鏡的干涉系統也可以被使用。這種系統如第9圖所示。具體而言,光程長度掃描干涉系統300包括干涉顯微鏡310,干涉顯微鏡310將待測物175成像至主偵測器191。光程長度掃描干涉系統300的多數元件均相同於第1圖的低同調性干涉系統100。然而,光程長度掃描干涉系統300包括Linnik干涉物鏡325,而非Mirau干涉物鏡,其中光程長度掃描干涉系統300的特徵在於分光鏡379將來自分光鏡170的光,沿著Linnik干涉物鏡325的不同光臂,分成測試光和參考光。Linnik干涉物鏡325包括在測試光臂中的測試光物鏡327,以及在參考光臂中的參考光物鏡329。參考物381被設置於參考光臂中並且將參考光反射回分光鏡379。The above embodiments for explaining the relationship between Fig. 1 and Fig. 6 both use a Mirau objective lens for focal plane scanning. In general, other configurations are also possible. For example, an interference system including a Linnik objective lens can also be used. This system is shown in Figure 9. In particular, the optical path length scanning interference system 300 includes an interference microscope 310 that images the object under test 175 to the main detector 191. Most of the components of the optical path length scanning interferometric system 300 are identical to the low coherence interference system 100 of FIG. However, the optical path length scanning interference system 300 includes a Linnik interference objective 325 instead of a Mirau interference objective, wherein the optical path length scanning interference system 300 is characterized in that the beam splitter 379 directs light from the beam splitter 170 along the Linnik interference objective 325. Different optical arms are divided into test light and reference light. The Linnik interference objective 325 includes a test light objective 327 in the test arm and a reference light objective 329 in the reference arm. The reference object 381 is disposed in the reference light arm and reflects the reference light back to the beam splitter 379.

參考光物鏡329和參考物381被裝配在一起,然後藉由調制器331耦接至Linnik干涉物鏡的其他元件。在操作期間,相對於分光鏡379,調制器331藉著移動參考光物鏡329和參考物381的表面來調整測試光和參考光之間的OPD。在掃描期間,參考光物鏡329和參考物381之間的光程長度保持不變。因此,測試光和參考光之間的OPD改變就與無關。這種掃描模式稱為『光程長度掃描』模式。在光程長度掃描干涉系統300中,光程程度掃描增加Linnik組態之參考光臂中之準直空間的長度,而在掃描期間,在測試光臂中的待測物則留在同一位置。Reference light objective 329 and reference 381 are assembled together and then coupled to other elements of the Linnik interference objective by modulator 331. During operation, with respect to the beam splitter 379, the modulator 331 adjusts the OPD between the test light and the reference light by moving the surface of the reference light objective lens 329 and the reference object 381. During the scanning, the optical path length between the reference light objective lens 329 and the reference object 381 remains unchanged. Therefore, the OPD change between the test light and the reference light is irrelevant. This scanning mode is called the "optical path length scanning" mode. In the optical path length scanning interferometric system 300, the optical path level scanning increases the length of the collimating space in the reference optical arm of the Linnik configuration, while during the scanning, the object under test in the test arm remains at the same position.

以Linnik干涉物鏡為特徵的干涉系統也能夠用於PUPS操作模式。舉例而言,參考第10圖,干涉系統400包括干涉顯微鏡410,用以將光瞳平面成像至主偵測器191,且干涉顯微鏡410包括Linnik干涉物鏡325,如同上述PUPS干涉系統200。Interferometric systems featuring Linnik interference objectives can also be used in PUPS mode of operation. For example, referring to FIG. 10, the interference system 400 includes an interference microscope 410 for imaging a pupil plane to the main detector 191, and the interference microscope 410 includes a Linnik interference objective 325, such as the PUPS interference system 200 described above.

一般而言,當校正掃描誤差時,掃描移動分析應該以干涉系統的掃瞄模式(例如焦平面或光程長度的掃描模式)和成像模式(例如待測物或PUPS的成像模式)作為根據。舉例而言,低同調性訊號中的載波條紋頻率會隨著系統的操作模式而改變。舉例而言,對於以PUPS模式操作的Linnik干涉系統而言,光程長度的掃描模式使得在光瞳平面影像中,所有位置的條紋載波頻率均相同。另一方面,對於以PUPS模式操作的Mirau干涉系統而言,焦平面的掃描模式使得載波條紋頻率隨著在光瞳平面上與光軸(optical axis,OA)之距離的增加而以cos(θ)的形式減少,其中θ為光線與待測物平面上之光軸的夾角(請參考第8圖)。In general, when correcting scan errors, the scan motion analysis should be based on the scan mode of the interferometric system (eg, the scan mode of the focal plane or optical path length) and the imaging mode (eg, the imaging mode of the DUT or PUPS). For example, the carrier fringe frequency in a low coherence signal will vary with the operating mode of the system. For example, for a Linnik interferometric system operating in PUPS mode, the scan mode of the optical path length is such that the fringe carrier frequencies are the same at all locations in the pupil plane image. On the other hand, for the Mirau interferometric system operating in PUPS mode, the scanning mode of the focal plane causes the carrier fringe frequency to increase with the distance of the optical axis (OA) in the pupil plane as cos(θ). The form is reduced, where θ is the angle between the ray and the optical axis on the plane of the object to be tested (refer to Figure 8).

要注意的是,雖然以光程長度掃描之模式操作的Linnik干涉系統通常在光瞳平面上產生具有常數頻率的監測訊號,但仍有來自干涉腔的兩種擾動。第一種擾動是多餘的掃描移動所造成的(非線性)振動,其發生於參考光物鏡329和參考物381(如參考鏡)一起移動時。在這種情況中,掃描誤差使得監測訊號產生光程變動,而光瞳平面上的監測訊號原本是與其被測量的位置無關的。另一種擾動是待測物延遲(object leg)的振動,其導致透鏡127和待測物175表面之間距離的變動。在這種情況中,這種振動使得監測訊號產生光程變動,其中光程變動是光線在待測物空間之入射角的函式(或是光瞳平面上徑向位置的函式)。因此在這種組態中,有必要將兩種振動(移動分量)區分開來,以便在後續的訊號校正能夠合適地加以考慮。It should be noted that although the Linnik interferometric system operating in the mode of optical path length scanning typically produces a monitoring signal with a constant frequency on the pupil plane, there are still two perturbations from the interfering cavity. The first type of perturbation is a (non-linear) vibration caused by unwanted scanning movements that occur when the reference light objective lens 329 and the reference object 381 (e.g., a reference mirror) move together. In this case, the scanning error causes the monitoring signal to produce an optical path change, and the monitoring signal on the pupil plane is originally independent of the position to be measured. Another type of disturbance is the vibration of the object leg, which causes a change in the distance between the lens 127 and the surface of the object to be tested 175. In this case, the vibration causes the monitoring signal to produce an optical path variation, wherein the optical path variation is a function of the angle of incidence of the light in the object space to be tested (or a function of the radial position on the pupil plane). Therefore, in this configuration, it is necessary to distinguish the two vibrations (moving components) so that subsequent signal correction can be properly considered.

在一些實施例中,條紋載波頻率的變動能夠用在PUPS模式的FOV中,有多個監測訊號在零OPD位置具有極小的相位發散的情況。條紋載波頻率的徑向位置變動會在PUPS模式的FOV中,零OPD位置的兩側都產生相位發散,用以提供必要的資訊來決定在高頻和低頻振動的情況下的掃描增量。In some embodiments, variations in the fringe carrier frequency can be used in the FOV of the PUPS mode, with multiple monitoring signals having minimal phase divergence at the zero OPD position. The radial positional variation of the fringe carrier frequency produces phase divergence on both sides of the zero OPD position in the FOV of the PUPS mode to provide the necessary information to determine the scan increment in the case of high frequency and low frequency vibrations.

一般而言,本文討論的掃描誤差校正技術能用於兩種掃描方法,以及一般的成像和光瞳平面的成像,並且能用於不同模式的資料處理,特別是PUPS的操作模式。若在以PUPS模式操作的Linnik干涉顯微鏡(參考第10圖)中進行光程長度的掃描,則對光瞳影像的所有畫素而言,條紋載波頻率都是相同的。若同時掃瞄待測物焦平面和OPD(如第7圖的Mirau干涉顯微鏡),則條紋載波頻率隨著在光瞳平面上與光軸(optical axis,OA)之距離的增加而以cos(θ)的形式減少,其中θ為光線與待測物平面上之光軸的夾角。條紋頻率變動的優點在於其能夠用在PUPS模式的FOV中,有多個監測訊號在零OPD位置具有極小的相位發散的情況。條紋載波頻率的徑向位置變動會在PUPS模式的FOV中,零OPD位置的兩側都產生相位發散,用以提供必要的資訊來決定所有振動頻率的掃描增量。In general, the scanning error correction techniques discussed herein can be used for both scanning methods, as well as general imaging and pupil plane imaging, and can be used for data processing in different modes, particularly PUPS operating modes. If the optical path length is scanned in a Linnik interference microscope (refer to Figure 10) operating in PUPS mode, the fringe carrier frequencies are the same for all pixels of the pupil image. If the focal plane of the object to be tested and the OPD are simultaneously scanned (as in the Mirau interference microscope of Fig. 7), the fringe carrier frequency is cos with the distance from the optical axis (OA) in the pupil plane. The form of θ) is reduced, where θ is the angle between the ray and the optical axis on the plane of the object to be tested. The advantage of the fringe frequency variation is that it can be used in the FOV of the PUPS mode, where there are multiple monitoring signals with minimal phase divergence at the zero OPD position. The radial position variation of the fringe carrier frequency causes phase divergence in both the zero OPD position in the FOV of the PUPS mode to provide the necessary information to determine the scan increment for all vibration frequencies.

根據監測資料決定掃描位置Determine the scanning position based on the monitoring data

一般而言,目前已有多種方法能夠根據監測資料來決定掃描位置。舉例而言,若將掃描誤差的來源限制為低頻來源,則使用一般的PSI演算法便足以決定在特定之相機畫框和畫素之監測訊號的相位。舉例而言,若相機畫框之間的理論相位移為π/2,則一種已知的相位移演算法可以(式1)表示如下:In general, there are currently a number of methods for determining the scanning position based on monitoring data. For example, if the source of the scan error is limited to a low frequency source, then using a general PSI algorithm is sufficient to determine the phase of the monitor signal at a particular camera frame and pixel. For example, if the theoretical phase shift between camera frames is π/2, then a known phase shift algorithm can be expressed as follows:

其中r為指定畫素位置的向量(一畫素的位置向量),並且g1,2,…5 表示在資料擷取期間該畫素的一系列相應強度(請參考Schwider et al.,1983;Encyclopedia of Optics,p. 2101,Table 2)。理論上,(式1)提供居間之畫框g3 的相位Φ。在另外一個例子,由Deck以及Olszak和Schmit提出的PSI演算法能夠用以決定掃描位置(L. Deck,“Vibration-resistant phase-shifting interferometry”,Appl. Opt. 35,6655-6662(1996);Olszak和Schmit,US 6,624,894)。然而,因為其提出的PSI演算法是對高頻振動敏感的(如同低同調訊號),所以其提出的PSI演算法僅適用於低頻振動。Where r is the vector specifying the position of the pixel (the position vector of a pixel), and g 1,2,...5 represents a series of corresponding intensities of the pixel during data acquisition (see Schwider et al., 1983; Encyclopedia of Optics, p. 2101, Table 2). Theoretically, (Formula 1) to provide the intermediate frame Φ 3 g of phase. In another example, the PSI algorithm proposed by Deck and Olszak and Schmit can be used to determine the scanning position (L. Deck, "Vibration-resistant phase-shifting interferometry", Appl. Opt. 35, 6555-6662 (1996); Olszak and Schmit, US 6,624,894). However, because its proposed PSI algorithm is sensitive to high frequency vibrations (like low homology signals), its proposed PSI algorithm is only suitable for low frequency vibration.

測量兩個不同畫素位置之(強度)最小值之相位Φ(r)的方法被用來改善上述PSI演算法在高頻振動時的缺陷(使其如同適用於低頻振動一般)。舉例而言,當使用PSI演算法時,在特定情況下(例如使用(式1)或類似的公式),一般認為,在決定Φ(r)時產生的誤差是以Φ(r)頻率的2倍作週期性循環的。因此,將兩個(或以上)彼此正交(相差90°)的相位作平均量測能夠減少有關於高頻振動的誤差。A method of measuring the phase Φ(r) of the (intensity) minimum of two different pixel positions is used to improve the defect of the above PSI algorithm at high frequency vibration (making it suitable for low frequency vibration). For example, when using the PSI algorithm, in a specific case (for example, using (Formula 1) or a similar formula), it is generally considered that the error generated when determining Φ(r) is 2 of the Φ(r) frequency. Repeat for periodic cycles. Therefore, averaging two (or more) phases orthogonal to each other (90° out of phase) can reduce errors with respect to high frequency vibrations.

更一般地說,上述數種方法都是根據PSI演算法,接著在取得干涉資料之後,才決定實際的掃描位置。一般而言,若能利用多重偵測元件偵測器(如上述實施例的說明)來取得一個範圍的相位Φ(r)及/或頻率,則上述方法是在多重偵測元件偵測器之FOV中取得監測訊號和干涉譜中產生些許相位發散(在所有監測訊號頻率相同之處)的特徵最有效的方法。More generally, the above several methods are based on the PSI algorithm, and then the actual scanning position is determined after the interference data is obtained. In general, if a multi-detection component detector (as described in the above embodiment) can be used to obtain a range of phase Φ(r) and/or frequency, the above method is in a multi-detection component detector. It is the most efficient way to obtain the characteristics of the monitoring signal and the interference spectrum that produce a slight phase divergence (where all monitoring signals have the same frequency) in the FOV.

舉例而言,當干涉系統以傳統的成像模式操作時,待測物的高度變動會產生相位發散。在另外一個例子中,當干涉系統以傳統的成像模式操作時,為了產生干涉條紋而將待測物或參考物翻轉時也會產生相位發散。在使用Mirau干涉物鏡(或類似的干涉物鏡)並且進行PUPS模式的情況下,這種干涉系統架構會在偵測器的FOV中很自然地產生一個範圍的干涉條紋。For example, when the interferometric system is operated in a conventional imaging mode, the height variation of the object to be tested may cause phase divergence. In another example, when the interference system is operated in a conventional imaging mode, phase divergence also occurs when the object or reference is flipped in order to generate interference fringes. In the case of a Mirau interference objective (or similar interference objective) and PUPS mode, this interference system architecture naturally produces a range of interference fringes in the detector's FOV.

下列討論將提供一種具體方法,其藉由一個範圍的相位Φ(r)來決定掃描位置。首先考慮一種PUPS-Linnik干涉系統(例如第10圖),將參考鏡(381)和參考光物鏡329視為一個剛體(rigid object)並且沿著光軸一起移動以達成光程長度掃描,光瞳平面中不同點之鏡面反射的光程差為z(t,r),其中t表示掃描期間的時間參數。光程差是由理想掃描和誤差項所組成:The following discussion will provide a specific method for determining the scanning position by a range of phases Φ(r). First consider a PUPS-Linnik interferometric system (for example, Figure 10), which considers the reference mirror (381) and the reference light objective 329 as a rigid object and moves along the optical axis to achieve optical path length scanning. The optical path difference of the specular reflection at different points in the plane is z(t, r), where t represents the time parameter during the scan. The optical path difference is composed of ideal scan and error terms:

z (t ,r )=z 0 (t ,r )+ε (t ,r ) (式2) z ( t , r )= z 0 ( t , r )+ ε ( t , r ) (Formula 2)

其中z0 表示理想掃描且ε表示誤差項或雜訊項。干涉儀的相位為:Where z 0 represents the ideal scan and ε represents the error term or the noise term. The phase of the interferometer is:

Φ(t ,r )=Φ0 (r )+2πz (t ,r )/λ  (式3)Φ( t , r )=Φ 0 ( r )+2π z ( t , r )/ λ (Equation 3)

其中Φ0 為相位偏差,用以表示在畫素平面中,不同點之間可能的相位差。第二光源的光波長為λ,並且假設λ與r無關。Where Φ 0 is the phase deviation, which is used to indicate the possible phase difference between different points in the pixel plane. The light source of the second source has a wavelength of λ, and it is assumed that λ is independent of r.

選擇r的原點作為光瞳平面中對應於光軸的點,並且θ(r)表示在(待測物)焦平面上的入射角,這表示反射光線在光瞳平面上穿過r,其應符合Abbe正弦條件如下:The origin of r is selected as the point corresponding to the optical axis in the pupil plane, and θ(r) represents the angle of incidence on the focal plane of the object to be tested, which means that the reflected ray passes through r in the pupil plane, The Abbe sine condition should be met as follows:

sin[θ(r )]=κ|r |,κ為常數 (式4)Sin[θ( r )]=κ| r |, κ is a constant (Equation 4)

如同Linnik干涉系統,當待測物和參考鏡一起移動時,光程差(OPD)的掃描將與θ 無關,藉此完成準直空間中的掃描。但是當待測物焦平面是以Mirau干涉系統進行掃描時,OPD將與θ 有關。因此,可以得到兩種限制條件如下:Like the Linnik interferometric system, when the object under test moves with the reference mirror, the scan of the optical path difference (OPD) will be independent of θ , thereby completing the scan in the collimated space. However, when the focal plane of the object to be tested is scanned by the Mirau interferometric system, the OPD will be related to θ . Therefore, two restrictions can be obtained as follows:

z 0 (t ,r )=z 0 (t ),若為光程長度的掃描,則z 0θ 無關 (式5) z 0 ( t , r )= z 0 ( t ), if it is a scan of the optical path length, z 0 is independent of θ (Equation 5)

z 0 (t ,r )=cos(θ(r ))z 0 (t ,0),若為焦平面的掃描 z 0 ( t , r )=cos(θ( r )) z 0 ( t ,0), if it is a scan of the focal plane

若同時進行光程長度和焦平面的掃描,則z 0 等於上述兩種移動(光程差)的線性總和。If the optical path length and the focal plane are scanned simultaneously, z 0 is equal to the linear sum of the above two movements (optical path difference).

如上述討論,在一些實施例中,掃描理論上是t的完美線性函式,當開始掃描時,光瞳平面的所有點理論上都具有相同的OPD,並且在掃描過程中,待測物和參考物理想上是沒有翻轉的。在這種情況下,可以得到下式:As discussed above, in some embodiments, the scan is theoretically a perfect linear function of t. When starting the scan, all points of the pupil plane have theoretically the same OPD, and during the scan, the object to be tested and The reference is ideally not flipped. In this case, you can get the following formula:

其中c為常數且隨著掃瞄本身變動,並且也是常數。掃描與r的關係則取決於掃描的類型。Where c is a constant and varies with the scan itself, and It is also a constant. The relationship between scanning and r depends on the type of scanning.

一般而言,誤差項ε同時與t 和r有關。但是當掃描進行時,待測物被假設是剛體而且沒有任何翻轉,所以誤差項可以簡化如下:In general, the error term ε is related to both t and r. However, when the scan is performed, the object to be tested is assumed to be a rigid body and there is no flip, so the error term can be simplified as follows:

ε(t ,r )=ε p (t )+cos(θ(r ))ε f (t ) (式7)ε( t , r )=ε p ( t )+cos(θ( r ))ε f ( t ) (Equation 7)

(式7)的第一項表示準直空間中的振動或掃描誤差,而正比於cos(θ )的第二項表示干涉儀之高數值孔徑空間中的振動或掃描誤差,其是由焦平面誤差所造成。假設ε 很小。The first term of (Equation 7) represents the vibration or scanning error in the collimated space, and the second term proportional to cos( θ ) represents the vibration or scanning error in the high numerical aperture space of the interferometer, which is the focal plane Caused by errors. Suppose ε is small.

在光瞳平面被第二偵測器偵測到之監測訊號的干涉強度與時間有關,並且也與干涉儀中的相位差有關,以(式8)表示如下:The interference intensity of the monitoring signal detected by the second detector in the pupil plane is related to time, and is also related to the phase difference in the interferometer, and is expressed by (Expression 8) as follows:

I (t ,r )=[A (r )+dA (t ,r )]cOs[Φ(t ,r )]+c (r )+dc (t ,r ) (式8) I ( t , r )=[ A ( r )+ dA ( t , r )]cOs[Φ( t , r )]+ c ( r )+ dc ( t , r ) (Equation 8)

A (r)表示在點r的干涉譜平均振幅。dA (t ,r)表示在點r之干涉譜平均振幅的變動。Φ(t ,r)表示在點r的相位,其為時間t 的函式。c (r)表示干涉訊號的平均偏差,其通常是r的函式。dc (t ,r)表示干涉訊號之平均偏差的變動。(式8)通常是時間的緩變函式。 A (r) represents the average amplitude of the interference spectrum at point r. dA ( t , r) represents the variation in the average amplitude of the interference spectrum at point r. Φ( t , r) represents the phase at point r, which is a function of time t . c (r) represents the average deviation of the interference signal, which is usually the function of r. Dc ( t , r) represents the variation of the average deviation of the interference signal. (Equation 8) is usually a time-varying function.

強度I (t ,r)是以離散的時間點集合{t i }和光瞳平面中離散的點集合{r i }而被取樣。理想的取樣時間點是等時距的,因此The intensity I ( t , r) is sampled by a discrete set of time points { t i } and a discrete set of points { r i } in the pupil plane. The ideal sampling time point is equidistant, so

t i +1 =t i t ,其中t i 與時間無間 (式9) t i +1 = t i t , where t i is independent of time (Equation 9)

對於一個點r而言,可以先將全部的時間點集合{t i }視為一維陣列,然後作誤差項ε p (t )和ε f (t )的估計。如上所述,在高頻振動的情況下,單一畫素無法可靠地估計該等誤差項。但是,藉著由{r i }不同的點所表示的多重向量,將可以對每一個該等誤差項作出大量的估計。對一組測量結果求中位數可以得到最終估計,For a point r, all time point sets { t i } can be regarded as a one-dimensional array, and then the estimates of the error terms ε p ( t ) and ε f ( t ) are made. As described above, in the case of high frequency vibration, a single pixel cannot reliably estimate the error terms. However, by using multiple vectors represented by { r i } different points, a large number of estimates can be made for each of these error terms. The median of a set of measurements can be used to get a final estimate.

其中對於點r i 而言,i 表示使用不同時間點所作的估計。某種程度上來說,所使用的點集合{r i }是可以任意選擇的,主要考量是上述點集合的起始相位必須有足夠的變異程度,否則當進行焦平面掃描時,會有數種θ的數值。Wherein for point r i , i represents an estimate made using different points in time. To some extent, the set of points { r i } used can be arbitrarily chosen. The main consideration is that the starting phase of the above set of points must have sufficient degree of variation, otherwise there will be several kinds of θ when performing focal plane scanning. The value.

下列演算法是用於單一的時間向量點集合{t i }。第一步是精確計算強度向量I (t i ,r)的峰值。這需要非常小的δt ,使得在干涉訊號的單一正弦波中,(時間)取樣點數目的範圍為每一個正弦波具有8~30個取樣點。根據此精細的取樣,可以對取樣後的點使用內插法,例如三次方樣條(cubic spline),The following algorithm is used for a single set of time vector points { t i }. The first step is to accurately calculate the peak value of the intensity vector I ( t i ,r). This requires a very small δ t such that in a single sine wave of the interfering signal, the number of (time) sampling points ranges from 8 to 30 sampling points per sine wave. Based on this fine sampling, interpolation can be used on the sampled points, such as a cubic spline.

I Fine =spline (z ,I ,z fine ) (式11) I Fine = spline ( z , I , z fine ) (Equation 11)

根據向量I fine ,可以求得訊號的極值(包括最大值和最小值),其中極值發生於相位為π/2的奇數倍之處,According to the vector I fine , the extreme value of the signal (including the maximum value and the minimum value) can be obtained, where the extreme value occurs at an odd multiple of the phase π/2.

peaks =peakfinder (I Fine ) (式12) peaks = peakfinder (I Fine) (Formula 12)

使用這些峰值,可以估計下列的數值:c (t )+dc (t )、A +dA (t ),以及理想相位Φ ideal ,其中Φ ideal 為時間的函式。將(式13)對峰值資料作擬合(fitting)計算可以求得Φ ideal Using these peaks, the following values can be estimated: c ( t ) + dc ( t ), A + dA ( t ), and the ideal phase Φ ideal , where Φ ideal is a function of time. By fitting (Fitting 13) to the peak data, you can find Φ ideal :

Φ Ideal (t i ,r )=Φ Ideal (t 0 ,r )+(i-1)ΔΦ Ideal (r ) (式13)Φ Ideal ( t i , r )=Φ Ideal ( t 0 , r )+(i-1)ΔΦ Ideal ( r ) (Equation 13)

其中,among them,

,當掃描光程長度時 (式14) When scanning the optical path length (Equation 14)

,當掃描焦平面時 When scanning the focal plane

擬合計算產生起始相位Φ ideal (t 0 ,r)的最佳數值,使得餘弦函數的峰值位於觀測到之峰值的發現位置。若的數值還無法精確得知,則其也可以成為資料擬合演算法的一部份。The fitting calculation produces an optimum value for the starting phase Φ ideal ( t 0 , r) such that the peak of the cosine function is at the found position of the observed peak. If The value is not known accurately, and it can also be part of the data fitting algorithm.

使用其他方法來擬合監測訊號也是可能的。舉例而言,另外一種求出峰值的方法是用來估計相位的快速傅立葉轉換(FFT)。然而,使用峰值不需要將取樣週期除以整個掃描長度,當掃描焦平面時這會是個優點,這是因為對於PUPS分析而言,取樣週期會隨著光瞳平面中的干涉環的改變而變化。It is also possible to use other methods to fit the monitoring signal. For example, another way to find the peak is to estimate the fast Fourier transform (FFT) of the phase. However, the use of peaks does not require dividing the sampling period by the entire scan length, which is an advantage when scanning the focal plane because, for PUPS analysis, the sampling period varies as the interference loop in the pupil plane changes.

下一步的計算是估計由不正確掃描所導致之相位Φ的誤差。舉例而言,這個計算能夠藉由下列反餘弦函式來完成(其中反餘弦函式使得函式值在0和π之間往復)The next calculation is to estimate the error of the phase Φ caused by the incorrect scan. For example, this calculation can be done by the following inverse cosine function (where the inverse cosine function makes the function value reciprocate between 0 and π)

d Φ=Φ-Φ ideal =sign (sinΦ Ideal )*(cos-1 ((I -c -dc )/(A +dA ))-Φ Ideal (式15) d Φ=Φ-Φ ideal = sign (sinΦ Ideal )*(cos -1 (( I - c - dc )/( A + dA ))-Φ Ideal (Equation 15)

對向量的所有取樣點使用這個數學式(式15)。在 估計之後,計算誤差項ε (t ,r )就比較容易了。對不同數值的θ處理複數此等向量能夠提供足夠的資訊以區分誤差項ε p (t )和ε f (t )。舉例而言,若有不同入射角的n 個監測訊號被分析,則對於每一個取樣時間點t ,所收集的資訊會產生n 個方程式:This mathematical formula (Equation 15) is used for all sampling points of the vector. After the estimation, it is easier to calculate the error term ε ( t , r ). θ processing complex numbers for different values provides sufficient information to distinguish between the error terms ε p ( t ) and ε f ( t ). For example, if n monitoring signals with different angles of incidence are analyzed, for each sampling time point t , the collected information will produce n equations:

上述方程組提供一個過定的(overdetermined)系統,而這個系統能夠輕鬆地被求解,用以提供ε p (t )和ε f (t )的估計。上述過程必須是在兩種振動(參考光延遲和待測物延遲)同時發生的情況下,例如在Linnik干涉系統的架構中進行光程長度的掃描。對於使用焦平面掃描的Linnik或Mirau干涉儀而言,上述方程組可簡化為:The above equations provide an overdetermined system that can be easily solved to provide estimates of ε p ( t ) and ε f ( t ). The above process must be performed in the case where both vibrations (reference light delay and delay of the object to be tested) occur simultaneously, for example in the architecture of the Linnik interferometric system. For Linnik or Mirau interferometers that use focal plane scanning, the above equations can be simplified to:

在這種情況下,可以將計算簡化為求出ε f (t )之最終n 個估計值的中位數值。In this case, the calculation can be simplified to find the median value of the final n estimates of ε f ( t ).

低同調性訊號資料的校正Correction of low homology signal data

一般而言,在求出掃描誤差之後,低同調性干涉資料就能夠根據掃瞄誤差而被校正。以下是一個詳細的例子,用以說明在進一步處理低同調干涉訊號之前,低同調干涉訊號的校正。在掃描位置被測量之後,低同調性掃描資料藉由三次方樣條(cubic)內插法(或者其他類型的內插法)而被校正。I w (t ,r)表示低同調性掃描資料。由掃描誤差分析可知,低同調性掃描資料並非精確地在時間點{t i }被取樣,而是在上述時間點加上誤差項的時間點被取樣。因此實際的取樣時間點為In general, after the scan error is determined, the low-coherence interference data can be corrected based on the scan error. The following is a detailed example to illustrate the correction of low coherent interference signals before further processing of low coherence interference signals. After the scan position is measured, the low-coherence scan data is corrected by cubic interpolation (or other type of interpolation). I w ( t , r) represents low homology scan data. From the scanning error analysis, it is known that the low-homology scan data is not accurately sampled at the time point { t i }, but is sampled at the time point when the error term is added at the above time point. Therefore the actual sampling time is

T i (r)=t i i (r ) (式16) T i (r)= t i i ( r ) (Equation 16)

其中among them

其中among them

,當掃瞄光程長度時 (式18) When scanning the optical path length (Equation 18)

,當掃描待測物焦平面時 When scanning the focal plane of the object to be tested

換言之,I w (T i ,r)的數值已經被測量到了,但是I w (t i ,r)才是想要測量的數值,所以三次方樣條內插法被用來計算I w (t i ,r),如下式In other words, the value of I w ( T i ,r) has been measured, but I w ( t i ,r) is the value to be measured, so the cubic spline interpolation is used to calculate I w ( t i , r), as follows

I w (t i ,r )=I w ,(T i i (r ),r ) (式19) I w ( t i , r )= I w ,( T i i ( r ), r ) (Equation 19)

資料點的對照表[T i ,I i ]被建立以進行三次方樣條內插法的計算,其中i =0,1,2,…,nI =I (t )。三次方樣條內插法的曲線是典型的片段連續曲線,它會通過對照表每一個資料點(數值)。每一個間距都具有其個別的三次方多項式及係數,表示如下A comparison table [ T i , I i ] of the data points is established for the calculation of the cubic square spline interpolation method, where i =0, 1, 2, ..., n and I = I ( t ). The curve of the cubic square spline interpolation is a typical continuous curve of the segment, which passes through each data point (value) of the comparison table. Each spacing has its own cubic polynomial and coefficient, expressed as follows

S i (t )=a i (t -T i )3 +b i (t -T i )3 +c i (t -T i )3 +d i t [T i ,T i +1 ] (式20) S i ( t )= a i ( t - T i ) 3 + b i ( t - T i ) 3 + c i ( t - T i ) 3 + d i , t [ T i , T i +1 ] (Equation 20)

所有間距的三次方多項式被包括在一起並以S (t )表示三次方樣條的曲線。The cubic polynomials of all the spacings are included together and represent the curve of the cubic square spline with S ( t ).

因為有n 個間距且每一個間距有4個係數,所以總共需要決定4n 個參數才能定義該三次方樣條的曲線。因此,需要4n 個獨立的限制條件來確定它們(4n 個參數)。對於每一個間距而言,因為三次方多項式曲線和三次方樣條曲線(對照表)在兩個端點的函式值必須相等,所以可以得到兩個限制條件:Since there are n pitches and each of the pitches has 4 coefficients, a total of 4 n parameters need to be determined in order to define the curve of the cubic cube. Therefore, 4 n independent constraints are required to determine them (4 n parameters). For each spacing, since the cubic polynomial curve and the cubic square spline curve (reference table) must have equal values at the two endpoints, two constraints can be obtained:

S i (T i )=I i  S i (T i +1 )=I i +1  (式21) S i ( T i )= I i S i ( T i +1 )= I i +1 (Equation 21)

要注意的是,這些限制條件(式21)造成片段連續函式。仍然需要2n 個以上的限制條件。因為希望讓內插曲線儘可能的平滑,所以另外一組限制條件是要求第一階和第二階導數必須連續: It should be noted that these constraints (Equation 21) result in a segment continuous function. More than 2 n restrictions are still required. Since it is desirable to make the interpolation curve as smooth as possible, another set of constraints is that the first and second derivatives must be consecutive:

這些限制條件(式22)適用於i =1,2,…,n -1,產生2n -1個限制條件。因此,還需要2個以上的限制條件來確定三次方樣條曲線。有一些標準選擇提供給使用者:,稱為『正常的』限制條件(式23),稱為『箝接的』限制條件(式24)These restrictions (Equation 22) apply to i = 1, 2, ..., n -1, resulting in 2 n -1 constraints. Therefore, more than two constraints are required to determine the cubic square spline curve. There are some standard options available to users: , called the "normal" restriction (Equation 23) , called the "clamped" restriction (Equation 24)

若函式是週期性的,其他選擇也是可能的。何者為佳需視應用而定。If the function is periodic, other options are also possible. Which is better for the application.

在得到4n個係數和4n個線性的限制條件之後,求解它們(方程組)是很容易的,例如使用一般的演算法。After obtaining 4n coefficients and 4n linear constraints, it is easy to solve them (equation equations), for example using a general algorithm.

藉此方式校正的低同調性干涉訊號接著根據其應用而被進一步處理,例如進行表面結構的PUPS分析或一般的表面樣貌量測。The low-coherence interference signals corrected in this way are then further processed according to their application, such as PUPS analysis of surface structures or general surface topography measurements.

J矩陣近似法(J-matrix Approach)J-matrix Approach

在一些實施例中,一種稱為『J矩陣近似法』的近似方法能夠用來校正干涉資料,其使用的是來自於監測訊號的掃描誤差資訊。這種近似方法詳述如下。In some embodiments, an approximation method called "J matrix approximation" can be used to correct the interference data using scan error information from the monitoring signal. This approximation is detailed below.

在一次沒有掃瞄誤差的量測中(其提供一個訊號之嚴格均分的取樣點),最後未被取樣的訊號是以具有M個元素的向量a 表示,然後藉由離散傅立葉轉換(DFT)對其進行頻 譜分析。DFT在數學上等效於求解一個矩陣形式的線性方程系統,如下所示 In a measurement without a scan error (which provides a strictly equal sampling point for a signal), the last unsampled signal is represented by a vector a with M elements and then by discrete Fourier transform (DFT) Perform a spectrum analysis on it. DFT is mathematically equivalent to solving a linear equation system in the form of a matrix, as shown below

其中M×M矩陣的行代表純振動訊號的基底函式,並且將訊號u 視為該等基底函式的線性組合。將矩陣的元素以複數符號表示如下: Where M×M matrix The lines represent the base functions of purely vibrating signals and the signal u is treated as a linear combination of such basis functions. Matrix The elements are represented by the plural symbols as follows:

為了得到向量的頻譜係數,將(式25)求解如下: In order to get the vector The spectral coefficient is solved by (Equation 25) as follows:

成為 become

所以向量的第m 個元素成為 So vector The mth element becomes

(式29)具有DFT之一般定義的形式(除了下標改變, DFT的下標原本是由1開始,而非0)。向量m 個元素分別表示未被取樣的訊號之第0個、第1個、…、第(m -1)個諧波的頻率分量。要注意的是,第(m -h )個諧波與第(-h )個諧波是等效的。這表示在頻譜中,高頻的頻譜分量實際上是負的頻譜分量。(Formula 29) has the general definition of DFT (except for subscript changes, the subscript of DFT originally started with 1 instead of 0). vector m elements represent unsampled signals The frequency components of the 0th, 1st, ..., ( m -1)th harmonic. It is noted that the first (m - h) and the second harmonics (- h) harmonics are equivalent. This means that in the spectrum, the spectral components of the high frequencies are actually negative spectral components.

現在考慮取自於不均勻取樣增量的一個訊號,例如包括掃描誤差(由量測系統的振動所引起)或錯失資料點之理論上均勻的取樣增量。使用一般的DFT進行離散訊號的頻譜分析必然產生離散的頻譜。Consider now a signal taken from a non-uniform sampling increment, such as a scanning error (caused by the vibration of the measurement system) or a theoretically uniform sampling increment of missing data points. Spectral analysis of discrete signals using a general DFT necessarily produces discrete spectra.

若取樣增量已知,則Lomb-Scargle法是對被不均勻取樣的資料進行頻譜分析的方法之一。每一個頻率的功率頻譜估計被獨立地計算。擬合函式彼此並未正交會在不同頻率分量之間造成資訊的遺漏。因此,Lomb-Scargle法並非是一種正規方法,但在具有很多雜訊的情況下,它仍是一個很好的方法。If the sampling increment is known, the Lomb-Scargle method is one of the methods for performing spectrum analysis on data that is unevenly sampled. The power spectrum estimates for each frequency are calculated independently. The fact that the fitting functions are not orthogonal to each other causes a loss of information between different frequency components. Therefore, the Lomb-Scargle method is not a formal method, but it is still a good method with a lot of noise.

在一些實施例中,一種類似於DFT的近似方法能夠用於被不均勻取樣之資料的頻譜分析。一組修正後的基底函式被用來形成一個新的M×M矩陣。每一個基底函式(矩陣的行)包括在已知掃描位置上被取樣之純振動訊號的數值。如同DFT,目標是將所測量的訊號以(修正後之)基底函式的線性組合表示,新矩陣的元素為In some embodiments, an approximation similar to DFT can be used for spectral analysis of data that is not uniformly sampled. A modified set of basis functions is used to form a new M×M matrix . Each of the base functions (rows of the matrix) includes the value of the purely vibratory signal sampled at a known scan position. Like DFT, the goal is to represent the measured signal as a linear combination of (corrected) basis functions, a new matrix The element is

函式X m 保留了被不均勻取樣之掃描位置的資訊。舉例而言,在干涉儀的OPD掃描中,X m 表示取得資料的M 個掃描位置(例如,其中z m 為實際的掃描位置,其中z m 考慮了(式7)的角度關係)。一般而言,有很多種方法能夠用來取得X m 的數值,例如上述討論的技術。以下將討論另外一種技術。The function X m retains information about the scan position of the uneven sampling. For example, in the OPD scan of the interferometer, X m represents the M scan positions of the acquired data (eg Where z m is the actual scan position, where z m takes into account the angular relationship of (Equation 7). In general, there are many ways to obtain the value of X m , such as the techniques discussed above. Another technique will be discussed below.

函式Y n 定義了欲研究的頻率。舉例而言,對於以頻率分析取代DFT的應用而言,函式Y n 成為The function Y n defines the frequency to be studied. For example, for applications that replace DFT with frequency analysis, the function Y n becomes

由(式30)可知,Y n 分別表示在該掃瞄中,範圍由0至相當於週期之頻率的正頻率和負頻率。頻率的上限通常稱為Nyquist頻率,它是DFT的一般限制,而在特殊情況下,J矩陣近似法能夠用以分析高於Nyquist頻率的頻率,如以下數值例子的討論。若需要一個類似於DFT的定義,則常數c是一個可供選擇為1或的因子。It can be seen from (Expression 30) that Y n is expressed in the scan, and the range is from 0 to equivalent. The positive and negative frequencies of the frequency of the cycle. The upper limit of the frequency is commonly referred to as the Nyquist frequency, which is a general limitation of the DFT, and in special cases, the J matrix approximation can be used to analyze frequencies above the Nyquist frequency, as discussed in the numerical examples below. If you need a definition similar to DFT, the constant c is an option of 1 or Factor.

將新的線性方程式以矩陣形式表示如下:The new linear equations are represented in matrix form as follows:

為了取得向量的頻譜分量,將(式31)求解如下:In order to get the vector The spectral component is solved by (Equation 31) as follows:

若向量d 的所有資料點是互相獨立的(即X m M 個數值都是唯一的),則J矩陣近似法得到正合解。If all the data points of the vector d are independent of each other (ie, the M values of X m are unique), the J matrix approximation method obtains a positive solution.

要注意的是,一般而言,矩陣的基底函數並未正交。然而,正合解的基底函式卻必須是彼此線性獨立的。It should be noted that, in general, the matrix The basis functions are not orthogonal. However, the base functions of positive solutions must be linearly independent of each other.

在類似於低同調性干涉技術的應用之中,通常會有大量的資料集合(每一個畫素表示一個資料集合)需要進行頻譜分析。因為對所有畫素而言,不均勻的OPD取樣都是相同的,所以能夠對所有資料集合使用相同之J矩陣的反矩陣。因為向量的計算被簡化為一個反矩陣的P次方和向量的乘積,所以結果能夠快速地被求出,其中P是相機畫素的數目。In applications similar to low coherence interference techniques, there is usually a large collection of data (each pixel represents a data set) that requires spectral analysis. Since the uneven OPD samples are the same for all pixels, the same J matrix inverse matrix can be used for all data sets. . Because vector The calculation is simplified to the P-th power and vector of an inverse matrix The product, so the result can be quickly found, where P is the number of camera pixels.

如上述討論,實際的量測系統除了被振動造成的掃描誤差所影響之外,也會被量測雜訊所影響(例如干涉儀之相機中的脈衝雜訊或數位化誤差),其中量測誤差會對已記錄的一或多個資料點增加一未定的數值。As discussed above, the actual measurement system is affected by the scanning error caused by the vibration, and is also affected by the measurement of noise (such as pulse noise or digital error in the camera of the interferometer), where the measurement The error adds an undetermined value to one or more of the recorded data points.

一般而言,使用J矩陣進行頻譜分析的正確性會被很多因素影響。舉例而言,使用J矩陣進行頻譜分析的正確性會被訊雜比、J矩陣的限制條件,以及J矩陣的反矩陣所影響。In general, the correctness of spectrum analysis using J matrices can be affected by many factors. For example, the correctness of spectrum analysis using J matrix is affected by the signal-to-noise ratio, the constraints of the J matrix, and the inverse matrix of the J matrix.

一般而言,在有雜訊的情況下,對於不同的m 值而言,X m 數值幾乎相同之極不均勻的掃描增量將導致幾乎不線性獨立的基底函式與條件很差的矩陣,並因而導致計算出來的頻譜具有非穩態解。Generally, in the case where there is noise, for different values of m, almost the same value of m X-electrode scanning pitch will result in unevenness hardly functions with linearly independent conditions are very poor substrate matrix, And thus the calculated spectrum has an unsteady solution.

一般認為,若穩定度問題出自於雜訊,藉由將頻譜分析的範圍限制於頻譜振幅大於零的頻帶,則可以達到極高的穩定度。J矩陣接著變成矩形矩陣(行數少於列數)。因此,線性方程系統是過定的。基於最小平方的最佳解被計算出來。因為矩形矩陣不具有反矩陣,所以只能利用奇異值分解法(singular value decomposition,SVD)或Moore-Penrose法來求出其虛擬反矩陣,Moore-Penrose法求出的反矩陣以下式表示:It is generally believed that if the stability problem arises from noise, an extremely high degree of stability can be achieved by limiting the spectrum analysis to a frequency band with a spectral amplitude greater than zero. The J matrix then becomes a rectangular matrix (the number of rows is less than the number of columns). Therefore, the linear equation system is overdetermined. The best solution based on the least squares is calculated. Since the rectangular matrix does not have an inverse matrix, the virtual inverse matrix can only be obtained by singular value decomposition (SVD) or Moore-Penrose method. The inverse matrix obtained by the Moore-Penrose method is expressed by the following formula:

J -1 =(J T J )-1 J T  (式33) J -1 =( J T J ) -1 J T (Equation 33)

其中上標T 表示矩陣J 的轉置運算。除了讓計算出來的頻譜變得更加穩定,使用矩形J矩陣的近似方法更具有快速獲得計算結果的優點,特別是當反矩陣必須乘上很多資料向量時。The superscript T represents the transposition operation of the matrix J. In addition to making the calculated spectrum more stable, the approximation method using a rectangular J matrix has the advantage of quickly obtaining calculation results, especially when the inverse matrix has to be multiplied by many data vectors. Time.

這種計算方法,能夠對不均勻取樣位置所取得的資料進行頻譜分析,也能夠延伸用途作為訊號失真補償。這些額外的失真是相機畫框m 的函式(例如干涉系統中的閃爍光源)、頻率分量的函式(例如量測設定的頻譜濾波效應),或是上述兩者的組合。這些效應被結合起來以函式I m.n 表示。監測函式I m.n 需要獨立的量測。相較於擾動的訊號(必須進行頻譜分析的資料)包含取樣位置之資訊的函式X m I m.n 極有可能具有較高的取樣率。J矩陣的元素則成為(式29)等號右邊項目的加權平均。S是在偵測器的積分時間中(例如在相機的畫框積分時間中)數值IX 的數目,其中偵測器用來測量的元素。使用一組新的基底函式來形成一般形式的J矩陣。This calculation method can perform spectrum analysis on the data obtained by the uneven sampling position, and can also be extended for signal distortion compensation. These additional distortions are functions of the camera frame m (eg, a flicker source in an interferometric system), a function of frequency components (eg, spectral filtering effects of measurement settings), or a combination of the two. These effects are combined to represent the function I mn . The monitoring function I mn requires independent measurements. Compared to the disturbed signal (Materials that must be analyzed for spectrum analysis) The functions X m and I mn containing information on the sampling position are highly likely to have a high sampling rate. The elements of the J matrix become the weighted average of the items on the right side of the equation (Eq. 29). S is the number of values I and X in the integration time of the detector (for example, in the frame integration time of the camera), where the detector is used to measure Elements. A new set of basal functions is used to form a general form of J matrix.

對於各種監測方案的失真,一般形式的J矩陣可以進一步簡化,以下摘要說明兩種簡化方法。The general form of the J matrix can be further simplified for the distortion of various monitoring schemes, and the following summary illustrates two simplified methods.

在一些實施例中,強度和掃瞄器位置是每一個相機畫框監測一次,在一個相機畫框中強度變化是很小的(例如給予極短的相機快門時間)並且光源強度的變動均等地影響所有頻率。(式34)的平均計算被簡化為一個被加數(summand)。I 僅為畫框m 的函式。(式34)被簡化為表示光源強度變動的J矩陣。In some embodiments, the intensity and scanner position are monitored once for each camera frame, the intensity variation is small in one camera frame (eg, giving a very short camera shutter time) and the variation in light source intensity is equally Affects all frequencies. The average calculation of (Equation 34) is simplified to an summed (summand). I is only a function of the frame m . (Expression 34) is simplified to a J matrix indicating the variation in the intensity of the light source.

在一些實施例中,強度和掃瞄器位置是每一個相機畫框監測一次,在一個相機畫框中,由掃描導致的強度變化是很大的,並且強度的變動與頻率有關。雖然在每一個相機畫框只有量測一個掃瞄器位置,但是在畫框積分期間的掃描器移動以及量測的最後結果仍然是可以被估計的。假設掃瞄器的線性移動介於畫框m -1和m +1之間,則在相機畫框m期間,X的數值會從X m -TFR ‧(X m +1 -X m -1 )/4變成X m +TFR ‧(X m +1 -X m -1 )/4,其中T 是相機畫框的積分時間並且FR 是相機的畫框頻率(單位:Hz(1/s))。在求解後,以積分取代(式34)的加法運算得到In some embodiments, the intensity and scanner position are monitored once for each camera frame. In a camera frame, the intensity variation caused by the scan is large and the intensity variation is frequency dependent. Although only one scanner position is measured in each camera frame, the scanner movement during frame integration and the final result of the measurement can still be estimated. Assuming that the linear movement of the scanner is between the frames m -1 and m +1, during the camera frame m, the value of X will be from X m - TFR ‧ ( X m +1 - X m - 1 ) / 4 becomes X m + TFR ‧ ( X m +1 - X m -1 ) / 4, where T is the integration time of the camera frame and FR is the frame frequency of the camera (unit: Hz (1/ s)). After the solution, the addition is replaced by the integral (Expression 34).

其中sinc(x)=sin πx/πx且在相機畫框積分期間,假設光源強度維持不變。因為相機的積分時間是有限的,所以(式36)說明了條紋對比的降低是與頻率(畫框頻率)有關的。對於第一個和最後一個畫框,分別以X m + 1 -X m X m -X m -1 取代sinc函式中的分數。Where sinc(x)=sin πx/πx and during the integration of the camera frame, it is assumed that the intensity of the light source remains unchanged. Since the integration time of the camera is limited, (Equation 36) shows that the reduction of the fringe contrast is related to the frequency (frame frequency). For the first and last frames, the scores in the sinc function are replaced by X m + 1 - X m and X m - X m -1 , respectively.

在一些干涉應用中,(式34)的函式I 或(式29)或(式34)的函式X 不適用於全部的相機畫素。在這種情況下,必須為個別的畫素或一組畫素計算J矩陣。函式變動與畫素有關的可能原因包括傾斜和翻轉(tip-tilt)(以垂直或水平方向為對稱軸的旋轉),例如干涉腔的振動擾動了活塞式掃描的移動、暈影(vignetting)在FOV的邊緣明顯地影響了畫素、表面的法線夾角隨著掃描移動而改變(如使用Fizeau式干涉儀和參考球來量測球形表面時)。In some interference applications, the function I of (Equation 34) or the function X of (Equation 29) or (Equation 34) is not applicable to all camera pixels. In this case, the J matrix must be calculated for individual pixels or a set of pixels. Possible causes of function changes related to pixels include tilt and tip-tilt (rotation of the axis of symmetry in the vertical or horizontal direction). For example, the vibration of the interference cavity disturbs the movement of the piston scan and vignetting. The edge of the FOV significantly affects the pixel, and the normal angle of the surface changes as the scanning moves (as when using a Fizeau-type interferometer and a reference sphere to measure a spherical surface).

使用J矩陣近似法進行訊號分析的優點是不需要在每一次掃描後進行訊號的頻譜分析。因為J矩陣近似法的過程可被視為DFT的替代品,將計算得到之頻譜作DFT反轉換將產生等效於被均勻增量所取樣之原始訊號的訊號,並且該訊號去除了J矩陣計算中所考慮的任何其他影響(光源強度變動、因有限的積分時間造成的條紋對比度降低等)。The advantage of using the J-matrix approximation for signal analysis is that there is no need to perform a spectrum analysis of the signal after each scan. Since the process of the J matrix approximation can be considered as a substitute for DFT, the inverse of the calculated spectrum for DFT will produce a signal equivalent to the original signal sampled by the uniform increment, and the signal removes the J matrix calculation. Any other effects considered (changes in light source intensity, reduced fringe contrast due to limited integration time, etc.).

第11圖、第12A圖和第12B圖的流程圖摘要說明了J矩陣近似法的三種變型。具體而言,第11圖的流程圖用以說明使用J矩陣的頻譜分析,第12A圖的流程圖用以說明補償訊號失真的增廣J矩陣(extended J-matrix),而第12B圖的流程圖用以說明使用J矩陣來重建校正後的干涉訊號。The flowcharts of Figures 11, 12A and 12B summarize three variants of the J-matrix approximation. Specifically, the flowchart of FIG. 11 is for explaining spectrum analysis using the J matrix, and the flowchart of FIG. 12A is for explaining the extended J-matrix for compensating for signal distortion. The flowchart of FIG. 12B is used to illustrate the use of the J matrix to reconstruct the corrected interference signal.

參考第11圖,J矩陣近似包括資料產生階段(1151)和頻譜分析階段(1133),並用以產生N 個頻譜(1159)。舉例而言,資料產生階段1151包括資料擷取暨掃描移動分析的步驟(1153),其中資料擷取暨掃描移動分析的步驟(1153)產生N 個掃描位置(1155)和N 個干涉資料集合(1157)至頻譜分析階段(1133)。N 個掃描位置未必是等距離的,但是其偏移卻可由已判斷的掃描移動歷史所得知。N 個干涉資料集合1157對應於使用干涉系統的主光源和偵測器所取得的低同調性干涉訊號。Referring to Fig. 11, the J matrix approximation includes a data generation phase (1151) and a spectrum analysis phase (1133), and is used to generate N spectra (1159). For example, the data generation stage 1151 includes a step of data capture and scan motion analysis (1153), wherein the data capture and scan motion analysis step (1153) generates N scan positions (1155) and N interference data sets ( 1157) to the spectrum analysis phase (1133). The N scanning positions are not necessarily equidistant, but the offset can be known from the determined scanning movement history. The N interfering data sets 1157 correspond to low homology interfering signals obtained using the main source and detector of the interferometric system.

頻譜分析1133階段與N 個干涉資料集合1157的頻譜分解有關,並且提供N 個頻譜1159作為輸出以進一步分析。具體而言,頻譜分析階段1133包括構成J矩陣的步驟(1161)、求J矩陣的反矩陣的步驟1163,以及將J矩陣的反矩陣乘以N 組干涉資料集合1157的步驟1165。The spectrum analysis 1133 phase is related to the spectral decomposition of the N interference data sets 1157 and provides N spectra 1159 as outputs for further analysis. Specifically, the spectrum analysis stage 1133 includes a step (1161) of constructing the J matrix, a step 1163 of finding the inverse matrix of the J matrix, and a step 1165 of multiplying the inverse matrix of the J matrix by the N sets of interference data sets 1157.

為了要構成J矩陣,首先計算對應於不同頻率的基底函式(1161A),然後以基底函式作為列來形成J矩陣(1161B)。一般而言,基底函式對應於一個已知被擾動掃描位置之純振動訊號的數值。In order to form the J matrix, the basis function (1161A) corresponding to the different frequencies is first calculated, and then the base function is used as the column to form the J matrix (1161B). In general, the basis function corresponds to the value of a purely vibratory signal known to be disturbed by the scanning position.

N 個頻譜1159適用於掃描的評估;根據DFT之(未修正的)基底函式,其也能用來重建校正後的干涉訊號。 The N spectra 1159 are suitable for the evaluation of the scan; they can also be used to reconstruct the corrected interference signal according to the (uncorrected) basis function of the DFT.

參考第12A圖,對於增廣J矩陣近似法而言,除了額外地測量訊號失真影響的步驟1273,其它資料產生(1271)的部份類似於J矩陣近似法之資料產生(1151)的部份,其中在構成J矩陣時將考慮訊號失真的影響。具體而言,增廣J矩陣的基底函式對應於一個已知被擾動掃描位置之純振動訊號的數值,其中該數值是根據訊號失真影響而被修正的。頻譜分析1233包括相似於J矩陣近似法的步驟,構成J矩陣的計算包括基底函式的計算,然而基底函式對應於根據訊號失真影響的步驟1273的紀錄而被修正之不同的頻率。Referring to Fig. 12A, for the augmented J matrix approximation, in addition to step 1273, which additionally measures the influence of signal distortion, the portion of the other data generation (1271) is similar to the portion of the data generation (1151) of the J matrix approximation method. The influence of signal distortion will be considered when constructing the J matrix. Specifically, the base function of the augmented J matrix corresponds to the value of a purely vibratory signal known to be disturbed by the scanning position, wherein the value is corrected based on the effects of signal distortion. Spectral analysis 1233 includes steps similar to the J matrix approximation, and the calculations that make up the J matrix include the calculation of the basis function, whereas the basis functions correspond to different frequencies that are modified according to the record of step 1273 affected by the signal distortion.

第12B的流程圖說明增廣J矩陣的應用,其中N 個頻譜1159是以相同於第12A圖的流程而被計算得到。接著,校正後的頻譜用以重建N 個已校正之干涉資料集合1211,其中N 個已校正之干涉資料集合1212是根據離散傅立葉反轉換已校正之干涉資料集合1212所推導出來的。The flowchart of the 12B illustrates the application of the augmented J-matrix, in which the N spectra 1159 are calculated in the same manner as in the 12A diagram. Next, the corrected spectrum is used to reconstruct N corrected interference data sets 1211, wherein the N corrected interference data sets 1212 are derived from the discrete Fourier inverse conversion corrected interference data set 1212.

第13A圖~第15C圖藉由數值實驗來說明對不同的低同調性干涉訊號進行J矩陣近似法和一般DFT的實驗結果。The results of J matrix approximation and general DFT for different low-coherence interference signals are illustrated by numerical experiments from Fig. 13A to Fig. 15C.

第13A圖~第13E圖說明振動資料和沒有相機雜訊的訊號(即不具有掃瞄誤差的訊號)。第13A圖顯示訊號本身,其為與高斯封包一起產生的餘弦波動。實線是未取樣的連續訊號,而以點則表示實際的資料點。這些訊號圖示僅顯示整個SWLI訊號的四分之一。第13B圖~第13E圖顯示使用DFT和J矩陣近似法的頻譜振幅和頻譜的誤差值。具體而言,第13B圖和第13D圖是使用DFT的頻譜和頻譜誤差,而第13C圖和第13E圖是使用J矩陣近似法的頻譜和頻譜誤差。在沒有掃瞄誤差的情況下,DFT和J矩陣的頻譜高斯分佈是相同的,並且都具有數值為零的頻譜誤差。Figures 13A through 13E illustrate vibration data and signals without camera noise (ie, signals without scan errors). Figure 13A shows the signal itself, which is the cosine fluctuation produced with the Gaussian packet. The solid line is the unsampled continuous signal, while the point indicates the actual data point. These signal diagrams only show a quarter of the entire SWLI signal. Figures 13B through 13E show the spectral amplitude and spectral error values using the DFT and J matrix approximations. Specifically, Figures 13B and 13D are spectral and spectral errors using DFT, while Figures 13C and 13E are spectral and spectral errors using the J-matrix approximation. In the absence of scan errors, the spectral Gaussian distribution of the DFT and J matrices is the same and both have a spectral error of zero.

第14A圖~第14E圖具有類似於第13A圖~第13E圖的振動資料,雖然資料點此時仍位於理想曲線上,但是卻是在不均勻取樣的掃描位置被取樣的。如第14B圖所示,當使用DFT法時,掃描誤差使得頻譜偏移理想的高斯曲線。當使用DFT法時,正確掃描位置的資訊就被錯失了,並因而導致頻譜誤差,如第14D圖所示。然而,第14C圖和第14E圖顯示J矩陣近似法仍可以取得沒有頻譜誤差的頻譜。Figures 14A to 14E have vibration data similar to those of Figs. 13A to 13E. Although the data points are still on the ideal curve at this time, they are sampled at the scanning position of the uneven sampling. As shown in Fig. 14B, when the DFT method is used, the scanning error shifts the spectrum by an ideal Gaussian curve. When the DFT method is used, the information of the correct scanning position is missed, and thus the spectral error is caused, as shown in Fig. 14D. However, Figures 14C and 14E show that the J-matrix approximation can still achieve spectra without spectral errors.

第15A圖~第15E圖顯示類似於第13A圖~第13E圖的圖式,除了不均勻取樣的掃描位置和基線雜訊(floor noise)對訊號的影響之外。如第15A圖所示,其顯示在理想的高斯曲線上被不均勻掃瞄增量所取樣之資料點的結果。參考第15B圖~第15E圖,基線雜訊使得DFT和J矩陣計算的頻譜不再是緩變函式並產生頻譜誤差。然而,一般而言,DFT法的頻譜誤差值大於J矩陣近似法的頻譜誤差值。Fig. 15A to Fig. 15E show patterns similar to those of Figs. 13A to 13E, except for the scanning position of uneven sampling and the influence of floor noise on the signal. As shown in Fig. 15A, it shows the result of the data points sampled by the uneven scan increment on the ideal Gaussian curve. Referring to Figures 15B to 15E, the baseline noise makes the spectrum calculated by the DFT and J matrix no longer a slow-change function and produces spectral errors. However, in general, the spectral error value of the DFT method is larger than the spectral error value of the J matrix approximation.

上述有關於第13A~第15E圖的討論中,取樣位置的設定是:從嚴格等間隔的取樣位置偏離了一個週期方均根值的約0.16倍,並且在第15A圖~第15E圖中,相機雜訊的準位為整個訊號範圍的1%方均根值。In the above discussion about the 13A-15E picture, the sampling position is set to be offset from a strictly equal interval sampling position by about 0.16 times the square root mean square value, and in the 15A to 15E pictures, the camera is miscellaneous. The level of the signal is the 1% rms value of the entire signal range.

實際上,使用J矩陣的好處是當掃描誤差的來源。舉例而言,當振動是掃描誤差的主要來源且該振動能夠被監測時,J矩陣對於量測正確性有顯著的改善。當誤差的主要來源無法被監測時,J矩陣近似法的效果可能是比較差的。In fact, the benefit of using a J matrix is when the source of the scan error. For example, when vibration is the primary source of scanning error and the vibration can be monitored, the J matrix has a significant improvement in measurement correctness. When the main source of error cannot be monitored, the effect of the J-matrix approximation may be poor.

雖然上述僅討論與使用低同調性干涉儀(如SWLI干涉儀)之量測正確性改善有關的J矩陣近似法,但是J矩陣也能適用於其他類型的干涉資料。舉例而言,J矩陣近似法能夠用來分析使用長同調長度干涉儀(即包括正弦條紋的干涉儀,但是其干涉條紋並非如同SWLI訊號一般地被高斯波封調變)所取得的訊號。理論分析將被省略,而使用數值實驗的結果來說明使用J矩陣進行上述訊號的分析結果。舉例而言,參考第16A圖~第16B圖,一個由80個純正弦波所組成的訊號僅在100個取樣位置被取樣,其中100個取樣位置是在一個已知的間距內被完全隨機取樣的。第16A圖顯示該訊號的圖式,其中正弦曲線上的點表示取樣資料點。在Nyquist的情況中,該訊號是取樣不足的。具體而言,參考第16B圖,100個資料點是被100×100的J矩陣分析的,其中100×100的J矩陣是由對應於50-99個週期的基底函式所組成,並且50-99個週期是在該已知間距與其相關的部分(negative counterparts)中。假設其中存在與頻率分量有關的一些資訊.。可選擇式頻帶用來定義基底函式。資料是沒有雜訊的。J矩陣頻譜在每一個間距具有80個週期時有一個明顯的峰值,這表示J矩陣近似法能夠可靠地被執行。Although the above only discusses the J matrix approximation associated with the improved accuracy of the measurement using a low coherence interferometer (such as a SWLI interferometer), the J matrix can also be applied to other types of interference data. For example, the J-matrix approximation can be used to analyze signals obtained using long coherence length interferometers (ie, interferometers that include sinusoidal fringes, but whose interference fringes are not modulated by Gaussian envelopes as is the SWLI signal). The theoretical analysis will be omitted, and the results of numerical experiments will be used to illustrate the results of the analysis of the above signals using the J matrix. For example, referring to Figures 16A through 16B, a signal consisting of 80 pure sine waves is sampled at only 100 sample locations, 100 of which are completely randomly sampled within a known interval. of. Figure 16A shows a pattern of the signal, where the points on the sinusoid represent the sampled data points. In the case of Nyquist, the signal is undersampled. Specifically, referring to FIG. 16B, 100 data points are analyzed by a 100×100 J matrix, wherein a 100×100 J matrix is composed of a basis function corresponding to 50-99 cycles, and 50- 99 cycles are in the negative counterparts with which the known spacing is associated. Suppose there is some information about the frequency components. The selectable frequency band is used to define the basis function. The information is free of noise. The J-matrix spectrum has a distinct peak at 80 cycles per pitch, which means that the J-matrix approximation can be reliably performed.

參考第17A圖~第17C圖,其中相同於第16圖的資料被用來進行第二次數值實驗,並且對應於2%訊號範圍的額外雜訊被加入訊號中。對該資料進行兩次J矩陣分析。具體而言,參考第17B圖,當第一次分析時,因為使用條件很差(badly-conditioned)之100×100的J矩陣,所以產生頻譜誤差很大的頻譜。參考第17C圖,當地二次分析時,因為使用一個100×80的J矩陣來分析資料,所以在正確的頻率得到明顯的峰值。Referring to Figures 17A through 17C, the data identical to Figure 16 is used to perform a second number of value experiments, and additional noise corresponding to the 2% signal range is added to the signal. Two J matrix analyses were performed on this data. Specifically, referring to Fig. 17B, when the first analysis is performed, a spectrum having a large spectral error is generated because a badly-conditioned 100 × 100 J matrix is used. Referring to Figure 17C, in the local secondary analysis, because a 100×80 J matrix is used to analyze the data, significant peaks are obtained at the correct frequency.

參考第18圖,第18圖顯示數值實驗的結果,其中相較於僅計算訊號的校正頻譜,增廣J矩陣被用來修正失真的干涉訊號。本例顯示低同調性干涉儀的六種可能訊號(以(a)-(f)標示之),由訊號(b)至訊號(f),越來越多的訊號失真影響被加入其中。這一系列的訊號由訊號(a)開始,其顯示一個未失真的干涉訊號。訊號(b)對應於具有不均勻掃描增量的掃描。有些許的光源閃爍被加入訊號(c),而有限畫框積分時間的影響被加入訊號(d)。在128個畫框時,有限畫框積分時間的影響最為明顯。最後加入的雜訊來源是相機雜訊,並且產生失真的干涉訊號(e)。除了相機雜訊之外,增廣J矩陣的基底函式包括所有訊號失真的影響,但是無法個別地監測訊號失真的影響。在頻譜計算之後,離散傅立葉反轉換的產生校正後的干涉訊號(f)。將最初的未失真訊號(虛線)與訊號(f)重疊並加以比較。在本實驗中,所使用的是將高頻範圍去除後之256×181的矩形增廣J矩陣。Referring to Fig. 18, Fig. 18 shows the results of a numerical experiment in which an augmented J matrix is used to correct the interfering interference signal compared to the corrected spectrum of only the calculated signal. This example shows six possible signals for low homology interferometers (marked by (a)-(f)). From signal (b) to signal (f), more and more signal distortion effects are added. This series of signals begins with a signal (a) that displays an undistorted interference signal. Signal (b) corresponds to a scan with a non-uniform scan increment. Some of the light source flashes are added to the signal (c), and the effect of the limited frame integration time is added to the signal (d). In the 128 frames, the impact of the limited frame integration time is most obvious. The last source of noise added was camera noise and produced a distorted interference signal (e). In addition to camera noise, the base function of the augmented J-matrix includes the effects of all signal distortion, but the effects of signal distortion cannot be individually monitored. After the spectrum calculation, the discrete Fourier inverse transform produces a corrected interference signal (f). The original undistorted signal (dashed line) is overlapped with the signal (f) and compared. In this experiment, a rectangular augmented J matrix of 256 x 181 after removal of the high frequency range was used.

如前所述,有多種來源會產生有關於不均勻取樣的掃描位置X m 的資訊。當然,在一些實施例中(例如與第1圖、第7圖、第9圖和第10圖有關的實施例),監測系統的測量也會產生這些資訊。然而,一般而言,這些資訊是來自於其他來源。舉例而言,這些資訊會來自於加速度計、接觸探針、電容計、氣壓計、光學編碼器(例如光學線性編碼器),或是使用低同調性干涉資料的技術本身。As described above, there are several sources of information generated about the scanning position X m of non-uniform sampling. Of course, in some embodiments (e.g., embodiments related to Figures 1, 7, 9, and 10), measurements of the monitoring system also produce such information. However, in general, this information comes from other sources. For example, this information can come from accelerometers, contact probes, capacitance meters, barometers, optical encoders (such as optical linear encoders), or the technology itself using low coherence interference data.

複合參考面(Compound Reference)Compound Reference Surface (Compound Reference)

在一些實施例中,複合參考面用以決定有關於掃描誤差的資訊。復合參考物是具有至少二種參考面(主參考面與第二參考面)的參考物。In some embodiments, the composite reference plane is used to determine information about scan errors. The composite reference is a reference having at least two reference faces (a primary reference face and a second reference face).

主參考面作為一般的參考面,當干涉顯微鏡掃描OPD時,第二參考面用以提供資訊,使得待測物相對於干涉顯微鏡的位移能夠被監測。一般而言,相對於主參考面,第二參考面是被固定住的。The main reference surface serves as a general reference surface. When the interferometric microscope scans the OPD, the second reference surface is used to provide information so that the displacement of the object to be measured relative to the interference microscope can be monitored. In general, the second reference surface is fixed relative to the primary reference plane.

主參考面和第二參考面的效應提供關於FOV的複數有效反射率,其中在系統的FOV中,上述有效反射率至少有相位是會變動的。一般而言,求出有效反射率將有助於決定干涉影像之整體的或低空間頻率的相位偏移。The effects of the primary reference plane and the second reference plane provide a complex effective reflectivity with respect to the FOV, wherein in the FOV of the system, the effective reflectivity described above varies at least in phase. In general, determining the effective reflectivity will help determine the phase shift of the overall or low spatial frequency of the interference image.

第19圖~第31圖用以說明複合參考面的操作原理。Figure 19 to Figure 31 illustrate the principle of operation of the composite reference plane.

第19圖顯示雷射Fizeau干涉系統2000的實施例簡圖,包括光源2163、分光鏡2198、由待測物2175和複合參考面2100形成的干涉腔,其中複合參考面2100具有反射率為r 1 的主參考表面2181A和反射率為r 2 的第二參考表面2181B。復合參考物2100能夠相對於調制器2193(也稱為相位調整器)在Z方向移動以進行干涉掃描。雷射Fizeau干涉系統2000更包括主相機2191、孔徑2106,以及第二相機2199(也稱為監測相機)。第19圖並未顯示附加的光學元件,例如透鏡或是成像干涉系統的其他特徵元件,其中有些將在第28圖介紹。Figure 19 shows a simplified diagram of an embodiment of a laser Fizeau interference system 2000 comprising a light source 2163, a beam splitter 2198, an interference cavity formed by the object under test 2175 and a composite reference plane 2100, wherein the composite reference plane 2100 has a reflectivity r 1 The primary reference surface 2181A and the second reference surface 2181B having a reflectivity of r 2 . The composite reference 2100 can be moved in the Z direction relative to the modulator 2193 (also referred to as a phase adjuster) for interference scanning. The laser Fizeau interference system 2000 further includes a main camera 2191, an aperture 2106, and a second camera 2199 (also referred to as a monitoring camera). Figure 19 does not show additional optical components, such as lenses or other features of the imaging interference system, some of which will be described in Figure 28.

第二參考表面2181B被偏轉使得從第二參考表面2181B反射回來的光無法射入主相機2191,但是卻可以入射第二相機2199。監測相機2199和複合參考面2100一起用來決定干涉腔的特性,例如相對於掃描移動之初使位置之瞬時的平均光程長度變化(也稱為活塞運動(piston)),而掃描移動之初使位置是被調制器2193初使化的。The second reference surface 2181B is deflected such that light reflected back from the second reference surface 2181B cannot enter the main camera 2191, but can be incident on the second camera 2199. The monitoring camera 2199 and the composite reference surface 2100 are used together to determine the characteristics of the interference cavity, such as the instantaneous average optical path length change (also referred to as piston motion) relative to the beginning of the scanning movement, at the beginning of the scanning movement. The position is initialized by the modulator 2193.

監測相機2199偵測到由主參考表面2181A、第二參考面,以及待測物2175所形成的干涉圖案;而主相機僅偵測到主參考表面2181A和待測物2175所形成的雙面干涉。即使在有振動或大氣擾動的情況下,藉由提供至待測物175之全部光程的相關資訊,監測相機2199所收集之干涉腔的相關資訊將有助於產生待測物的三維表面高度。The monitoring camera 2199 detects the interference pattern formed by the main reference surface 2181A, the second reference surface, and the object to be tested 2175; and the main camera detects only the double-sided interference formed by the main reference surface 2181A and the object to be tested 2175. . Even if there is vibration or atmospheric disturbance, by providing relevant information to the entire optical path of the object to be tested 175, monitoring the information about the interference cavity collected by the camera 2199 will contribute to the three-dimensional surface height of the object to be tested. .

理論分析將被省略,使用雷射Fizeau干涉系統2000所產生的干涉訊號如下所述。假設在第19圖中,待測物2175的表面具有複數反射率r 。,主參考面2181A具有反射率r 1 ,並且第二參考面2181B具有反射率r 2 。上述反射率均與橫向座標x、y有關。來自於光源2163的光除了會從主參考面2181A和第二參考面2181B部份地反射回來之外,也會從待測物2175的表面部份地反射回來。然而,因為第二參考面2181B是以讓其反射光被孔徑2106阻擋的方式而被偏轉,所以主偵測器2191僅偵測從主參考面2181A和待測物2175反射回來的光。另一方面,因為監測相機2199不具有孔徑,所以其能偵測到三種反射光。The theoretical analysis will be omitted and the interference signals generated using the laser Fizeau Interference System 2000 are as follows. It is assumed that in Fig. 19, the surface of the object to be tested 2175 has a complex reflectance r . The main reference plane 2181A has a reflectivity r 1 and the second reference plane 2181B has a reflectivity r 2 . The above reflectances are all related to the lateral coordinates x, y. Light from the light source 2163 is partially reflected back from the surface of the object to be tested 2175 in addition to being partially reflected back from the main reference surface 2181A and the second reference surface 2181B. However, since the second reference surface 2181B is deflected in such a manner that its reflected light is blocked by the aperture 2106, the main detector 2191 detects only the light reflected from the main reference surface 2181A and the object to be tested 2175. On the other hand, since the monitoring camera 2199 does not have an aperture, it can detect three kinds of reflected light.

主偵測器2191所偵測到的干涉(訊號強度)可以下式表示:The interference (signal strength) detected by the main detector 2191 can be expressed as follows:

其中強度的反射率為The reflectance of the intensity

R 0 =|r 0 |2  (式38) R 0 =| r 0 | 2 (Expression 38)

R 1 =|r 1 |2  (式39) R 1 =| r 1 | 2 (Equation 39)

並且θ正比於待測物的表面高度hAnd θ is proportional to the surface height h of the object to be tested,

θ=arg(r 0 ) (式41)θ=arg( r 0 ) (Equation 41)

並且相對於(主)參考面的相位資料偏差(phase profile offset)為And the phase profile offset relative to the (main) reference plane is

φ=arg(r 1 ) (式42)φ=arg( r 1 ) (Equation 42)

對於監測相機2199而言,所偵測到的干涉(訊號強度)可以下式表示:For the surveillance camera 2199, the detected interference (signal strength) can be expressed as:

其中among them

P=|ρ 1 |2  (式44)P=| ρ 1 | 2 (Equation 44)

=arg(ρ ) (式45) =arg( ρ ) (Equation 45)

給定複合參考面的有效反射率為Effective reflectivity of a given composite reference plane

ρ =r 1 +r 2  (式46) ρ = r 1 + r 2 (Equation 46)

以第20圖為例,其說明對100×100畫素進行模擬而計算得到之複合強度反射率輪廓(compound intensity reflectivity profile)P,其中沒有設置待測物2175且累積至OPD之兩個波長之介於主參考面2181A和第二參考面2181B之間的相對偏轉,在整個FOV中,主反射率R1 為4%且第二反射率R2 為0.4%。Taking FIG. 20 as an example, a composite intensity reflectivity profile P calculated by simulating 100×100 pixels is illustrated, in which the object to be tested 2175 is not set and accumulated to two wavelengths of the OPD. and between the main reference plane 2181A 2181B relative deflection between the second reference plane, the whole FOV, the main reflectance R 1 is 4% and the second reflectivity R 2 of 0.4%.

第21A圖顯示第20圖的影像在x(即水平方向)方向的截面圖,以實際數字顯示兩個參考面的組合所產生強度輪廓P(式44)。第21B圖顯示複合參考面2100的複數相位沿著第21A圖的強度輪廓之相同橫截面變化的情形。Fig. 21A is a cross-sectional view showing the image of Fig. 20 in the x (i.e., horizontal direction) direction, showing the intensity profile P (Expression 44) produced by the combination of the two reference faces in actual numbers. Figure 21B shows the complex phase of the composite reference plane 2100 The same cross-sectional variation of the intensity profile along the 21A map.

引入待測物2175,第22圖顯示監測相機2199所監測到的監測干涉圖案I ,其中待測物2175的反射率為2%,並且相對於主參考面2181A,待測物2175是沿著對角線而從監測干涉圖案I 的左上至右下稍微偏轉的。強度變化主要與複合參考面2100有關,並且無法被主相機2191所偵測。The object to be tested 2175 is introduced, and the 22nd image shows the monitoring interference pattern I monitored by the monitoring camera 2199, wherein the reflectance of the object to be tested 2175 is 2%, and the object to be tested 2175 is along the pair with respect to the main reference surface 2181A. The angle is slightly deflected from the upper left to the lower right of the monitoring interference pattern I. The intensity change is primarily related to the composite reference plane 2100 and cannot be detected by the main camera 2191.

主相機2191所偵測到的模擬干涉影像係如第第23圖所示。在第24A圖、第24B圖、第25A圖和第25B圖中,主相機2191所偵測到的干涉與監測相機2199所監測到的干涉之間的差異是很明顯的。具體而言,對於如同第19圖的複合參考面和具有2%反射率且稍微偏轉的待測物而言,第24A圖顯示監測相機2199中的干涉變動,並且第24B圖顯示監測相機2199中相應的相位變動。The analog interference image detected by the main camera 2191 is as shown in Fig. 23. In Figs. 24A, 24B, 25A, and 25B, the difference between the interference detected by the main camera 2191 and the interference detected by the monitoring camera 2199 is apparent. Specifically, for the composite reference plane as in FIG. 19 and the object to be tested having a 2% reflectance and slightly deflected, FIG. 24A shows the interference variation in the monitoring camera 2199, and FIG. 24B shows the monitoring camera 2199. Corresponding phase changes.

根據相同的參數,對於複合參考面和稍為偏轉的待測物2175而言,第25A圖顯示主相機2191中的干涉變動,並且第24B圖顯示主相機2191中相應的相位變動。According to the same parameters, for the composite reference plane and the slightly deflected object to be tested 2175, FIG. 25A shows the interference variation in the main camera 2191, and FIG. 24B shows the corresponding phase variation in the main camera 2191.

在操作期間,相對於待測物2175,相位調整器2193機械式地移動複合參考面2100。對於監測相機2199和主相機2191所偵測到的訊號而言,這將造成一系列的相位移。即使干涉訊號極不相同,兩種相機的相位移卻是相同的,如圖所示。因此,決定監測相機所偵測到的相位移將有助於從主相機2191所取得的資料中正確地求出相位移。During operation, the phase adjuster 2193 mechanically moves the composite reference plane 2100 relative to the object under test 2175. For the signals detected by the surveillance camera 2199 and the main camera 2191, this will result in a series of phase shifts. Even if the interfering signals are very different, the phase shifts of the two cameras are the same, as shown. Therefore, determining the phase shift detected by the monitoring camera will help to correctly determine the phase shift from the data acquired by the main camera 2191.

用以決定隨著時間取得之單頻干涉資料之相位移的數種具體資料處理技術已經說明如上,並且上述資料處理技術顯示:對所有的振動頻率而言,一個範圍的起始相位數值能夠改善干涉腔之瞬時全部光程長度的判斷。Several specific data processing techniques for determining the phase shift of single-frequency interference data acquired over time have been described above, and the above data processing techniques show that for all vibration frequencies, the initial phase value of a range can be improved. Judgment of the instantaneous total optical path length of the interference cavity.

比較第24B圖和第25B圖顯示複合參考面2100在整個FOV中具有與待測物2175之結構無關的相位變動,這是因為同時使用監測相機2199和複合參考面2100。Comparing Figs. 24B and 25B shows that the composite reference plane 2100 has a phase variation irrespective of the structure of the object to be tested 2175 throughout the FOV because the monitoring camera 2199 and the composite reference plane 2100 are used at the same time.

參考第26圖的流程圖,根據複合參考面2100操作一干涉系統(如干涉系.統2000)包括代測物2175之監測資料和干涉資料的資料擷取步驟、監測資料的資料處理,以及使用監測資料之資料處理結果之干涉資料的資料處理。Referring to the flowchart of Fig. 26, an interference system (e.g., interference system 2000) is operated according to the composite reference plane 2100, including data acquisition steps of the monitoring data and interference data of the sample 2175, data processing of the monitoring data, and use. Data processing of interference data for the results of data processing of monitoring data.

具體而言,在步驟2010,在產生相位移的範圍中取得監測相機的監測訊號和主相機的干涉訊號。監測相機偵測到由主參考干涉介面和第二參考面所貢獻的干涉圖案,而主相機僅偵測到由主參考面所貢獻的干涉圖案。Specifically, in step 2010, the monitoring signal of the monitoring camera and the interference signal of the main camera are obtained in a range in which the phase shift is generated. The monitoring camera detects the interference pattern contributed by the primary reference interference interface and the second reference surface, while the primary camera only detects the interference pattern contributed by the primary reference surface.

接著,在步驟2020,分析監測相機的干涉訊號以決定在資料擷取期間產生的相位移。Next, at step 2020, the interference signal of the monitoring camera is analyzed to determine the phase shift generated during the data capture.

在步驟2030,藉由從監測相機之干涉訊號中決定之有關於相位移的資訊,接著分析主相機偵測到的干涉訊號,並且決定待測物表面的三維表面高度。In step 2030, the information about the phase shift is determined from the interference signal of the monitoring camera, and then the interference signal detected by the main camera is analyzed, and the three-dimensional surface height of the surface of the object to be tested is determined.

在第26圖中被摘要說明的資料處理說明了使用在干涉儀中引入複合參考面所取得之資料的方法。然而,其他類型的資料處理亦可使用複合參考面來決定待測物的表面特性。舉例而言,第20圖中明顯的強度圖案(其中包括密集的干涉條紋)能夠使用詮釋干涉條紋位置的空間法而被分析。舉下述額外例子來說,例如M. Kujawinska提出的空間相位量測法;在D. W. Robinson和G. T. Reid等人編輯之『干涉譜分析』一書中第145-166頁的內容(Bristol and Philadelphia,Inst. of Physics Publishing,1993),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容。The data processing, which is summarized in Figure 26, illustrates the method of using the data obtained by introducing a composite reference plane into the interferometer. However, other types of data processing can also use a composite reference plane to determine the surface characteristics of the object under test. For example, the apparent intensity pattern (including dense interference fringes) in Figure 20 can be analyzed using a spatial method that interprets the position of the interference fringes. For the following additional examples, for example, the spatial phase measurement method proposed by M. Kujawinska; on pages 145-166 of the book "Interference Spectrum Analysis" edited by DW Robinson and GT Reid et al. (Bristol and Philadelphia, Inst. of Physics Publishing, 1993), the entire disclosures of the above-referenced patents are hereby incorporated by reference.

在第19圖中,雖然僅使用單一光學元件來提供第一和第二參考面,但是其他組態也是可能的。舉例而言,在一些實施例中,各自是不同光學元件的第一和第二參考面在其個別位置是互相機械式地固定住的。In Fig. 19, although only a single optical element is used to provide the first and second reference faces, other configurations are possible. For example, in some embodiments, the first and second reference faces, each of which are different optical elements, are mechanically secured to each other at their individual locations.

舉例而言,第27圖顯示包括許多有關於第19圖之元件的干涉系統2001。然而,複合參考面組件2200用來取代複合參考面2100,其中主參考面和第二參考面是分立光學元件的一部分。具體而言,複合參考面組件2200包括第一光學元件2202A和第二光學元件2202B,其中每一者都是藉著共用的固定盤(mounting flange)2204而被彼此機械式地固定。For example, Figure 27 shows an interference system 2001 that includes many of the elements of Figure 19. However, composite reference surface assembly 2200 is used in place of composite reference surface 2100, where the primary reference surface and the second reference surface are part of a discrete optical component. In particular, the composite reference surface assembly 2200 includes a first optical element 2202A and a second optical element 2202B, each of which is mechanically secured to each other by a shared mounting flange 2204.

參考第28圖,在一些實施例中,干涉系統2001包括一光源暨偵測單元3210,其中光源暨偵測單元3210包括多種光束導引元件。舉例而言,光學中繼器2169和2171將來自光源2163的光導向分光鏡2164,然後來自光源2163的光通過孔徑2106並且被光學準直器2177所瞄準。光接著反射回到干涉腔,並被成像透鏡2189成像至主偵測器2199。光也被分光鏡2198導向到監測相機2199,其中光被透鏡2190成像至監測相機2199。Referring to FIG. 28, in some embodiments, the interference system 2001 includes a light source detection unit 3210, wherein the light source detection unit 3210 includes a plurality of light beam guiding elements. For example, optical repeaters 2169 and 2171 direct light from source 2163 to beam splitter 2164, and then light from source 2163 passes through aperture 2106 and is aimed by optical collimator 2177. The light is then reflected back to the interference cavity and imaged by imaging lens 2189 to main detector 2199. Light is also directed by beam splitter 2198 to monitoring camera 2199, where light is imaged by lens 2190 to monitoring camera 2199.

雖然干涉系統2001被用來研究平面的待測物,但是其他組態也是可能的。Although the interference system 2001 is used to study the planar object to be tested, other configurations are possible.

舉例而言,第29圖顯示一干涉系統2002,包括一光源暨偵測系統3215以及複合參考面2250。光源暨偵測系統3215類似於光源暨偵測單元3210。然而,複合參考面2250和複合參考面2200的不同在於複合參考面2250用來形成球形波前(而非平面波前)以照射彎曲的待測物3175。具體而言,複合參考面2250包括一第一光學元件2252A、一透鏡2258,以及一第二光學元件2252B。透鏡2258和第二光學元件2252B被合併設置為一個單一的單元,其中透鏡2258係藉著固定盤(mounting flange)2204而被機械式地固定於第二光學元件2252B。第一光學元件2252A提供彎曲的第一參考面2181A,並且第二光學元件提供平面的第二參考面2181B,藉此提供干涉腔之有關於光場的複數有效反射率,其中複數有效反射率的相位在干涉系統2002的FOV是會改變的。For example, FIG. 29 shows an interference system 2002 including a light source detection system 3215 and a composite reference surface 2250. The light source and detection system 3215 is similar to the light source detection unit 3210. However, the composite reference plane 2250 differs from the composite reference plane 2200 in that the composite reference plane 2250 is used to form a spherical wavefront (rather than a plane wavefront) to illuminate the curved object to be tested 3175. In particular, the composite reference surface 2250 includes a first optical element 2252A, a lens 2258, and a second optical element 2252B. The lens 2258 and the second optical element 2252B are combined to form a single unit, wherein the lens 2258 is mechanically secured to the second optical element 2252B by a mounting flange 2204. The first optical element 2252A provides a curved first reference surface 2181A, and the second optical element provides a planar second reference surface 2181B, thereby providing a complex effective reflectivity of the interference cavity with respect to the light field, wherein the plurality of effective reflectances The phase of the FOV in the interference system 2002 will change.

在一些實施例中(例如第20圖和第27圖),雖然監測影像是藉由光路的配置方式(如阻擋來自第二參考面的光,而來自第二參考面的光是來自於主相機)而從主影像被分離出來,但是其他組態也是可能的。舉例而言,在一些實施例中,不同波長的監測影像能夠從主影像被分離出來。In some embodiments (eg, Figures 20 and 27), although the image is monitored by means of an optical path (eg, blocking light from the second reference surface, light from the second reference surface is from the main camera) ) is separated from the main image, but other configurations are also possible. For example, in some embodiments, different wavelengths of monitored images can be separated from the main image.

以第30圖為例,第30圖顯示干涉系統2003,當進行干涉顯微鏡的OPD掃描時,干涉系統2003使用監測影像來監測待測物相對於干涉顯微鏡的位移。Taking Figure 30 as an example, Figure 30 shows an interference system 2003 that uses a monitoring image to monitor the displacement of the analyte relative to the interference microscope when performing an OPD scan of the interference microscope.

具體而言,干涉系統2003包括干涉平台3310、監測器組件3300,以及干涉物鏡3167。干涉平台3310包括寬頻帶光源3163、分光鏡3170,以及成像透鏡3189,成像透鏡3189將干涉圖案成像至白光相機3191。此外,干涉平台3310包括取樣鏡(pickoff mirror)3308、監測影像透鏡3190,以及監測相機3199。In particular, the interference system 2003 includes an interference platform 3310, a monitor assembly 3300, and an interference objective 3167. The interference platform 3310 includes a broadband light source 3163, a beam splitter 3170, and an imaging lens 3189 that images the interference pattern to the white light camera 3191. In addition, the interference platform 3310 includes a pickoff mirror 3308, a monitor image lens 3190, and a monitor camera 3199.

干涉平台3310藉由機械掃描器3193而被附加於監測器組件3300和干涉物鏡3167,其中機械掃描器3193以相對於待測物2175的方式移動監測器組件3300和干涉物鏡3167的子系統。The interference platform 3310 is attached to the monitor assembly 3300 and the interference objective 3167 by a mechanical scanner 3193 that moves the subsystems of the monitor assembly 3300 and the interference objective 3167 in a manner relative to the object under test 2175.

監測器組件3300包括第二光源3197(如窄頻帶,例如單色光源)、僅對(複數)監測波長是半穿透半反射的半穿反鏡(partial mirror)3304(如50/50的鏡子)、參考物透鏡3306,以及具有第二參考面2181B的第二參考物3302B。The monitor assembly 3300 includes a second source 3197 (eg, a narrow band, such as a monochromatic source), a partial mirror 3304 (eg, a 50/50 mirror) that monitors the wavelength to be transflective. ), a reference lens 3306, and a second reference 3302B having a second reference surface 2181B.

干涉物鏡3167包括物鏡、干涉儀分光鏡3179,以及提供主參考面2181A的主參考鏡3302A。The interference objective lens 3167 includes an objective lens, an interferometer beam splitter 3179, and a main reference mirror 3302A that provides a main reference plane 2181A.

根據分立的第二光源3197,監測待測物2175的位移是憑藉著監測影像而被完成的。監測影像用來決定相位移校正。監測影像藉由三面干涉(3-surface interference)而被形成,其中對於主參考面2181A和第二參考面2181B的有效參考面而言,三面干涉具有固定的複數反射率。在一些實施例中,監測影像的畫質比SWLI干涉影像的畫質來的差。According to the separate second light source 3197, monitoring the displacement of the object to be tested 2175 is accomplished by monitoring the image. The monitoring image is used to determine the phase shift correction. The monitoring image is formed by 3-surface interference, wherein for the effective reference planes of the primary reference surface 2181A and the second reference surface 2181B, the three-sided interference has a fixed complex reflectivity. In some embodiments, the quality of the monitored image is worse than the quality of the SWLI interfering image.

一般而言,相位調變歷史能夠在監測影像的每一個畫素上被獨立地估計,舉例而言,使用餘弦反轉換。為了校正SWLI的資料擷取,相位移的知識能夠接著被用來正確地解釋白色SWLI影像。這種監測方法的好處是能夠使用一般的干涉物鏡而不需加以修改(或是僅需稍加修改)。因此,這種監測機制的組態能夠相容於標準的物鏡設計。In general, the phase modulation history can be independently estimated on each pixel of the monitored image, for example, using cosine inverse conversion. In order to correct SWLI data acquisition, knowledge of phase shift can then be used to correctly interpret white SWLI images. The benefit of this monitoring method is the ability to use a general interference objective without modification (or only minor modifications). Therefore, the configuration of this monitoring mechanism can be compatible with standard objective design.

雖然第19圖~第30圖的干涉系統是用於SWLI,另外一種操作模式也是可能的。舉例而言,參考第31圖,干涉系統2004用於PUPS成像。在此處,監測影像能夠藉由類似於干涉系統2003之波長從PUPS影像被分離出來。藉由共用的光源單元來產生寬頻帶和窄頻帶的光,共用的光源單元藉由共用的分光鏡5170將光耦合至具有透鏡5177的干涉物鏡5167。光源單元包括寬頻帶光源5163、透鏡5169和5171、監測光源5197,以及分光鏡5164。光束被聚焦至待測物5175上的點5400。干涉物鏡5167藉由移動平台5193而進行掃描。Although the interference system of Figures 19 to 30 is for SWLI, another mode of operation is also possible. For example, referring to Figure 31, the interference system 2004 is used for PUPS imaging. Here, the monitoring image can be separated from the PUPS image by a wavelength similar to that of the interference system 2003. Light of a wide band and a narrow band is generated by a common light source unit, and the common light source unit couples light to the interference objective lens 5167 having the lens 5177 by a common beam splitter 5170. The light source unit includes a broadband light source 5163, lenses 5169 and 5171, a monitoring light source 5197, and a beam splitter 5164. The beam is focused to a point 5400 on the object to be tested 5175. The interference objective lens 5167 is scanned by moving the platform 5193.

干涉系統2004的光學元件(例如管狀透鏡5198和分光鏡5189)被設置來使得主相機5191和監測相機5199均位在與待測物5167之光瞳共軛的表面上。具有第二參考面2181B的第二參考物被設置來使得第二參考面2181B相對於主參考面2181A而被偏轉。第二參考面2181B相對於(複數)監測波長是部分反射的,因此在最終的三面干涉中產生一個範圍的相位偏差。The optical elements of the interference system 2004 (e.g., the tubular lens 5198 and the beam splitter 5189) are arranged such that the main camera 5191 and the monitoring camera 5199 are both positioned on a surface conjugate with the pupil of the object to be tested 5167. A second reference having a second reference surface 2181B is disposed such that the second reference surface 2181B is deflected relative to the primary reference surface 2181A. The second reference plane 2181B is partially reflective with respect to the (plural) monitoring wavelength, thus producing a range of phase deviations in the final three-sided interference.

主相機5191和監測相機5199中的影像資訊被提供至具有處理器的控制計算機5192。控制計算機5192也與移動平台5193互相作動。The image information in the main camera 5191 and the monitoring camera 5199 is supplied to a control computer 5192 having a processor. Control computer 5192 also interacts with mobile platform 5193.

雖然包括複合參考面的數種實施例已經揭露如上,一般而言,其他類型的架構也是可能的。舉例而言,雖然以複合參考面為特徵的上述實施例都包括用來記錄測資訊的第二相機,但是在一些實施例中,使用單一的相機也是可能的。舉例而言,第二相機和主相機被組合為單一的相機,而該單一的相機分別具有主影像和監測影像的FOV。While several embodiments including composite reference planes have been disclosed above, in general, other types of architectures are also possible. For example, while the above embodiments featuring a composite reference plane include a second camera for recording information, in some embodiments, it is also possible to use a single camera. For example, the second camera and the main camera are combined into a single camera, and the single camera has a FOV of the main image and the monitoring image, respectively.

再者,也能使用時間多工的(time-multiplexed)資料擷取,或是僅使用單一的影像,接著處理該單一的影像,用以在個別或瞬時的資料處理步驟中同時決定全部的干涉相位偏差和待測物表面特性。Furthermore, time-multiplexed data capture can be used, or only a single image can be used, and then the single image can be processed to simultaneously determine all interferences in individual or instantaneous data processing steps. Phase deviation and surface characteristics of the object to be tested.

複合參考面能夠以具有任何所需外形的兩種(或以上)參考反射面所組成,例如平面、球面、非球面或他種外形的反射面。再者,複合參考面會在整個FOV中發生作用,或是部份的FOV中發揮作用。The composite reference surface can be composed of two (or more) reference reflective surfaces having any desired shape, such as a planar, spherical, aspheric or other shaped reflective surface. Furthermore, the composite reference plane will work in the entire FOV or in some of the FOVs.

位移量測干涉儀(Displacement Measuring Interferometers,DMI)Displacement Measuring Interferometers (DMI)

在一些實施例中,有關於掃描誤差的資訊是使用位移量測干涉儀(DMI)而被決定的,DMI與干涉顯微鏡是分開的(例如不使用共用的光學元件),並且當干涉顯微鏡進行OPD掃描時,DMI用以監測待測物相對於干涉顯微鏡的位移。這種系統的例子如第32圖所示,第32圖顯示一個修改過的干涉顯微鏡110,其不包括第二光源197和第二偵測器199。位移量測干涉儀1801使用雷射光源來取代第二光源197,其中雷射光源被安置在Mirau干涉物鏡167,Mirau干涉物鏡167用來導引光束,使光束能夠從待測物表面反射回來。DMI 1801連接至計算機192並在操作期間傳送干涉訊號至計算機192。計算機192根據干涉訊號監測Mirau干涉物鏡167和待測物175之間的相對位移,並且配合干涉顯微鏡110的操作提供有關於掃描誤差的資訊,其中掃描誤差與使用干涉系統110進行的量測有關。In some embodiments, information about the scan error is determined using a Displacement Interferometer (DMI), which is separate from the interference microscope (eg, without the use of a common optical component), and when the interference microscope performs OPD When scanning, the DMI is used to monitor the displacement of the analyte relative to the interference microscope. An example of such a system is shown in Figure 32, which shows a modified interference microscope 110 that does not include a second source 197 and a second detector 199. The displacement measurement interferometer 1801 uses a laser source instead of the second source 197, wherein the laser source is placed in a Mirau interference objective 167, which is used to direct the beam so that the beam can be reflected back from the surface of the object to be tested. DMI 1801 is coupled to computer 192 and transmits an interfering signal to computer 192 during operation. The computer 192 monitors the relative displacement between the Mirau interference objective 167 and the object under test 175 based on the interferometric signal and provides information regarding the scan error in conjunction with the operation of the interferometric microscope 110, wherein the scan error is related to the measurements made using the interference system 110.

一般而言,有多種DMI能夠被使用。舉例而言,商用的DMI包括由Zygo公司(Middlefield,康乃狄克州)所製造之ZMI系列的位移量測干涉儀。一個發明名稱為”Interferometer System for Monitoring an Object”的美國專利(美國專利申請號:US 11/656,597;申請日期:2007/01/23),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容。In general, there are a variety of DMIs that can be used. For example, commercial DMIs include the ZMI series of displacement measurement interferometers manufactured by Zygo Corporation (Middlefield, Connecticut). A U.S. Patent entitled "Interferometer System for Monitoring an Object" (U.S. Patent Application Serial No.: U.S. Patent Application Serial No.: U.S. Patent Application Serial No. Reveal the content.

在一些實施例中,DMI 1801所使用的光源被包括於安裝到Mirau干涉物鏡167的組件之內。在一些實施例中,光源是被屏蔽且與干涉物鏡分隔開來的,並且DMI的光源能夠藉由光纖波導而被導向至DMI。舉例而言,這種系統已被揭露於一個美國專利(美國專利申請號:11/656,597)。這種設置的優點是雖然處理的電子器材和光源都設置在干涉物鏡之外,但是實際安裝到干涉物鏡的組件卻是很小且不突兀的。In some embodiments, the light source used by the DMI 1801 is included within the assembly that is mounted to the Mirau interference objective 167. In some embodiments, the light source is shielded and spaced apart from the interference objective, and the light source of the DMI can be directed to the DMI by the fiber waveguide. For example, such a system has been disclosed in a U.S. Patent (U.S. Patent Application Serial No. 11/656,597). The advantage of this arrangement is that although the processed electronics and light source are both disposed outside of the interference objective, the components actually mounted to the interference objective are small and unobtrusive.

在一些實施例中,多重DMI系統能在掃描期間用來監測待測物的位移。舉例而言,一個美國專利(美國專利申請號:11/656,597)揭露包括多重偵測通道的系統,其中每一個偵測通道均使用DMI來量測不同位置的位移。In some embodiments, a multiple DMI system can be used to monitor the displacement of the object under test during the scan. For example, a U.S. Patent Application Serial No. 11/656,597 discloses a system including multiple detection channels, each of which uses DMI to measure displacement at different locations.

光纖式偵測器系統(Fiber-based Systems)Fiber-based Systems

第33A圖~第48B和53圖說明光纖式DMI系統(也稱為偵測器系統)的多種配置例子,其用於掃描誤差的監測。Figures 33A through 48B and 53 illustrate various configurations of fiber optic DMI systems (also known as detector systems) for monitoring scanning errors.

在一些實施例中,將偵測器系統安置到干涉系統內能夠進一步用來決定監測面的位置,例如待測物或參考物的表面。舉例而言,這可以用來決定待測物與干涉系統之自動聚焦功能之內部參考面之間的相對距離。In some embodiments, positioning the detector system into the interference system can further be used to determine the position of the monitoring surface, such as the surface of the analyte or reference. For example, this can be used to determine the relative distance between the object under test and the internal reference plane of the autofocus function of the interference system.

第33A圖顯示偵測器系統4000的例子,其包括子系統4010,以及附加至干涉係統4110之Mirau干涉物鏡的偵測器4099A和4099B。Figure 33A shows an example of a detector system 4000 that includes a subsystem 4010, and detectors 4099A and 4099B attached to the Mirau interference objective of the interference system 4110.

子系統4010包括寬頻帶的光源4020、被光源4020發出之光照射的內腔4030(其具有很大的OPD調整範圍)(因為內腔4030遠離偵測器4099A和4099B,故亦稱作遠程腔(remote cavity))、光源分配模組4040(其接收來自內腔4030之光並且藉由多種通道4050-4053而將光分配出去),以及偵測暨相位量測計電子模組4060(對於每一個通道4050-4053,其分別具有個別的偵測模組4070-4073)。The subsystem 4010 includes a broadband light source 4020, a lumen 4030 that is illuminated by light from the light source 4020 (which has a large OPD adjustment range) (because the lumen 4030 is remote from the detectors 4099A and 4099B, it is also referred to as a remote cavity) (remote cavity)), a light source distribution module 4040 (which receives light from the inner cavity 4030 and distributes light through a plurality of channels 4050-4053), and a detection and phase meter electronic module 4060 (for each One channel 4050-4053 has its own detection module 4070-4073).

具體而言,寬頻帶的光源4020是面射型LED,其發出中心波長遠離干涉系統4110所使用的波長的光。舉例而言,光源4020的功率約9mW、中心波長為1550nm、FWHM為30nm的頻譜寬度,並且同調長度約50nm。In particular, the broadband light source 4020 is a surface-emitting LED that emits light having a center wavelength away from the wavelength used by the interference system 4110. For example, the source 4020 has a power of about 9 mW, a center wavelength of 1550 nm, a FWHM of 30 nm, and a coherence length of about 50 nm.

使用光纜4012來導引光源4020所發出的光,並且使用隔離器4014和4016來避免因為光從內腔4030回授至光源4020,以及從光源分配模組4040回授至內腔4030所導致的系統失真。舉例而言,隔離器4014和4016提供回授光30dB的抑制。The fiber 4012 is used to direct the light emitted by the light source 4020, and the isolators 4014 and 4016 are used to avoid the return of light from the inner cavity 4030 to the light source 4020 and from the light source distribution module 4040 to the inner cavity 4030. System distortion. For example, isolators 4014 and 4016 provide 30 dB of rejection of feedback light.

在偵測器系統中,50/50的光纖耦合器被設置在不同的位置,用以分隔、分配及/或結合入射光(incoming light)及/或遠離光(outgoing light)。舉例而言,內腔4030包括一50/50的光纖耦合器4095,50/50的光纖耦合器4095連接於光源4020和光源分配模組4040的一側。在另外一側,50/50的光纖耦合器4095連接於OPD可被調整之內腔4030的兩路分支光路(legs)。每一路分支光路包括10m光纖的光纖延伸模組(fiber stretching module,FSM)4032A和4032B,每一個FSM設定為推拉的操作模式(push-pull mode)以產生可調整的OPD。每一路分支光路更分別包括Faraday鏡4034B和4034B,用以減少因為光路中的偏振所導致的對比衰減。In the detector system, 50/50 fiber couplers are placed at different locations to separate, distribute, and/or combine incoming light and/or outgoing light. For example, the inner cavity 4030 includes a 50/50 fiber coupler 4095, and the 50/50 fiber coupler 4095 is coupled to one side of the light source 4020 and the light source distribution module 4040. On the other side, a 50/50 fiber coupler 4095 is connected to the two branching legs of the inner cavity 4030 where the OPD can be adjusted. Each branch optical path includes a 10m fiber fiber stretching module (FSM) 4032A and 4032B, and each FSM is set to a push-pull mode to generate an adjustable OPD. Each branch optical path further includes Faraday mirrors 4034B and 4034B, respectively, to reduce the contrast attenuation caused by the polarization in the optical path.

對於沿著內腔的兩路分支光路而傳播的光而言,其OPD是可以控制的,舉例而言,藉著使用FSM來延伸或縮短光程。在一些實施中,舉例而言,OPD能夠在至少3mm或10mm的範圍中被變動。當離開內腔時,來自於兩路分支光路的光會在光纖耦合器4095中被重新結合。For light propagating along two lumen optical paths along the lumen, the OPD can be controlled, for example, by using FSM to extend or shorten the optical path. In some implementations, for example, the OPD can be varied in a range of at least 3 mm or 10 mm. When leaving the inner cavity, light from the two branched optical paths is recombined in the fiber coupler 4095.

在另外一個例子中,50/50的光纖耦合器用以分離多種通道4050-4053中的入射光和反射光,使得從偵測器回來的光在通過光纖耦合器之後被導向偵測暨相位量測計電子模組4060。具體而言,光纖耦合器4090將來自於光源分配模組4040之通道4050的光提供給參考信號腔4080,並且將來自於參考信號腔4080的光導向偵測模組4070。纇似地,50/50的光纖耦合器4091將來自於光源分配模組4040之通道4051的光提供給偵測器4099A,並且將來自於偵測器4099B的光導向偵測模組4071。藉由相同的方式,光纖耦合器4092和4093與來自於其相關的通道和偵測器的光互相作動。In another example, a 50/50 fiber coupler is used to separate incident and reflected light from multiple channels 4050-4053 so that light returning from the detector is directed to the detection and phase measurement after passing through the fiber coupler. Electronic module 4060. Specifically, the fiber coupler 4090 provides light from the channel 4050 of the light source distribution module 4040 to the reference signal cavity 4080 and directs light from the reference signal cavity 4080 to the detection module 4070. Similarly, the 50/50 fiber coupler 4091 provides light from the channel 4051 of the light source distribution module 4040 to the detector 4099A and directs light from the detector 4099B to the detection module 4071. In the same manner, fiber couplers 4092 and 4093 interact with light from their associated channels and detectors.

關於移動量測,偵測器通常單獨地量測,或以合適的(複數)自由度(如相對於參考位置)附加於實體元件以進行量測。舉例而言,如第33A圖所示,通道4051和4052分別連接至偵測器4099A和4099B,其中通道4051和4052用以測量待測物4175和偵測器4099A和4099B之間的距離,並藉此測量待測物4175和Mirau干涉物鏡4167之間的距離。每個偵測器具有其擁有的偵測器腔,並且距離量測係根據偵測器腔的OPD之變化。通道4051和4052也稱為量測通道。第34圖說明偵測器組態的例子(參考以下說明)。With respect to motion measurements, the detectors are typically measured separately or attached to a physical component for measurement using a suitable (plural) degree of freedom (eg, relative to a reference position). For example, as shown in FIG. 33A, channels 4051 and 4052 are connected to detectors 4099A and 4099B, respectively, wherein channels 4051 and 4052 are used to measure the distance between the object under test 4175 and the detectors 4099A and 4099B, and Thereby, the distance between the test object 4175 and the Mirau interference objective lens 4167 is measured. Each detector has its own detector cavity, and the distance measurement is based on the change in the OPD of the detector cavity. Channels 4051 and 4052 are also referred to as measurement channels. Figure 34 illustrates an example of a detector configuration (refer to the description below).

為了提供參考訊號,參考訊號腔4080連接於通道4050。如同在第35圖中的說明(參考以下說明),除了參考訊號腔的OPD是固定之外,參考訊號腔具有類似於偵測器4099A和4099B的組態。通道4050也稱為參考訊號通道。To provide a reference signal, reference signal cavity 4080 is coupled to channel 4050. As explained in Figure 35 (refer to the description below), the reference signal cavity has a configuration similar to detectors 4099A and 4099B, except that the OPD of the reference signal cavity is fixed. Channel 4050 is also referred to as a reference signal channel.

每一個偵測器4099A和4099B用來觀察偵測器空腔,其中偵測器空腔與內腔4030形成獨立的空腔耦合干涉儀(coupled-cavity interferometer)。舉例而言,偵測器空腔形成於偵測器的反射面與被觀察部份的反射面之間。在這種組態中,偵測器空腔的OPD改變是與沿著Mirau干涉物鏡軸的掃描移動成正比的。Each of the detectors 4099A and 4099B is used to view the detector cavity, wherein the detector cavity forms a separate coupled-cavity interferometer with the inner cavity 4030. For example, the detector cavity is formed between the reflective surface of the detector and the reflective surface of the observed portion. In this configuration, the OPD change of the detector cavity is proportional to the scanning movement along the mirror axis of the Mirau interference objective.

第34圖顯示偵測器4100的組態實施例。熱膨脹纖芯(thermally expanded core,TEC)光纖4102附加於漸變折射率(graded index,GRIN)透鏡4104。偵測器4100在光束腰部位置4106提供特定寬度的光束。一個介於GRIN透鏡4104和TEC光纖的可調式間隙可以在製造過程中被加入,用來設定相對於偵測器4100之第二面(last surface)4108的光束腰部位置4106,以便在偵測器製造過程中設置光束腰部位置。在操作期間,偵測器4100與目標物4114的目標面4112形成偵測器空腔。舉例而言,目標物4114是待測物4175、光學元件,或是上述其中一個元件的一部份。Figure 34 shows a configuration embodiment of the detector 4100. A thermally expanded core (TEC) fiber 4102 is attached to a graded index (GRIN) lens 4104. The detector 4100 provides a beam of a particular width at the beam waist position 4106. An adjustable gap between the GRIN lens 4104 and the TEC fiber can be added during the manufacturing process to set the beam waist position 4106 relative to the last surface 4108 of the detector 4100 for use in the detector The beam waist position is set during the manufacturing process. During operation, the detector 4100 forms a detector cavity with the target surface 4112 of the target 4114. For example, the target 4114 is the object to be tested 4175, an optical component, or a part of one of the above components.

在偵測器4000的組態中,若有需要,GRIN透鏡4104的第二面4108可以當成參考面。接著,第二面4108和目標面4112形成偵測器空腔。在另外一種組態中,第二面4108是被抗反射(anti-reflection,AR)鍍膜的,用以減少表面的反射。根據不同的應用,偵測器4100不一定會使用第二面作為參考面。偵測器4100是一種簡單的組態,可以減少尺寸和成本。In the configuration of the detector 4000, the second side 4108 of the GRIN lens 4104 can be used as a reference surface if desired. Next, the second side 4108 and the target side 4112 form a detector cavity. In another configuration, the second side 4108 is anti-reflection (AR) coated to reduce surface reflection. Depending on the application, the detector 4100 does not necessarily use the second side as a reference surface. The detector 4100 is a simple configuration that reduces size and cost.

因為入射光束之受限的同調長度會排除不被需要的表面干涉,所以藉由調整空腔耦合干涉儀的架構,就可以選擇用來形成偵測器空腔之所需的表面。Because the limited coherence length of the incident beam eliminates unwanted surface interference, the desired surface used to form the detector cavity can be selected by adjusting the architecture of the cavity coupled interferometer.

第35圖顯示參考訊號腔4200的組態實施例。參考訊號腔4200包括光纜4202,用以接受來自分配器4040的光。GRIN透鏡4204將光束對準具有固定OPD的Fabry-Perot(FP)空腔。在一些實施例中,參考訊號的OPD被調整為平衡距離D(如第34圖所示)的兩倍,其中當待測物在最佳聚焦的情況時,平衡距離D等於從第二面4108到待測物表面的距離。Figure 35 shows a configuration embodiment of the reference signal cavity 4200. The reference signal cavity 4200 includes a fiber optic cable 4202 for receiving light from the dispenser 4040. The GRIN lens 4204 aligns the beam with a Fabry-Perot (FP) cavity with a fixed OPD. In some embodiments, the OPD of the reference signal is adjusted to be twice the balance distance D (as shown in FIG. 34), wherein the equilibrium distance D is equal to the second face 4108 when the object to be tested is in the best focus condition. The distance to the surface of the object to be tested.

再參考第33A圖,在偵測器系統4000操作期間,具有合適之同調度和強度的光被提供至內腔4030,內腔4030提供介於兩路分支光路之間之可調整的OPD。在光通過內腔4030之後,光源分配模組4040將介於多種量測通道4051-4052和參考訊號通道4050之間的光分開。隔離器4014和4016用以確保照射效能不會因為光學回授而降低。量測通道4051-5042將光導引至偵測器4099A和4099B,或從偵測器4099A和4099B導引回來,其中偵測器4099A和4099B附加於干涉系統4110,使得偵測器空腔具有與個別偵測器所偵測到之自由度有關的OPD。光沿著具有相同照射光束的光纖4012在量測通道4051-4052返回並且被導向電子模組4060,其中電子模組4060偵測和處理一或多個通道的訊號,用以取得被監測之(複數)自由度的相關資訊。Referring again to Figure 33A, during operation of the detector system 4000, light having suitable uniformity and intensity is provided to the inner cavity 4030 which provides an adjustable OPD between the two branched optical paths. After the light passes through the inner cavity 4030, the light source distribution module 4040 separates the light between the plurality of measurement channels 4051-4052 and the reference signal channel 4050. Isolators 4014 and 4016 are used to ensure that the illumination performance is not reduced by optical feedback. The measurement channels 4051-5042 direct light to or from the detectors 4099A and 4099B, wherein the detectors 4099A and 4099B are attached to the interference system 4110 such that the detector cavity has The OPD associated with the degree of freedom detected by the individual detectors. The light is returned along the measurement channel 4051-4052 along the optical fiber 4012 having the same illumination beam and directed to the electronic module 4060, wherein the electronic module 4060 detects and processes the signal of one or more channels for obtaining the monitored ( Plural) information about the degree of freedom.

調整內腔4030的OPD會改變相位調變,其中調整內腔4030的OPD用以決定量測通道中之偵測器空腔的干涉相位和OPD。偵測器系統4000能對以下的量測模式使用相位調變:同調掃描模式和移動(或相位)監測模式。根據所需的模式,偵測器系統4000用以在上述模式之間快速地切換。Adjusting the OPD of the inner cavity 4030 changes the phase modulation, wherein the OPD of the inner cavity 4030 is adjusted to determine the interference phase and OPD of the detector cavity in the measurement channel. The detector system 4000 can use phase modulation for the following measurement modes: coherent scan mode and mobile (or phase) monitoring mode. Depending on the mode desired, the detector system 4000 is used to quickly switch between the modes described above.

在同調掃描模式中,藉著找出內腔中所要調整的點,偵測器的OPD能夠在內腔的調整範圍內被決定,其中在個別通道中的同調訊號之調變為最大值。舉例而言,同調掃描模式能夠用於自動聚焦功能,如以下第38圖和第39圖所示。In the coherent scan mode, by finding the point to be adjusted in the inner cavity, the OPD of the detector can be determined within the adjustment range of the inner cavity, wherein the adjustment of the homology signal in the individual channel becomes the maximum value. For example, the coherent scan mode can be used for the auto focus function, as shown in Figures 38 and 39 below.

在同調掃描模式中,當相位量測計電子模組4060找到量測通道4051-4053的同調峰值時(最大干涉調變),內腔4030的OPD會同時產生大幅度地變動。當通道同調為最大值時,內腔4030的OPD決定該通道之偵測器空腔的OPD。具體而言,在參考信號腔OPD的較佳設定下,參考訊號通道4050的干涉峰值位置和量測通道4051或4052的干涉峰值位置之間的距離顯示偏離最佳聚焦位置之待測物4175的相對位置。In the coherent scan mode, when the phase meter electronic module 4060 finds the coherent peak of the measurement channel 4051-4053 (maximum interference modulation), the OPD of the inner cavity 4030 will simultaneously vary greatly. When the channel is coherent to a maximum value, the OPD of the inner cavity 4030 determines the OPD of the detector cavity of the channel. Specifically, at a preferred setting of the reference signal cavity OPD, the distance between the interference peak position of the reference signal channel 4050 and the interference peak position of the measurement channel 4051 or 4052 shows the object to be tested 4175 deviating from the optimal focus position. relative position.

移動監測模式適用於振動監測。在移動監測模式中,量測通道4051-4053的干涉相位是被快速地量測的(例如,大約50KHz或以上)。因此,若量測通道4051-4053是在照射光的同調峰值中,則一個通道相對於其他任何通道的OPD變動就能夠被監測。The mobile monitoring mode is suitable for vibration monitoring. In the mobile monitoring mode, the interference phase of the measurement channels 4051-4053 is quickly measured (eg, approximately 50 KHz or above). Therefore, if the measurement channels 4051-4053 are in the coherent peak of the illumination light, the OPD variation of one channel relative to any other channel can be monitored.

在移動監測模式中,內腔4030的OPD是以微小的幅度而被高頻地變動,使得偵測器空腔的干涉相位能以極高的更新速度,藉由相位擷取演算法而被計算出來。假設偵測器空腔的變化率是足夠小的,使得相鄰取樣之間的干涉相位變化小於π,因此能夠使用標準相位連接法的連續相位內插。In the mobile monitoring mode, the OPD of the inner cavity 4030 is fluctuated at a high frequency with a small amplitude, so that the interference phase of the detector cavity can be calculated by the phase extraction algorithm at a very high update speed. come out. It is assumed that the rate of change of the detector cavity is sufficiently small that the phase change of the interference between adjacent samples is less than π, so continuous phase interpolation of the standard phase connection method can be used.

在移動監測模式中,參考訊號通道4050能夠將內腔4030中的光程變化從所量測的相位中移除,其中所量測的相位對應於所觀察之待測物表面的移動。舉例而言,參考訊號通道能夠容許內腔的漂移(drift),只要漂移低於所量測之相位的更新頻率。In the mobile monitoring mode, the reference signal channel 4050 is capable of removing the optical path variation in the inner cavity 4030 from the measured phase, wherein the measured phase corresponds to the observed movement of the surface of the object under test. For example, the reference signal channel can tolerate drift of the lumen as long as the drift is below the updated frequency of the measured phase.

在一些實施例中,從偵測器發出的光束大致上是平行於顯微鏡平台之監測軸而傳播的,用以減少錯位(misalignment),其中錯位會在量測到的移動中產生誤差,而該誤差正比於錯位角度的餘弦值。偵測器的回波損耗(return loss)也與照射在待測物表面之入射光束的入射角有關,具體而言,入射角會隨著目標面的偏轉而增加。一般而言,偵測器對偏轉的靈敏度與偵測器設計的細節有關,舉例而言,其可與GRIN透鏡和光束腰部位置的間距有關,這被稱為偵測器工作間距。一般而言,把偵測器的光束垂直地對準所觀察之部分的理論表面將可放大可用的偏轉相空間。In some embodiments, the beam emitted from the detector propagates substantially parallel to the monitoring axis of the microscope platform to reduce misalignment, wherein misalignment can cause errors in the measured movement, and The error is proportional to the cosine of the misalignment angle. The return loss of the detector is also related to the incident angle of the incident beam that is incident on the surface of the object to be tested. Specifically, the angle of incidence increases with the deflection of the target surface. In general, the detector's sensitivity to deflection is related to the details of the detector design. For example, it can be related to the GRIN lens and the spacing of the beam waist position. This is called the detector working pitch. In general, vertically aligning the detector beam with the theoretical surface of the observed portion will amplify the available deflection phase space.

在第33A圖所示的實施例中,當FSM未啟動(energized)時,內腔4030的OPD被定義為『理論OPD』。若偵測器是用來自動聚焦,則當干涉物鏡達到最佳聚焦的情況時,偵測器空腔的OPD應該接近理論OPD。藉此方式,干涉峰值的對比位置便能用以判斷是否達到最佳聚焦。In the embodiment shown in Fig. 33A, when the FSM is not energized, the OPD of the inner cavity 4030 is defined as "theoretical OPD". If the detector is used for autofocus, the OPD of the detector cavity should be close to the theoretical OPD when the interference objective is optimally focused. In this way, the contrast position of the interference peak can be used to determine whether the best focus is achieved.

用來控制內腔OPD的FSM是對溫度敏感的,舉例而言,FSM的OPD溫度係數約為10ppm/C。把兩個FSM以熱接觸的方式靠緊將能夠減少因為溫度差異導致的OPD變動。此外,FSM會被發生蠕變(creep)的PZT所影響。蠕變的成因為:在有熱擾動的情況下,由靜電應力所導致之PZT材料的重新對準,其中蠕變與時間之間具有對數關係。因此,在FSM製造時,要讓內腔之兩路分支光路的光纖長度彼此相等就很困難。The FSM used to control the lumen OPD is temperature sensitive. For example, the FSM has an OPD temperature coefficient of about 10 ppm/C. Tightening the two FSMs in thermal contact will reduce OPD variations due to temperature differences. In addition, the FSM is affected by the creeping PZT. The cause of creep is the realignment of PZT material caused by electrostatic stress in the presence of thermal perturbations, where creep has a logarithmic relationship with time. Therefore, in the manufacture of FSM, it is difficult to make the lengths of the optical fibers of the two branch optical paths of the inner cavity equal to each other.

有鑒於OPD的變異,可以使用一個通道作為補償機制之固定的參考訊號腔。在一些實施例中,參考訊號腔的OPD被設定為等於內腔的理論OPD。一個固定之參考訊號腔的例子如第35圖所示。In view of the variation of OPD, a channel can be used as a fixed reference signal cavity for the compensation mechanism. In some embodiments, the OPD of the reference signal cavity is set equal to the theoretical OPD of the lumen. An example of a fixed reference signal cavity is shown in Figure 35.

參考訊號通道能夠與其餘的量測通道同時且同步地被備妥。當分析監測通道的訊號時,參考相位可以從相位量測結果中被移除。因此,若參考訊號腔的OPD是固定的,只要內腔的OPD變動小於同調長度而使參考訊號不會錯失,則內腔的OPD變動便能夠被移除。The reference signal channel can be prepared simultaneously and simultaneously with the remaining measurement channels. When analyzing the signal of the monitoring channel, the reference phase can be removed from the phase measurement result. Therefore, if the OPD of the reference signal cavity is fixed, the OPD change of the inner cavity can be removed as long as the OPD of the inner cavity is less than the coherence length and the reference signal is not missed.

參考訊號腔更用以定義理論OPD位置,其中理論OPD位置對應於自動聚焦之干涉物鏡的最佳聚焦位置。The reference signal cavity is further used to define a theoretical OPD position, wherein the theoretical OPD position corresponds to the best focus position of the autofocus interference objective lens.

以第36圖~第38圖中,具有偵測器系統之顯微鏡的操作為例。舉例而言,偵測器系統是第33A圖所述的珍測器系統。上述操作包括偵測器系統的自動聚焦功能和移動(或相位)監測功能。Taking the operation of the microscope with the detector system as an example in Figs. 36 to 38. For example, the detector system is the treasurer system described in Figure 33A. The above operations include the auto focus function and the motion (or phase) monitoring function of the detector system.

如第36圖的流程圖4300所示,顯微鏡的頭部(例如干涉顯微鏡的物鏡)是被設置於待測物上方的一個量測位置(步驟4310)。待測物具有一個被顯微鏡檢視的待測表面。As shown in the flow chart 4300 of Fig. 36, the head of the microscope (e.g., the objective lens of the interference microscope) is a measurement position disposed above the object to be tested (step 4310). The object to be tested has a surface to be tested which is examined by a microscope.

在偵測器系統的自動聚焦模式啟動之後(步驟4320),接著進行OPD掃描。After the auto focus mode of the detector system is activated (step 4320), an OPD scan is then performed.

第37圖顯示監測訊號腔之測試訊號的調變波峰4410,以及在自動聚焦之OPD掃描期間所量測之參考訊號腔之參考訊號的調變波峰4420。舉例而言,所測量之訊號是使用電子處理器而被分析的,電子處理器用來區別調變波峰的位置,以及待測物表面相對於最佳聚焦位置的位置(步驟4330)。在本例子中,參考訊號之調變波峰4420的位置表示最佳聚焦位置。Figure 37 shows the modulated peak 4410 of the test signal of the monitoring signal cavity, and the modulated peak 4420 of the reference signal of the reference signal cavity measured during the OPD scan of the autofocus. For example, the measured signal is analyzed using an electronic processor that is used to distinguish the position of the modulated peak and the position of the surface of the object to be measured relative to the best focus position (step 4330). In this example, the position of the modulated peak 4420 of the reference signal represents the best focus position.

根據已決定的相對位置,顯微鏡接著將待測物表面朝向最佳的表面位置移動所量測的距離(步驟4340)。如第38圖所示,待測物表面的最後位置是能夠被驗證的(步驟4350),其中監測訊號腔的調變波峰4410’和參考訊號腔的調變波峰4420發生在OPD掃描之具有相同OPD的位置。為了確保顯微鏡頭部能被正確地定位或精確定位,在步驟4330和4340之後,可以執行迴圈步驟4355。Based on the determined relative position, the microscope then moves the surface of the object to be measured toward the optimal surface position for the measured distance (step 4340). As shown in Fig. 38, the final position of the surface of the object to be tested is verifiable (step 4350), wherein the modulated peak 4410' of the monitoring signal cavity and the modulated peak 4420 of the reference signal cavity are identical in the OPD scan. The location of the OPD. To ensure that the microscope head can be properly positioned or accurately positioned, after steps 4330 and 4340, a loop step 4355 can be performed.

在顯微鏡聚焦之後(當測試訊號腔和參考訊號腔的同調函式重疊時),將OPD掃描之自動聚焦的DC電壓設定為最大調變(步驟4360)。第38圖顯示在偵測器系統中,這種OPD的快速正弦掃瞄。在一些實施例中,具有最大干涉條紋對比度之點的FSM DC電壓是能夠被箝位的。After the microscope is focused (when the homology functions of the test signal cavity and the reference signal cavity overlap), the DC voltage of the autofocus of the OPD scan is set to the maximum modulation (step 4360). Figure 38 shows a fast sinusoidal scan of this OPD in the detector system. In some embodiments, the FSM DC voltage having the point of maximum interference fringe contrast is capable of being clamped.

接著,將振動模式啟動(步驟4370),其中監測待測物表面的移動,然後使用顯微鏡開始待測物的SWLI(或PUPS)掃描量測。移動的同步量測用以計算並且輸出實際的移動資料,其中實際的移動資料和SWLI(或PUPS)資料是同步的。Next, the vibration mode is initiated (step 4370), wherein the movement of the surface of the object to be tested is monitored, and then the SWLI (or PUPS) scan measurement of the object to be tested is started using a microscope. The synchronized sync measurement is used to calculate and output the actual mobile data, where the actual mobile data and SWLI (or PUPS) data are synchronized.

根據實際的移動,所量測的相位變動能夠與SWLI(或PUPS)分析一起被用來移除掃描誤差的影響(步驟4395)。上述移除的過程能夠被即時的進行,或當進行SWLI(或PUPS)資料的後處理時被進行。Based on the actual movement, the measured phase change can be used along with SWLI (or PUPS) analysis to remove the effects of the scan error (step 4395). The above removal process can be performed on-the-fly or when post-processing of SWLI (or PUPS) data is performed.

雖然在上述實施例中,自動聚焦和移動監測的功能是循序進行的,但是每一種上述功能都能被個別地使用,及/或個別地使用複數次。Although in the above embodiment, the functions of autofocus and motion monitoring are performed sequentially, each of the above functions can be used individually and/or individually.

在一些使用自動聚焦模式的實施例中,偵測器系統的OPD掃描和參數是經過選擇的,用以提供:例如,大於1mm的工作範圍;5mm的工作距離;100nm的位置解析度;(在具有結構的部份上)約250nm的位置再現性(position repeatability);直徑約為0.5mm的光點(spot size);以及大於10Hz的速度。In some embodiments using an autofocus mode, the OPD scan and parameters of the detector system are selected to provide: for example, a working range greater than 1 mm; a working distance of 5 mm; a position resolution of 100 nm; The portion having the structure) has a position repeatability of about 250 nm; a spot size of about 0.5 mm in diameter; and a speed of more than 10 Hz.

當自動聚焦功能被用於具有FSM(例如第33圖的干涉系統所顯示的FSM 4032A和4032B)的偵測器系統時,FSM會被相對較慢(例如約10Hz)且振幅較大的正弦電壓所啟動,並且帶測物表面的位置能夠根據介於測試訊號和參考訊號的同調性波峰之間的相對延遲而被決定。OPD總共的變動範圍與FSM 4032A和4032B之捲軸(spools)中的光纖長度以及FSM 4032A和4032B之PZT的最大延伸量有關,所以光纖的最佳用量通常是光纖的長度變動和可以被接受的靈敏度互相權衡之後的結果。舉例而言,使用18m的光纖能夠提供6.6mm的OPD掃描、9.5μm/V的轉換係數以及254μm/C的溫度靈敏度。When the autofocus function is used in a detector system with FSM (such as the FSMs 4032A and 4032B shown in the interference system of Figure 33), the FSM will be relatively slow (eg, about 10 Hz) and have a large amplitude sinusoidal voltage. It is activated and the position of the surface with the test object can be determined based on the relative delay between the homology peaks of the test signal and the reference signal. The total range of variation of the OPD is related to the length of the fiber in the spools of the FSM 4032A and 4032B and the maximum extension of the PZT of the FSM 4032A and 4032B, so the optimum amount of fiber is usually the length variation of the fiber and the acceptable sensitivity. The result after weighing each other. For example, an 18 m fiber can provide an OPD scan of 6.6 mm, a conversion factor of 9.5 μm/V, and a temperature sensitivity of 254 μm/C.

在一些使用移動監測模式的實施例中,偵測器系統的OPD掃描和參數是經過選擇的,用以提供:小於0.2nm的移動解析度、(在具有結構的部份上)小於1nm的再現性、約200kHz的取樣率,以及大於5kHz的更新頻率。In some embodiments using a motion monitoring mode, the OPD scan and parameters of the detector system are selected to provide: a resolution of less than 0.2 nm, and a reproduction of less than 1 nm (on a structured portion) Saturation, sampling rate of approximately 200 kHz, and update frequency greater than 5 kHz.

此外,當自動聚焦功能被用於具有FSM(例如第33A圖的干涉系統所顯示的FSM 4032A和4032B)的偵測器系統時,FSM會被高頻(例如10kHz)波形(提供最佳干涉的DC箝位電壓),以及啟始高頻相位之計算的振幅所啟動。在一些實施例中,若使用的是標準的線性相位移演算法,則這能夠藉由鋸齒或三角的調變資料來完成。在其他實施例中,使用的是正弦的調變和SinPSI演算法。舉例而言,請參考P. J. De Groot一篇有關於正弦相位移演算法的美國專利(發明名稱:”Sinusoidal Phase Shifting Interferometry”;美國專利公開號:US-2008/0180679-A1),及/或一篇名為”Error Compensation in Phase Shifting Interferometry”的美國專利(申請案號:12/408,121;申請日期:2009/03/20),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容,通道能夠以合適的頻率和相位(相對於調變來說)而被同時取樣,使得新相位能夠在每一個週期被取得一次。藉著將相位變動乘上λ/4π,可將相位變動轉換成為實體的長度變動。在上述取樣率下,計算的負擔是很小的,且能夠使用標準的微處理器來為所有通道同時進行即時的處理。In addition, when the autofocus function is used in a detector system with FSM (such as the FSM 4032A and 4032B shown in the interferometric system of Figure 33A), the FSM is subjected to a high frequency (eg, 10 kHz) waveform (providing optimal interference). The DC clamp voltage), as well as the amplitude of the calculated high frequency phase, is initiated. In some embodiments, if a standard linear phase shift algorithm is used, this can be done by sawtooth or triangular modulation data. In other embodiments, sinusoidal modulation and SinPSI algorithms are used. For example, please refer to PJ De Groot, a US patent on the sinusoidal phase shift algorithm (invention name: "Sinusoidal Phase Shifting Interferometry"; US Patent Publication No.: US-2008/0180679-A1), and/or a U.S. Patent Application Serial No.: 12/408,121, filed on Jan. No. 2009. The channels can be simultaneously sampled with the appropriate frequency and phase (relative to modulation) so that the new phase can be taken once per cycle. By multiplying the phase variation by λ/4π, the phase variation can be converted into a change in the length of the entity. At the above sampling rate, the computational burden is small and a standard microprocessor can be used for simultaneous simultaneous processing of all channels.

在干涉量測的期間(例如SWLI或PUPS),腔室的移動能夠被控制干涉系統的微處理器所讀取。藉由回授機制或干涉資料的電子時戳(time stamped to the interferometric data),移動資料能夠來即時地校正干涉系統的掃描移動,並且移動資料也能夠用於干涉資料的後處理,用以校正不被期待的掃描移動,例如使用此處所述的J矩陣近似法。During interferometric measurements (such as SWLI or PUPS), the movement of the chamber can be read by the microprocessor controlling the interferometric system. By means of a feedback mechanism or time stamped to the interferometric data, the moving data can instantly correct the scanning movement of the interference system, and the moving data can also be used for post processing of the interference data for correction. Scanning movements that are not expected, such as using the J matrix approximation described herein.

如前述有關於第33A圖之本發明實施例偵測器系統,雖然使用FSM來改變偵測器系統的內腔之OPD,但亦可使用其他配置。例如,在某些實施例中,偵測器系統能利用光調變器(optical modulator)(例如,一電光調變器(electro-optic modulator)或聲光調變器(Acousto-Optic Modulator))的內腔中的一或兩個光程(或稱光路)(path),以產生導向於干涉偵測器之光分量的相位移。As described above with respect to the detector system of the embodiment of the invention in Fig. 33A, although the FSM is used to change the OPD of the cavity of the detector system, other configurations may be used. For example, in some embodiments, the detector system can utilize an optical modulator (eg, an electro-optic modulator or an Acousto-Optic Modulator). One or two optical paths (or optical paths) in the lumen to produce a phase shift directed to the light component of the interference detector.

舉例來說,偵測器系統使用如第33B圖所述之光調變器。在此實施例中,偵測器系統5400包括五個模組次系統(modular subsystem):照射模組(illumination module)5420、外差模組(heterodyne module)5440、分配模組(distribution module)5460、偵測器5480和檢測與計算模組5499。照射模組5420、外差模組5440和分配模組5460係透過光纖(optical fiber)的連接來產生、限制(condition)和傳遞光至每個偵測器,亦透過光纖接收由偵測器回到分配模組5460的光。分配模組將回授光導入檢測與計算模組5499,其中檢測與計算模組5499偵測光和處理所對應的干涉訊號,用以決定顯微鏡(或其他系統)的資訊以便安排偵測器進行監控。一般來說,儘管參考偵測器提供其他系統額外的資訊以改善偵測器量測的準確度,每個偵測器提供量測之一獨立軸。For example, the detector system uses a light modulator as described in Figure 33B. In this embodiment, the detector system 5400 includes five modular subsystems: an illumination module 5420, a heterodyne module 5440, and a distribution module 5460. The detector 5480 and the detection and calculation module 5499. The illumination module 5420, the heterodyne module 5440 and the distribution module 5460 are configured to generate, condition and transmit light to each detector through an optical fiber connection, and also receive the light through the optical fiber. Light to the distribution module 5460. The distribution module will return the light to the detection and calculation module 5499, wherein the detection and calculation module 5499 detects the interference signal corresponding to the light and the processing, and determines the information of the microscope (or other system) to arrange the detector. monitor. In general, although the reference detector provides additional information about other systems to improve the accuracy of the detector measurement, each detector provides an independent axis of measurement.

照射模組5420包括一光源5422(例如放大自發性放射(amplified spontaneous emission source,ASE))、1:4光切換器(optical switch)5424和5434以及三不同的帶通濾光器(bandpass filter)5426、5428和5430,其中帶通濾光器5426、5428和5430的中心波長不同(分別為λ 1、λ 2和λ 3)。此外,照射模組5420可包括振幅調變器(amplitude modulator)5432。帶通濾光器5426、5428和5430以及振幅調變器5432係以分開的平行通道之方式互相連接於1:4光切換器5424和5434之間,其中1:4光切換器5424和5434可以是微機電(micro-electrical-mechanical,MEMS)切換器。在照射模組5420中使用帶通濾光器5426、5428和5430時,照射模 組5420可提供一輸出光,而輸出光係超過光源5422的發射光譜之三個窄波長範圍(narrow eavelength range),並且振幅調變器5432(如果有的話)提供內部校正功能。The illumination module 5420 includes a light source 5422 (eg, amplified spontaneous emission source (ASE)), 1:4 optical switches 5424 and 5434, and three different bandpass filters. 5426, 5428, and 5430, wherein the center wavelengths of the band pass filters 5426, 5428, and 5430 are different (λ 1, λ 2, and λ 3 , respectively). Additionally, the illumination module 5420 can include an amplitude modulator 5432. Bandpass filters 5426, 5428 and 5430 and amplitude modulator 5432 are interconnected between the 1:4 optical switches 5424 and 5434 in separate parallel channels, wherein 1:4 optical switches 5424 and 5434 can It is a micro-electrical-mechanical (MEMS) switcher. When the band pass filters 5426, 5428, and 5430 are used in the illumination module 5420, the illumination mode is used. Group 5420 can provide an output light that exceeds the three narrow eavelength ranges of the emission spectrum of source 5422, and amplitude modulator 5432 (if any) provides an internal correction function.

一般而言,選擇帶通濾光器5426、5428和5430的傳輸輪廓係用以提供具有一期望同調長度的光,來導入偵測器中。在本實施例中,帶通濾光器5426、5428和5430具有1nm或以上(例如,2nm或以上、3nm或以上、5nm或以上、10nm或以上)的半高寬(full width at half maximum,FWHM)。帶通濾光器5426、5428和5430可具有30nm或以下(例如20nm或以下、15nm或以下、10nm或以下)的半高寬。在某些實施例中,帶通濾光器5426、5428和5430提供具有同調長度的光,其中具有同調長度的光提供超過1mm或以下(例如約800μm或以下、約600μm或以下、約400μm或以下)對比的訊號。In general, the transmission profiles of bandpass filters 5426, 5428, and 5430 are selected to provide light having a desired coherence length for introduction into the detector. In the present embodiment, the band pass filters 5426, 5428, and 5430 have a full width at half maximum of 1 nm or more (for example, 2 nm or more, 3 nm or more, 5 nm or more, 10 nm or more). FWHM). The band pass filters 5426, 5428, and 5430 may have a full width at half maximum of 30 nm or less (for example, 20 nm or less, 15 nm or less, 10 nm or less). In certain embodiments, band pass filters 5426, 5428, and 5430 provide light having a coherent length, wherein light having a coherence length provides more than 1 mm or less (eg, about 800 μm or less, about 600 μm or less, about 400 μm or The following is a comparison of the signals.

在某些實施例中,選擇λ 1、λ 2和λ 3用以助於絕對長度量測(相反於簡單地偵測相對位移),以下做詳細的說明。In some embodiments, λ 1, λ 2, and λ 3 are selected to aid in absolute length measurements (as opposed to simply detecting relative displacement), as described in more detail below.

外差模組5440包括50/50光纖耦合器5442和5448、光調變器5444和5446,以及可選擇的光延遲線5450。這兩個光程形成遠程腔(remote cavity)。50/50光纖耦合器5442從照射模組接收光並且沿著兩平行光程將光分開。至少一光程包括光調變器(光調變器5444或光調變器5446),其中光調變器可以是電光調變器或聲光調變器。兩光程之一可包括光延遲線5450,其中光延遲線5450產生 額外光程長度,偏移偵測器腔所產生之理論OPD。選擇性地,每個光程可包括調變器(光調變器5444或光調變器5446),例如,用以匹配兩路分支光路之熱靈敏度(thermal sensitivity)。The heterodyne module 5440 includes 50/50 fiber couplers 5442 and 5448, optical modulators 5444 and 5446, and an optional optical delay line 5450. These two optical paths form a remote cavity. The 50/50 fiber coupler 5442 receives light from the illumination module and separates the light along two parallel optical paths. At least one optical path includes a light modulator (light modulator 5444 or light modulator 5446), wherein the light modulator can be an electro-optic modulator or an acousto-optic modulator. One of the two optical paths may include an optical delay line 5450, wherein the optical delay line 5450 is generated The extra path length, the theoretical OPD generated by the offset detector cavity. Optionally, each optical path may include a modulator (optical modulator 5444 or optical modulator 5446), for example, to match the thermal sensitivity of the two branched optical paths.

一般而言,光調變器(光調變器5444或光調變器5446)係用以產生兩分支光之間的一控制相位移,其中光分支係沿著內部腔之兩不同光程。舉例來說,在某些實施例中,根據鋸齒訊號來驅動調變器,使得相位調變器的振幅是2 π的整數N倍(例如,調相轉發調變器(Serrodyne modulation))。當串聯耦接其他腔(例如,從偵測器),並且假設光是寬頻帶(broad-band),如果兩耦接的腔之OPD差異在同調長度內,則調相轉發OPD調變器產生調變器頻率N倍之干涉。In general, a light modulator (optical modulator 5444 or light modulator 5446) is used to generate a controlled phase shift between two branches of light, wherein the light branches are along two different optical paths of the internal cavity. For example, in some embodiments, the modulator is driven according to a sawtooth signal such that the amplitude of the phase modulator is an integer multiple of 2π (eg, a phased forward modulator). When the other cavity is coupled in series (for example, from the detector), and the light is broad-band, if the OPD difference of the two coupled cavity is within the coherence length, the phase-modulated forwarding OPD modulator generates Interference of the modulator frequency N times.

第二調變器除了提供一正熱靈敏度匹配作用,亦可調變成低頻率並用以執行如美國專利(美國專利案號U.S.7576868,作者為Demarest)所述之循環相位錯誤補償(cyclic phase error compensation)(上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容)。The second modulator, in addition to providing a positive thermal sensitivity matching, can also be tuned to a low frequency and used to perform cyclic phase error compensation as described in U.S. Patent No. US7576868, entitled Demarest. (All of the above-referenced patent references are incorporated by reference in its entirety herein).

分配模組5460用以執行將光由外差模組5440分配至每個偵測器和參考腔。分配模組5460係由複數個50/50光纖耦合器所組成,用以連接分離的光。其中分離的光係從外差模組5440至多個通道以至於可以將光供應到每個偵測器和參考腔。如第33B圖所示,一初始50/50耦合器5462係接收來自外差模組的光,並將光沿著兩平行通道分離至 50/50耦合器5464和5466,其中各別地依次將入射光分離至兩通道。一旦分離至足夠的通道,每個通道直接通過50/50耦合器(例如,如第33B圖所示之耦合器5468、5470、5472與5474)至偵測器。這些耦合器引導光至偵測器,並將從偵測器回來的光導向檢測與計算模組5499。The distribution module 5460 is configured to perform the distribution of light from the heterodyne module 5440 to each of the detectors and the reference cavity. The distribution module 5460 is composed of a plurality of 50/50 fiber couplers for connecting separate light. The separated light system is from the heterodyne module 5440 to a plurality of channels so that light can be supplied to each of the detectors and the reference cavity. As shown in Figure 33B, an initial 50/50 coupler 5462 receives light from the heterodyne module and separates the light along two parallel channels. 50/50 couplers 5464 and 5466, in which the incident light is separately separated into two channels in sequence. Once separated into sufficient channels, each channel passes directly through a 50/50 coupler (eg, couplers 5468, 5470, 5472, and 5474 as shown in Figure 33B) to the detector. These couplers direct light to the detector and direct the light back from the detector to the detection and calculation module 5499.

如先前所述,偵測器5480包括許多各別量測型偵測器(例如偵測器5482與5484)和參考型偵測器5486、5488與5490,舉例來說,每個量測型偵測器係與一或多個顯微鏡結合在一起。一般來說,參考型偵測器係用以監測與偵測器系統有關之各種參數,並且參考型偵測器所取得的資訊係用以提升偵測器系統的精準度。舉例來說,參考型偵測器包括折射計(refractometer,用以量測偵測器附近及系統其他位置附近的大氣折射係數)和波長計(wavemeter)。舉例來說,折射計可由偵測器結合空氣間隔型標準具(air-spaced etalon)所構成,使得偵測器所量測到相位的變化係歸咎於標準具腔內空氣折射係數的變化。其他參考型偵測器可用以使用固定長度的光學腔(例如標準具)。舉例來說,使用密封標準具的參考型偵測器用以提供參考相位至系統,一第二參考型偵測器可利用具有不同腔長度之固定長度腔,用以提供所使用之相關光波長變化的訊息。As previously described, the detector 5480 includes a plurality of individual measurement detectors (eg, detectors 5482 and 5484) and reference detectors 5486, 5488, and 5490, for example, each measurement type detector. The detector is combined with one or more microscopes. In general, the reference detector is used to monitor various parameters related to the detector system, and the information obtained by the reference detector is used to improve the accuracy of the detector system. For example, the reference type detector includes a refractometer (for measuring the atmospheric refractive index near the detector and other locations near the system) and a wavelength meter. For example, the refractometer can be constructed by a detector combined with an air-spaced etalon such that the phase change measured by the detector is due to changes in the air refractive index within the etalon cavity. Other reference type detectors can be used to use fixed length optical cavities (eg etalon). For example, a reference type detector using a sealed etalon is used to provide a reference phase to the system, and a second reference type detector can utilize a fixed length cavity having a different cavity length to provide a relevant wavelength change of the light used. Message.

一般而言,參考型偵測器可彼此設置很靠近,或可和其他偵測器系統的模組設置在一起。In general, reference detectors can be placed close to each other or can be placed with modules of other detector systems.

檢測與計算模組5499包括複數個檢測器5453,每個檢測器連接至分配模組5460的50/50耦合器,用以接收來自所對應的量測型偵測器或參考型偵測器所輸出的光。檢測器(detection)5453係連接一檢測與放大次模組(detection and amplification sub-module)5492,其中檢測與放大次模組5492從檢測器接收訊號並放大所接收之訊號(例如訊號的分量,訊號的交流分量)並將已放大的訊號導向分析次模組(analysis sub-module)5494(應用特定的積分電路)。一般而言,檢測與計算模組可以是一個單獨模組(stand alone module)、一種結合系統5400內其他模組之模組或結合處理型電子裝置(例如電腦的一部分)之模組。The detection and calculation module 5499 includes a plurality of detectors 5453, each of which is coupled to a 50/50 coupler of the distribution module 5460 for receiving from a corresponding measurement type detector or reference type detector. The light output. A detector 5453 is coupled to a detection and amplification sub-module 5492, wherein the detection and amplification sub-module 5492 receives a signal from the detector and amplifies the received signal (eg, a component of the signal, The AC component of the signal) directs the amplified signal to an analysis sub-module 5494 (application-specific integration circuit). In general, the detection and computing module can be a stand alone module, a module that incorporates other modules within the system 5400, or a module that combines processing electronics (such as a portion of a computer).

舉例來說,系統5400根據從偵測器相對於折射計與波長計所監測的干涉訊號的相位改變,來追蹤偵測器腔的OPD之增量改變(incremental changes)(對應於顯微鏡的物鏡與待測物之間的移動),此是在單波長(例如λ1、λ2和λ3之一者)的情況。For example, system 5400 tracks the incremental changes in the OPD of the detector cavity based on the phase change of the interferometric signal monitored by the detector relative to the refractometer and the wavelength meter (corresponding to the objective lens of the microscope) The movement between the analytes, which is the case at a single wavelength (for example one of λ1, λ2 and λ3).

各式各樣的操作模式亦可用來減少各種系統量測上明顯的誤差。舉例來說,取得取數據時間(data age)之資訊並將其資訊應用於之後的量測,並可藉由量測每個通道間的相對相位偏差來完成,亦並等同於量測每個通道的光纖長度。舉例來說,藉由振幅調變器5432調變光源的振幅而變動振幅調變器的頻率至超過操作範圍,並量測每個通道間之一相對相位偏差,來決定與頻率函數相關的取數據時間。A wide variety of operating modes can also be used to reduce significant errors in various system measurements. For example, taking the information of the data age and applying the information to the subsequent measurements can be done by measuring the relative phase deviation between each channel, and is equivalent to measuring each The fiber length of the channel. For example, by adjusting the amplitude of the light source by the amplitude modulator 5432, the frequency of the amplitude modulator is varied to exceed the operating range, and a relative phase deviation between each channel is measured to determine the frequency function correlation. Data time.

系統5400亦可用來量測照射源的絕對波長,舉例來說,每個光纖波長(即λ1、λ2和λ3)的熱變化可影響光譜特性。舉例來說,藉由量測兩不同已知路徑之固定參考腔間的相對相位差異來實施。根據兩已知固定參考腔所量測到的相位差、不同腔長度值和腔內介質的折射係數可得出每個光纖所輸出的絕對波長。System 5400 can also be used to measure the absolute wavelength of the illumination source, for example, thermal variations of each fiber wavelength (i.e., λ1, λ2, and λ3) can affect spectral characteristics. This is done, for example, by measuring the relative phase difference between fixed reference cavities of two different known paths. The absolute wavelength output by each fiber can be derived from the phase difference measured by two known fixed reference cavities, the different cavity length values, and the refractive index of the intracavity medium.

系統5400亦可用以量測每個偵測器的絕對腔之OPD。舉例來說,對每個光纖輸出波長而言,以固定參考腔為基準量測每個偵測器所輸出的光之相位。此提供三個對應相位φλ1、φλ2和φλ3至每個偵測器。系統使用相位差(φλ1-λ2、φλ2-λ3和φλ3-λ1)來計算波長量級(wave order)和每個光纖輸出訊號(如先前所述)的絕對波長。如習知多波長干涉法(multi-wavelength interferometry),之後系統使用前述波長量級和每個腔的單相位(例如相位φλ1)來計算每個偵測器腔的絕對OPDSystem 5400 can also be used to measure the OPD of the absolute cavity of each detector. For example, for each fiber output wavelength, the phase of the light output by each detector is measured against a fixed reference cavity. This provides three corresponding phases φλ1, φλ2, and φλ3 to each detector. The system uses phase differences (φλ1-λ2, φλ2-λ3, and φλ3-λ1) to calculate the wavelength order and the absolute wavelength of each fiber output signal (as previously described). As is known in the art of multi-wavelength interferometry, the system then uses the aforementioned wavelength magnitude and the single phase of each cavity (eg, phase φλ1) to calculate the absolute OPD of each detector cavity.

一般而言,外差模組5440的內腔所產生之OPD和偵測器腔所產生之OPD需要在光源的同調長度內,用以提供干涉訊號。較短的同調長度之光源亦用以消除同調雜訊(coherence noise)(例如光介面的影響,而光介面係偵測器之測試表面或參考表面)。一般而言,光延遲線5450用以偏差標稱的偵測器的OPD,以便在檢測器中的已檢測光之至少一特定分量具有標稱地零OPD(nominally zero OPD)。然而,偵測器的OPD與標稱偵測器的OPD僅微小背離的情況下(例如小於1mm),此裝置才提供的干涉訊號。In general, the OPD generated by the inner cavity of the heterodyne module 5440 and the OPD generated by the detector cavity need to be within the coherence length of the light source to provide an interference signal. A shorter coherent length source is also used to eliminate coherence noise (eg, the effects of the optical interface, and the photo interface detector's test surface or reference surface). In general, optical delay line 5450 is used to bias the OPD of the nominal detector such that at least a particular component of the detected light in the detector has a nominal zero OPD. However, if the OPD of the detector is only slightly deviated from the OPD of the nominal detector (for example, less than 1 mm), the device provides an interference signal.

在某些實施例中,FSM和光調變器用以提供適當的腔之OPD範圍和適當的精準移動監測(accurate motion monitoring)的相位移特性。舉例來說,在本實施例中,光調變器5446可由FSM所取代。FSM可使用在較大的OPD掃描(例如在毫米等級下,約1-10mm)。舉例來說,自動對焦目標則需要這種掃描,在這種情況下,是需要較小的相位移(例如外差模組的OPD和偵測器的OPD標稱地互相偏移),相位移在光調變器被取代下仍可執行。舉例來說,使用光調變器時,待測物保持在顯微鏡的物鏡下之同一位置,而偵測器用來進行振動監控。In some embodiments, the FSM and the optical modulator are used to provide an appropriate cavity OPD range and appropriate phase shift characteristics of accurate motion monitoring. For example, in the present embodiment, the optical modulator 5446 can be replaced by an FSM. The FSM can be used in larger OPD scans (eg, at the millimeter level, about 1-10 mm). For example, autofocus targets require this type of scanning, in which case a smaller phase shift is required (eg, the OPD of the heterodyne module and the OPD of the detector are nominally offset from each other), phase shift It can still be executed when the light modulator is replaced. For example, when using a light modulator, the object to be tested remains in the same position under the objective lens of the microscope, and the detector is used for vibration monitoring.

一般而言,有多種形式的干涉物鏡能夠與具有偵測器的偵測器系統一起使用,用以在操作期間,與監測面形成監測訊號腔。以下將說明一些例子,其中偵測器被設置於干涉物鏡,讓使用被干涉物鏡檢視之待測物的監測訊號腔能夠被形成。In general, a variety of forms of interference objective can be used with a detector system having a detector to form a monitoring signal cavity with the monitoring surface during operation. Some examples will be described below in which the detector is disposed on the interference objective to allow the monitoring signal cavity using the object to be inspected by the interference objective to be formed.

如第33圖所示,第39圖為干涉物鏡單元4540的放大圖,其包括Mirau干涉物鏡4167和偵測器環4545。Mirau干涉物鏡4167包括透鏡4550和鏡子4560,透鏡4550和鏡子4560用以提供干涉量測之待測物的光程和參考物的光程。偵測器環4545包括偵測器4099A和4099B,其中偵測器4099A和4099B藉由光纖4012連接至子系統4010,如第33圖所示。偵測器4099A和4099B發出入射光,垂直照射在待測物4175上,藉此在Mirau干涉物鏡4167的FOV之外,與待測物表面形成監測訊號腔。As shown in Fig. 33, Fig. 39 is an enlarged view of the interference objective unit 4540 including a Mirau interference objective lens 4167 and a detector ring 4545. The Mirau interference objective 4167 includes a lens 4550 and a mirror 4560 for providing an optical path of the object to be measured and an optical path of the reference. The detector ring 4545 includes detectors 4099A and 4099B, wherein the detectors 4099A and 4099B are coupled to the subsystem 4010 by an optical fiber 4012, as shown in FIG. The detectors 4099A and 4099B emit incident light and are vertically irradiated on the object to be tested 4175, thereby forming a monitoring signal cavity on the surface of the object to be tested in addition to the FOV of the Mirau interference objective lens 4167.

第40圖偵測器4570和Michelson干涉物鏡4580的組合。藉由分光鏡4585,偵測器4570的照射光大致上在Michelson干涉物鏡4580的FOV內。The combination of the 40th detector 4570 and the Michelson interference objective 4580. With the beam splitter 4585, the illumination of the detector 4570 is substantially within the FOV of the Michelson interference objective 4580.

第41圖顯示在Linnik干涉物鏡4592中兩個偵測器4590A和4590B的配置方式。Linnik干涉物鏡4592包括Schwarzschild光學組件4594A和4594B。每一個待測物分支4596A和參考物分支4596B中的偏振器P係為偏振的Linnik,並缺乏非偏振型式。偵測器4590A和4590B設置在Linnik干涉物鏡4592的中間位置。偵測器4590A(例如在Linnik干涉物鏡4592的FOV內)照射待測物4175,藉此與待測物4175的表面形成第一監測訊號腔。類似地,偵測器4590B照射待測物4181,藉此與參考物4181的表面形成第二監測訊號腔。如上所述,設置參考物4181之目的是為了提供干涉之SWLI量測的相位移。Figure 41 shows the arrangement of the two detectors 4590A and 4590B in the Linnik Interference Objective 4592. The Linnik Interferometric Objective 4592 includes Schwarzschild optical components 4594A and 4594B. The polarizer P in each of the analyte branch 4596A and the reference branch 4596B is polarized Linnik and lacks a non-polarized pattern. Detectors 4590A and 4590B are disposed intermediate the Linnik interference objective 4592. The detector 4590A (eg, within the FOV of the Linnik interference objective 4592) illuminates the object under test 4175, thereby forming a first monitor signal cavity with the surface of the object under test 4175. Similarly, the detector 4590B illuminates the object to be tested 4181, thereby forming a second monitoring signal cavity with the surface of the reference 4181. As described above, the purpose of setting the reference 4181 is to provide a phase shift of the SWLI measurement of the interference.

如上所述,偵測器系統能夠根據所使用的干涉物鏡而以多種方式被配置。此外,偵測器系統也能夠根據干涉量測所使用的掃描模式而以多種方式被配置。舉例而言,當保持在掃描位置時,我們能夠根據所掃描的是焦平面或是光程長度而決定是該掃瞄是焦平面掃描和光程長度掃描。As mentioned above, the detector system can be configured in a variety of ways depending on the interference objective used. In addition, the detector system can also be configured in a variety of ways depending on the scanning mode used for the interferometry. For example, when held in the scanning position, we can decide whether the scan is a focal plane scan and an optical path length scan depending on whether the focal plane or the optical path length is scanned.

在焦平面掃描中,因為干涉物鏡的焦平面位置相對於待測物表面是會變動的,所以干涉物鏡通常被整體地移動。焦平面掃描能夠與具有不可存取之參考面(例如Mirau式的干涉物鏡)的干涉物鏡一起使用。In the focal plane scanning, since the focal plane position of the interference objective lens is varied with respect to the surface of the object to be tested, the interference objective lens is generally moved integrally. The focal plane scan can be used with an interference objective having an inaccessible reference plane, such as a Mirau-like interference objective.

在光程長度掃描中,參考面被移動(例如其位置是被正弦調變的),而焦平面是固定的。光程長度掃描能夠與Linnik或Michelson干涉物鏡一起使用,其中參考面能夠被存取並且能夠進行SWLI和PUPS的干涉量測。In optical path length scanning, the reference plane is moved (eg, its position is sinusoidally modulated) and the focal plane is fixed. The optical path length scan can be used with a Linnik or Michelson interference objective, where the reference surface can be accessed and the interference measurement of SWLI and PUPS can be performed.

如適用於焦平面掃描的例子,第42A圖~第42C圖具有通用型干涉物鏡4600的偵測器配置。雖然在第42A圖~第42C圖僅顯示一個偵測器,但是在其餘的圖示中,所使用的偵測器大多都超過一個,用以作為冗餘或提供角度的移動資訊。As for the example of focal plane scanning, the 42A to 42C have a detector configuration of the general-purpose interference objective 4600. Although only one detector is shown in Figures 42A through 42C, in the remaining illustrations, most of the detectors used are more than one for redundant or angular motion information.

在第42A圖中,偵測器4610被埋入用來乘載待測物的基座4620中,並且偵測器4610監測通用型干涉物鏡4600相對於基座4620的移動。在第42B圖中,偵測器4630附加於通用型干涉物鏡4600,並且偵測器4630監測通用型干涉物鏡4600相對於基座4620的移動(若基座的表面部份形成監測訊號腔),或直接監測通用型干涉物鏡4600相對於待測物的移動(若待測物的表面部份形成監測訊號腔)。在第42C圖中,偵測器4640被設置於通用型干涉物鏡4600的一側,使得偵測器4640發射出偵測光束4650,而偵測光束4650被傾斜地反射離開基座4620或待測物表面,然後再從設置在通用型干涉物鏡4600之另一側的鏡子4600反射回到偵測器4640。當偵測光束4650從通用型干涉物鏡4600的量測點4670(如第42C圖所示)反射回來時,第42C圖的組態能夠減少Abb誤差,但是卻會降低垂直移動的靈敏度。In FIG. 42A, the detector 4610 is buried in the pedestal 4620 for carrying the object under test, and the detector 4610 monitors the movement of the universal interference objective 4600 relative to the pedestal 4620. In FIG. 42B, the detector 4630 is attached to the universal interference objective lens 4600, and the detector 4630 monitors the movement of the universal interference objective lens 4600 relative to the base 4620 (if the surface portion of the base forms a monitoring signal cavity), Or directly monitoring the movement of the universal interference objective lens 4600 relative to the object to be tested (if the surface portion of the object to be tested forms a monitoring signal cavity). In FIG. 42C, the detector 4640 is disposed on one side of the universal interference objective lens 4600, such that the detector 4640 emits the detection beam 4650, and the detection beam 4650 is obliquely reflected off the pedestal 4620 or the object to be tested. The surface is then reflected back from the mirror 4600 disposed on the other side of the universal interference objective 4600 back to the detector 4640. When the detection beam 4650 is reflected back from the measurement point 4670 of the universal interference objective lens 4600 (as shown in Fig. 42C), the configuration of Fig. 42C can reduce Abb. Error, but it will reduce the sensitivity of vertical movement.

Michelson和Linnik干涉物鏡能夠以特別簡單的偵測器組態來進行焦平面掃描,其中Michelson和Linnik干涉物鏡藉由Michelson和Linnik干涉物鏡的光學組件來定義偵測光束的光程,用以減少Abb誤差且不影響垂直移動的靈敏度。Michelson and Linnik Interferometric Objectives enable focal plane scanning with a particularly simple detector configuration, with Michelson and Linnik Interferometric Objectives defining the optical path of the detected beam by the optical components of the Michelson and Linnik Interferometric Objectives to reduce Abb The error does not affect the sensitivity of vertical movement.

舉例而言,具有如第43A圖所示之偵測器4570的Michelson干涉物鏡組合對應於第41圖的組態,其中偵測器4570的偵測光束4680被分光鏡4585垂直地反射至待測物4175上。偵測器4570能夠提供內建的參考面(如第34圖所示)以提供干涉腔。For example, a Michelson interference objective combination having a detector 4570 as shown in FIG. 43A corresponds to the configuration of FIG. 41, wherein the detection beam 4680 of the detector 4570 is vertically reflected by the beam splitter 4585 to be tested. On object 4175. The detector 4570 can provide a built-in reference plane (as shown in Figure 34) to provide an interference cavity.

相較於第34A圖的組態,因為Michelson干涉物鏡的參考物分支4686也提供用以作為偵測器4570A之參考物的參考物4688,所以第43B圖所示的組態能夠僅以一個不提供內建參考面的偵測器4570A而被操作。具體而言,分光鏡4585和偵測光束4680的交互作用是用以使得參考物光束4690被傳送至參考物4688,並由參考物4688被反射回來。舉例而言,分光鏡4585是根據偏振狀態或分離波長的方式進行分光。Compared to the configuration of Figure 34A, since the reference branch 4686 of the Michelson Interferometric Objective also provides a reference 4688 for use as a reference for the detector 4570A, the configuration shown in Figure 43B can only be one. The detector 4570A, which provides a built-in reference plane, is operated. In particular, the interaction of the beam splitter 4585 and the detection beam 4680 is such that the reference beam 4690 is transmitted to the reference 4688 and reflected back by the reference 4688. For example, the beam splitter 4585 performs splitting according to a polarization state or a separation wavelength.

在另外一個例子中,第34C圖顯示Linnik干涉物鏡與以透鏡為基礎的待測物干涉物鏡4715和以透鏡為基礎的參考物干涉物鏡4718的組合物。如第34A圖所示,偵測器4700的偵測光束4710被分光鏡4720垂直地反射至待測物4175。偵測器4700能夠提供內建的參考面(如第34圖所示)以提供干涉腔。In another example, Figure 34C shows a combination of a Linnik interference objective with a lens-based object interference objective 4715 and a lens-based reference interference objective 4718. As shown in FIG. 34A, the detecting beam 4710 of the detector 4700 is vertically reflected by the beam splitter 4720 to the object to be tested 4175. The detector 4700 can provide a built-in reference plane (as shown in Figure 34) to provide an interference cavity.

相較於第34C圖的組態,因為Linnik干涉物鏡的參考物分支4686也提供用以作為偵測器4700A之參考物的參考物4740,所以第43D圖所示的組態能夠僅以一個不提供內建參考面的偵測器4700A而被操作。具體而言,分光鏡4720和偵測光束4710的交互作用是用以使得參考物光束4750被傳送至參考物4740,並由參考物4740被反射回來。舉例而言,分光鏡4720是根據偏振狀態或分離波長的方式進行分光。Compared to the configuration of Fig. 34C, since the reference branch 4686 of the Linnik interference objective also provides a reference 4740 for use as a reference for the detector 4700A, the configuration shown in Fig. 43D can only be one. A detector 4700A with a built-in reference plane is provided to operate. In particular, the interaction of the beam splitter 4720 and the detection beam 4710 is such that the reference beam 4750 is transmitted to the reference 4740 and reflected back by the reference 4740. For example, the beam splitter 4720 performs splitting according to a polarization state or a separation wavelength.

雖然第43A圖~第43D圖是以焦平面掃描的模式加以說明,但是在一些實施例中,偵測器系統也能夠與以光程長度掃描模式操作的干涉系統結合。在光程長度掃描中,干涉物鏡所掃描的是參考面而非待測物表面,用以在干涉量測過程中變動OPD。Although Figures 43A through 43D are illustrated in a focal plane scanning mode, in some embodiments, the detector system can also be combined with an interference system operating in an optical path length scanning mode. In the optical path length scan, the interference objective scans the reference surface instead of the surface of the object to be tested to change the OPD during the interference measurement.

以第44A圖為例,Michelson干涉物鏡與偵測器4800結合而與參考物4810的背側表面形成監測訊號腔。被參考物4810反射回來之偵測器4800的偵測光束4820對參考物4810的移動是敏感的,並且偵測器4800的偵測光束4820能夠用來校正移動誤差,但是無法用來校正自動聚焦。偵測器4800能夠提供內建的參考面(如第34圖所示)以提供干涉腔。Taking Figure 44A as an example, the Michelson interference objective combines with the detector 4800 to form a monitoring signal cavity with the backside surface of the reference 4810. The detection beam 4820 of the detector 4800 reflected back by the reference 4810 is sensitive to the movement of the reference 4810, and the detection beam 4820 of the detector 4800 can be used to correct the movement error, but cannot be used to correct the auto focus. . The detector 4800 can provide a built-in reference plane (as shown in Figure 34) to provide an interference cavity.

在另外一個例子中,第44B圖顯示具有偵測器4830之Linnik干涉物鏡的組合。如第44A圖所示,偵測器4830的偵測光束4840被參考物4686反射回來。偵測器4830能夠提供內建的參考面(如第34圖所示)以提供干涉腔。In another example, Figure 44B shows a combination of Linnik interference objectives with detector 4830. As shown in FIG. 44A, the detection beam 4840 of the detector 4830 is reflected back by the reference object 4686. The detector 4830 can provide a built-in reference plane (as shown in Figure 34) to provide an interference cavity.

以使用不具有內建參考面的偵測器為例,第43B圖和第43D圖所示的組態能夠用於光程長度掃描。接著,所進行的並非掃描待測物4175或在待測物分支中之Linnik待測物鏡,而是保持待測物分支中的焦平面位置並且改變參考物4688的位置(第43B圖)與參考物4740、Linnik參考物鏡4740的位置(第43D圖),或兩者同時進行。For example, using a detector that does not have a built-in reference plane, the configurations shown in Figures 43B and 43D can be used for optical path length scanning. Then, what is performed is not to scan the object to be tested 4175 or the Linnik object to be tested in the branch of the object to be tested, but to maintain the focal plane position in the branch of the object to be tested and change the position of the reference object 4688 (Fig. 43B) and the reference. The position of the object 4740, the Linnik reference objective 4740 (Fig. 43D), or both.

在一些應用中,參考面和目標面是同時被掃瞄的。接著,使用偵測器系統來同時監測兩種移動。此外,額外的自由度也能夠被監測,例如參考面的偏轉,其中間測參考面的偏轉對PUPS的應用非常有用。In some applications, the reference and target faces are scanned simultaneously. Next, the detector system is used to monitor both movements simultaneously. In addition, additional degrees of freedom can be monitored, such as deflection of the reference plane, where the deflection of the reference plane is very useful for PUPS applications.

兩個(或以上之)分立的偵測器能夠用來同時監測兩種(或以上的)移動,舉例而言,如第33圖所示,偵測器被連接至子系統4010的個別通道。第45A圖~第45C圖顯示將兩個(或以上的)偵測器設置在Michelson或Linnik干涉儀的方式。Two (or more) discrete detectors can be used to simultaneously monitor two (or more) movements, for example, as shown in Figure 33, the detectors are connected to individual channels of subsystem 4010. Figures 45A through 45C show how two (or more) detectors can be placed in a Michelson or Linnik interferometer.

第45A圖是第42B圖與第44A圖的組合,其中被安置在Michelson干涉物鏡的第一偵測器4630A被用來監測待測物4175相對於Michelson干涉物鏡的移動,而第二偵測器4800A用來監測參考物4686的移動。Figure 45A is a combination of Figure 42B and Figure 44A, wherein the first detector 4630A disposed in the Michelson interference objective is used to monitor the movement of the object under test 4175 relative to the Michelson interference objective, and the second detector The 4800A is used to monitor the movement of the reference 4686.

第45B圖是第42B圖與第44B圖的組合,其中安置在Linnik干涉物鏡之第一偵測器4630B監測待測物4175相對於Linnik干涉物鏡的移動,而第二偵測器4830B偵測參考物的移動4740。Figure 45B is a combination of the 42B and 44B, wherein the first detector 4630B disposed in the Linnik interference objective monitors the movement of the object 4175 relative to the Linnik interference objective, and the second detector 4830B detects the reference. The movement of the object is 4740.

第45C圖的組態類似於第45B圖的組態,其中除了參考物4740的移動之外,參考物4740之參考面的偏轉和活塞運動是由兩個偵測器4830C和4830D所監測的。第46圖顯示一實施例,其中偵測器4800直接偵測掃瞄器4810的移動,而非偵測干涉腔。若掃瞄器4810是移動不確定性的最大來源,則進行掃描器4810的監測使得比較粗略且便宜的掃描機制能夠被使用。The configuration of Figure 45C is similar to the configuration of Figure 45B, in which the deflection of the reference surface of reference 4740 and the piston motion are monitored by two detectors 4830C and 4830D in addition to the movement of reference 4740. Figure 46 shows an embodiment in which the detector 4800 directly detects the movement of the scanner 4810 rather than detecting the interference cavity. If the scanner 4810 is the largest source of motion uncertainty, then monitoring of the scanner 4810 enables a relatively coarse and inexpensive scanning mechanism to be used.

第47圖顯示一實施例,若待測物4175的待測物表面4820太小而無法用離軸(off-axis)偵測器直接偵測,或待測物4175的待測物表面4820具有一表面斜率,而該表面斜率無法提供可靠的回波訊號至偵測器4830,則第47圖所示的實施例使得干涉訊號腔能夠被監測。在本組態中,待測物4175被設置在基座4840的特別位置上,其中基座4840具有被偵測器4830偵測的鏡子4850。鏡子表面的高度對應於待測物4175的延伸面高度。舉例而言,這種組態能夠用於裝配產線,在裝配產線上,待測物都是非常類似的。第48A圖和第48B圖顯示將物鏡轉台(objective turret)4900納入的實施例,其中物鏡轉台4900具有可旋轉部位4940與不可旋轉部位4930。舉例而言,物鏡轉台能用於顯微鏡以提供不同類型(例如具有不同量測放大率)的物鏡4910A和4910B。在第48A圖,每一個物鏡4910A和4910B都具有附加於其上的偵測器4920A和4920B,而在第48B圖,只有一個偵測器4910C附加於物鏡轉台4900的不可旋轉部位上。第48A圖的組態(比較)不會受到機械連動裝置之不可預期移動的影響,其中機械連動裝置介於物鏡轉台4900之可旋轉部位4940與不可旋轉部位4930之間,這是因為機械連動裝置的移動是被偵測器4920A和4920B所監測的。然而,第48B圖的組態所需的偵測器比較少,並且當物鏡轉台4900旋轉時,也不需考慮訊號回傳光纖(return fiber)的纏繞問題。Figure 47 shows an embodiment in which the surface 4820 of the object to be tested 4175 is too small to be directly detected by an off-axis detector, or the surface 4820 of the object to be tested 4175 has A surface slope that does not provide a reliable echo signal to detector 4830, the embodiment shown in Figure 47 enables the interferometric signal cavity to be monitored. In the present configuration, the object to be tested 4175 is disposed at a special position of the base 4840, wherein the base 4840 has a mirror 4850 detected by the detector 4830. The height of the mirror surface corresponds to the height of the extended surface of the object to be tested 4175. For example, this configuration can be used to assemble a production line where the objects to be tested are very similar. 48A and 48B show an embodiment in which an objective turret 4900 is incorporated, wherein the objective turret 4900 has a rotatable portion 4940 and a non-rotatable portion 4930. For example, an objective turret can be used with a microscope to provide different types of objective lenses 4910A and 4910B (eg, having different measurement magnifications). In Fig. 48A, each of the objective lenses 4910A and 4910B has detectors 4920A and 4920B attached thereto, and in Fig. 48B, only one detector 4910C is attached to the non-rotatable portion of the objective lens turntable 4900. The configuration (comparison) of Fig. 48A is not affected by the unpredictable movement of the mechanical linkage, which is between the rotatable portion 4940 of the objective turret 4900 and the non-rotatable portion 4930 because of the mechanical linkage The movement is monitored by detectors 4920A and 4920B. However, the configuration of Figure 48B requires fewer detectors and does not require consideration of the winding of the return fiber when the objective turret 4900 is rotated.

在某些實施例中,單偵測器系統可用以監控複數顯微鏡。舉例來說,關於第53圖,系統5300包括三個顯微鏡5310、5320和5330,而每個顯微鏡具有與各自相關的干涉偵測器(interferometric sensor)。詳細而言,偵測器5312係與顯微鏡5310有關、偵測器5322係與顯微鏡5320有關以及偵測器5332係與顯微鏡5330有關。In some embodiments, a single detector system can be used to monitor a complex microscope. For example, with respect to Figure 53, system 5300 includes three microscopes 5310, 5320, and 5330, with each microscope having an interferometric sensor associated with each. In detail, the detector 5312 is associated with the microscope 5310, the detector 5322 is associated with the microscope 5320, and the detector 5332 is associated with the microscope 5330.

顯微鏡5310係用以觀察被平台(stage)5314所支撐的待測物5311。類似地,顯微鏡5320係用以觀察被平台5324所支撐的待測物5321,顯微鏡5330係用以觀察被平台5334所支撐的待測物5331。The microscope 5310 is for observing the object to be tested 5311 supported by the stage 5314. Similarly, the microscope 5320 is used to observe the object to be tested 5321 supported by the platform 5324, and the microscope 5330 is used to observe the object 5331 supported by the platform 5334.

偵測器系統的各種元件係設置在模組5340,其中模組5340設置在偵測器5312、5322與5332的遠端。舉例來說,偵測器系統光源、光分配模組、遠端腔和相位量測計電子模組可設置在模組5340。舉例來說,一般模組5340和偵測器間的連結可以是光纖,用以從分配模組傳遞光至偵測器,並且從偵測器回傳至相位量測計電子模組,而相位量測計電子模組係設置在模組5340內。The various components of the detector system are disposed in module 5340, wherein module 5340 is disposed at the distal ends of detectors 5312, 5322, and 5332. For example, the detector system light source, the light distribution module, the remote cavity, and the phase meter electronic module can be disposed in the module 5340. For example, the connection between the general module 5340 and the detector may be an optical fiber for transmitting light from the distribution module to the detector and returning from the detector to the phase measuring meter electronic module, and the phase The gauge electronic module is disposed within the module 5340.

一般而言,偵測器5312、5322和5332可以各種方式與所對應的顯微鏡有關。一般而言,此種關聯意味著偵測器用以提供待測物和顯微鏡間至少一自由度的相關資訊。舉例來說,偵測器設置在顯微鏡物鏡上或靠近顯微鏡物鏡的位置,並且相關光學組件設置在所對應的待測物上或待測物的附近(例如固定在所對應的平台上)。這類裝置的實例已在先前討論過。In general, detectors 5312, 5322, and 5332 can be associated with the corresponding microscope in a variety of ways. In general, this association means that the detector is used to provide information about at least one degree of freedom between the object under test and the microscope. For example, the detector is disposed on or near the objective lens of the microscope, and the relevant optical component is disposed on the corresponding object to be tested or in the vicinity of the object to be tested (for example, fixed on the corresponding platform). Examples of such devices have been previously discussed.

此外,雖然第53圖所述之偵測器設置在所對應的顯微鏡(相對於平台),但亦可使用其他配置。舉例來說,在某些實施例中,偵測器可物理性地連接至平台,並且偵測器包括連接至顯微鏡的光學組件。In addition, although the detector described in FIG. 53 is disposed on the corresponding microscope (relative to the platform), other configurations may be used. For example, in some embodiments, the detector can be physically coupled to the platform and the detector includes an optical component that is coupled to the microscope.

一般來說,使用系統5300可檢視各種不同形式的待測物。舉例來說,在某些實施例中,待測物係平面顯示器(例如支援薄膜電晶體(TFT)之顯示基板或其他積體電路元件)。在本實施例中,待測物係半導體晶圓。In general, the system 5300 can be used to view various types of analytes. For example, in some embodiments, the object to be tested is a flat panel display (eg, a display substrate or other integrated circuit component that supports thin film transistors (TFTs)). In this embodiment, the object to be tested is a semiconductor wafer.

在某些實施例中,一個或多個顯微鏡5310、5320和5330可用以檢視相同待測物。舉例來說,兩或兩個以上的顯微鏡可用以檢視基板(例如顯示基板)的不同部分。In some embodiments, one or more microscopes 5310, 5320, and 5330 can be used to view the same analyte. For example, two or more microscopes can be used to view different portions of a substrate (eg, a display substrate).

一般來說,系統5300僅包括三個顯微鏡時,單偵測器系統用以監控任何數量的顯微鏡(例如4個或以上、5個或以上、6個或以上、8個或以上、10個或以上)。進一步來說,當每個顯微鏡只與一個偵測器有關時,單顯微鏡可連結一個以上的偵測器。舉例來說,在某些實施例中,顯微鏡可包括複數個物鏡,每個物鏡包括一相關的偵測器(例如如第33圖所示)。In general, when the system 5300 includes only three microscopes, a single detector system is used to monitor any number of microscopes (eg, 4 or more, 5 or more, 6 or more, 8 or more, 10 or the above). Further, when each microscope is associated with only one detector, a single microscope can be connected to more than one detector. For example, in some embodiments, the microscope can include a plurality of objective lenses, each of which includes an associated detector (e.g., as shown in Figure 33).

其他實施例(Alternative embodiments)Other embodiments (Alternative embodiments)

雖然上述一些實施例中的光源子系統包括主光源163和第二光源197,但是其他組態也是可能的。一般而言,第二光源197所發出的光波長是能夠被改變的,用以提供能夠被第二偵測器所偵測之所需的波長。所選擇的波長可能落於主光源163的頻寬之內,或為完全不同的波長。舉例而言,主光源163被選來提供白色光源、可見光源;而第二光源提供光譜之UV或IR部分的光源。此外,第二光源197同時(或依序地)提供具有一系列離散波長的光源。While the light source subsystem in some of the above embodiments includes the primary light source 163 and the second light source 197, other configurations are possible. In general, the wavelength of light emitted by the second source 197 can be varied to provide the desired wavelength that can be detected by the second detector. The selected wavelength may fall within the bandwidth of the primary source 163 or be a completely different wavelength. For example, primary light source 163 is selected to provide a white light source, a visible light source; and a second light source provides a source of UV or IR portions of the spectrum. Additionally, the second source 197 provides a source of light having a series of discrete wavelengths simultaneously (or sequentially).

此外,在一些實施例中,光源子系統包括單一光源,而非彼此分立的主光源和第二光源。單一光源產生作為主偵測器191之入射光的光源,也產生作為第二偵測器199之入射光的光源。舉例而言,與第二偵測器199搭配使用的濾光器101能夠被選擇以產生從光源被提供至第二偵測器199的單一波長光源。Moreover, in some embodiments, the light source subsystem includes a single light source rather than a primary light source and a second light source that are separate from each other. A single light source generates a light source that is incident light of the main detector 191, and also generates a light source that is incident light of the second detector 199. For example, the filter 101 used in conjunction with the second detector 199 can be selected to produce a single wavelength source that is provided from the source to the second detector 199.

一般而言,第二光源197是(空間)擴展的光源或點光源,並且第二光源的照射是Koehler或中肯照度(critical)的照射。一般而言,當在PUPS模式中使用點光源時,中肯照度被用以照射光瞳平面;而對於SWLI,Koehler照射通常被用來照射大面積的部份。In general, the second source 197 is a (space) extended source or point source, and the illumination of the second source is Koehler or a critical illumination. In general, when a point source is used in the PUPS mode, a neutral illumination is used to illuminate the pupil plane; for SWLI, Koehler illumination is typically used to illuminate a large area.

主光源為LED、弧光燈、白熾燈、白光雷射,或適用於寬頻帶干涉的其他光源。The primary source is an LED, an arc, an incandescent, a white laser, or other source suitable for broadband interference.

在一些實施例中,視場光欄用以控制光源的空間擴展程度。使用中間成像面的照射(intermediate-plane illumination)也是可能的。In some embodiments, the field of view light bar is used to control the degree of spatial expansion of the light source. It is also possible to use intermediate-plane illumination.

使用偵測器子系統的多種組態也是可能的。舉例而言,第二偵測器199通常是具有兩個最小偵測點或畫素的偵測器。因此,第二偵測器199能夠是具有整合式偵測元件(如所述實施例圖示)的單一偵測器,或是由許多分立且單一的偵測元件所組成。Multiple configurations using the detector subsystem are also possible. For example, the second detector 199 is typically a detector with two minimum detection points or pixels. Therefore, the second detector 199 can be a single detector with an integrated detection element (as illustrated in the illustrated embodiment) or a plurality of discrete and single detection elements.

在一些實施例中,單一偵測器能夠被主偵測器191或第二偵測器199取代。舉例而言,主偵測器191包括數個偵測器元件,用以取得監測訊號。舉例而言,主偵測器更包括設置在相應偵測器元件前方之分立的窄頻帶濾光器,或更包括光學組件,為了取得監測訊號,用以將光選擇性地導引至主偵測器191之特定的偵測元件。In some embodiments, a single detector can be replaced by a primary detector 191 or a second detector 199. For example, the main detector 191 includes a plurality of detector components for obtaining a monitoring signal. For example, the main detector further includes a discrete narrowband filter disposed in front of the corresponding detector component, or an optical component, for selectively receiving light to the main detector for obtaining a monitoring signal. A specific detecting component of the detector 191.

在監測訊號間產生相位發散的多種方法已經討論如上。產生相位發散的其他方法也是可能的。舉例而言,除了在參考光和量測光之間引入相對的偏轉,而在主偵測器199的FOV中產生條紋之外,額外的光學元件也能夠用來達成相同的效果。舉例而言,在一些實施例中,偏振元件用來改變主偵測器199光的相位。舉例而言,在只考慮單一量測點的情況下,藉由偏振元件來產生量測光束和參考光束之間的相對相位移。A variety of methods for generating phase divergence between monitoring signals have been discussed above. Other methods of generating phase divergence are also possible. For example, in addition to introducing relative deflection between the reference light and the measured light, and creating streaks in the FOV of the main detector 199, additional optical components can be used to achieve the same effect. For example, in some embodiments, the polarizing element is used to change the phase of the main detector 199 light. For example, in the case where only a single measurement point is considered, the relative phase shift between the measurement beam and the reference beam is produced by the polarization element.

在上述實施例中,雖然偵測器和光源子系統分別包括主偵測器/第二偵測器和主光源/第二光源。但是,其他實施例也是可能的。舉例而言,在一些實施例中,第二光源和第二偵測器被組合(bundled)在一起而成為分立的子系統,其中分立的子系統與主系統共用一些光學元件。舉例而言,第二光源和第二偵測器被組裝在一起而成為一個模組,其中上述模組適用於主偵測器或(主)系統的其他元件,或適用於干涉物鏡或其系統的其他元件。In the above embodiment, the detector and the light source subsystem respectively include a main detector/second detector and a main light source/second light source. However, other embodiments are also possible. For example, in some embodiments, the second source and the second detector are bundled together into a separate subsystem, wherein the discrete subsystem shares some optical components with the host system. For example, the second light source and the second detector are assembled into a module, wherein the module is suitable for the main detector or other components of the (main) system, or for the interference objective or its system Other components.

此外,雖然上述討論假設掃描資料對於時間理論上是線性的,但是掃描誤差的校正技術也能夠用於其他掃描資料。Furthermore, although the above discussion assumes that the scanned data is theoretically linear in time, the scanning error correction technique can also be applied to other scanned data.

雖然上述實施例的特徵是具有Linnik或Mirau干涉物鏡的干涉顯微鏡,但是掃描誤差的校正技術也能夠用於其他類型的干涉顯微鏡(例如使用Michelson干涉儀的顯微鏡)。更一般地說,掃描誤差的校正技術不僅能夠用於干涉顯微鏡,也能夠用於非顯微鏡式的干涉儀。While the features of the above embodiments are interference microscopes with Linnik or Mirau interference objectives, the scanning error correction technique can also be applied to other types of interference microscopes (eg, microscopes using Michelson interferometers). More generally, the scanning error correction technique can be used not only for an interference microscope but also for a non-microscope type interferometer.

計算機程式(Computer Program)Computer Program

上述任何計算機的分析方法或其組合都能夠設置於硬體中。根據本發明所述的方法和圖式,上述計算機分析方法能夠藉由標準的程式設計技術而被編寫在計算機程式中。將程式碼應用於輸入資料以執行本發明所述的功能,程式碼會產生輸出資訊。輸出資料被輸出至一或多個輸出裝置,例如顯示器或監視器。每一種程式能夠被編寫為高階處理程序或物件導向(object oriented)的程式語言,以便與計算機系統互相通訊。然而若有需要,程式也能被編寫為組合語言或機器語言。所有的程式語言都是能夠被編譯或解譯的程式語言。此外,程式也能夠在視需要而預先編程的積體電路中執行。Any of the above analysis methods of the computer or a combination thereof can be provided in the hardware. In accordance with the method and diagram of the present invention, the computer analysis method described above can be written in a computer program by standard programming techniques. The code is applied to the input data to perform the functions described in the present invention, and the code generates output information. The output data is output to one or more output devices, such as a display or monitor. Each program can be written as a high-level processing program or an object oriented programming language to communicate with a computer system. However, the program can also be written as a combined language or machine language if needed. All programming languages are programming languages that can be compiled or interpreted. In addition, the program can be executed in an integrated circuit that is pre-programmed as needed.

上述每一種計算機程式係較佳地儲存於儲存媒體或裝置(例如ROM或磁碟)中,儲存媒體或裝置是能夠被通用型或專用型可編程的計算機所讀取的,當計算機為了執行本發明的程序而讀取儲存媒體或裝置時,計算機程式用以組態或操作計算機。當程式執行時,計算機程式也能夠儲存在快取記憶體或主記憶體中。分析方法也能夠以計算機可讀取儲存媒體的方式加以儲存,並以計算機程式的形式加以組態,其中儲存媒體被組態使得計算機以特定和既定的方式來執行本發明所述的功能。Each of the above computer programs is preferably stored in a storage medium or device (such as a ROM or a magnetic disk), and the storage medium or device can be read by a general-purpose or special-purpose programmable computer. The computer program is used to configure or operate the computer when the storage medium or device is read by the inventive program. The computer program can also be stored in the cache or main memory when the program is executed. The analytical method can also be stored in the form of a computer readable storage medium and configured in the form of a computer program configured to cause the computer to perform the functions described herein in a particular and intended manner.

本發明實施例係有關於干涉系統,用以決定與待測物有關的資訊。更多有關於合適之低同調性干涉系統、電子處理系統、軟體,以及相關處理演算法的資訊均揭露於下列專利:“Method and System for Interferometric Analysis of Surfaces and Related Applications”(美國專利公開號:US-2005-0078318-A1);“Profiling Complex Surface Structures Using Scanning Interferometry”(美國專利公開號:US-2004-0189999-A1);以及“Interferometry Method for Ellipsometry,Reflectometry,and Scatterometry Measurements,including Characterization of Thin Film Structures”(美國專利公開號:US-2004-0085544-A1),上述所列的專利參考文獻全體皆引用作為本說明書的揭示內容。Embodiments of the present invention relate to an interference system for determining information related to an object to be tested. Further information on suitable low coherence interference systems, electronic processing systems, software, and related processing algorithms is disclosed in the following patent: "Method and System for Interferometric Analysis of Surfaces and Related Applications" (US Patent Publication No.: US-2005-0078318-A1); "Profiling Complex Surface Structures Using Scanning Interferometry" (U.S. Patent Publication No.: US-2004-0189999-A1); and "Interferometry Method for Ellipsometry, Reflectometry, and Scatterometry Measurements, including Characterization of Thin Film Structures (U.S. Patent Publication No.: US-2004-0085544-A1), the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in

具體應用application

引入掃描誤差校正技術的低同調性干涉方法能用於下列各種表面分析的問題:單層(simple)的薄膜、多層的薄膜、會產生繞射或複雜干涉效應之銳利的邊緣和表面特徵、無法被解析的表面粗糙度、無法被解析的表面特徵(例如在其他平滑表面上之次波長寬度的溝槽(光柵))、異質材料、與偏振有關的表面特性,以及表面(或可變形之表面)的偏轉、振動或移動,其中可變形表面的特徵為入射角與干涉現象的擾動有關。以薄膜為例,可以被調整的參數有膜厚度、膜的折射率、基板的折射率,或上述參數的組合。包括表現出上述特性之物體或裝置的具體應用將在以下討論。The low coherence interference method introduced by the scanning error correction technique can be used for the following various surface analysis problems: a simple film, a multilayer film, sharp edge and surface features that cause diffraction or complex interference effects, and cannot Analyzed surface roughness, surface features that cannot be resolved (eg, sub-wavelength trenches (gratings) on other smooth surfaces), heterogeneous materials, polarization-dependent surface properties, and surfaces (or deformable surfaces) Deflection, vibration or movement, wherein the deformable surface is characterized by an angle of incidence that is related to the disturbance of the interference phenomenon. Taking the film as an example, the parameters that can be adjusted are film thickness, refractive index of the film, refractive index of the substrate, or a combination of the above parameters. Specific applications including objects or devices that exhibit the above characteristics will be discussed below.

半導體製程(Semiconductor Processing)Semiconductor Process (Semiconductor Processing)

上述討論的系統和方法能夠用於半導體製程,例如製程工具的特定監測,或是控制製造流程。在製程監測的應用中,單/多層的膜藉著相應的製程工具而在未圖案化的矽晶圓上(監測晶圓)被生長、沉積、拋光或是蝕刻,然後使用具有本發明所述之掃描誤差校正技術的干涉系統來量測厚度及/或光學特性。上述監測晶圓的厚度(及/或光學特性)平均與晶圓的均勻度用以判斷相關製程工具是否以目標規格而被操作,或者是否應該被重定目標規格、調整,或者不再使用。The systems and methods discussed above can be used in semiconductor processes, such as specific monitoring of process tools, or in controlling manufacturing processes. In process monitoring applications, a single/multilayer film is grown, deposited, polished, or etched on an unpatterned germanium wafer (monitoring wafer) by a corresponding process tool, and then used in accordance with the present invention. The interference system of the scanning error correction technique measures thickness and/or optical characteristics. The above-mentioned thickness (and/or optical characteristics) of the wafer is averaged and the uniformity of the wafer is used to determine whether the relevant process tool is operated at the target specification, or whether it should be re-targeted, adjusted, or no longer used.

在製程控制的應用中,接著,單/多層的膜藉著相應的製程工具而在未圖案化的矽晶圓上(監測晶圓)被生長、沉積、拋光或是蝕刻,然後使用具有本發明所述之掃描誤差校正技術的干涉系統來量測厚度及/或光學特性。用於製程控制的生產量測通常包括一個微小的量測部位,並且量測設備能被對準取樣區域。這個量測部位由多層膜的堆疊所組成(其可能已被圖案化),因此需要複雜的數學模型來取得相關的物理參數。製程控制的量測決定了積體電路製造流程的穩定度,也決定積體電路製造流程是否應該繼續、被重定目標規格、被重新導向至其他生產設備,或停機檢查。In process control applications, the single/multilayer film is then grown, deposited, polished, or etched on an unpatterned germanium wafer (monitoring wafer) by a corresponding process tool, and then used in accordance with the present invention. The interferometric system of the scanning error correction technique measures thickness and/or optical characteristics. Production measurements for process control typically include a small measurement location and the measurement equipment can be aligned to the sampling area. This measurement site consists of a stack of multilayer films (which may have been patterned) and therefore requires complex mathematical models to obtain the relevant physical parameters. The measurement of the process control determines the stability of the integrated circuit manufacturing process, and also determines whether the integrated circuit manufacturing process should continue, be retargeted, redirected to other production equipment, or shut down for inspection.

舉例而言,本發明所述之干涉系統能夠用於監測以下設備:擴散、快速熱退火、化學氣相沉積(高壓或低壓均可)、介電層蝕刻、化學機械研磨、電漿輔助沉積、電漿輔助蝕刻、微影檢查,以及微影曝光。此外,本發明所述之干涉系統能夠用於控制以下製程:溝槽和隔離、電晶體形成,以及層間介電質形成(例如雙重金屬鑲嵌結構)。For example, the interference system of the present invention can be used to monitor devices such as diffusion, rapid thermal annealing, chemical vapor deposition (high or low voltage), dielectric layer etching, chemical mechanical polishing, plasma assisted deposition, Plasma assisted etching, lithography, and lithography exposure. Furthermore, the interference system of the present invention can be used to control processes such as trenches and isolation, transistor formation, and interlayer dielectric formation (eg, dual damascene structures).

銅導線連接結構與化學機械研磨(Copper Interconnect Structures and Chemical Mechanical Polishing)Copper wire connection structure and chemical mechanical polishing (Copper Interconnect Structures and Chemical Mechanical Polishing)

目前,晶片製造商通常使用一種稱為『雙重金屬鑲嵌結構暨銅導線連接』(以下簡稱“雙重金屬鑲嵌製程”)的製程來製造晶片不同區域的電連線。對於需要使用合適的表面形貌量測系統加以檢查的製程來說,上述製程是一種很好的例子。雙重金屬鑲嵌製程通常包括六道製程步驟:(1)層間介電質(interlayer dielectric,ILD)沉積,其中一層介電材料(例如聚合物或玻璃)被沉積在晶圓(包括複數獨立的晶片)表面;(2)化學機械研磨(chemical mechanical polishing,CMP),其中介電層被拋光以產生平滑的表面,以便進行精確的光學微影製程;(3)微影圖案化和反應式離子蝕刻的製程步驟,其中複雜的導線連接網路被形成,包括平行於晶圓表面的淺溝槽,以及由溝槽表面至(先前定義之)較底層之導電層的小導孔;(4)金屬沉積的製程步驟,其中產生銅金屬溝槽和導孔的沉積;(5)介電質沉積的製程步驟,其中介電質被沉積在銅金屬溝槽和導孔之上;以及(6)最後的CMP步驟,其中多餘的銅金屬被移除,其中留下由銅金屬填充之溝槽所形成的導線連接網路(可能包括導孔),導線連接網路被介電材料所環繞。Currently, wafer manufacturers typically use a process called "dual damascene structure and copper wire bonding" (hereinafter referred to as "dual damascene process") to fabricate electrical connections in different areas of the wafer. The above process is a good example of a process that requires inspection using a suitable surface topography measurement system. The dual damascene process typically involves six process steps: (1) interlayer dielectric (ILD) deposition in which a layer of dielectric material (eg, polymer or glass) is deposited on the wafer (including a plurality of individual wafers). (2) chemical mechanical polishing (CMP), in which the dielectric layer is polished to produce a smooth surface for precise optical lithography; (3) lithography patterning and reactive ion etching processes a step in which a complex wire connection network is formed, including shallow trenches parallel to the surface of the wafer, and small vias from the surface of the trench to a lower conductive layer (as previously defined); (4) metal deposition a processing step in which deposition of copper metal trenches and via holes is generated; (5) a dielectric deposition process step in which a dielectric is deposited over the copper metal trenches and via holes; and (6) a final CMP A step in which excess copper metal is removed, leaving a wire connection network (possibly including via holes) formed by a trench filled with copper metal, the wire connection network being surrounded by a dielectric material.

參考第20A圖,裝置500是一個具有結構之膜的具體例子,其中銅特徵元件502沉積在基板501之上,且介電質504的沉積覆蓋住銅特徵元件502。介電質504具有不均勻的外表面,且沿著外表面具有高度變化。裝置500的干涉訊號包括上表面506的干涉圖案、介面508(介於銅特徵元件502與介電質504之間)的干涉圖案,以及介面510的干涉圖案(介於銅特徵元件502與基板501之間)。裝置500也包括產生干涉圖案的複數其他特徵元件。Referring to Figure 20A, device 500 is a specific example of a structured film in which copper features 502 are deposited over substrate 501 and deposition of dielectric 504 covers copper features 502. Dielectric 504 has a non-uniform outer surface with a height variation along the outer surface. The interference signal of device 500 includes an interference pattern of upper surface 506, an interference pattern of interface 508 (between copper feature 502 and dielectric 504), and an interference pattern of interface 510 (between copper feature 502 and substrate 501). between). Device 500 also includes a plurality of other feature elements that create an interference pattern.

參考第20B圖,裝置500’為裝置500經最後之CMP製程步驟之後的狀態。上表面506已被平面化為上表面506’,且介面508可能曝露在外。基板501上的介面510仍維持原狀。元件之效能和均勻度取決於對介電質504的表面平坦化監測。要注意的是,拋光率和拋光後殘存的銅金屬(介電質)厚度,會與拋光條件(例如對研磨砂紙墊片所施加的壓力與研磨漿成分)亟有關聯(或有複雜的關聯);也與銅金屬和其週遭介電質區域的局部設置有關(例如接觸窗口傾角、元件密度和外形)。因此,一旦銅金屬502元件的介面508曝露出來,則介電質和銅金屬元件會有不同的蝕刻率。Referring to Figure 20B, device 500' is the state after device 500 has undergone the final CMP process step. Upper surface 506 has been planarized to upper surface 506' and interface 508 may be exposed. The interface 510 on the substrate 501 remains as it is. The effectiveness and uniformity of the components depends on the surface flattening monitoring of the dielectric 504. It should be noted that the polishing rate and the thickness of the copper metal (dielectric) remaining after polishing may be related to (or have a complex relationship with the polishing conditions (for example, the pressure applied to the abrasive paper pad and the composition of the slurry). ); also related to the local placement of copper metal and its surrounding dielectric regions (eg, contact window tilt, component density, and profile). Thus, once the interface 508 of the copper metal 502 component is exposed, the dielectric and copper metal components will have different etch rates.

眾所皆知,這種“與位置有關的拋光率”會在許多橫向方向上導致表面形貌的改變。舉例而言,這通常意味著靠近晶圓邊緣之晶片的拋光率會高於靠近晶圓中心之晶片的拋光率,因而使得邊緣的銅金屬(導線)區域比所需厚度來的薄,而中央的銅金屬(導線)區域比所需厚度來的厚。這是一種『晶圓尺度』之製程不均勻度的例子,即一種與晶圓直徑相較之下,長度尺寸的不均勻度。此外,眾所皆知的是,銅金屬溝槽密度較高之區域的拋光率會低於銅金屬溝槽密度較低之區域的拋光率。這通常會在銅金屬密度較高的區域導致一種稱為『CMP誘導侵蝕(CMP induced erosion)』的現象。這是一種『晶片尺度』之製程不均勻度的例子,即一種與單一晶片之一個維度相較之下,長度尺寸的不均勻度(這種不均勻度的數值通常小於單一晶片的一維長度)。另一種稱為『碟型化(dishing)』之晶片尺度的不均勻度,其發生於銅金屬填充的單一溝槽區域之中(其中,在該區域的蝕刻率會高於周遭介電質區域的蝕刻率)。只要溝槽的寬度增加數個μm,碟型化的效應就會非常嚴重,這是因為銅金屬(導線)的電阻會因此增加,進而讓晶片失效。It is well known that this "position-dependent polishing rate" causes a change in surface topography in many lateral directions. For example, this usually means that the polishing rate of the wafer near the edge of the wafer will be higher than the polishing rate of the wafer near the center of the wafer, thus making the copper (wire) area of the edge thinner than the desired thickness, while the center The copper metal (wire) area is thicker than the desired thickness. This is an example of a "wafer scale" process non-uniformity, a non-uniformity in length dimension compared to the wafer diameter. Further, it is well known that the polishing rate of the region where the copper metal trench density is higher is lower than the polishing rate of the region where the copper metal trench density is lower. This usually leads to a phenomenon called "CMP induced erosion" in areas where the copper metal density is high. This is an example of a "wafer scale" process non-uniformity, a non-uniformity of length dimension compared to a dimension of a single wafer (the value of this non-uniformity is typically less than the one-dimensional length of a single wafer) ). Another wafer-scale non-uniformity called "dishing" occurs in a single trench region filled with copper metal (where the etch rate in this region is higher than the surrounding dielectric region) Etching rate). As long as the width of the trench is increased by several μm, the effect of the dishing is very serious, because the resistance of the copper metal (wire) is increased, thereby causing the wafer to fail.

由CMP導致之晶圓和晶片尺度的製程不均勻度本質上是很難預測的,這是因為CMP製程系統的條件隨時間改變,所以上述原因導致的製程不均勻度也會隨時間改變。為了有效地監測與合適地調整製程條件(用以確保不均勻度保持在可接受的限度內),對於製程工程師來說,在晶片上的多個位置進行多次非接觸式表面形貌的量測是很重要的。上述干涉方法和系統的實施例使得這個目的能夠被達成。The wafer- and wafer-scale process non-uniformity caused by CMP is inherently difficult to predict because the conditions of the CMP process system change over time, so the process non-uniformity caused by the above causes also changes over time. In order to effectively monitor and properly adjust process conditions (to ensure that the unevenness remains within acceptable limits), for process engineers, the amount of non-contact surface topography is performed multiple times at multiple locations on the wafer. Testing is very important. Embodiments of the above described interference methods and systems enable this to be achieved.

在一些實施例中,在CMP期間(及/或之前),藉由取得結構的低同調性干涉訊號,一種(或以上)的空間特性(例如上表面506的樣貌及/或介電質504的厚度)將能夠被監測。根據空間特性,拋光條件能夠被調整以製造所需之平整的上表面506’。舉例而言,對研磨砂紙墊片所施加的壓力、上述壓力的分佈、拋光劑(研磨漿)的特性、溶劑的成份和流量,以及其他條件能夠根據空間特性而被調整。在經過數次拋光處理之後,空間特性能夠再次被決定,並且拋光條件能夠視需要而改變。形貌及/或厚度也是CMP製程終點的指標,例如達到表面504’的厚度時停止CMP。因此,低同調性干涉訊號能夠用來避免待測物之不同區域因過度拋光而導致的凹陷。低同調性干涉訊號和系統的優點在於:即使待測物具有很多介面,裝置的空間特性(例如(a)在銅特徵元件502和(b)在介面510上方之介電質的相對厚度)仍可被決定。In some embodiments, during (and/or before) CMP, one (or more) spatial characteristics (eg, the appearance of upper surface 506 and/or dielectric 504) are obtained by taking a low homology interference signal of the structure. The thickness) will be able to be monitored. Depending on the spatial characteristics, the polishing conditions can be adjusted to produce the desired flat upper surface 506'. For example, the pressure applied to the abrasive paper pad, the distribution of the above pressure, the characteristics of the polishing agent (grinding slurry), the composition and flow rate of the solvent, and other conditions can be adjusted according to the spatial characteristics. After several polishing processes, the spatial characteristics can be determined again, and the polishing conditions can be changed as needed. The topography and/or thickness is also an indicator of the end of the CMP process, such as stopping CMP when the thickness of surface 504' is reached. Therefore, low homology interference signals can be used to avoid depressions caused by excessive polishing of different regions of the object to be tested. An advantage of low coherence interference signals and systems is that even if the object under test has many interfaces, the spatial characteristics of the device (eg, (a) the relative thickness of the dielectric between the copper features 502 and (b) above the interface 510) Can be decided.

微影製程(Photolithography)Photolithography

在許多微電子應用中,微影製程用以圖案化基板上的光阻層,例如矽晶圓上的光阻層。參考第50A圖和第50B圖,物體30包括基板(例如晶圓32)與覆蓋層(例如光阻層34)。物體30包括複數介面,例如介於不同折射率材料之間的介面。舉例而言,在物體周圍的介面38表示與周圍環境(例如液體、空氣、其他氣體或真空)接觸之物體之光阻層34的外表面39。基板介面36介於晶圓32的表面35和光阻層34的下表面37之間。晶圓的表面35包括複數圖案化的特徵元件29。上述特徵元件中的一些特徵元件具有與基板之鄰接部份相同的高度,但是具有不同的折射率。其它的特徵元件可能會向上或向下地延伸超出相與基板之鄰接部份相同的高度。因此,介面36在光阻層外表面的下方表現出複雜且不同的形貌。In many microelectronic applications, the lithography process is used to pattern a photoresist layer on a substrate, such as a photoresist layer on a germanium wafer. Referring to Figures 50A and 50B, object 30 includes a substrate (e.g., wafer 32) and a cover layer (e.g., photoresist layer 34). Object 30 includes a plurality of interfaces, such as interfaces between materials of different refractive indices. For example, interface 38 around the object represents the outer surface 39 of the photoresist layer 34 of the object in contact with the surrounding environment (eg, liquid, air, other gases, or vacuum). The substrate interface 36 is interposed between the surface 35 of the wafer 32 and the lower surface 37 of the photoresist layer 34. The surface 35 of the wafer includes a plurality of patterned features 29 . Some of the feature elements described above have the same height as the adjacent portions of the substrate, but have different indices of refraction. Other features may extend upward or downward beyond the same height as the adjacent portion of the substrate. Thus, interface 36 exhibits a complex and distinct topography beneath the outer surface of the photoresist layer.

微影製程裝置用以將圖案成像於物體之上。舉例而言,圖案對應於電子電路的元件(或電路的互補元件)。在圖案化之後,部分光阻層會被移除並裸露出在已移除之光阻層下方的基板。裸露出的基板會被蝕刻、覆蓋上沉積材料或進行其他修正製程。殘餘的光阻會保護其他部分的基板,使其不受修正製程的影響。A lithography process device is used to image the pattern onto the object. For example, the pattern corresponds to an element of an electronic circuit (or a complementary element of a circuit). After patterning, a portion of the photoresist layer is removed and exposed to the substrate below the removed photoresist layer. The exposed substrate can be etched, covered with deposited material, or otherwise modified. The residual photoresist protects the other parts of the substrate from the correction process.

為了增加製程效率,有時候會在一個晶圓上製造一個以上的元件。這些元件可能是相同的,也可能是不同的。每一個元件都需要將圖案成像於晶圓的晶片。在一些情況中,圖案依序地圖案化於不同的晶片。依序的圖案化是基於一些原因而被執行的。光學失真會導致在晶圓的大範圍面積上無法得到合適的圖案聚焦品質。即使沒有光學失真,晶圓和光阻的空間特性也會導致在晶圓的大範圍面積上無法得到合適的圖案聚焦品質。晶圓/光阻之空間特性與聚焦品質之間的關係將以下列型態討論之。In order to increase process efficiency, sometimes more than one component is fabricated on a single wafer. These components may be the same or different. Each component requires a wafer to be imaged onto the wafer. In some cases, the patterns are sequentially patterned on different wafers. Sequential patterning is performed for a number of reasons. Optical distortion can result in a lack of proper pattern focus quality over a wide area of the wafer. Even without optical distortion, the spatial characteristics of the wafer and photoresist can result in a lack of proper pattern focus quality over a wide area of the wafer. The relationship between the spatial characteristics of the wafer/resistance and the quality of focus will be discussed in the following types.

參考第20B圖,物體30顯示N個晶片40i ,每一個晶片都比物體欲進行圖案化的總區域41小。在晶片40i 內,空間性質的變動(例如晶圓或光阻的高度和斜率變化)通常小於總區域41之空間性質的變動。儘管如此,不同子區域40i 的晶圓或光阻通常具有不同的高度和斜率。舉例而言,光阻層34分別具有厚度Δt1 和Δt2 ,其中厚度Δt1 和Δt2 改變了外表面39的高度和斜率。因此,物體的每一個晶片與微影製程成像儀(photolithography imager)均具有不同的空間關係。聚焦的品質與空間關係(例如物體和微影製程成像儀之間的距離)有關。讓物體的不同集合具有合適的焦距需要將物體和微影製程成像儀重新定位。因為物體高度和斜率的變動,不可能僅藉由決定物體的位置和方位,就達到合適的物體聚焦,其中物體有關於離已圖案化晶片很遠之部分物體(例如物體的邊緣43)。Referring to Fig. 20B, object 30 displays N wafers 40i , each of which is smaller than the total area 41 in which the object is to be patterned. In the wafer 40 i, change (e.g., a wafer or photoresist height and slope change) is typically less than the spatial properties of the spatial variation of properties of the total area 41. Nonetheless, the wafers or photoresists of the different sub-regions 40 i typically have different heights and slopes. For example, the photoresist layers 34 have thicknesses Δt 1 and Δt 2 , respectively, wherein the thicknesses Δt 1 and Δt 2 change the height and slope of the outer surface 39. Therefore, each wafer of the object has a different spatial relationship with the photolithography imager. The quality of the focus is related to the spatial relationship, such as the distance between the object and the lithography process imager. Having a suitable focal length for different sets of objects requires repositioning the object and the lithography process imager. Because of the variation in object height and slope, it is not possible to achieve proper object focus by simply determining the position and orientation of the object, where the object has a portion of the object (e.g., the edge 43 of the object) that is far from the patterned wafer.

藉由決定欲進行圖案化(或其他處理)之晶片內的空間特性,便能夠達到合適的聚焦。在晶片的位置決定之後,物體(及/或微影製程成像儀)就能夠被移動(例如移動、旋轉及/或翻轉),用以修正相對於參考物(例如微影製程成像儀的一部分)的晶片位置。(如有需要),每一個欲進行圖案化的晶片能夠重複進行上述決定和移動。Appropriate focusing can be achieved by determining the spatial characteristics of the wafer to be patterned (or otherwise processed). After the position of the wafer is determined, the object (and/or lithography process imager) can be moved (eg, moved, rotated, and/or flipped) to correct relative to the reference (eg, a portion of the lithography process imager) Wafer location. (If needed), each of the wafers to be patterned can repeat the above decisions and moves.

晶片空間特性的決定包括決定物體之薄膜層之外表面之一點(或多點)的位置和高度,其中上述一點(或多點)位於欲進行圖案化之晶片的範圍內。舉例而言,晶片402 (第20A圖)之外表面39的位置和方位能夠根據晶片內之點421 -423 的位置而被決定。欲進行圖案化晶片之空間特性的決定包括使用干涉儀所發出的光來照射晶片並且偵測干涉訊號,包括從被照射之晶片反射回來的光。在一些實施例中,複數晶片同時被圖案化以取得複數干涉訊號。每一個干涉訊號均表示一個晶片的一個(或多個)空間特性。因此,干涉訊號能夠用來形成影像,用以表示在複數晶片上之物體的形貌。在晶片的微影製程期間,晶圓是根據複數干涉訊號所形成之個別晶片的形貌而被定位。因此,每一個晶片能夠以微影製成裝置的最佳聚焦而被定位。The determination of the spatial characteristics of the wafer includes determining the position and height of a point (or multiple points) of the outer surface of the film layer of the object, wherein the one (or more) points are within the range of the wafer to be patterned. For example, the position and orientation of the outer surface 39 of the wafer 40 2 (Fig. 20A) can be determined based on the location of the points 42 1 - 42 3 within the wafer. The decision to pattern the spatial characteristics of the wafer includes illuminating the wafer using light emitted by the interferometer and detecting the interfering signal, including light reflected from the illuminated wafer. In some embodiments, the plurality of wafers are simultaneously patterned to obtain a complex interference signal. Each interfering signal represents one (or more) spatial characteristics of a wafer. Thus, the interfering signal can be used to form an image that represents the topography of the object on the plurality of wafers. During the lithography process of the wafer, the wafer is positioned according to the topography of the individual wafers formed by the complex interfering signals. Thus, each wafer can be positioned with the best focus of the lithography device.

偵測欲圖案化物體之每一個晶片的干涉訊號包括在一個OPD範圍之內,偵測從晶片反射回來的光與參考光,其中OPD至少等於所偵測之光的同調長度。舉例而言,光至少是在其同調長度的範圍內被偵測的。在一些實施例中,干涉儀會讓從被照射之晶片反射回來的光是由外側介面(例如外表面39)反射回來的光,或是由內側介面(例如內表面36)反射回來的光所主導。在一些實施例中,物體的空間特性是僅根據干涉訊號的一部份而被決定的。舉例而言,若干涉訊號包括兩個(或以上)重疊的干涉圖案,物體的空間特性能夠根據其中一個干涉訊號的一部份而被決定,其中其中一個干涉訊號的一部份是由物體之單一干涉訊號的貢獻所主導。The interfering signal for detecting each of the wafers to be patterned includes being within an OPD range to detect light reflected from the wafer and the reference light, wherein the OPD is at least equal to the coherence length of the detected light. For example, light is detected at least within the range of its coherence length. In some embodiments, the interferometer causes light reflected from the illuminated wafer to be reflected back by the outer interface (e.g., outer surface 39) or by light reflected from the inner interface (e.g., inner surface 36). leading. In some embodiments, the spatial characteristics of the object are determined based only on a portion of the interfering signal. For example, if the interference signal includes two (or more) overlapping interference patterns, the spatial characteristics of the object can be determined according to a part of one of the interference signals, wherein a part of the interference signal is by the object The contribution of a single interfering signal is dominated.

焊料凸塊製程(Solder Bump Processing)Solder Bump Processing

參考第51A圖和第51B圖,結構1050是焊料凸塊製程期間所製造之結構的實例。結構1050包括基板1051、未被焊料溼潤(non-wettable)的區域1002,以及被焊料濕潤的區域1003。區域1002具有外表面1007。區域1003具有外表面1009。因此,介面1005形成於區域1002和基板1001之間。Referring to Figures 51A and 51B, structure 1050 is an example of a structure fabricated during a solder bump process. Structure 1050 includes a substrate 1051, a non-wettable region 1002, and a region 1003 that is wetted by solder. Region 1002 has an outer surface 1007. Region 1003 has an outer surface 1009. Therefore, the interface 1005 is formed between the region 1002 and the substrate 1001.

當焊料1004被放置在區域1003並與其接觸時,焊料與濕潤的區域1003形成安全的接點。鄰接之未濕潤的區域1002的作用像個水壩,用以阻擋在本結構中不被期待之流動的焊料。希望能夠知道結構的空間特性,包括表面1007和1009的高度,以及焊料1004相對於表面1002的大小。如根據本發明其他討論所決定的實施例,介面1050包括複數介面,其中每一者都會形成干涉條紋。互相重疊干涉圖案使得空間特性無法使用已知的干涉技術而被正確地決定。本發明所討論之系統和方法的應用使得空間特性能夠被決定。When the solder 1004 is placed in and in contact with the region 1003, the solder forms a secure contact with the wetted region 1003. The adjacent unwetted region 1002 acts like a dam to block solder that is not expected to flow in the structure. It is desirable to be able to know the spatial characteristics of the structure, including the height of the surfaces 1007 and 1009, and the size of the solder 1004 relative to the surface 1002. As with the embodiments determined in accordance with other discussions of the present invention, interface 1050 includes a plurality of interfaces, each of which forms interference fringes. The overlapping interference patterns are such that the spatial characteristics cannot be correctly determined using known interference techniques. The application of the systems and methods discussed herein enables spatial characteristics to be determined.

根據結構1050所決定的空間特性能夠用以改變製程條件,例如區域1002和1003的沉積時間,以及區域1003每單位面積的焊料用量。此外,用來讓焊料流動的加熱條件也能根據空間特性而被改變,用以達到充分的流動和/或避免焊料流入其他區域。The spatial characteristics determined by structure 1050 can be used to vary process conditions, such as the deposition time of regions 1002 and 1003, and the amount of solder per unit area of region 1003. In addition, the heating conditions used to flow the solder can also be varied depending on the spatial characteristics to achieve adequate flow and/or to prevent solder from flowing into other areas.

平板顯示器(Flat Panel Display)Flat Panel Display

本發明所揭露的干涉系統和方法能夠用於平板顯示器的製造,例如液晶顯示器(liquid crystal displays,LCDs)。The interference systems and methods disclosed herein can be used in the manufacture of flat panel displays, such as liquid crystal displays (LCDs).

一般而言,不同的產品應用會使用多種不同類型的LCD,例如LCD電視、桌上型電腦的監視器、筆記型電腦、行動電話、汽車GPS導航系統,或車用和飛機上的娛樂系統(僅列舉幾例)。雖然LCD的特定結構可能會有所變化,但是大部分LCD都使用類似的面板結構。參考第52A圖,舉例而言,在一些實施例中,LCD面板450是由許多層所組成,包括兩片玻璃板452和453,以邊緣封膠454連接。玻璃板452和453以間隙464互相間隔,其中在間隙464中填充液晶材料。偏光片456和474分別黏貼於玻璃基板453和452的外表面。當LCD組裝完成後,其中一個偏光片用以偏振來自顯示器光源(例如背光,未圖示)的光,另一個偏光片作為濾光片(analyzer),僅允許被偏振至平行於濾光片透射軸的光分量通過。In general, different product applications use many different types of LCDs, such as LCD TVs, monitors for desktop computers, notebook computers, mobile phones, car GPS navigation systems, or entertainment systems for cars and airplanes ( Just to name a few). Although the specific structure of the LCD may vary, most LCDs use a similar panel structure. Referring to Figure 52A, for example, in some embodiments, LCD panel 450 is comprised of a plurality of layers, including two sheets of glass sheets 452 and 453 joined by edge seal 454. The glass sheets 452 and 453 are spaced apart from each other by a gap 464 in which a liquid crystal material is filled. The polarizers 456 and 474 are adhered to the outer surfaces of the glass substrates 453 and 452, respectively. When the LCD is assembled, one of the polarizers is used to polarize light from a display source (such as a backlight, not shown), and the other polarizer acts as an analyzer, allowing only polarization to be transmitted parallel to the filter. The light component of the shaft passes.

彩色濾光片476的陣列形成於玻璃板453之上,且圖案化的電極層458形成於彩色濾光片476,電極層458通常是透明導體,例如氧化銦錫(Indium Tin Oxide,ITO)。鈍化層460(有時稱為硬鍍膜層)通常是在SiOx鍍上電極層458,用以跟表面電性絕緣。對準層462(例如聚醯亞胺層(polyimide layer))被沉積在鈍化層460上,用以跟間隙464中的液晶材料對準。An array of color filters 476 is formed over glass plate 453, and patterned electrode layer 458 is formed on color filter 476, which is typically a transparent conductor, such as Indium Tin Oxide (ITO). Passivation layer 460 (sometimes referred to as a hard coat layer) is typically SiOx plated with electrode layer 458 for electrical isolation from the surface. An alignment layer 462 (e.g., a polyimide layer) is deposited over the passivation layer 460 for alignment with the liquid crystal material in the gap 464.

LCD面板450也包括形成於玻璃板452上的第二電極層472。另外一層硬鍍膜層470形成於第二電極層472上,且另外一層對準層468被沉積在硬鍍膜層470上。在主動式矩陣LCD中,其中一層電極層通常包括薄膜電晶體(TFTs)的陣列(例如子畫素的一或多個TFT)或其他積體電路。The LCD panel 450 also includes a second electrode layer 472 formed on the glass plate 452. An additional hard coat layer 470 is formed on the second electrode layer 472, and another alignment layer 468 is deposited on the hard coat layer 470. In an active matrix LCD, one of the electrode layers typically includes an array of thin film transistors (TFTs) (eg, one or more TFTs of subpixels) or other integrated circuitry.

液晶材料是雙折射的,用以改變通過LCD面板之光的偏振方向。液晶材料也具有介電質各向異性,因此液晶材料對施加於間隙的電場是敏感的。因此,當施加電場時,液晶分子改變偏轉角,因而改變面板的光學特性。藉由控制液晶材料的雙折射害介電質各向異性,通過面板的光量能夠被控制。The liquid crystal material is birefringent to change the direction of polarization of light passing through the LCD panel. Liquid crystal materials also have dielectric anisotropy, so liquid crystal materials are sensitive to the electric field applied to the gap. Therefore, when an electric field is applied, the liquid crystal molecules change the deflection angle, thus changing the optical characteristics of the panel. By controlling the birefringence of the liquid crystal material, the amount of light passing through the panel can be controlled.

單元間隙(cell gap)Δg(即液晶材料的厚度)是由間隔物(spacer)466所決定,其中間隔物466將兩個玻璃板452和453保持在固定的距離。一般而言,間隔物能夠是圓柱體或球體,其直徑等於所希望達到的單元間隙,並且間隔物能夠以圖案化技術(例如一般的微影技術)而形成於基板上。單元間隙會影響光通過面板時的光學推遲(相)量和將液晶材料之分子對準時的黏滯性,因此,單元間隙是在LCD製造時必須精確控制的重要參數。The cell gap Δg (i.e., the thickness of the liquid crystal material) is determined by a spacer 466 that maintains the two glass sheets 452 and 453 at a fixed distance. In general, the spacer can be a cylinder or a sphere having a diameter equal to the desired cell gap, and the spacer can be formed on the substrate in a patterning technique, such as general lithography. The cell gap affects the amount of optical retardation (phase) when the light passes through the panel and the viscosity when aligning the molecules of the liquid crystal material. Therefore, the cell gap is an important parameter that must be precisely controlled during LCD manufacturing.

一般而言,LCD面板的製造與續多製程步驟有關,其用以形成多種類型的層。舉例而言,參考第52B圖,製程499包括同時在每一個玻璃板上形成多種層,並且將玻璃板膠合以形成一個單元。如第52B圖所述,首先,TFT電極被形成於第一玻璃板上(步驟499A1)。鈍化層被形成於TFT電極上(步驟499A2),然後對準層被形成於鈍化層上(步驟499A3)。接著,間隔物被沉積在對準層上(步驟499A4)。第二玻璃板的製程通常有關於形成彩色濾光片(步驟499B1)與形成在彩色濾光片上的鈍化層(步驟499C1)。接著,電極(例如共用電極)被形成於鈍化層上(步驟499B3),且對準層被形成於電極上(步驟499B4)。In general, the manufacture of LCD panels is associated with a multi-process step that is used to form multiple types of layers. For example, referring to Figure 52B, process 499 includes simultaneously forming a plurality of layers on each of the glass sheets and gluing the glass sheets to form a unit. As described in Fig. 52B, first, the TFT electrode is formed on the first glass plate (step 499A1). A passivation layer is formed on the TFT electrode (step 499A2), and then an alignment layer is formed on the passivation layer (step 499A3). Next, spacers are deposited on the alignment layer (step 499A4). The process of the second glass sheet is generally directed to forming a color filter (step 499B1) and a passivation layer formed on the color filter (step 499C1). Next, an electrode (for example, a common electrode) is formed on the passivation layer (step 499B3), and an alignment layer is formed on the electrode (step 499B4).

接著,藉由膠合第一和第二玻璃片單元(cell)以形成單元(cell)(步驟499C1),接著將液晶材料填入單元並加以封裝(步驟499C2)。在封裝之後,偏光片被黏貼於每一片玻璃板的外側表面(步驟499C3),以形成完整的LCD面板。流程圖所示之步驟的次序和組合僅用以說明,一般而言,其他步驟與其相應次序是能被變動的。Next, the first and second glass sheet cells are bonded to form a cell (step 499C1), and then the liquid crystal material is filled into the cell and packaged (step 499C2). After encapsulation, the polarizer is adhered to the outer side surface of each of the glass sheets (step 499C3) to form a complete LCD panel. The order and combination of steps shown in the flowcharts are merely illustrative, and in general, other steps and their corresponding order can be varied.

此外,第23B圖所示之每一個步驟都包括許多步驟。舉例而言,在第一玻璃板上形成TFT電極(通稱為畫素電極)包括數種不同的步驟。類似地,在第二玻璃板上形成彩色濾光片包括數種不同的步驟。舉例而言,形成畫素電極通常包括數種步驟以形成TFT、ITO電極,以及耦接至TFT的匯流排線。事實上,形成TFT電極本質上就是形成一個大型的積體電路,並且與一般積體電路製造時所使用之多數的沉積和微影圖案化製程有關。舉例而言,首先TFT電極層藉由沉積一層材料(例如半導體、導體或介電質)以形成TFT電極層的許多部分、在上述材料層上形成光阻層,並將光阻曝光於圖案化光線中。光阻層接著被形成,其中產生圖案化的光阻層。接著在蝕刻製程中,在圖案化之光阻層下的材料層被移除,藉此將光阻中的圖案轉移至材料層。最後,殘餘的光阻層從基板被移除,留下以圖案化的材料層。這些步驟能夠被重複數次以形成TFT電極層的不同元件,並且通常也會使用類似的沉積和圖案化步驟來形成彩色濾光片。In addition, each of the steps shown in Fig. 23B includes a number of steps. For example, forming a TFT electrode (generally referred to as a pixel electrode) on a first glass sheet includes several different steps. Similarly, forming a color filter on a second glass sheet involves several different steps. For example, forming a pixel electrode typically includes several steps to form a TFT, an ITO electrode, and a bus bar coupled to the TFT. In fact, the formation of a TFT electrode essentially forms a large integrated circuit and is related to the majority of deposition and lithography patterning processes used in the fabrication of conventional integrated circuits. For example, first, a TFT electrode layer is formed by depositing a layer of material (for example, a semiconductor, a conductor, or a dielectric) to form a plurality of portions of the TFT electrode layer, forming a photoresist layer on the material layer, and exposing the photoresist to patterning. In the light. A photoresist layer is then formed in which a patterned photoresist layer is produced. The material layer under the patterned photoresist layer is then removed during the etching process, thereby transferring the pattern in the photoresist to the material layer. Finally, the residual photoresist layer is removed from the substrate leaving a patterned layer of material. These steps can be repeated several times to form different elements of the TFT electrode layer, and similar deposition and patterning steps are typically used to form the color filter.

一般而言,本發明所揭露的干涉技術能夠用於LCD面板在不同生產階段的監測。舉例而言,在LCD製造期間,干涉技術用以監測光阻層的厚度及/或均勻度。如先前的說明,光阻層通常用於TFT元件和彩色濾光片的微影圖案化。對於一些製程步驟,在將光阻層曝光於圖案化光線之前,可以先用低同調干涉系統檢視光阻層。In general, the interference techniques disclosed herein can be used for monitoring LCD panels at different stages of production. For example, during LCD manufacturing, interference techniques are used to monitor the thickness and/or uniformity of the photoresist layer. As previously explained, the photoresist layer is typically used for lithographic patterning of TFT elements and color filters. For some process steps, the photoresist layer can be viewed with a low coherence interference system before exposing the photoresist layer to patterned light.

在一些實施例中,干涉技術用以監測圖案化後的光阻層特性。舉例而言,圖案化後之特徵元件的關鍵尺寸(例如線寬)能夠以干涉技術加以檢視。此外,干涉技術也能夠用以決定圖案化光阻層內與光阻層下方之特徵元件之間的覆蓋誤差。並且,量測關鍵尺寸和/或覆蓋誤差之處是在製程外,已圖案化的光阻能夠從基板被移除,並且形成已圖案化的新光阻層。In some embodiments, an interference technique is used to monitor the patterned photoresist layer properties. For example, the critical dimensions (eg, line width) of the patterned features can be viewed using interference techniques. In addition, the interference technique can also be used to determine the overlay error between the patterned photoresist layer and the features below the photoresist layer. Also, where critical dimensions and/or overlay errors are measured, outside of the process, the patterned photoresist can be removed from the substrate and a patterned new photoresist layer is formed.

在一些實施例中,干涉技術能夠與灰階底片微影技術(half-tone photolithography)一起使用。當需要在圖案化後之光阻層的特徵元件中產生特定的厚度變化時,目前已有越來越多的灰階底片微影技術被使用。本發明所揭露的低同調干涉技術用以監測光阻圖案在灰階區域的厚度資料。此外,低同調干涉技術也能夠用以監測這些特徵元件的覆蓋和關鍵尺寸。In some embodiments, the interference technique can be used with gray-tone photolithography. More and more grayscale negative lithography techniques are currently in use when it is desired to produce specific thickness variations in the patterned features of the patterned photoresist layer. The low coherence interference technique disclosed in the present invention is used to monitor the thickness data of the photoresist pattern in the gray scale region. In addition, low coherence interference techniques can also be used to monitor the coverage and critical dimensions of these feature elements.

在一些實施例中,干涉技術用以偵測在製程的不同步驟中,在玻璃板上留下的汙染物(例如來自外界的粒子)。這些污染物會在顯示面板中留下可被目視的缺陷(例如Mura缺陷),並且影響製造商的良率。這種缺陷通常是在面板組裝之後以目視檢查的。本發明所揭露的干涉技術能在製造過程中,在玻璃基板的一或多點進行自動化的檢查。在污染物所在之處,玻璃板之被污染的表面能夠在進行下一道製程步驟之前被清潔。因此,使用本技術能夠減少面板中Mura缺陷發生的機率,改善面板品質並減少製造成本。In some embodiments, the interference technique is used to detect contaminants (eg, particles from the outside) that remain on the glass sheet during different steps of the process. These contaminants can leave visible defects (such as Mura defects) in the display panel and affect the manufacturer's yield. Such defects are usually visually inspected after panel assembly. The interference technique disclosed in the present invention enables automated inspection at one or more points of the glass substrate during the manufacturing process. Where the contaminant is located, the contaminated surface of the glass sheet can be cleaned prior to the next processing step. Therefore, the use of the present technology can reduce the probability of occurrence of Mura defects in the panel, improve panel quality, and reduce manufacturing costs.

關於其他因素,電光特性(例如對比度和亮度)也與單元間隙Δg有關。在製造期間,單元間隙的控制對於得到均勻和品質佳的顯示器通常是很關鍵的。在一些實施例中,本發明所揭露的干涉技術能夠用以確認單元間隙具有希望達到的均勻度。舉例而言,本技術能夠用以監測玻璃板上間隔物的高度和/或位置。監測並控制間格物的高度能夠減少面板上單元間隙的變化。Regarding other factors, electro-optic characteristics (such as contrast and brightness) are also related to the cell gap Δg. Control of cell gaps during manufacturing is often critical to achieving a uniform and good quality display. In some embodiments, the interference techniques disclosed herein can be used to confirm that the cell gap has the desired uniformity. For example, the present technology can be used to monitor the height and/or position of spacers on a glass sheet. Monitoring and controlling the height of the compartments can reduce variations in cell gaps on the panel.

在一些情況中,實際的單元間隙隨著間隔物的大小而有所不同,這是因為在組裝期間,壓力和真空被用來填充液晶材料,邊緣封膠可能改變大小,並且兩片玻璃板之間的液晶會產生毛細作用力。在液晶填充前後,玻璃板上之曝露層的表面會反射光,並且產生表示單元間隙Δg的干涉條紋。即使在液晶層與單元的其他層之間具有介面的情況下,具有低同調特性的干涉訊號或與期待的干涉訊號處理技術結合後,便能夠在製造期間用來監測單元,包括單元間隙Δg。In some cases, the actual cell gap will vary with the size of the spacer because during assembly, pressure and vacuum are used to fill the liquid crystal material, the edge seal may change size, and two sheets of glass The liquid crystal between them will produce capillary force. Before and after the filling of the liquid crystal, the surface of the exposed layer on the glass plate reflects light and generates interference fringes indicating the cell gap Δg. Even in the case where there is an interface between the liquid crystal layer and the other layers of the cell, the interfering signal with low coherence characteristics or combined with the expected interferometric signal processing technique can be used to monitor the cell during manufacturing, including the cell gap Δg.

一個具體的方法就是取得低同調性干涉訊號,包括在液晶填充之前,取得表示單元間隙Δg的干涉訊號。單元間隙Δg(或其他單元的空間特性)能夠根據干涉圖案而決定,也能夠與一特定數值作比較。若特定數值與所決定的單元間隙Δg之間具有大於公差(tolerances)的差值,則製程條件(例如施加於兩片玻璃板之間的壓力和真空度)能夠被改變以修正單元間隙Δg。這種過程能夠一再地重複直到達到所需的單元間隙為止。接著,液晶材料被填充進單元中。所填入的液晶量能夠根據單元所量測的空間測性所決定。藉由觀察玻璃板上之曝露層表面的干涉訊號,填充過程也能夠被監測。在單元填充完成之後,所得到之額外的低同調干涉圖案能夠用來監測單元間隙Δg(或其他空間特性)。此外,製程條件能夠再度被改變使得單元間隙維持在公差的範圍內。A specific method is to obtain a low-coherence interference signal, including obtaining an interference signal indicating a cell gap Δg before the liquid crystal is filled. The cell gap Δg (or spatial characteristics of other cells) can be determined based on the interference pattern and can also be compared to a specific value. If there is a difference between the specific value and the determined cell gap Δg that is greater than the tolerances, the process conditions (e.g., the pressure applied between the two sheets of glass and the degree of vacuum) can be changed to correct the cell gap Δg. This process can be repeated over and over until the desired cell gap is reached. Next, the liquid crystal material is filled into the cell. The amount of liquid crystal filled can be determined according to the spatial measurement measured by the unit. The filling process can also be monitored by observing the interference signal on the surface of the exposed layer on the glass plate. After the cell fill is complete, the resulting additional low coherence interference pattern can be used to monitor the cell gap Δg (or other spatial characteristics). In addition, process conditions can be changed again such that the cell gap remains within tolerance.

在一些LCD中,對準層包括突起的結構,用以提供液晶材料期待的對準特徵。舉例而言,在一些LCD中,其每一個畫素具有一個以上的對準區域(alignment domain),其中突起的結構用以不同的對準區域。低同調干涉訊號用以量測突起的多種特性,例如外形、線寬、高度及/或相對於底下之LCD面板的特徵元件的覆蓋誤差。在突起結構未達到預期之處,突起結構能夠被修復或移除,並且視需要重新製造。In some LCDs, the alignment layer includes a raised structure to provide the desired alignment features of the liquid crystal material. For example, in some LCDs, each pixel has more than one alignment domain, wherein the structures of the protrusions are used for different alignment regions. The low coherence interference signal is used to measure various characteristics of the protrusion, such as shape, line width, height, and/or coverage error with respect to the characteristic elements of the underlying LCD panel. Where the protruding structure is not as expected, the protruding structure can be repaired or removed and remanufactured as needed.

一般而言,低同調干涉系統能夠視需要地被設置以監測LCD面板生產的不同階段。在一些實施例中,檢查站包括干涉系統,其中干涉系統能夠被設置在生產線中。舉例而言,檢查站能夠被設置在進行微影步驟之乾淨的製造環境中。將玻璃板傳遞至檢查站,或是從檢查站取回都能藉由自動化機械而完成。此外,檢查站能夠設置在生產線外。舉例而言,若僅需對顯示器的一項取樣進行測試,則樣品能夠從生產線上被取出,並且在生產線外進行測試。In general, low coherence interference systems can be configured as needed to monitor different stages of LCD panel production. In some embodiments, the inspection station includes an interference system, wherein the interference system can be placed in the production line. For example, the inspection station can be placed in a clean manufacturing environment where the lithography steps are performed. Transferring the glass sheet to the inspection station or retrieving it from the inspection station can be done by automated machinery. In addition, checkpoints can be placed outside the production line. For example, if only one sample of the display needs to be tested, the sample can be taken from the production line and tested outside the production line.

參考第52C圖,具體的檢查站4000包括桌子4030,其中桌子4030包括支架4020,其位於偵測器4010(例如上述的干涉顯微鏡)設置之處。桌子4030(包括隔振軸承)用以支持LCD面板4001(或玻璃板)或將LCD面板4001相對於偵測器4010作定位。偵測器4010藉由滑軌而被設置在支架4020上,使得偵測器能夠沿著箭號4014的方向前進或後退。藉此方式,檢查站4000能夠移動偵測器4010以檢查顯示面板4001上的任何位置。Referring to Figure 52C, a particular checkpoint 4000 includes a table 4030, wherein the table 4030 includes a stand 4020 that is located where the detector 4010 (e.g., the interference microscope described above) is disposed. A table 4030 (including a vibration isolating bearing) is used to support the LCD panel 4001 (or glass panel) or to position the LCD panel 4001 relative to the detector 4010. The detector 4010 is disposed on the bracket 4020 by a slide rail so that the detector can advance or retreat in the direction of the arrow 4014. In this manner, the inspection station 4000 can move the detector 4010 to check any position on the display panel 4001.

檢查站4000也包括電子控制裝置(control electronics)4050,用以控制偵測器4010的定位系統,並且從偵測器4010取得有關於面板4001資訊的訊號。藉此方式,電子控制裝置4050能夠協調偵測器的定位和資料的擷取。The checkpoint 4000 also includes an electronic control unit 4050 for controlling the positioning system of the detector 4010 and obtaining signals from the detector 4010 regarding the information of the panel 4001. In this way, the electronic control unit 4050 can coordinate the positioning of the detector and the capture of the data.

雷射切削(Laser Scribing and Cutting)Laser Scribing and Cutting

雷射能夠用以切削物體,用於製作彼此分立之不同且同時被製造的結構,例如微電子結構。彼此間隔的品質與切削的條件有關,例如雷射的聚焦品質、雷射功率、物體的轉移率(translation rate),以及切削深度。因為特徵元件的結構密度很高,所以切削線會鄰接於結構中的薄膜或薄膜層。當用干涉技術來決定切削深度時,薄膜和薄膜層之間的介面會產生干涉圖案。即使切削線很靠近薄膜或薄膜層,切削深度也能夠藉由本發明所揭露的方法和系統而被決定。Lasers can be used to cut objects for making structures that are distinct from each other and that are fabricated at the same time, such as microelectronic structures. The quality of each other is related to the conditions of the cutting, such as the focus quality of the laser, the laser power, the translation rate of the object, and the depth of cut. Because of the high structural density of the feature elements, the cutting line will abut the film or film layer in the structure. When interfering techniques are used to determine the depth of cut, the interface between the film and the film layer creates an interference pattern. Even if the cutting line is very close to the film or film layer, the depth of cut can be determined by the method and system disclosed herein.

一個具體的例子包括切削一個或以上的電子結構,並且沿著切削線將電子結構分開。在分開之前及/或分開之後,低同調干涉訊號能夠用以決定切削深度。其它的切削條件是已知的,例如雷射聚焦點大小、雷射功率、轉移率。切削深度能夠根據干涉訊號而被決定。藉由估計分立的結構,有關於切削條件之間隔的品質(例如切削深度)能夠被決定。根據上述決定,必須被達到之所需間隔品質的切削條件能夠被決定。在後續的製造期間,低同調干涉訊號能夠從被切削的區域被取得以監測切削的製程。切削條件能夠被改變使得切削特性維持在公差的範圍內。A specific example includes cutting one or more electronic structures and separating the electronic structures along the cutting lines. The low coherence interference signal can be used to determine the depth of cut before and/or after separation. Other cutting conditions are known, such as laser focus point size, laser power, and transfer rate. The depth of cut can be determined based on the interference signal. By estimating the discrete structure, the quality (e.g., depth of cut) with respect to the interval of the cutting conditions can be determined. According to the above decision, the cutting conditions that must be achieved at the required interval quality can be determined. During subsequent manufacturing, low coherent interference signals can be taken from the area being cut to monitor the cutting process. The cutting conditions can be varied such that the cutting characteristics are maintained within tolerances.

本發明的數種實施例已經揭露如上。其他實施例是在申請專利範圍中的請求項中。Several embodiments of the invention have been disclosed above. Other embodiments are in the claims in the scope of the patent application.

29...特徵元件29. . . Characteristic component

30...物體30. . . object

32...晶圓32. . . Wafer

34...光阻層34. . . Photoresist layer

35...表面35. . . surface

36...基板介面36. . . Substrate interface

37...下表面37. . . lower surface

38...介面38. . . interface

39...外表面39. . . The outer surface

Δt1 、Δt2 ...厚度Δt 1 , Δt 2 . . . thickness

40...總區域40. . . Total area

401 -40N ...晶片40 1 -40 N . . . Wafer

421 -423 ...點42 1 -42 3 . . . point

100...低同調性干涉系統100. . . Low coherence interference system

200...PUPS干涉系統200. . . PUPS interference system

300...光程長度掃描干涉系統300. . . Optical path length scanning interference system

400、2001、2002、2003、2004、4110...干涉系統400, 2001, 2002, 2003, 2004, 4110. . . Interference system

2000...雷射Fizeau干涉系統2000. . . Laser Fizeau Interference System

4000...偵測器系統4000. . . Detector system

450、4001...LCD面板450, 4001. . . LCD panel

456、474...偏光片456, 474. . . Polarizer

452、453...玻璃板452, 453. . . glass plate

454...邊緣封膠454. . . Edge sealant

458...電極層458. . . Electrode layer

460...鈍化層460. . . Passivation layer

462、468...對準層462, 468. . . Alignment layer

464...間隙464. . . gap

Δg...單元間隙Δg. . . Cell gap

466...間隔物466. . . Spacer

470...硬鍍膜層470. . . Hard coating

472...第二電極層472. . . Second electrode layer

476...彩色濾光片476. . . Color filter

4010...子系統4010. . . Subsystem

4012...光纜4012. . . Optical cable

4014、4016...隔離器4014, 4016. . . Isolator

4030...內腔4030. . . Inner cavity

4032A、4032B...光纖延伸模組4032A, 4032B. . . Fiber extension module

4050-4053...通道4050-4053. . . aisle

4060...偵測暨相位量測計電子模組4060. . . Detection and phase measuring meter electronic module

4070-4073...偵測模組4070-4073. . . Detection module

4080...參考信號腔4080. . . Reference signal cavity

4095...光纖耦合器4095. . . Fiber coupler

4099A、4099B、4100、4570、4570A、4590A、4590B、4610、4630、4640、4660、4700A、4800、4800A、4830、4920A、4920B...偵測器4099A, 4099B, 4100, 4570, 4570A, 4590A, 4590B, 4610, 4630, 4640, 4660, 4700A, 4800, 4800A, 4830, 4920A, 4920B. . . Detector

4102、4202...光纖4102, 4202. . . optical fiber

4104、4204...GRIN透鏡4104, 4204. . . GRIN lens

4106...光束腰部位置4106. . . Beam waist position

4114...目標物4114. . . Target

4108...第二面4108. . . Second side

4112...目標面4112. . . Target surface

4167...Mirau干涉物鏡4167. . . Mirau interference objective

4200...參考訊號腔4200. . . Reference signal cavity

4410、4410’、4420...調變波峰4410, 4410', 4420. . . Modulated peak

4540...干涉物鏡單元4540. . . Interference objective unit

4545...偵測器環4545. . . Detector ring

4580...Michelson干涉物鏡4580. . . Michelson Interference Objective

4600...通用型干涉物鏡4600. . . Universal interference objective

4594A、4594B...Schwarzschild光學組件4594A, 4594B. . . Schwarzschild optical components

4596A...待測物分支4596A. . . Branch of the object to be tested

4596B、4686...參考物分支4596B, 4686. . . Reference branch

4620...基座4620. . . Pedestal

4650、4680、4710、4820...偵測光束4650, 4680, 4710, 4820. . . Detection beam

4670...量測點4670. . . Measuring point

4690、4750...參考物光束4690, 4750. . . Reference beam

4840...偵測光束4840. . . Detection beam

4715...待測物干涉物鏡4715. . . Object to be measured

4718...參考物干涉物鏡4718. . . Reference interference objective

4900...物鏡轉台4900. . . Objective turntable

4940...可旋轉部位4940. . . Rotatable part

4930...不可旋轉部位4930. . . Non-rotatable part

110...干涉顯微鏡110. . . Interference microscope

161...光強度監測器161. . . Light intensity monitor

163...主光源163. . . Main light source

197、3197...第二光源197, 3197. . . Second light source

164...光束結合器164. . . Beam combiner

165...輸入光165. . . Input light

169、171、189、2169、2171...光學中繼器169, 171, 189, 2169, 2171. . . Optical repeater

191...主偵測器191. . . Main detector

4630A、4630B...第一偵測器4630A, 4630B. . . First detector

199、4830B、4830C、4830D...第二偵測器199, 4830B, 4830C, 4830D. . . Second detector

170、179、198、2198、2164、3170、5164、5170、5189、4585、4720...分光鏡170, 179, 198, 2198, 2164, 3170, 5164, 5170, 5189, 4585, 4720. . . Beam splitter

101...帶通濾光器101. . . Band pass filter

183、187...光線183, 187. . . Light

193、331、2193...調制器193, 331, 2193. . . Modulator

177、4910A、4910B...物鏡177, 4910A, 4910B. . . Objective lens

175、2175、3175、4175...待測物175, 2175, 3175, 4175. . . Analyte

181...參考面181. . . Reference surface

185...光線185. . . Light

192、5192...計算機192, 5192. . . computer

195...連接線195. . . Cable

213...管狀透鏡213. . . Tubular lens

215...偏振器215. . . Polarizer

217...光瞳平面217. . . Optical plane

229...焦平面229. . . Focal plane

310...干涉顯微鏡310. . . Interference microscope

325、4592...Linnik干涉物鏡325, 4592. . . Linnik interference objective

327...測試光物鏡327. . . Test light objective

329...參考光物鏡329. . . Reference light objective

381、4181、4740、4810...參考物381, 4181, 4740, 4810. . . Reference

410...干涉顯微鏡410. . . Interference microscope

1801...位移量測干涉儀1801. . . Displacement measuring interferometer

2191、5191...主相機2191, 5191. . . Main camera

2199...第二相機2199. . . Second camera

2106...孔徑2106. . . Aperture

2163、4020...光源2163, 4020. . . light source

2181A...主參考面2181A. . . Main reference plane

2181B...第二參考面2181B. . . Second reference surface

2100...複合參考面2100. . . Composite reference plane

2202A、2252A‧‧‧第一光學元件2202A, 2252A‧‧‧ first optical component

2202B、2252B‧‧‧第二光學元件2202B, 2252B‧‧‧ second optical component

2200、2250‧‧‧複合參考面組件2200, 2250‧‧‧Composite reference surface components

2189‧‧‧成像透鏡2189‧‧‧ imaging lens

2190、2258、4550、5169、5171、5177‧‧‧透鏡2190, 2258, 4550, 5169, 5171, 5177‧‧ lens

4560、4850‧‧‧鏡子4560, 4850‧‧ ‧ mirror

2204‧‧‧固定盤2204‧‧‧ Fixed disk

2177‧‧‧光學準直器2177‧‧‧Optical collimator

3163、5163‧‧‧寬頻帶光源3163, 5163‧‧‧Broadband light source

5197‧‧‧監測光源5197‧‧‧Monitor light source

3210‧‧‧光源暨偵測單元3210‧‧‧Light source and detection unit

3310‧‧‧干涉平台3310‧‧Interference platform

3191‧‧‧白光相機3191‧‧‧White light camera

3199、5199‧‧‧監測相機3199, 5199‧‧‧Monitor camera

3189‧‧‧成像透鏡3189‧‧‧ imaging lens

3190‧‧‧監測影像透鏡3190‧‧‧Monitoring image lens

3300‧‧‧監測器組件3300‧‧‧Monitor components

3302A‧‧‧主參考鏡3302A‧‧‧Main Reference Mirror

3302B‧‧‧第二參考物3302B‧‧‧Second reference

3304‧‧‧半穿反鏡3304‧‧‧Half-mirror

3306‧‧‧參考物透鏡3306‧‧‧Reference lens

3308‧‧‧取樣鏡3308‧‧‧Sampling mirror

3179‧‧‧干涉儀分光鏡3179‧‧‧Interferometer beamsplitter

167、3167、5167‧‧‧干涉物鏡167, 3167, 5167‧‧‧ Interference objective

3193‧‧‧機械掃描器3193‧‧‧Mechanical scanner

500、500’‧‧‧裝置500, 500’‧‧‧ devices

501‧‧‧基板501‧‧‧Substrate

502、502’‧‧‧銅特徵元件502, 502'‧‧‧ copper feature

504、504’‧‧‧介電質504, 504'‧‧‧ dielectric

506、506’‧‧‧上表面506, 506'‧‧‧ upper surface

508、508’、510‧‧‧介面508, 508’, 510‧‧ interface

5193‧‧‧移動平台5193‧‧‧Mobile platform

5400‧‧‧點5400‧‧ points

1050‧‧‧結構1050‧‧‧ structure

1051‧‧‧基板1051‧‧‧Substrate

1002、1003‧‧‧區域1002, 1003‧‧‧ areas

1004‧‧‧焊料1004‧‧‧ solder

1005‧‧‧介面1005‧‧" interface

1007、1009‧‧‧外表面1007, 1009‧‧‧ outer surface

5422‧‧‧光源5422‧‧‧Light source

5424、5434‧‧‧1:4光切換器5424, 5434‧‧1:4 optical switcher

5442、5448‧‧‧光耦合器5442, 5448‧‧‧Optocoupler

5426、5428、5430‧‧‧帶通濾光器5426, 5428, 5430‧‧‧ bandpass filters

5444、5446‧‧‧光調變器5444, 5446‧‧‧Light modulator

5450‧‧‧光延遲線5450‧‧‧Optical delay line

5420‧‧‧照射模組5420‧‧‧ illumination module

5440‧‧‧外差模組5440‧‧‧heterodyne module

5460‧‧‧分配模組5460‧‧‧Distribution module

5480‧‧‧偵測器5480‧‧‧Detector

5499‧‧‧檢測與計算模組5499‧‧‧Detection and calculation module

5453‧‧‧檢測器5453‧‧‧Detector

5462、5464、5466‧‧‧50/50耦合器5462, 5464, 5466‧‧5050/50 couplers

5468、5470、5472、5474‧‧‧耦合器5468, 5470, 5472, 5474‧‧‧ couplers

5482、5484、5486、5488、5490‧‧‧偵測器5482, 5484, 5486, 5488, 5490‧‧ ‧ detectors

5492‧‧‧檢測與放大次模組5492‧‧‧Detection and amplification sub-module

5494‧‧‧分析次模組5494‧‧‧Analysis sub-module

5400、5300‧‧‧系統5400, 5300‧‧‧ system

5340‧‧‧模組5340‧‧‧Module

5310、5320、5330‧‧‧顯微鏡5310, 5320, 5330‧‧ ‧ microscope

5312、5322、5332‧‧‧偵測器5312, 5322, 5332‧‧ ‧ detector

5311、5321、5331‧‧‧待測物5311, 5321, 5331‧‧‧ test objects

5314、5324、5334‧‧‧平台5314, 5324, 5334‧‧‧ platform

5432‧‧‧振幅調變器5432‧‧‧Amplitude Modulator

第1圖為包括干涉顯微鏡之低同調性干涉系統之一實施例的示意圖。Figure 1 is a schematic illustration of one embodiment of a low coherence interference system including an interference microscope.

第2圖為偵測器之可視區中之干涉圖案的圖示。Figure 2 is an illustration of the interference pattern in the viewable area of the detector.

第3圖為顯示強度與低同調干涉訊號之光程差之間的關係的圖示。Figure 3 is a graphical representation showing the relationship between intensity and optical path difference of low coherent interference signals.

第4圖為顯示監測訊號之強度與低同調干涉訊號之光程差之間的關係的圖示。Figure 4 is a graphical representation showing the relationship between the intensity of the monitoring signal and the optical path difference of the low coherent interference signal.

第5圖為在一次掃描期間,待測物相對位移與時間之間的關係的圖示,用以顯示掃描誤差的效應。Figure 5 is a graphical representation of the relationship between relative displacement of the analyte and time during a scan to show the effect of the scan error.

第6圖為顯示系統對掃描誤差之靈敏度與振動頻率之關係的圖示。Figure 6 is a graphical representation showing the relationship between the sensitivity of the system to the scanning error and the vibration frequency.

第7圖為包括干涉顯微鏡之低同調性干涉系統之一實施例的示意圖。Figure 7 is a schematic illustration of one embodiment of a low coherence interference system including an interference microscope.

第8圖為描繪像平面內的光與光瞳平面之關係的示意圖。Figure 8 is a schematic diagram depicting the relationship between light in the image plane and the pupil plane.

第9圖包括干涉顯微鏡之低同調性干涉系統之一實施例的示意圖。Figure 9 includes a schematic of one embodiment of a low coherence interference system of an interference microscope.

第10圖為包括干涉顯微鏡之低同調性干涉系統之一實施例的示意圖。Figure 10 is a schematic illustration of one embodiment of a low coherence interference system including an interference microscope.

第11圖為J矩陣近似法的流程圖。Figure 11 is a flow chart of the J matrix approximation.

第12A圖和第12B圖是J矩陣近似法的流程圖。Fig. 12A and Fig. 12B are flowcharts of the J matrix approximation.

第13A圖至第13E圖為將J矩陣近似法與DFT近似法作比較之數值實驗的圖式。Figures 13A through 13E are diagrams of numerical experiments comparing J matrix approximations with DFT approximations.

第14A圖至第14E圖為將J矩陣近似法與DFT近似法作比較之數值實驗的圖式。Figures 14A through 14E are diagrams of numerical experiments comparing J matrix approximations with DFT approximations.

第15A圖至第15E圖為將J矩陣近似法與DFT近似法作比較之數值實驗的圖式。15A to 15E are diagrams of numerical experiments comparing the J matrix approximation method with the DFT approximation method.

第16A圖和第16B圖為說明J矩陣近似法之數值實驗的圖示。Figures 16A and 16B are graphical representations of numerical experiments illustrating the J-matrix approximation.

第17A圖至第17C圖為說明J矩陣近似法之數值實驗的圖示。17A to 17C are diagrams illustrating numerical experiments of the J matrix approximation.

第18圖為數值實驗之干涉訊號的圖示。Figure 18 is a graphical representation of the interference signal for a numerical experiment.

第19圖為具有複合式參考物之干涉系統之一實施例的示意圖。Figure 19 is a schematic illustration of one embodiment of an interference system having a composite reference.

第20圖為僅根據複合式參考物之強度反射率的模擬影像。Figure 20 is a simulated image of the intensity reflectance based only on the composite reference.

第21A圖顯示第20圖之強度反射率的截面圖。Fig. 21A is a cross-sectional view showing the intensity reflectance of Fig. 20.

第21B圖顯示第20圖中影像之相位變化的圖示。Fig. 21B is a view showing the phase change of the image in Fig. 20.

第22圖是根據複合參考面和主偵測器偵測到之待測物的模擬強度反射率影像。Figure 22 is a simulated intensity reflectance image of the object to be tested detected by the composite reference plane and the main detector.

第23圖是根據複合參考面和主偵測器偵測到之待測物的模擬強度反射率影像。Figure 23 is a simulated intensity reflectance image of the object to be tested detected by the composite reference plane and the main detector.

第24A圖顯示第22圖中影像之強度反射率的圖示。Fig. 24A is a view showing the intensity reflectance of the image in Fig. 22.

第24B圖顯示第22圖中影像之相位變化的圖示。Fig. 24B is a view showing the phase change of the image in Fig. 22.

第25A圖顯示第20圖中影像之相位變化的圖示。Fig. 25A is a view showing the phase change of the image in Fig. 20.

第25B圖顯示第23圖中影像之相位變化的圖示。Fig. 25B is a view showing the phase change of the image in Fig. 23.

第26圖是具有複合表面之干涉系統之資料處理的流程圖。Figure 26 is a flow diagram of data processing for an interference system with a composite surface.

第27圖是具有複合參考面之干涉系統之實施例的示意圖。Figure 27 is a schematic illustration of an embodiment of an interference system having a composite reference plane.

第28圖是第8圖之干涉系統之實施例的示意圖,包括光束導引系統。Figure 28 is a schematic illustration of an embodiment of the interference system of Figure 8, including a beam steering system.

第29圖是具有複合參考面干涉系統之實施例的示意圖。Figure 29 is a schematic illustration of an embodiment with a composite reference plane interference system.

第30圖是具有複合參考面干涉系統之實施例的示意圖。Figure 30 is a schematic illustration of an embodiment with a composite reference plane interference system.

第31圖是具有複合參考面干涉系統之實施例的示意圖。Figure 31 is a schematic illustration of an embodiment with a composite reference plane interference system.

第32圖是低同調干涉系統之實施例的示意圖,包括一干涉顯微鏡以及一雷射位移干涉儀。Figure 32 is a schematic illustration of an embodiment of a low coherence interference system including an interference microscope and a laser displacement interferometer.

第33A圖是一組合後之裝置之實施例的示意圖,包括一感測器系統以及一干涉系統。Figure 33A is a schematic illustration of an embodiment of a combined device including a sensor system and an interference system.

第33B圖是一偵測器系統之實施例之示意圖。Figure 33B is a schematic illustration of an embodiment of a detector system.

第34圖是感測器之實施例的示意圖。Figure 34 is a schematic illustration of an embodiment of a sensor.

第35圖是參考腔之圖示。Figure 35 is a graphical representation of the reference cavity.

第36圖是組合後之裝置之操作的流程圖,包括一感測器系統以及一干涉系統。Figure 36 is a flow diagram of the operation of the combined device, including a sensor system and an interference system.

第37圖是組合後之裝置之自動聚焦模式的示意圖,包括一感測器系統以及一干涉系統。Figure 37 is a schematic illustration of the autofocus mode of the combined device, including a sensor system and an interference system.

第38圖是組合後之裝置之移動監測模式的示意圖,包括一感測器系統以及一干涉系統。Figure 38 is a schematic illustration of the mobile monitoring mode of the combined device, including a sensor system and an interference system.

第39圖是顯示Mirau物鏡和兩個感測器之組合的示意圖。Figure 39 is a schematic diagram showing the combination of a Mirau objective and two sensors.

第40圖是顯示Mirau物鏡和一個感測器之組合的示意圖。Figure 40 is a schematic diagram showing the combination of a Mirau objective and a sensor.

第41圖是顯示Linnik物鏡和兩個感測器之組合的示意圖。Figure 41 is a schematic diagram showing the combination of a Linnik objective and two sensors.

第42A圖是顯示Linnik物鏡和一個感測器之組態的示意圖。Figure 42A is a schematic diagram showing the configuration of a Linnik objective lens and a sensor.

第42B圖是顯示一個物鏡和一個感測器之組態的示意圖。Figure 42B is a schematic diagram showing the configuration of an objective lens and a sensor.

第42C圖是顯示一個物鏡和一個感測器之組態的示意圖。Figure 42C is a schematic diagram showing the configuration of an objective lens and a sensor.

第43A圖是顯示Michelson物鏡和兩個感測器之組合的示意圖。Figure 43A is a schematic diagram showing the combination of a Michelson objective and two sensors.

第43B圖是顯示Michelson物鏡和兩個感測器之組合的示意圖。Figure 43B is a schematic diagram showing the combination of a Michelson objective and two sensors.

第43C圖是顯示Linnik物鏡和一個感測器之組合的示意圖。Figure 43C is a schematic diagram showing the combination of a Linnik objective lens and a sensor.

第43D圖是顯示Linnik物鏡和一個感測器之組合的示意圖。Figure 43D is a schematic diagram showing the combination of a Linnik objective lens and a sensor.

第44A圖是顯示Michelson物鏡和一個感測器之組合的示意圖。Figure 44A is a schematic diagram showing the combination of a Michelson objective and a sensor.

第44B圖是顯示Linnik物鏡和一個感測器之組合的示意圖。Figure 44B is a schematic diagram showing the combination of a Linnik objective lens and a sensor.

第45A圖是顯示Michelson物鏡和兩個感測器之組合的示意圖。Figure 45A is a schematic diagram showing the combination of a Michelson objective and two sensors.

第45B圖是顯示Linnik物鏡和兩個感測器之組合的示意圖。Figure 45B is a schematic diagram showing the combination of a Linnik objective and two sensors.

第45C圖是顯示Linnik物鏡和三個感測器之組合的示意圖。Figure 45C is a schematic diagram showing the combination of a Linnik objective and three sensors.

第46圖是顯示一物鏡和一具有感測器之掃描器之組合的示意圖。Figure 46 is a schematic diagram showing the combination of an objective lens and a scanner having a sensor.

第47圖是顯示一具有感測器之物鏡以及一分立之參考鏡之組合的示意圖。Figure 47 is a schematic diagram showing the combination of an objective lens having a sensor and a separate reference mirror.

第48A圖是顯示具有兩個感測器之轉台物鏡以及兩物鏡之組態的示意圖。Figure 48A is a schematic diagram showing the configuration of a turntable objective lens with two sensors and two objective lenses.

第48B圖是顯示具有一個感測器之轉台物鏡以及兩物鏡之組態的示意圖。Figure 48B is a schematic diagram showing the configuration of a turntable objective lens having one sensor and two objective lenses.

第49A圖是膜結構之裝置的具體示意圖,膜結構之裝置是由基板上被沉積之銅特徵元件之介電質沉積所形成。Figure 49A is a detailed schematic view of a device for a film structure formed by dielectric deposition of deposited copper features on a substrate.

第49B圖是第49A圖之裝置在前述化學機械(拋光)程序之後的示意圖。Figure 49B is a schematic illustration of the apparatus of Figure 49A after the aforementioned chemical mechanical (polishing) procedure.

第50A圖是物體的上視圖,物體包括基板(例如晶圓,或覆蓋層,如光阻層)。Figure 50A is a top view of an object including a substrate (e.g., a wafer, or a cover layer, such as a photoresist layer).

第50B圖是物體的側視圖。Figure 50B is a side view of the object.

第51A圖是適用於焊料凸塊製程之結構的示意圖。Figure 51A is a schematic illustration of a structure suitable for use in a solder bump process.

第51B圖是第51A圖之結構在焊料凸塊製程之後的示意圖。Figure 51B is a schematic view of the structure of Figure 51A after the solder bump process.

第52A圖是LCD面板的示意圖,LCD面板由數層所構成。Figure 52A is a schematic view of an LCD panel composed of several layers.

第52B圖是製造LCD面板之數種步驟的流程圖。Figure 52B is a flow chart of several steps in the manufacture of an LCD panel.

第52C圖是LCD面板之檢查站之實施例的示意圖,檢查站包括干涉感測器。Figure 52C is a schematic illustration of an embodiment of an inspection station for an LCD panel, the inspection station including an interference sensor.

第53圖係是具有複數顯微鏡和單偵測器系統之系統之示意圖。Figure 53 is a schematic illustration of a system with a complex microscope and a single detector system.

在多種圖示中之相似的元件符號表示類似的元件。Similar element symbols in the various figures represent similar elements.

100...低同調性干涉系統100. . . Low coherence interference system

101...帶通濾光器101. . . Band pass filter

110...干涉顯微鏡110. . . Interference microscope

161...光強度監測器161. . . Light intensity monitor

163...主光源163. . . Main light source

164...光束結合器164. . . Beam combiner

165...輸入光165. . . Input light

167...干涉物鏡167. . . Interference objective

169、171、189...光學中繼器169, 171, 189. . . Optical repeater

170、179、198...分光鏡170, 179, 198. . . Beam splitter

175...待測物175. . . Analyte

177...物鏡177. . . Objective lens

181...參考面181. . . Reference surface

183、187...光線183, 187. . . Light

185...光線185. . . Light

191...主偵測器191. . . Main detector

192...計算機192. . . computer

193...調制器193. . . Modulator

195...連接線195. . . Cable

197...第二光源197. . . Second light source

199...第二偵測器199. . . Second detector

Claims (31)

一種顯微鏡系統,具有用於監視顯微鏡之光纖基礎干涉儀系統,並包括:一或多個顯微鏡,每一顯微鏡包括一相應的物鏡和一相應的平台,上述相應的平台用以將一待測物相對於上述相應的物鏡作定位,其中每一相應的平台能夠相對於上述相應的物鏡而移動,而每一顯微鏡藉由上述相應的物鏡成像相應的上述待測物;以及一偵測器系統,用於監視每一相應的物鏡和上述相應的平台之間之一相對位置,上述偵測器系統包括:一偵測器光源;一或多個干涉偵測器,每一干涉偵測器與上述顯微鏡中之一者相關,上述干涉偵測器用以接收上述偵測器光源所發出的光,以便產生上述所發出的光之一相應的第一部分和一相應的第二部分之間的一光程差,上述光程差係有關於上述相應的物鏡和上述相應的平台之間之一相對位置,上述干涉偵測器將上述所發出的光之上述相應的第一部分和上述相應的第二部分結合起來提供相應的一輸出光;一或多個檢測器,每一檢測器用以檢測來自於相應的上述干涉偵測器的上述輸出光;一或多個光纖波導,用以引導上述偵測器光源、上述干涉偵測器和上述檢測器間的光;一可調整光學腔,係為上述偵測器光源至上述干涉偵 測器之光路;以及一電子控制器,用以與上述偵測器通訊,上述電子控制器用以根據上述干涉偵測器所偵測到的上述輸出光來決定每一相應的物鏡和上述相應的平台之間之上述相對位置的資訊。 A microscope system having a fiber-based interferometer system for monitoring a microscope, and comprising: one or more microscopes, each microscope comprising a corresponding objective lens and a corresponding platform for using a corresponding object to be tested Positioning relative to the corresponding objective lens, wherein each corresponding platform is movable relative to the corresponding objective lens, and each microscope images the corresponding object to be tested by the corresponding objective lens; and a detector system, For monitoring the relative position between each corresponding objective lens and the corresponding platform, the detector system includes: a detector light source; one or more interference detectors, each of the interference detectors and the above In one aspect of the microscope, the interference detector is configured to receive light emitted by the detector light source to generate an optical path between the corresponding first portion and a corresponding second portion of the emitted light. Poor, the optical path difference is related to a relative position between the corresponding objective lens and the corresponding platform, and the interference detector emits the light emitted The corresponding first portion and the corresponding second portion are combined to provide a corresponding output light; one or more detectors, each detector for detecting the output light from the corresponding interference detector; a plurality of fiber waveguides for guiding light between the detector light source, the interference detector and the detector; and an adjustable optical cavity for detecting the light source to the interference detection An optical path of the detector; and an electronic controller for communicating with the detector, wherein the electronic controller is configured to determine each corresponding objective lens and the corresponding image according to the output light detected by the interference detector Information about the relative position between the platforms. 如申請專利範圍第1項所述之顯微鏡系統,其中每個上述顯微鏡檢查相異的上述待測物。 The microscope system of claim 1, wherein each of the above-mentioned microscopes examines the different analytes. 如申請專利範圍第1項所述之顯微鏡系統,其中上述電子控制器根據上述資訊判斷對應於上述待測物之上述顯微鏡之焦距。 The microscope system of claim 1, wherein the electronic controller determines a focal length of the microscope corresponding to the object to be tested based on the information. 如申請專利範圍第1項所述之顯微鏡系統,其中在操作時,上述系統使用上述顯微鏡判斷上述待測物的資訊,其中判斷待測物的資訊包括使用上述資訊以降低由上述系統的振動所造成的錯誤,上述資訊係由上述電子控制器所決定。 The microscope system of claim 1, wherein, in operation, the system uses the microscope to determine information of the object to be tested, wherein determining information of the object to be tested includes using the above information to reduce vibration of the system The above information is determined by the above electronic controller. 如申請專利範圍第1項所述之顯微鏡系統,其中上述顯微鏡係複數干涉型顯微鏡。 The microscope system of claim 1, wherein the microscope is a complex interference microscope. 如申請專利範圍第5項所述之顯微鏡系統,其中上述干涉顯微鏡係掃描式白光干涉技術型顯微鏡。 The microscope system of claim 5, wherein the interference microscope is a scanning white light interference technique type microscope. 如申請專利範圍第5項所述之顯微鏡系統,其中上述干涉顯微鏡係光瞳平面掃描式白光干涉技術型顯微鏡。 The microscope system of claim 5, wherein the interference microscope is a pupil-plane scanning white light interference technique type microscope. 如申請專利範圍第5項所述之顯微鏡系統,其中上述相應的物鏡係Mirau物鏡、Linnik物鏡或Michelson物鏡。 The microscope system of claim 5, wherein the corresponding objective lens is a Mirau objective, a Linnik objective or a Michelson objective. 如申請專利範圍第5項所述之顯微鏡系統,其中上述干涉顯微鏡係用以根據以一測試光照射上述待測物來決定相應的上述待測物的資訊,上述待測物定位於上述相應的平台,並且上述干涉顯微鏡將上述測試光與一參考光合併,以便在上述檢測器中形成一干涉圖案,其中上述測試光和上述參考光係來自於一共同源,並且上述系統用以減少複數掃描錯誤所造成的上述待測物的資訊之不確定性,其中上述掃描錯誤係根據由上述電子控制器所決定之上述資訊。 The microscope system of claim 5, wherein the interference microscope is configured to determine information of the corresponding object to be tested according to a test light to illuminate the object to be tested, and the object to be tested is positioned in the corresponding a platform, and the interference microscope combines the test light with a reference light to form an interference pattern in the detector, wherein the test light and the reference light are from a common source, and the system is used to reduce complex scanning The uncertainty of the information of the above-mentioned object to be tested caused by the error, wherein the scanning error is based on the above information determined by the electronic controller. 如申請專利範圍第1項所述之顯微鏡系統,其中上述可調整光學腔係為從上述偵測器光源至上述干涉偵測器的光路。 The microscope system of claim 1, wherein the adjustable optical cavity is an optical path from the detector light source to the interference detector. 如申請專利範圍第1項所述之顯微鏡系統,其中每個上述干涉偵測器包括一透鏡,用以接收來自上述光纖波導所輸出的光,並且將上述光纖波導所輸出的光聚焦於一腰部。 The microscope system of claim 1, wherein each of the interference detectors comprises a lens for receiving light output from the fiber waveguide, and focusing the light output by the fiber waveguide to a waist . 如申請專利範圍第11項所述之顯微鏡系統,其中每個上述透鏡係一漸變折射率透鏡。 The microscope system of claim 11, wherein each of the above lenses is a graded index lens. 如申請專利範圍第11項所述之顯微鏡系統,其中每個上述透鏡係附屬於一相應的物鏡。 The microscope system of claim 11, wherein each of the above lenses is attached to a corresponding objective lens. 如申請專利範圍第11項所述之顯微鏡系統,其中上述透鏡係附屬於一相應的平台。 The microscope system of claim 11, wherein the lens is attached to a corresponding platform. 如申請專利範圍第1項所述之顯微鏡系統,其中上述光纖波導包括一具有熱膨脹纖芯之光纖。 The microscope system of claim 1, wherein the fiber waveguide comprises an optical fiber having a thermally expanded core. 如申請專利範圍第1項所述之顯微鏡系統,其中每個上述顯微鏡包括一顯微鏡光源,並且上述相應的物鏡包括一或多個光學元件,每個上述顯微鏡用以從上述顯微鏡光源分光至上述待測物,並且上述光學元件用以從上述待測物收集光,相應的上述干涉偵測器用以透過上述相應的物鏡之上述光學元件引導光至上述相應的平台。 The microscope system of claim 1, wherein each of the microscopes comprises a microscope light source, and the corresponding objective lens comprises one or more optical elements, each of the microscopes for splitting light from the microscope light source to the Measuring, and the optical component is configured to collect light from the object to be tested, and the corresponding interference detector is configured to guide light to the corresponding platform through the optical component of the corresponding objective lens. 如申請專利範圍第1項所述之顯微鏡系統,其中上述偵測器光源係一寬頻帶光源。 The microscope system of claim 1, wherein the detector light source is a broadband light source. 如申請專利範圍第1項所述之顯微鏡系統,其中上述偵測器光源具有範圍從900nm至1800nm的波長。 The microscope system of claim 1, wherein the detector source has a wavelength ranging from 900 nm to 1800 nm. 如申請專利範圍第1項所述之顯微鏡系統,其中上述偵測器光源具有少於或等於50nm的半高寬。 The microscope system of claim 1, wherein the detector source has a full width at half maximum of 50 nm or less. 如申請專利範圍第1項所述之顯微鏡系統,其中上述偵測器光源具有大約等於或少於100毫米的同調長度。 The microscope system of claim 1, wherein the detector light source has a coherence length of about 100 mm or less. 如申請專利範圍第1項所述之顯微鏡系統,其中上述可調整光學腔包括兩條光路,每條光路包括一光纖延伸模組。 The microscope system of claim 1, wherein the adjustable optical cavity comprises two optical paths, each optical path comprising an optical fiber extension module. 如申請專利範圍第1項所述之顯微鏡系統,其中上述偵測器光源和上述檢測器係在一外罩中,上述外罩與上述顯微鏡係分開。 The microscope system of claim 1, wherein the detector light source and the detector are in a housing, the housing being separated from the microscope. 如申請專利範圍第1項所述之顯微鏡系統,其中上述資訊係有關於上述相應的物鏡與上述相應的平台沿著一相應的軸之位移。 The microscope system of claim 1, wherein the information is related to displacement of the respective objective lens and the corresponding platform along a corresponding axis. 如申請專利範圍第23項所述之顯微鏡系統,其中 上述顯微鏡用以掃描平行於上述相應的軸之上述相應的平台。 The microscope system of claim 23, wherein The microscope is used to scan the respective platforms parallel to the respective axes described above. 如申請專利範圍第23項所述之顯微鏡系統,其中上述資訊係有關於上述相應的物鏡與上述相應的平台之間的絕對位移。 The microscope system of claim 23, wherein the information is related to an absolute displacement between the corresponding objective lens and the corresponding platform. 如申請專利範圍第23項所述之顯微鏡系統,其中上述資訊係有關於上述相應的物鏡與上述相應的平台之間的上述相對位置。 The microscope system of claim 23, wherein the information is related to the relative position between the corresponding objective lens and the corresponding platform. 如申請專利範圍第1項所述之顯微鏡系統,其中每個上述顯微鏡包括一顯微鏡光源,用以從上述顯微鏡光源分光至設置在上述相應的平台之一待測物,其中上述顯微鏡光源的最大強度的波長約為100nm或大於上述偵測器光源最大強度的波長。 The microscope system of claim 1, wherein each of the microscopes includes a microscope light source for splitting light from the microscope light source to one of the objects to be tested disposed on the corresponding platform, wherein the maximum intensity of the microscope light source The wavelength is about 100 nm or greater than the maximum intensity of the detector source. 如申請專利範圍第27項所述之顯微鏡系統,其中上述顯微鏡光源的最大強度的波長範圍為300nm至700nm,並且上述偵測器光源最大強度的波長範圍為900nm至1600nm。 The microscope system of claim 27, wherein the maximum intensity of the microscope source ranges from 300 nm to 700 nm, and the maximum intensity of the detector light source ranges from 900 nm to 1600 nm. 一種成像干涉儀系統,具有用於監視成像干涉儀之光纖基礎干涉儀系統,並包括:一或多個成像干涉儀,每個成像干涉儀包括一或多個光學元件和一相應的平台,上述相應的平台係相對於相應的上述成像干涉儀之上述光學元件而移動,而上述成像干涉儀分別藉由上述一或多個光學元件成像多個相應的待測物;以及 一偵測器系統,用於監視上述一或多個光學元件和上述相應的平台之間之一相對位置,上述偵測器系統包括:一偵測器光源;一或多個干涉偵測器,每一干涉偵測器用以接收上述偵測器光源,以便產生一相應的第一部分和一相應的第二部分之間的一光程差,上述光程差係有關於上述光學元件和上述相應的平台的距離,以及將上述相應的第一部分和上述相應的第二部分結合起來提供相應的一輸出光;一或多個檢測器,每一檢測器用以檢測來自於上述干涉偵測器之一相應的干涉偵測器的上述輸出光;一或多個光纖波導,用以引導上述偵測器光源、上述干涉偵測器和上述檢測器間的光;一可調整光學腔,係為上述偵測器光源至上述干涉偵測器之光路;以及一電子控制器,用以與上述偵測器通訊,上述電子控制器用以根據上述干涉偵測器所偵測到的上述輸出光來決定每一成像干涉儀之上述一或多個光學元件和上述相應的平台之間之上述相對位置的資訊。 An imaging interferometer system having a fiber-based interferometer system for monitoring an imaging interferometer and comprising: one or more imaging interferometers, each imaging interferometer comprising one or more optical components and a corresponding platform, a corresponding platform is moved relative to the optical element of the corresponding imaging interferometer, and the imaging interferometer respectively images a plurality of corresponding objects to be tested by the one or more optical elements; a detector system for monitoring a relative position between the one or more optical components and the corresponding platform, the detector system comprising: a detector light source; and one or more interference detectors, Each of the interference detectors is configured to receive the detector light source to generate an optical path difference between the corresponding first portion and a corresponding second portion, wherein the optical path difference is related to the optical component and the corresponding a distance of the platform, and combining the corresponding first portion and the corresponding second portion to provide a corresponding output light; one or more detectors, each detector for detecting a corresponding one of the interference detectors The output light of the interference detector; one or more fiber waveguides for guiding light between the detector light source, the interference detector and the detector; and an adjustable optical cavity for detecting a light source to the optical path of the interference detector; and an electronic controller for communicating with the detector, wherein the electronic controller is configured to detect the input according to the interference detector Light to determine the relative position information between the above-mentioned one or more optical imaging elements of each interferometer and corresponding platforms above. 如申請專利範圍第29項所述之成像干涉儀系統,其中上述成像干涉儀為干涉顯微鏡。 The imaging interferometer system of claim 29, wherein the imaging interferometer is an interference microscope. 一種顯微鏡系統,具有用於監視顯微鏡之光纖基礎干涉儀系統,並包括:複數顯微鏡,每一顯微鏡包括一相應的物鏡和一相應的平台,上述相應的平台用以將一待測物相對於上述相應 的物鏡作定位,其中每一相應的平台能夠相對於上述相應的物鏡而移動,而每一顯微鏡藉由上述相應的物鏡成像相應的上述待測物;以及一偵測器子系統,包括:一偵測器光源、複數干涉偵測器、一或多個光纖波導和複數干涉偵測器,上述光纖波導用以將上述偵測器光源引導至上述干涉偵測器,每個上述干涉偵測器係對應於上述顯微鏡之一者;上述偵測器子系統,更包括複數檢測器和一電子控制器,每一檢測器用以接收來自上述干涉偵測器的光,上述電子控制器用以與上述偵測器通訊;其中在操作期間,上述偵測器光源引導光經由上述光纖波導至每個上述干涉偵測器,每個上述干涉偵測器引導一輸出光至相應的上述檢測器,上述輸出光包括一干涉相位,上述干涉相位係有關於上述相應的物鏡和上述顯微鏡之上述相應的平台間的距離,上述顯微鏡係與上述干涉偵測器有關,以及上述電子控制器根據已檢測的上述輸出光來決定上述相應的物鏡與上述相應的平台間的距離之資訊。A microscope system having a fiber-based interferometer system for monitoring a microscope, and comprising: a plurality of microscopes, each microscope comprising a corresponding objective lens and a corresponding platform for opposing a test object relative to said corresponding The objective lens is positioned, wherein each corresponding platform is movable relative to the corresponding objective lens, and each microscope images the corresponding object to be tested by the corresponding objective lens; and a detector subsystem, including: a detector light source, a plurality of interference detectors, one or more fiber waveguides, and a plurality of interference detectors for guiding the detector light source to the interference detector, each of the interference detectors Corresponding to one of the above microscopes; the detector subsystem further includes a complex detector and an electronic controller, each detector for receiving light from the interference detector, and the electronic controller is used for detecting Detector communication; wherein during operation, the detector light source directs light to each of the interference detectors via the fiber waveguide, and each of the interference detectors directs an output light to the corresponding detector, the output light Including an interference phase, the interference phase is related to the distance between the corresponding objective lens and the corresponding platform of the microscope, the microscope system For the interference detector, and the electronic controller determines the information distance between the objective lens and corresponding to the above said corresponding platform based on the output of the detected light.
TW99128413A 2009-08-31 2010-08-25 Microscope system and imaging interferometer system TWI425188B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/551,308 US8379218B2 (en) 2008-11-26 2009-08-31 Fiber-based interferometer system for monitoring an imaging interferometer

Publications (2)

Publication Number Publication Date
TW201129775A TW201129775A (en) 2011-09-01
TWI425188B true TWI425188B (en) 2014-02-01

Family

ID=50231551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128413A TWI425188B (en) 2009-08-31 2010-08-25 Microscope system and imaging interferometer system

Country Status (1)

Country Link
TW (1) TWI425188B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673473B (en) * 2016-06-03 2019-10-01 美商應用材料股份有限公司 Faceplate, processing chamber, and method for substrate distance monitoring
TWI697658B (en) * 2019-03-05 2020-07-01 漢民科技股份有限公司 Complex inspection system of image
TWI704329B (en) * 2018-03-22 2020-09-11 大陸商北京北方華創微電子裝備有限公司 Online monitoring system and semiconductor processing equipment
TWI775761B (en) * 2016-07-13 2022-09-01 瑞士商艾維太克股份有限公司 Method of in situ monitoring and controlling a thin film deposition process on a substrate and of controlling a production of a multi-layer thin film on a substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048793B1 (en) * 2013-02-12 2019-11-26 지고 코포레이션 Surface topography interferometer with surface color
TWI490542B (en) * 2013-05-07 2015-07-01 Univ Nat Taiwan A scanning lens and an interference measuring device using the scanning lens
TWI546841B (en) 2014-12-10 2016-08-21 財團法人工業技術研究院 Electron microscope having carrier
TWI587110B (en) * 2015-07-03 2017-06-11 元智大學 Real time monitoring system and mothod thereof of optical film manufacturing process
TWI678513B (en) * 2016-06-08 2019-12-01 美商賽格股份有限公司 Interferometric method and system for characterizing a test cavity
JP6939360B2 (en) * 2017-10-02 2021-09-22 オムロン株式会社 Confocal measuring device
JP2019191087A (en) * 2018-04-27 2019-10-31 株式会社日立ハイテクサイエンス Interference signal phase correction method
TWI730486B (en) * 2019-11-01 2021-06-11 財團法人工業技術研究院 Visualization device and observation method for flow field
RU2745341C1 (en) * 2020-07-22 2021-03-24 Общество с ограниченной собственностью "Научно-производственный комплекс прецизионного оборудования" Interferometer for measuring linear displacements of objects
TWI735337B (en) * 2020-09-11 2021-08-01 由田新技股份有限公司 Linear displacement calibration method and inspection apparatus using the same
CN113048894B (en) * 2021-03-04 2022-10-18 上海精测半导体技术有限公司 Device and method for detecting change of reflected light and film thickness measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103850A1 (en) * 2004-11-12 2006-05-18 Alphonse Gerard A Single trace multi-channel low coherence interferometric sensor
US20070133002A1 (en) * 2005-10-11 2007-06-14 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
US20090021745A1 (en) * 2006-01-19 2009-01-22 Shofu Inc. Optical Coherence Tomography Device and Measuring Head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060103850A1 (en) * 2004-11-12 2006-05-18 Alphonse Gerard A Single trace multi-channel low coherence interferometric sensor
US20070133002A1 (en) * 2005-10-11 2007-06-14 Duke University Systems and methods for endoscopic angle-resolved low coherence interferometry
US20090021745A1 (en) * 2006-01-19 2009-01-22 Shofu Inc. Optical Coherence Tomography Device and Measuring Head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673473B (en) * 2016-06-03 2019-10-01 美商應用材料股份有限公司 Faceplate, processing chamber, and method for substrate distance monitoring
US10648788B2 (en) 2016-06-03 2020-05-12 Applied Materials, Inc. Substrate distance monitoring
TWI775761B (en) * 2016-07-13 2022-09-01 瑞士商艾維太克股份有限公司 Method of in situ monitoring and controlling a thin film deposition process on a substrate and of controlling a production of a multi-layer thin film on a substrate
TWI704329B (en) * 2018-03-22 2020-09-11 大陸商北京北方華創微電子裝備有限公司 Online monitoring system and semiconductor processing equipment
TWI697658B (en) * 2019-03-05 2020-07-01 漢民科技股份有限公司 Complex inspection system of image

Also Published As

Publication number Publication date
TW201129775A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
TWI425184B (en) System, method and apparatus for scan error correction in low coherence scanning interferometry, and process using the same
TWI425188B (en) Microscope system and imaging interferometer system
EP2232195B1 (en) Analyzing surface structure using scanning interferometry
TWI428559B (en) Compensation of systematic effects in low coherence interferometry
US8107084B2 (en) Interference microscope with scan motion detection using fringe motion in monitor patterns
US7636168B2 (en) Interferometry method and system including spectral decomposition
TWI489083B (en) Coherence scanning interferometry using phase shifted interferometrty signals
US8248617B2 (en) Interferometer for overlay measurements
US8189202B2 (en) Interferometer for determining overlay errors
US20190154594A1 (en) Optical phase measurement method and system
KR20100028665A (en) Generating model signals for interferometry

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees