TWI424785B - Three-dimensional display device - Google Patents
Three-dimensional display device Download PDFInfo
- Publication number
- TWI424785B TWI424785B TW99114354A TW99114354A TWI424785B TW I424785 B TWI424785 B TW I424785B TW 99114354 A TW99114354 A TW 99114354A TW 99114354 A TW99114354 A TW 99114354A TW I424785 B TWI424785 B TW I424785B
- Authority
- TW
- Taiwan
- Prior art keywords
- sub
- pixel
- electrode
- pixels
- red
- Prior art date
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Description
本發明是有關於一種顯示器,且特別是有關於一種立體顯示器。 This invention relates to a display, and more particularly to a stereoscopic display.
隨著科技的進步與發達,人們對於物質生活以及精神層面的享受一向都只有增加而從未減少。以精神層面而言,在這科技日新月異的年代,人們希望能夠藉由立體顯示器來實現天馬行空的想像力,以達到身歷其境的效果。因此,如何使立體顯示器呈現立體的圖像或影像,便成為現今立體顯示器技術亟欲達到的目標。 With the advancement and development of science and technology, people's enjoyment of material life and spiritual level has always increased and never decreased. At a spiritual level, in this era of rapid technological advancement, people hope to realize the imaginative imagination through stereoscopic displays to achieve immersive effects. Therefore, how to make a stereoscopic display of a stereoscopic image or image becomes an object of today's stereoscopic display technology.
在目前的顯示技術而言,立體顯示技術可大致分成觀賞者可直接裸眼觀賞之裸眼式(auto-stereoscopic)以及需配戴特殊設計眼鏡觀賞之戴眼鏡式(stereoscopic)。其中,裸眼式立體顯示的工作原理主要是利用固定式光柵來控制觀賞者左眼與右眼所接收到的影像。根據人眼的視覺特性,當左、右眼分別觀視相同的影像內容但是具有不同視差(parallax)的二影像時,人眼會觀察將二影像重疊解讀成一立體影像。但是,此方式所呈現的立體顯示品質會受到觀賞者的觀賞距離以及兩眼距離的影響,會有人因工程的問題,且在觀看立體影像一段時間後,觀賞者容易產生不舒服的感覺。戴眼鏡式立體顯示的工作原理主要是利用顯示器顯示左右眼畫面,經由頭戴式眼鏡的選擇,讓左右眼分 別看到左右眼畫面,以形成立體視覺。因此,戴眼鏡式立體顯示技術可減少因人因工程所產生的問題。 In the current display technology, the stereoscopic display technology can be roughly divided into an auto-stereoscopic view that the viewer can directly view with naked eyes and a stereoscopic view that needs to be worn with special design glasses. Among them, the naked eye stereoscopic display works mainly by using a fixed grating to control the images received by the viewer's left and right eyes. According to the visual characteristics of the human eye, when the left and right eyes respectively view the same image content but have two images with different parallax, the human eye observes the interpretation of the two images as a stereo image. However, the stereoscopic display quality presented by this method is affected by the viewing distance of the viewer and the distance between the two eyes, and there may be problems due to engineering problems, and the viewer may easily feel uncomfortable after watching the stereoscopic image for a period of time. The working principle of the glasses-type stereo display is mainly to display the left and right eye images by using the display, and the left and right eyes are divided by the selection of the glasses. Don't see the left and right eye images to form stereoscopic vision. Therefore, wearing glasses-type stereoscopic display technology can reduce problems caused by human factors engineering.
本發明提供一種立體顯示器,其具有良好的立體影像顯示效果。 The invention provides a stereoscopic display which has a good stereoscopic image display effect.
本發明提出一種立體顯示器,適於讓一使用者在配戴一第一分色鏡片與一第二分色鏡片的情況下觀看。立體顯示器包括多個呈陣列排列之立體影像顯示單元。每一立體影像顯示單元包括一第一畫素以及一第二畫素。第一畫素包括多個第一子畫素,其中每一第一子畫素分別發出具有不同頻譜之第一光線,且第一分色鏡片僅允許第一光線通過。第二畫素包括多個第二子畫素,其中每一第二子畫素分別發出具有不同頻譜之第二光線,而第一光線的頻譜與第二光線的頻譜不同,且第二分色鏡片僅允許第二光線通過。 The present invention provides a stereoscopic display adapted to allow a user to view while wearing a first dichroic lens and a second dichroic lens. The stereoscopic display includes a plurality of stereoscopic image display units arranged in an array. Each of the stereoscopic image display units includes a first pixel and a second pixel. The first pixel includes a plurality of first sub-pixels, wherein each of the first sub-pixels respectively emits first rays having different spectra, and the first dichroic lens allows only the first rays to pass. The second pixel includes a plurality of second sub-pixels, wherein each of the second sub-pixels respectively emits second rays having different spectra, and the spectrum of the first rays is different from the spectrum of the second rays, and the second color separation The lens only allows the second light to pass.
在本發明之一實施例中,上述之每一第一畫素中的第一子畫素包括一第一紅色子畫素、一第一綠色子畫素以及一第一藍色子畫素,而每一第二畫素中的第二子畫素包括一第二紅色子畫素、一第二綠色子畫素以及一第二藍色子畫素。 In an embodiment of the present invention, the first sub-pixel in each of the first pixels includes a first red sub-pixel, a first green sub-pixel, and a first blue sub-pixel. And the second sub-pixel in each second pixel includes a second red sub-pixel, a second green sub-pixel, and a second blue sub-pixel.
在本發明之一實施例中,上述之每一第一紅色子畫素以及每一第二紅色子畫素分別包括一第一電極、一第二電極、一紅色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。紅色有機發光層配置於第一電極與第二 電極之間。電洞注入層配置於第一電極與紅色有機發光層之間。電洞傳輸層配置於電洞注入層與紅色有機發光層之間。電子注入層配置於第二電極與紅色有機發光層之間,其中每一第一紅色子畫素中的電洞傳輸層之厚度與每一第二紅色子畫素中的電洞傳輸層之厚度不相同。 In an embodiment of the invention, each of the first red sub-pixels and each of the second red sub-pixels respectively include a first electrode, a second electrode, a red organic light-emitting layer, and a hole injection. a layer, a hole transport layer, and an electron injection layer. a red organic light emitting layer is disposed on the first electrode and the second Between the electrodes. The hole injection layer is disposed between the first electrode and the red organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the red organic light-emitting layer. The electron injection layer is disposed between the second electrode and the red organic light-emitting layer, wherein a thickness of the hole transport layer in each first red sub-pixel and a thickness of the hole transport layer in each second red sub-pixel Not the same.
在本發明之一實施例中,上述之第一電極與第二電極為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are reflective electrodes, and the first electrode and the second electrode respectively have different thicknesses.
在本發明之一實施例中,上述之每一第一紅色子畫素以及每一第二紅色子畫素分別包括一第一電極、一第二電極、一紅色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。紅色有機發光層配置於第一電極與第二電極之間。電洞注入層配置於第一電極與紅色有機發光層之間。電洞傳輸層配置於電洞注入層與紅色有機發光層之間。電子注入層配置於第二電極與紅色有機發光層之間,其中每一第一紅色子畫素中的電洞注入層之厚度與每一第二紅色子畫素中的電洞注入層之厚度不相同。 In an embodiment of the invention, each of the first red sub-pixels and each of the second red sub-pixels respectively include a first electrode, a second electrode, a red organic light-emitting layer, and a hole injection. a layer, a hole transport layer, and an electron injection layer. The red organic light emitting layer is disposed between the first electrode and the second electrode. The hole injection layer is disposed between the first electrode and the red organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the red organic light-emitting layer. The electron injection layer is disposed between the second electrode and the red organic light-emitting layer, wherein a thickness of the hole injection layer in each of the first red sub-pixels and a thickness of the hole injection layer in each of the second red sub-pixels Not the same.
在本發明之一實施例中,上述之第一電極與第二電極為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are reflective electrodes, and the first electrode and the second electrode respectively have different thicknesses.
在本發明之一實施例中,上述之每一第一綠色子畫素以及每一第二綠色子畫素分別包括一第一電極、一第二電極、一綠色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。綠色有機發光層配置於第一電極與第二電極之間。電洞注入層配置於第一電極與綠色有機發光層之間。電洞傳輸層配置於電洞注入層與綠色有機發光層之間。電子注入層配置於第二電極與綠色有機發光層之間, 其中每一第一綠色子畫素中的電洞傳輸層之厚度與每一第二綠色子畫素中的電洞傳輸層之厚度不相同。 In an embodiment of the present invention, each of the first green sub-pixels and each of the second green sub-pixels respectively include a first electrode, a second electrode, a green organic light-emitting layer, and a hole injection. a layer, a hole transport layer, and an electron injection layer. The green organic light emitting layer is disposed between the first electrode and the second electrode. The hole injection layer is disposed between the first electrode and the green organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the green organic light-emitting layer. The electron injection layer is disposed between the second electrode and the green organic light emitting layer. The thickness of the hole transport layer in each of the first green sub-pixels is different from the thickness of the hole transport layer in each of the second green sub-pixels.
在本發明之一實施例中,上述之第一電極與第二電極為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are reflective electrodes, and the first electrode and the second electrode respectively have different thicknesses.
在本發明之一實施例中,上述之每一第一綠色子畫素以及每一第二綠色子畫素分別包括一第一電極、一第二電極、一綠色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。綠色有機發光層配置於第一電極與第二電極之間。電洞注入層配置於第一電極與綠色有機發光層之間。電洞傳輸層配置於電洞注入層與綠色有機發光層之間。電子注入層配置於第二電極與綠色有機發光層之間,其中每一第一綠色子畫素中的電洞注入層之厚度與每一第二綠色子畫素中的電洞注入層之厚度不相同。 In an embodiment of the present invention, each of the first green sub-pixels and each of the second green sub-pixels respectively include a first electrode, a second electrode, a green organic light-emitting layer, and a hole injection. a layer, a hole transport layer, and an electron injection layer. The green organic light emitting layer is disposed between the first electrode and the second electrode. The hole injection layer is disposed between the first electrode and the green organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the green organic light-emitting layer. The electron injection layer is disposed between the second electrode and the green organic light-emitting layer, wherein a thickness of the hole injection layer in each of the first green sub-pixels and a thickness of the hole injection layer in each of the second green sub-pixels Not the same.
在本發明之一實施例中,上述之第一電極與第二電極為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are reflective electrodes, and the first electrode and the second electrode respectively have different thicknesses.
在本發明之一實施例中,上述之每一第一藍色子畫素以及每一第二藍色子畫素分別包括一第一電極、一第二電極、一藍色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。藍色有機發光層配置於第一電極與第二電極之間。電洞注入層配置於第一電極與藍色有機發光層之間。電洞傳輸層配置於電洞注入層與藍色有機發光層之間。電子注入層配置於第二電極與藍色有機發光層之間,其中每一第一藍色子畫素中的電洞傳輸層之厚度與每一第二藍色子畫素中的電洞傳輸層之厚度不相同。 In an embodiment of the present invention, each of the first blue sub-pixels and each of the second blue sub-pixels respectively include a first electrode, a second electrode, a blue organic light-emitting layer, and a first a hole injection layer, a hole transport layer, and an electron injection layer. The blue organic light emitting layer is disposed between the first electrode and the second electrode. The hole injection layer is disposed between the first electrode and the blue organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the blue organic light-emitting layer. The electron injection layer is disposed between the second electrode and the blue organic light-emitting layer, wherein a thickness of the hole transport layer in each of the first blue sub-pixels and a hole transmission in each of the second blue sub-pixels The thickness of the layers is not the same.
在本發明之一實施例中,上述之第一電極與第二電極 為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are It is a reflective electrode, and the first electrode and the second electrode have different thicknesses, respectively.
在本發明之一實施例中,上述之每一第一藍色子畫素以及每一第二藍色子畫素分別包括一第一電極、一第二電極、一藍色有機發光層、一電洞注入層、一電洞傳輸層以及一電子注入層。藍色有機發光層配置於第一電極與第二電極之間。電洞注入層配置於第一電極與藍色有機發光層之間。電洞傳輸層配置於電洞注入層與藍色有機發光層之間。電子注入層配置於第二電極與藍色有機發光層之間,其中每一第一藍色子畫素中的電洞注入層之厚度與每一第二藍色子畫素中的電洞注入層之厚度不相同。 In an embodiment of the present invention, each of the first blue sub-pixels and each of the second blue sub-pixels respectively include a first electrode, a second electrode, a blue organic light-emitting layer, and a first a hole injection layer, a hole transport layer, and an electron injection layer. The blue organic light emitting layer is disposed between the first electrode and the second electrode. The hole injection layer is disposed between the first electrode and the blue organic light-emitting layer. The hole transport layer is disposed between the hole injection layer and the blue organic light-emitting layer. The electron injection layer is disposed between the second electrode and the blue organic light-emitting layer, wherein a thickness of the hole injection layer in each of the first blue sub-pixels and a hole injection in each of the second blue sub-pixels The thickness of the layers is not the same.
在本發明之一實施例中,上述之第一電極與第二電極為反射電極,且第一電極與第二電極分別具有不同的厚度。 In an embodiment of the invention, the first electrode and the second electrode are reflective electrodes, and the first electrode and the second electrode respectively have different thicknesses.
基於上述,由於本發明之立體顯示器是透過調整子畫素所構成之一微共振腔結構的長度,因此有機發光層中所產生的激發光子便會在此微共振腔中形成共振現象,藉以調整子畫素發光的頻譜,以使立體顯示器可維持較佳出光效率。 Based on the above, since the stereoscopic display of the present invention adjusts the length of the microcavity structure formed by the sub-pixels, the excitation photons generated in the organic light-emitting layer form a resonance phenomenon in the micro-resonance cavity, thereby adjusting The spectrum of the sub-pixel illumination allows the stereoscopic display to maintain better light extraction efficiency.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
圖1為本發明之一實施例之一種立體顯示器的示意圖。請先參考圖1,本實施例之立體顯示器10適於讓一使用者(未繪示)在配戴一第一分色鏡片20與一第二分色鏡片30的情況下觀看。特別是,在本實施例中,使用者所配 戴之第一分色鏡片20以及第二分色鏡片30例如是Dolby® 3D Digital Cinema所用的眼鏡,其為一種可以同時讓三種波段之光線(意即紅光波段的波長、綠光波段的波長以及藍光波段的波長)通過的分色鏡片。 1 is a schematic diagram of a stereoscopic display according to an embodiment of the present invention. Referring to FIG. 1 , the stereoscopic display 10 of the present embodiment is adapted to allow a user (not shown) to view a first dichroic lens 20 and a second dichroic lens 30 . In particular, in this embodiment, the user is equipped with The first dichroic lens 20 and the second dichroic lens 30 are, for example, glasses used by Dolby® 3D Digital Cinema, which is a type of light that can simultaneously transmit three wavelengths (that is, a wavelength of a red band, a wavelength of a green band). And the color separation lens that passes through the wavelength of the blue light band.
詳細來說,本實施例之立體顯示器10包括多個呈陣列排列之立體影像顯示單元10a。每一立體影像顯示單元10a配置於一基板12上且包括一第一畫素100以及一第二畫素200。第一畫素100包括多個第一子畫素100a,其中每一第一子畫素100a分別發出具有不同頻譜之第一光線(未繪示),且第一分色鏡片20僅允許第一光線通過。在本實施例中,每一第一畫素100中的第一子畫素100a包括一第一紅色子畫素110a、一第一綠色子畫素130a以及一第一藍色子畫素150a。 In detail, the stereoscopic display 10 of the present embodiment includes a plurality of stereoscopic image display units 10a arranged in an array. Each of the three-dimensional image display unit 10a is disposed on a substrate 12 and includes a first pixel 100 and a second pixel 200. The first pixel 100 includes a plurality of first sub-pixels 100a, wherein each of the first sub-pixels 100a respectively emits first rays (not shown) having different spectra, and the first dichroic lens 20 only allows the first Light passes through. In this embodiment, the first sub-pixel 100a in each first pixel 100 includes a first red sub-pixel 110a, a first green sub-pixel 130a, and a first blue sub-pixel 150a.
第二畫素200包括多個第二子畫素200a,其中每一第二子畫素200a分別發出具有不同頻譜之第二光線(未繪示),而第一光線的頻譜與第二光線的頻譜不同,且第二分色鏡片30僅允許第二光線通過。在本實施例中,每一第二畫素200中的第二子畫素200a包括一第二紅色子畫素210a、一第二綠色子畫素230a以及一第二藍色子畫素250a。 The second pixel 200 includes a plurality of second sub-pixels 200a, wherein each of the second sub-pixels 200a emits a second light (not shown) having a different spectrum, and the spectrum of the first light and the second light The spectrum is different and the second dichroic lens 30 only allows the second light to pass. In this embodiment, the second sub-pixel 200a in each second pixel 200 includes a second red sub-pixel 210a, a second green sub-pixel 230a, and a second blue sub-pixel 250a.
圖2A繪示為圖1之第一紅色子畫素以及第二紅色子畫素的剖面示意圖。圖2B繪示圖2A之第一紅色子畫素以及第二紅色子畫素之波長與強度的關係圖。更具體來說,請先參考圖2A,在本實施例中,每一第一紅色子畫素110a以及每一第二紅色子畫素210a例如分別為一紅色有機發 光二極體(OLED),其分別包括一第一電極112a、212a、一第二電極113a、213a、一紅色有機發光層114a、214a、一電洞注入層115a、215a、一電洞傳輸層116a、216a以及一電子注入層117a、217a。其中,紅色有機發光層114a、214a配置於第一電極112a、212a與第二電極113a、213a之間。電洞注入層115a、215a配置於第一電極112a、212a與紅色有機發光層114a、214a之間。電洞傳輸層116a、216a配置於電洞注入層115a、215a與紅色有機發光層114a、214a之間。電子注入層117a、217a配置於第二電極113a、213a與紅色有機發光層114a、214a之間。 2A is a cross-sectional view showing the first red sub-pixel and the second red sub-pixel of FIG. 1. 2B is a diagram showing the relationship between the wavelength and intensity of the first red sub-pixel and the second red sub-pixel of FIG. 2A. More specifically, please refer to FIG. 2A. In this embodiment, each of the first red sub-pixels 110a and each of the second red sub-pixels 210a is, for example, a red organic hair. The photodiode (OLED) includes a first electrode 112a, 212a, a second electrode 113a, 213a, a red organic light-emitting layer 114a, 214a, a hole injection layer 115a, 215a, and a hole transport layer 116a. 216a and an electron injection layer 117a, 217a. The red organic light-emitting layers 114a and 214a are disposed between the first electrodes 112a and 212a and the second electrodes 113a and 213a. The hole injection layers 115a and 215a are disposed between the first electrodes 112a and 212a and the red organic light-emitting layers 114a and 214a. The hole transport layers 116a and 216a are disposed between the hole injection layers 115a and 215a and the red organic light-emitting layers 114a and 214a. The electron injection layers 117a and 217a are disposed between the second electrodes 113a and 213a and the red organic light-emitting layers 114a and 214a.
特別是,在本實施例中,每一第一紅色子畫素110a中的電洞傳輸層116a之厚度與每一第二紅色子畫素210a中的電洞傳輸層216a之厚度不相同,其中圖2A所繪示為電洞傳輸層116a的厚度大於電洞傳輸層216a的厚度,但並不以此為限。由於第一紅色子畫素110a的第一電極112a以及第二電極113a可構成一微共振腔結構,第二紅色子畫素210a的第一電極212a以及第二電極213a可構成一微共振腔結構,因此紅色有機發光層114a、214a中所產生之激發光子便可在對應的微共振腔結構中形成共振現象。 In particular, in the present embodiment, the thickness of the hole transport layer 116a in each of the first red sub-pixels 110a is different from the thickness of the hole transport layer 216a in each of the second red sub-pixels 210a, wherein 2A illustrates that the thickness of the hole transport layer 116a is greater than the thickness of the hole transport layer 216a, but is not limited thereto. Since the first electrode 112a and the second electrode 113a of the first red sub-pixel 110a can form a micro-resonator structure, the first electrode 212a and the second electrode 213a of the second red sub-pixel 210a can form a micro-resonator structure. Therefore, the excitation photons generated in the red organic light-emitting layers 114a, 214a can form a resonance phenomenon in the corresponding micro-resonator structure.
由於本實施例是透過第一紅色子畫素110a及第二紅色子畫素210a的電洞傳輸層116a、216a的厚度不同來調整微共振腔結構的長度(意即第一紅色子畫素110a之微共振腔的長度大於第二紅色子畫素210a之微共振腔的長度),其中當微共振腔結構的長度改變時,波長則隨之產生位移,請參考圖2B。因此,可藉此改善第一紅色子畫素 110a及第二紅色子畫素210a之外部量子效率以及調整第一紅色子畫素110a以及第二紅色子畫素210a的發光頻譜,進而維持立體顯示器10整體之紅光波段的出光效率。 In this embodiment, the length of the microcavity structure is adjusted by the thickness of the hole transport layers 116a, 216a of the first red subpixel 110a and the second red subpixel 210a (that is, the first red subpixel 110a) The length of the microresonator is greater than the length of the microresonator of the second red sub-pixel 210a, wherein when the length of the microcavity structure is changed, the wavelength is subsequently displaced, please refer to FIG. 2B. Therefore, the first red sub-pixel can be improved by this The external quantum efficiency of the 110a and the second red sub-pixel 210a and the emission spectrum of the first red sub-pixel 110a and the second red sub-pixel 210a are adjusted to maintain the light-emitting efficiency of the red light band of the entire stereoscopic display 10.
值得一提的是,由於第一光線(未繪示)與第二光線(未繪示)皆會從較薄厚度的膜層穿出,因此第一子畫素100a之第一紅色子畫素110a以及第二子畫素200a之第二紅色子畫素210a可以是由第一電極112a、212a放光的穿透式紅色有機發光二極體(向下發光紅色有機發光二極體),或者是由第二電極113a、213a放光的反射式紅色有機發光二極體(向上發光紅色有機發光二極體)。 It is worth mentioning that since the first light (not shown) and the second light (not shown) will pass through the thinner thickness layer, the first red sub-pixel of the first sub-pixel 100a The second red sub-pixel 210a of the 110a and the second sub-pixel 200a may be a transmissive red organic light-emitting diode (a downward-emitting red organic light-emitting diode) that is lighted by the first electrodes 112a, 212a, or It is a reflective red organic light-emitting diode (uplight-emitting red organic light-emitting diode) that is emitted by the second electrodes 113a and 213a.
於其他實施例中,亦可透過改變第一紅色子畫素110a以及第二紅色子畫素210a之第一電極112a、212a、第二電極113a、213a或電洞注入層115a、215a的厚度來調整微共振腔的長度,以達到所需的技術效果。以下將以多個不同實施例來說明第一紅色子畫素110a’、110b、110b’以及第二紅色子畫素210a’、210b、210b’之設計。 In other embodiments, the thickness of the first electrode 112a, 212a, the second electrode 113a, 213a or the hole injection layer 115a, 215a of the first red sub-pixel 110a and the second red sub-pixel 210a may also be changed. Adjust the length of the microresonator to achieve the desired technical effect. The design of the first red sub-pixels 110a', 110b, 110b' and the second red sub-pixels 210a', 210b, 210b' will be described below in a number of different embodiments.
圖2C為本發明之另一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。請同時參考圖2A與圖2C,在本實施例中,圖2C之第一紅色子畫素110a’及第二紅色子畫素210a’與圖2A之第一紅色子畫素110a及第二紅色子畫素210a相似,故部分沿用圖2A的標號,兩者的差異在於:圖2C之第一紅色子畫素110a’以及第二紅色子畫素210a’的第一電極112a’、212a’與第二電極113a’、213a’例如分別為一反射電極,且第一紅色子畫素110a’的與第二電極113a’與第二紅色子畫素210a’的第二 電極213a’分別具有不同的厚度,例如是第二電極113a’的厚度大於第二電極213a’的厚度,但並不以此為限。換言之,第一紅色子畫素110a’及第二紅色子畫素210a’可分別例如為一半穿透半反射式紅色有機發光二極體。 2C is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to another embodiment of the present invention. Referring to FIG. 2A and FIG. 2C simultaneously, in this embodiment, the first red sub-pixel 110a' and the second red sub-pixel 210a' of FIG. 2C and the first red sub-pixel 110a and the second red of FIG. 2A The sub-pixel 210a is similar, so the portion of FIG. 2A is used in part, and the difference is that the first red sub-pixel 110a' of FIG. 2C and the first electrodes 112a', 212a' of the second red sub-pixel 210a' are The second electrodes 113a', 213a' are, for example, a reflective electrode, respectively, and the second of the first red sub-pixel 110a' and the second electrode 113a' and the second red sub-pixel 210a' The electrodes 213a' have different thicknesses, for example, the thickness of the second electrode 113a' is greater than the thickness of the second electrode 213a', but is not limited thereto. In other words, the first red sub-pixel 110a' and the second red sub-pixel 210a' may each be, for example, a half-transmissive semi-reflective red organic light-emitting diode.
圖2D為本發明之又一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。請同時參考圖2D與圖2A,在本實施例中,圖2D之第一紅色子畫素110b及第二紅色子畫素210b與圖2A之第一紅色子畫素110a及第二紅色子畫素210a相似,故部分沿用圖2A的標號,兩者的差異在於:圖2D之每一第一紅色子畫素110b中的電洞注入層115b之厚度與每一第二紅色子畫素210b中的電洞注入層215b之厚度不相同,其中圖2D所繪示之電洞注入層115b的厚度大於電洞注入層215b的厚度,但並不以此為限。特別是,本實施例之第一紅色子畫素110b之電洞注入層115b的厚度例如是235奈米,而第二紅色子畫素210b之電洞注入層215b的厚度例如是215奈米。當然,於其他未繪示的實施例中,亦可以是第一紅色子畫素110b之電洞注入層115b的厚度例如是215奈米,而第二紅色子畫素210b之電洞注入層215b的厚度例如是235奈米,在此並不加以限制。 2D is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to still another embodiment of the present invention. Referring to FIG. 2D and FIG. 2A simultaneously, in this embodiment, the first red sub-pixel 110b and the second red sub-pixel 210b of FIG. 2D and the first red sub-pixel 110a and the second red sub-picture of FIG. 2A The element 210a is similar, so the portion of FIG. 2A is used in part, and the difference is that the thickness of the hole injection layer 115b in each of the first red sub-pixels 110b of FIG. 2D is different from that of each of the second red sub-pixels 210b. The thickness of the hole injection layer 215b is different, and the thickness of the hole injection layer 115b illustrated in FIG. 2D is greater than the thickness of the hole injection layer 215b, but is not limited thereto. In particular, the thickness of the hole injection layer 115b of the first red sub-pixel 110b of the present embodiment is, for example, 235 nm, and the thickness of the hole injection layer 215b of the second red sub-pixel 210b is, for example, 215 nm. Of course, in other embodiments not shown, the thickness of the hole injection layer 115b of the first red sub-pixel 110b may be, for example, 215 nm, and the hole injection layer 215b of the second red sub-pixel 210b. The thickness is, for example, 235 nm, which is not limited herein.
圖2E為本發明之再一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。請同時參考圖2E與圖2D,在本實施例中,圖2E之第一紅色子畫素110b’及第二紅色子畫素210b’分別與圖2D之第一紅色子畫素 110b及第二紅色子畫素210b相似,故部分沿用圖2D的標號,兩者的差異在於:圖2E之第一電極112b’、212b’與第二電極113b’、213b’例如分別為一反射電極,且第一紅色子畫素110b’的第二電極113b’與第二紅色子畫素210b’的第二電極213b’分別具有不同的厚度,例如是第二電極113b’的厚度大於第二電極213b’的厚度,但並不以此為限。 2E is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to still another embodiment of the present invention. Referring to FIG. 2E and FIG. 2D simultaneously, in the embodiment, the first red sub-pixel 110b' and the second red sub-pixel 210b' of FIG. 2E are respectively associated with the first red sub-pixel of FIG. 2D. 110b and the second red sub-pixel 210b are similar, so the part follows the label of FIG. 2D, the difference between the two is that the first electrodes 112b', 212b' and the second electrodes 113b', 213b' of FIG. 2E are respectively a reflection. An electrode, and the second electrode 113b' of the first red sub-pixel 110b' and the second electrode 213b' of the second red sub-pixel 210b' respectively have different thicknesses, for example, the thickness of the second electrode 113b' is greater than the second The thickness of the electrode 213b' is not limited thereto.
同理,在本實施例中,每一第一綠色子畫素130a以及每一第二綠色子畫素230a亦分別與第一紅色子畫素110a以及第二紅色子畫素210a具有相似之結構。圖3A繪示為圖1之第一綠色子畫素以及第二綠色子畫素的剖面示意圖。圖3B繪示圖3A之第一綠色子畫素以及第二綠色子畫素之波長與強度的關係圖。請先參考圖3A,每一第一綠色子畫素130a及每一第二綠色子畫素230a例如分別為一綠色有機發光二極體(OLED),第一綠色子畫素130a包括一第一電極132a、一第二電極133a、一綠色有機發光層134a、一電洞注入層135a、一電洞傳輸層136a以及一電子注入層137a,第二綠色子畫素230a包括一第一電極232a、一第二電極233a、一綠色有機發光層234a、一電洞注入層235a、一電洞傳輸層236a以及一電子注入層237a。其中,綠色有機發光層134a配置於第一電極132a與第二電極133a之間,綠色有機發光層234a配置於第一電極232a與第二電極233a之間。電洞注入層135a配置於第一電極132a與綠色有機發光層134a之間,電洞注入層235a配置於第一電極232a與綠色有機發光層234a之間。電洞傳輸 層136a配置於電洞注入層135a與綠色有機發光層134a之間,電洞傳輸層236a配置於電洞注入層235a與綠色有機發光層234a之間。電子注入層137a配置於第二電極133a與綠色有機發光層134a之間,電子注入層237a配置於第二電極233a與綠色有機發光層234a之間。 Similarly, in this embodiment, each of the first green sub-pixels 130a and each of the second green sub-pixels 230a have a similar structure to the first red sub-pixel 110a and the second red sub-pixel 210a, respectively. . 3A is a cross-sectional view showing the first green sub-pixel and the second green sub-pixel of FIG. 1. FIG. 3B is a diagram showing the relationship between the wavelength and intensity of the first green sub-pixel and the second green sub-pixel of FIG. 3A. Referring to FIG. 3A, each of the first green sub-pixels 130a and each of the second green sub-pixels 230a is, for example, a green organic light-emitting diode (OLED), and the first green sub-pixel 130a includes a first An electrode 132a, a second electrode 133a, a green organic light-emitting layer 134a, a hole injection layer 135a, a hole transport layer 136a and an electron injection layer 137a, the second green sub-pixel 230a includes a first electrode 232a, A second electrode 233a, a green organic light-emitting layer 234a, a hole injection layer 235a, a hole transport layer 236a, and an electron injection layer 237a. The green organic light-emitting layer 134a is disposed between the first electrode 132a and the second electrode 133a, and the green organic light-emitting layer 234a is disposed between the first electrode 232a and the second electrode 233a. The hole injection layer 135a is disposed between the first electrode 132a and the green organic light-emitting layer 134a, and the hole injection layer 235a is disposed between the first electrode 232a and the green organic light-emitting layer 234a. Hole transmission The layer 136a is disposed between the hole injection layer 135a and the green organic light-emitting layer 134a, and the hole transport layer 236a is disposed between the hole injection layer 235a and the green organic light-emitting layer 234a. The electron injection layer 137a is disposed between the second electrode 133a and the green organic light-emitting layer 134a, and the electron injection layer 237a is disposed between the second electrode 233a and the green organic light-emitting layer 234a.
特別是,在本實施例中,每一第一綠色子畫素130a中的電洞傳輸層136a之厚度與每一第二綠色子畫素230a中的電洞傳輸層236a之厚度不相同,其中圖3A所繪示為電洞傳輸層136a的厚度大於電洞傳輸層236a的厚度,但並不以此為限。由於第一綠色子畫素130a之第一電極132a以及第二電極133a可構成一微共振腔結構,第二綠色子畫素230a之第一電極232a以及第二電極233a可構成一微共振腔結構,因此綠色有機發光層134a、234a中所產生之激發光子便可在對應的微共振腔結構中形成共振現象。 In particular, in the present embodiment, the thickness of the hole transport layer 136a in each of the first green sub-pixels 130a is different from the thickness of the hole transport layer 236a in each of the second green sub-pixels 230a, wherein FIG. 3A illustrates that the thickness of the hole transport layer 136a is greater than the thickness of the hole transport layer 236a, but is not limited thereto. Since the first electrode 132a and the second electrode 133a of the first green sub-pixel 130a can form a micro-resonator structure, the first electrode 232a and the second electrode 233a of the second green sub-pixel 230a can form a micro-resonator structure. Therefore, the excitation photons generated in the green organic light-emitting layers 134a, 234a can form a resonance phenomenon in the corresponding micro-resonator structure.
由於本實施例是透過第一綠色子畫素130a以及第二綠色子畫素230a的電洞傳輸層136a、236a的厚度不同來調整微共振腔結構的長度(意即第一綠色子畫素130a之微共振腔的長度大於第二綠色子畫素230a之微共振腔的長度),藉此改善第一綠色子畫素130a以及第二綠色子畫素230a之外部量子效率以及調整第一綠色子畫素130a以及第二綠色子畫素230a的發光頻譜(請參考圖3B),進而維持立體顯示器10整體之綠光波段出光效率。 In this embodiment, the length of the microcavity structure is adjusted by the thickness of the hole transport layers 136a, 236a of the first green subpixel 130a and the second green subpixel 230a (that is, the first green subpixel 130a) The length of the microresonator is greater than the length of the microresonator of the second green subpixel 230a, thereby improving the external quantum efficiency of the first green subpixel 130a and the second green subpixel 230a and adjusting the first green sub The light emission spectrum of the pixel 130a and the second green sub-pixel 230a (please refer to FIG. 3B) further maintains the green light-band emission efficiency of the entire stereoscopic display 10.
於其他實施例中,亦可透過改變第一綠色子畫素130a以及第二綠色子畫素230a之第一電極132a、232a、第二電極133a、233a或電洞注入層135a、235a的厚度來調整 微共振腔的長度,以達到所需的技術效果。舉例來說,請參考圖3C,每一第一綠色子畫素130b中的電洞注入層135b之厚度與每一第二綠色子畫素230b中的電洞注入層235b之厚度不相同,其中圖3C所繪示之電洞注入層135b的厚度大於電洞注入層235b的厚度,但並不以此為限。特別是,本實施例之第一綠色子畫素130b之電洞注入層135b的厚度例如是176奈米,而第二綠色子畫素230b之電洞注入層235b的厚度例如是162奈米。當然,於其他未繪示的實施例中,亦可以是第一綠色子畫素130b之電洞注入層135b的厚度例如是162奈米,而第二綠色子畫素130b之電洞注入層235b的厚度例如是176奈米,在此並不加以限制。再者,於其他未繪示的實施例中,亦可選用於如前述實施例所提及之具有不同厚度之第一電極132a、232a與第二電極133a、233a,本領域的技術人員當可參照前述實施例的說明,依據實際需求,而選用前述構件,以達到所需的技術效果。 In other embodiments, the thicknesses of the first electrodes 132a, 232a, the second electrodes 133a, 233a or the hole injection layers 135a, 235a of the first green sub-pixel 130a and the second green sub-pixel 230a may also be changed. Adjustment The length of the microresonator is used to achieve the desired technical effect. For example, referring to FIG. 3C, the thickness of the hole injection layer 135b in each of the first green sub-pixels 130b is different from the thickness of the hole injection layer 235b in each of the second green sub-pixels 230b, wherein The thickness of the hole injection layer 135b illustrated in FIG. 3C is greater than the thickness of the hole injection layer 235b, but is not limited thereto. In particular, the thickness of the hole injection layer 135b of the first green sub-pixel 130b of the present embodiment is, for example, 176 nm, and the thickness of the hole injection layer 235b of the second green sub-pixel 230b is, for example, 162 nm. Of course, in other embodiments not shown, the thickness of the hole injection layer 135b of the first green sub-pixel 130b may be, for example, 162 nm, and the hole injection layer 235b of the second green sub-pixel 130b. The thickness is, for example, 176 nm, which is not limited herein. Furthermore, in other embodiments not shown, the first electrodes 132a, 232a and the second electrodes 133a, 233a having different thicknesses as mentioned in the foregoing embodiments may also be selected, and those skilled in the art may Referring to the description of the foregoing embodiment, the foregoing components are selected according to actual needs to achieve the desired technical effect.
同理,在本實施例中,每一第一藍色子畫素150a以及每一第二藍色子畫素250a亦分別與第一紅色子畫素110a以及第二紅色子畫素210a具有相似之結構。圖4A繪示為圖1之第一藍色子畫素以及第二藍色子畫素的剖面示意圖。圖4B繪示圖4A之第一藍色子畫素以及第二藍色子畫素之波長與強度的關係圖。請先參考圖4A,每一第一藍色子畫素150a及每一第二藍色子畫素250a例如分別為一藍色有機發光二極體(OLED),其分別包括一第一電極 152a、252a、一第二電極153a、253a、一藍色有機發光層154a、254a、一電洞注入層155a、255a、一電洞傳輸層156a、256a以及一電子注入層157a、257a。其中,藍色有機發光層154a、254a配置於第一電極152a、252a與第二電極153a、253a之間。電洞注入層155a、255a配置於第一電極152a、252a與藍色有機發光層154a、254a之間。電洞傳輸層156a、256a配置於電洞注入層155a、255a與藍色有機發光層154a、254a之間。電子注入層157a、257a配置於第二電極153a、253a與藍色有機發光層154a、254a之間。 Similarly, in this embodiment, each of the first blue sub-pixels 150a and each of the second blue sub-pixels 250a are similar to the first red sub-pixel 110a and the second red sub-pixel 210a, respectively. The structure. 4A is a cross-sectional view showing the first blue sub-pixel and the second blue sub-pixel of FIG. 1. 4B is a diagram showing the relationship between the wavelength and intensity of the first blue sub-pixel and the second blue sub-pixel of FIG. 4A. Referring to FIG. 4A, each of the first blue sub-pixels 150a and each of the second blue sub-pixels 250a is, for example, a blue organic light-emitting diode (OLED), respectively, including a first electrode. 152a, 252a, a second electrode 153a, 253a, a blue organic light-emitting layer 154a, 254a, a hole injection layer 155a, 255a, a hole transport layer 156a, 256a, and an electron injection layer 157a, 257a. Among them, the blue organic light-emitting layers 154a and 254a are disposed between the first electrodes 152a and 252a and the second electrodes 153a and 253a. The hole injection layers 155a and 255a are disposed between the first electrodes 152a and 252a and the blue organic light-emitting layers 154a and 254a. The hole transport layers 156a and 256a are disposed between the hole injection layers 155a and 255a and the blue organic light-emitting layers 154a and 254a. The electron injection layers 157a and 257a are disposed between the second electrodes 153a and 253a and the blue organic light-emitting layers 154a and 254a.
特別是,在本實施例中,每一第一藍色子畫素150a中的電洞傳輸層156a之厚度與每一第二藍色子畫素250a中的電洞傳輸層256a之厚度不相同,其中圖4A所繪示為電洞傳輸層156a的厚度大於電洞傳輸層256a的厚度,但並不以此為限。由於第一藍色子畫素150a之第一電極152a以及第二電極153a可構成一微共振腔結構,第二藍色子畫素250a之第一電極252a以及第二電極253a可構成一微共振腔結構,因此藍色有機發光層154a、254a中所產生之激發光子便可在對應的微共振腔結構中形成共振現象。 In particular, in the present embodiment, the thickness of the hole transport layer 156a in each of the first blue sub-pixels 150a is different from the thickness of the hole transport layer 256a in each of the second blue sub-pixels 250a. 4A illustrates that the thickness of the hole transport layer 156a is greater than the thickness of the hole transport layer 256a, but is not limited thereto. Since the first electrode 152a and the second electrode 153a of the first blue sub-pixel 150a can form a micro-resonator structure, the first electrode 252a and the second electrode 253a of the second blue sub-pixel 250a can form a micro-resonance. The cavity structure, and thus the excitation photons generated in the blue organic light-emitting layers 154a, 254a, can form a resonance phenomenon in the corresponding micro-resonator structure.
由於本實施例是透過第一藍色子畫素150a以及第二藍色子畫素250a的電洞傳輸層156a、256a的厚度不同來調整微共振腔結構的長度(意即第一藍色子畫素150a之微共振腔的長度大於第二藍色子畫素250a之微共振腔的長度),藉此改善第一藍色子畫素150a及第二藍色子畫素250a之外部量子效率以及調整第一藍色子畫素150a以及 第二藍色子畫素250a的發光頻譜(請參考圖4B),進而維持立體顯示器10整體之藍光波段出光效率。 In this embodiment, the length of the microcavity structure is adjusted by the thickness of the hole transport layers 156a and 256a of the first blue subpixel 150a and the second blue subpixel 250a (that is, the first blue sub- The length of the microresonator of the pixel 150a is greater than the length of the microresonator of the second blue subpixel 250a, thereby improving the external quantum efficiency of the first blue subpixel 150a and the second blue subpixel 250a And adjusting the first blue sub-pixel 150a and The light emission spectrum of the second blue sub-pixel 250a (please refer to FIG. 4B), thereby maintaining the blue light band light-emitting efficiency of the entire stereoscopic display 10.
於其他實施例中,亦可透過改變第一藍色子畫素150a以及第二藍色子畫素250a之第一電極152a、252a、第二電極153a、253a或電洞注入層155a、255a的厚度來調整微共振腔的長度,以達到所需的技術效果。舉例來說,請參考圖4C,每一第一藍色子畫素150b中的電洞注入層155b之厚度與每一第二藍色子畫素250b中的電洞注入層255b之厚度不相同,其中圖4C所繪示之電洞注入層155b的厚度大於電洞注入層255b的厚度,但並不以此為限。特別是,本實施例之第一藍色子畫素150b之電洞注入層155b的厚度例如是135奈米,而第二藍色子畫素250b之電洞注入層255b的厚度例如是116奈米。當然,於其他未繪示的實施例中,亦可以是第一藍色子畫素150b之電洞注入層155b的厚度例如是116奈米,而第二藍色子畫素150b之電洞注入層255b的厚度例如是135奈米,在此並不加以限制。再者,於其他未繪示的實施例中,亦可選用於如前述實施例所提及之具有不同厚度之第一電極152a、252a與第二電極153a、253a,本領域的技術人員當可參照前述實施例的說明,依據實際需求,而選用前述構件,以達到所需的技術效果。 In other embodiments, the first electrodes 152a, 252a, the second electrodes 153a, 253a or the hole injection layers 155a, 255a of the first blue sub-pixel 150a and the second blue sub-pixel 250a may also be changed. The thickness is used to adjust the length of the microresonator to achieve the desired technical effect. For example, referring to FIG. 4C, the thickness of the hole injection layer 155b in each of the first blue sub-pixels 150b is different from the thickness of the hole injection layer 255b in each of the second blue sub-pixels 250b. The thickness of the hole injection layer 155b illustrated in FIG. 4C is greater than the thickness of the hole injection layer 255b, but is not limited thereto. In particular, the thickness of the hole injection layer 155b of the first blue sub-pixel 150b of the present embodiment is, for example, 135 nm, and the thickness of the hole injection layer 255b of the second blue sub-pixel 250b is, for example, 116 nm. Meter. Of course, in other embodiments not shown, the thickness of the hole injection layer 155b of the first blue sub-pixel 150b may be, for example, 116 nm, and the hole injection of the second blue sub-pixel 150b. The thickness of the layer 255b is, for example, 135 nm, which is not limited herein. Furthermore, in other embodiments not shown, the first electrodes 152a, 252a and the second electrodes 153a, 253a having different thicknesses as mentioned in the foregoing embodiments may also be selected, and those skilled in the art may Referring to the description of the foregoing embodiment, the foregoing components are selected according to actual needs to achieve the desired technical effect.
簡言之,由於本實施例之立體顯示器10是透過調整微共振腔結構的長度,因此有機發光層中(例如是紅色有機發光層114a、114b、214a、214b、綠色有機發光層134a、 134b、234a、234b、或藍色有機發光層154a、154b、254a、254b)所產生的激發光子便會在對應的微共振腔中形成共振現象,藉以調整第一子畫素100a與第二子畫素200a發光的頻譜,以使立體顯示器10可維持較佳出光效率。 In short, since the stereoscopic display 10 of the present embodiment is configured to adjust the length of the microcavity structure, the organic light emitting layer (for example, the red organic light emitting layer 114a, 114b, 214a, 214b, the green organic light emitting layer 134a, The excitation photons generated by the 134b, 234a, 234b, or the blue organic light-emitting layers 154a, 154b, 254a, 254b) form a resonance phenomenon in the corresponding micro-resonance cavity, thereby adjusting the first sub-pixel 100a and the second sub-pixel The spectrum of the illumination of the pixel 200a is such that the stereoscopic display 10 can maintain a better light extraction efficiency.
圖5A繪示為圖1之第一子畫素以及第二子畫素疊加後之波長與強度的關係圖。圖5B繪示為圖1之第一子畫素之波長與強度的關係圖。圖5C繪示為圖1之第二子畫素之波長與強度的關係圖。圖5D繪示為使用者透過第一分色鏡片以及第二分色鏡片所看到之圖1之立體顯示器的波長與強度的關係圖。 FIG. 5A is a diagram showing the relationship between the wavelength and the intensity after the first sub-pixel of FIG. 1 and the second sub-pixel are superimposed. FIG. 5B is a diagram showing the relationship between the wavelength and the intensity of the first sub-pixel of FIG. 1. FIG. FIG. 5C is a diagram showing the relationship between the wavelength and the intensity of the second sub-pixel of FIG. 1. FIG. FIG. 5D is a diagram showing the relationship between the wavelength and the intensity of the stereoscopic display of FIG. 1 as seen by the user through the first dichroic lens and the second dichroic lens.
詳細來說,圖5A為第一子畫素100a之第一紅色子畫素110a疊加第二子畫素200a之第二紅色子畫素210a、第一子畫素100a之第一綠色子畫素130a疊加第二子畫素200a之第二綠色子畫素230a以及第一子畫素100a之第一藍色子畫素150a疊加第二子畫素200a之第二藍色子畫素250a所構成之波長與強度的關係圖。圖5B為第一畫素100之第一子畫素100a的第一紅色子畫素110a、第一綠色子畫素130a以及第一藍色子畫素150a之波長與強度的關係關係圖。圖5C為第二畫素200之第二子畫素200a的第二紅色子畫素210a、第二綠色子畫素230a以及第二藍色子畫素250a之波長與強度的關係關係圖。由圖5A、圖5B以及圖5C中可得知:第一光線的頻譜與第二光線的頻譜不同,且當微共振腔結構的長度改變時,波長則隨之產生位移,但其強度值大致仍維持相同。 In detail, FIG. 5A shows that the first red sub-pixel 110a of the first sub-pixel 100a superimposes the second red sub-pixel 210a of the second sub-pixel 200a, and the first green sub-pixel of the first sub-pixel 100a. 130a superimposes the second sub-pixel 230a of the second sub-pixel 200a and the first blue sub-pixel 150a of the first sub-pixel 100a and the second blue sub-pixel 250a of the second sub-pixel 200a. A diagram of the relationship between wavelength and intensity. FIG. 5B is a diagram showing the relationship between the wavelength and the intensity of the first red sub-pixel 110a, the first green sub-pixel 130a, and the first blue sub-pixel 150a of the first sub-pixel 100a of the first pixel 100. 5C is a diagram showing the relationship between the wavelength and intensity of the second red sub-pixel 210a, the second green sub-pixel 230a, and the second blue sub-pixel 250a of the second sub-pixel 200a of the second pixel 200. It can be seen from FIG. 5A, FIG. 5B and FIG. 5C that the spectrum of the first ray is different from the spectrum of the second ray, and when the length of the microcavity structure is changed, the wavelength is displaced accordingly, but the intensity value is approximately Still the same.
請參考圖5D,由於本實施例之立體顯示器10適於讓使用者(未繪示)在配戴第一分色鏡片20(請參考圖1)與第二分色鏡片30(請參考圖1)的情況下觀看,因此透過上述之立體顯示器10(請參考圖1)的設計,並搭配第一分色鏡片20與第二分色鏡片30,使用者可經由第一分色鏡片20與第二分色鏡片30的濾光後而分別得到左右眼的訊號,來達成形成立體視覺的效果。 Please refer to FIG. 5D. The stereoscopic display 10 of the present embodiment is suitable for a user (not shown) to wear the first dichroic lens 20 (please refer to FIG. 1 ) and the second dichroic lens 30 (please refer to FIG. 1 ). In the case of viewing, therefore, through the design of the above-mentioned stereoscopic display 10 (please refer to FIG. 1), and with the first dichroic lens 20 and the second dichroic lens 30, the user can pass the first dichroic lens 20 and the first After the filter of the dichroic lens 30 is filtered, the signals of the left and right eyes are respectively obtained to achieve the effect of forming stereoscopic vision.
圖6繪示為圖1之立體顯示器實測的CIE 1931色度圖。請參考圖6,於圖6中,S1表示第一畫素100之第一子畫素100a所圍出的色域空間(color space),S2表示第二畫素200之第二子畫素200a所圍出的色域空間,而S3表示NTSC(National Television System Committee)所制定之色域空間。其中,由圖6可得知,雖然本實施例之第一畫素100之第一子畫素100a與第二畫素200之第二子畫素200a的頻譜不同,但第一畫素100之第一子畫素100a與第二畫素200之第二子畫素200a所圍出的色域空間可以涵蓋NTSC規範CIE1931 97%以上的面積,也說是說,使用者兩眼可看到的顏色幾乎一樣且可以涵蓋NTSC CIE1931 97%以上的色域空間。換言之,本實施例之立體顯示器10具有較佳的色彩飽和度表現。 6 is a CIE 1931 chromaticity diagram measured by the stereoscopic display of FIG. 1. Please refer to FIG. 6. In FIG. 6, S1 represents a color space surrounded by the first sub-pixel 100a of the first pixel 100, and S2 represents a second sub-pixel 200a of the second pixel 200. The enclosed gamut space, and S3 represents the gamut space defined by the NTSC (National Television System Committee). It can be seen from FIG. 6 that although the first sub-pixel 100a of the first pixel 100 of the present embodiment is different from the second sub-pixel 200a of the second pixel 200, the first pixel 100 The color gamut space enclosed by the first sub-pixel 100a and the second sub-pixel 200a of the second pixel 200 may cover an area of 97% or more of the NTSC specification CIE1931, that is, the user can see both eyes. The color is almost the same and can cover more than 97% of the gamut space of NTSC CIE1931. In other words, the stereoscopic display 10 of the present embodiment has a better color saturation performance.
綜上所述,由於本發明之立體顯示器是透過調整子畫素所構成之一微共振腔結構的長度,因此有機發光層中所產生的激發光子便會在對應的微共振腔中形成共振現象,藉以調整子畫素發光的頻譜,以使立體顯示器可維持較佳出光效率。簡言之,本發明之利用有機發光二極體特有的 顯示特性,來實現戴眼鏡式立體顯示器。 In summary, since the stereoscopic display of the present invention adjusts the length of the microcavity structure formed by the sub-pixels, the excitation photons generated in the organic light-emitting layer form a resonance phenomenon in the corresponding micro-resonance cavity. In order to adjust the spectrum of the sub-pixel illumination, the stereoscopic display can maintain better light extraction efficiency. In short, the present invention utilizes the unique features of organic light-emitting diodes. Display features to achieve a glasses-type stereo display.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10‧‧‧立體顯示器 10‧‧‧ Stereoscopic display
10a‧‧‧立體影像顯示單元 10a‧‧‧3D image display unit
12‧‧‧基板 12‧‧‧Substrate
20‧‧‧第一分色鏡片 20‧‧‧First color separation lens
30‧‧‧第二分色鏡片 30‧‧‧Second color separation lens
100‧‧‧第一畫素 100‧‧‧ first pixels
100a‧‧‧第一子畫素 100a‧‧‧ first subpixel
110a、110b、110a’、110b’‧‧‧第一紅色子畫素 110a, 110b, 110a', 110b'‧‧‧ first red sub-pixel
112a、112b‧‧‧第一電極 112a, 112b‧‧‧ first electrode
113a、113b、113a’、113b’‧‧‧第二電極 113a, 113b, 113a', 113b'‧‧‧ second electrode
114a、114b‧‧‧紅色有機發光層 114a, 114b‧‧‧Red organic light-emitting layer
115a、115b‧‧‧電洞注入層 115a, 115b‧‧‧ hole injection layer
116a、116b‧‧‧電洞傳輸層 116a, 116b‧‧‧ hole transport layer
117a、117b‧‧‧電子注入層 117a, 117b‧‧‧electron injection layer
130a、130b‧‧‧第一綠色子畫素 130a, 130b‧‧‧ first green sub-pixel
132a、132b‧‧‧第一電極 132a, 132b‧‧‧ first electrode
133a、133b‧‧‧第二電極 133a, 133b‧‧‧ second electrode
134a、134b‧‧‧綠色有機發光層 134a, 134b‧‧‧Green organic light-emitting layer
135a、135b‧‧‧電洞注入層 135a, 135b‧‧‧ hole injection layer
136a、136b‧‧‧電洞傳輸層 136a, 136b‧‧‧ hole transport layer
137a、137b‧‧‧電子注入層 137a, 137b‧‧‧ electron injection layer
150a、150b‧‧‧第一藍色子畫素 150a, 150b‧‧‧ first blue sub-pixel
152a、152b‧‧‧第一電極 152a, 152b‧‧‧ first electrode
153a、153b‧‧‧第二電極 153a, 153b‧‧‧ second electrode
154a、154b‧‧‧藍色有機發光層 154a, 154b‧‧‧ blue organic light-emitting layer
155a、155b‧‧‧電洞注入層 155a, 155b‧‧‧ hole injection layer
156a、156b‧‧‧電洞傳輸層 156a, 156b‧‧‧ hole transport layer
157a、157b‧‧‧電子注入層 157a, 157b‧‧‧electron injection layer
200‧‧‧第二畫素 200‧‧‧second picture
200a‧‧‧第二子畫素 200a‧‧‧Second sub-pixel
210a、210b、210a’、210b’‧‧‧第二紅色子畫素 210a, 210b, 210a', 210b'‧‧‧ second red sub-pixel
212a、212b‧‧‧第一電極 212a, 212b‧‧‧ first electrode
213a、213b、213a’、213b’‧‧‧第二電極 213a, 213b, 213a', 213b'‧‧‧ second electrode
214a、214b‧‧‧紅色有機發光層 214a, 214b‧‧‧ red organic light-emitting layer
215a、215b‧‧‧電洞注入層 215a, 215b‧‧‧ hole injection layer
216a、216b‧‧‧電洞傳輸層 216a, 216b‧‧‧ hole transport layer
217a、217b‧‧‧電子注入層 217a, 217b‧‧‧electron injection layer
230a、230b‧‧‧第二綠色子畫素 230a, 230b‧‧‧ second green sub-pixel
232a、232b‧‧‧第一電極 232a, 232b‧‧‧ first electrode
233a、233b‧‧‧第二電極 233a, 233b‧‧‧ second electrode
234a、234b‧‧‧綠色有機發光層 234a, 234b‧‧‧Green organic light-emitting layer
235a、235b‧‧‧電洞注入層 235a, 235b‧‧‧ hole injection layer
236a、236b‧‧‧電洞傳輸層 236a, 236b‧‧‧ hole transport layer
237a、237b‧‧‧電子注入層 237a, 237b‧‧‧electron injection layer
250a、250b‧‧‧第二藍色子畫素 250a, 250b‧‧‧ second blue sub-pixel
252a、252b‧‧‧第一電極 252a, 252b‧‧‧ first electrode
253a、253b‧‧‧第二電極 253a, 253b‧‧‧ second electrode
254a、254b‧‧‧藍色有機發光層 254a, 254b‧‧‧ blue organic light-emitting layer
255a、255b‧‧‧電洞注入層 255a, 255b‧‧‧ hole injection layer
256a、256b‧‧‧電洞傳輸層 256a, 256b‧‧‧ hole transport layer
257a、257b‧‧‧電子注入層 257a, 257b‧‧‧electron injection layer
S1、S2、S3‧‧‧曲線 S1, S2, S3‧‧‧ curves
圖1為本發明之一實施例之一種立體顯示器的示意圖。 1 is a schematic diagram of a stereoscopic display according to an embodiment of the present invention.
圖2A繪示為圖1之第一紅色子畫素以及第二紅色子畫素的剖面示意圖。 2A is a cross-sectional view showing the first red sub-pixel and the second red sub-pixel of FIG. 1.
圖2B繪示圖2A之第一紅色子畫素以及第二紅色子畫素之波長與強度的關係圖。 2B is a diagram showing the relationship between the wavelength and intensity of the first red sub-pixel and the second red sub-pixel of FIG. 2A.
圖2C為本發明之另一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。 2C is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to another embodiment of the present invention.
圖2D為本發明之又一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。 2D is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to still another embodiment of the present invention.
圖2E為本發明之再一實施例之一第一紅色子畫素以及一第二紅色子畫素的剖面示意圖。 2E is a cross-sectional view showing a first red sub-pixel and a second red sub-pixel according to still another embodiment of the present invention.
圖3A繪示為圖1之第一綠色子畫素以及第二綠色子畫素的剖面示意圖。 3A is a cross-sectional view showing the first green sub-pixel and the second green sub-pixel of FIG. 1.
圖3B繪示圖3A之第一綠色子畫素以及第二綠色子畫素之波長與強度的關係圖。 FIG. 3B is a diagram showing the relationship between the wavelength and intensity of the first green sub-pixel and the second green sub-pixel of FIG. 3A.
圖3C為本發明之另一實施例之一第一綠色子畫素以 及一第二綠色子畫素的剖面示意圖。 3C is a first green sub-pixel of another embodiment of the present invention. And a schematic cross-sectional view of a second green sub-pixel.
圖4A繪示為圖1之第一藍色子畫素以及第二藍色子畫素的剖面示意圖。 4A is a cross-sectional view showing the first blue sub-pixel and the second blue sub-pixel of FIG. 1.
圖4B繪示圖4A之第一藍色子畫素以及第二藍色子畫素之波長與強度的關係圖。 4B is a diagram showing the relationship between the wavelength and intensity of the first blue sub-pixel and the second blue sub-pixel of FIG. 4A.
圖4C為本發明之另一實施例之一第一藍色子畫素以及一第二藍色子畫素的剖面示意圖。 4C is a cross-sectional view showing a first blue sub-pixel and a second blue sub-pixel according to another embodiment of the present invention.
圖5A繪示為圖1之第一子畫素以及第二子畫素疊加後之波長與強度的關係圖。 FIG. 5A is a diagram showing the relationship between the wavelength and the intensity after the first sub-pixel of FIG. 1 and the second sub-pixel are superimposed.
圖5B繪示為圖1之第一子畫素之波長與強度的關係圖。 FIG. 5B is a diagram showing the relationship between the wavelength and the intensity of the first sub-pixel of FIG. 1. FIG.
圖5C繪示為圖1之第二子畫素之波長與強度的關係圖。 FIG. 5C is a diagram showing the relationship between the wavelength and the intensity of the second sub-pixel of FIG. 1. FIG.
圖5D繪示為使用者透過第一分色鏡片以及第二分色鏡片所看到之圖1之立體顯示器的波長與強度的關係圖。 FIG. 5D is a diagram showing the relationship between the wavelength and the intensity of the stereoscopic display of FIG. 1 as seen by the user through the first dichroic lens and the second dichroic lens.
圖6繪示為圖1之立體顯示器實測的CIE 1931色度圖。 6 is a CIE 1931 chromaticity diagram measured by the stereoscopic display of FIG. 1.
10‧‧‧立體顯示器 10‧‧‧ Stereoscopic display
10a‧‧‧立體影像顯示單元 10a‧‧‧3D image display unit
12‧‧‧基板 12‧‧‧Substrate
20‧‧‧第一分色鏡片 20‧‧‧First color separation lens
30‧‧‧第二分色鏡片 30‧‧‧Second color separation lens
100‧‧‧第一畫素 100‧‧‧ first pixels
100a‧‧‧第一子畫素 100a‧‧‧ first subpixel
110a‧‧‧第一紅色子畫素 110a‧‧‧The first red sub-pixel
130a‧‧‧第一綠色子畫素 130a‧‧‧First green sub-pixel
150a‧‧‧第一藍色子畫素 150a‧‧‧The first blue sub-pixel
200‧‧‧第二畫素 200‧‧‧second picture
200a‧‧‧第二子畫素 200a‧‧‧Second sub-pixel
210a‧‧‧第二紅色子畫素 210a‧‧‧Second red sub-pixel
230a‧‧‧第二綠色子畫素 230a‧‧‧Second green sub-pixel
250a‧‧‧第二藍色子畫素 250a‧‧‧Second blue sub-pixel
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99114354A TWI424785B (en) | 2010-05-05 | 2010-05-05 | Three-dimensional display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99114354A TWI424785B (en) | 2010-05-05 | 2010-05-05 | Three-dimensional display device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201141305A TW201141305A (en) | 2011-11-16 |
TWI424785B true TWI424785B (en) | 2014-01-21 |
Family
ID=46760499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99114354A TWI424785B (en) | 2010-05-05 | 2010-05-05 | Three-dimensional display device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI424785B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6020941A (en) * | 1998-02-12 | 2000-02-01 | Advanced Display Systems, Inc. | Stereographic liquid crystal display employing switchable liquid crystal materials of two polarities in separate channels |
US20040160177A1 (en) * | 2003-01-23 | 2004-08-19 | Yoshihiko Uchida | Electroluminescence display panel and three-dimensional display apparatus |
CN1998246A (en) * | 2004-05-07 | 2007-07-11 | 科巴尔特娱乐有限公司 | Stereoscopic television signal processing method, transmission system and viewer enhancements |
TW200900847A (en) * | 2007-05-09 | 2009-01-01 | Dolby Lab Licensing Corp | System for 3D image projections and viewing |
CN101452118A (en) * | 2007-12-04 | 2009-06-10 | 乐金显示有限公司 | Three-dimensional image display device and method of driving the same |
TW201011345A (en) * | 2008-09-05 | 2010-03-16 | Au Optronics Corp | Three-dimensional display device, fabricating method and contraol method thereof |
-
2010
- 2010-05-05 TW TW99114354A patent/TWI424785B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6020941A (en) * | 1998-02-12 | 2000-02-01 | Advanced Display Systems, Inc. | Stereographic liquid crystal display employing switchable liquid crystal materials of two polarities in separate channels |
US20040160177A1 (en) * | 2003-01-23 | 2004-08-19 | Yoshihiko Uchida | Electroluminescence display panel and three-dimensional display apparatus |
CN1998246A (en) * | 2004-05-07 | 2007-07-11 | 科巴尔特娱乐有限公司 | Stereoscopic television signal processing method, transmission system and viewer enhancements |
TW200900847A (en) * | 2007-05-09 | 2009-01-01 | Dolby Lab Licensing Corp | System for 3D image projections and viewing |
CN101452118A (en) * | 2007-12-04 | 2009-06-10 | 乐金显示有限公司 | Three-dimensional image display device and method of driving the same |
TW201011345A (en) * | 2008-09-05 | 2010-03-16 | Au Optronics Corp | Three-dimensional display device, fabricating method and contraol method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201141305A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10614767B2 (en) | Multi-primary backlight for multi-functional active-matrix liquid crystal displays | |
US8743038B2 (en) | Display apparatus | |
US20140232757A1 (en) | Display device and electronic apparatus | |
US8602600B2 (en) | Light emitting device and electronic device | |
US20110102562A1 (en) | Multi-spectral stereographic display system with additive and subtractive techniques | |
JP2014516218A (en) | 4-color 3DLCD device | |
US10419743B2 (en) | Three-dimensional display apparatus and three-dimensional display method | |
US20120182404A1 (en) | Three Dimensional Display | |
US20140085352A1 (en) | Stereoscopic display with improved vertical resolution | |
US10466543B2 (en) | Pixel geometries for spatially multiplexed stereo 3D displays | |
US10163403B2 (en) | Systems and methods for producing narrowband images | |
CN105789258B (en) | A kind of OLED display panel and 3D 3 d display device | |
TWI424785B (en) | Three-dimensional display device | |
CN101859029A (en) | Stereoscopic display | |
US10134342B2 (en) | Systems and methods for producing narrowband images | |
CN105446005A (en) | Quantum dot backlight source and liquid crystal display device | |
JP2009229645A (en) | Color display and stereoscopic image display | |
WO2013080856A1 (en) | 3-d display device and 3-d display system | |
TWI425276B (en) | A three-dimensional display system with a liquid crystal display and a three-dimensional display system with the display | |
US9709718B2 (en) | Systems and methods for producing narrowband images | |
CN107134244A (en) | Display device and display system | |
TWI808743B (en) | Display panel | |
CN208690255U (en) | Naked eye solid LED display | |
US9030540B2 (en) | Systems and methods for reducing ghosting in a three-dimensional image system | |
JP2011222168A (en) | Light-emitting device and electronic apparatus |