TWI424310B - Cpu power supply circuit and operating method thereof - Google Patents

Cpu power supply circuit and operating method thereof Download PDF

Info

Publication number
TWI424310B
TWI424310B TW99134793A TW99134793A TWI424310B TW I424310 B TWI424310 B TW I424310B TW 99134793 A TW99134793 A TW 99134793A TW 99134793 A TW99134793 A TW 99134793A TW I424310 B TWI424310 B TW I424310B
Authority
TW
Taiwan
Prior art keywords
voltage
power supply
sampling
conversion circuit
voltage conversion
Prior art date
Application number
TW99134793A
Other languages
Chinese (zh)
Other versions
TW201216041A (en
Inventor
Jung Hua Chung
Yung Lu Wu
Wen Chun Shen
Original Assignee
Pegatron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pegatron Corp filed Critical Pegatron Corp
Priority to TW99134793A priority Critical patent/TWI424310B/en
Publication of TW201216041A publication Critical patent/TW201216041A/en
Application granted granted Critical
Publication of TWI424310B publication Critical patent/TWI424310B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

中央處理單元電源供應電路及其操作方法Central processing unit power supply circuit and operation method thereof

本發明是有關於一種電源供應電路,且特別是有關於一種中央處理單元電源供應電路及其操作方法。The present invention relates to a power supply circuit, and more particularly to a central processing unit power supply circuit and method of operation thereof.

一般的個人電腦,例如筆記本(notebook,NB)電腦,在中央處理單元(central processing unit,CPU)電源供應電路的電容(例如輸入電容)部分,常常使用多層陶瓷電容(Multi-Layer Ceramic Capacitor,MLCC),以降低成本以及縮小元件面積。然而,當中央處理單元電源供應電路的操作頻率落於人耳可以察覺到的音頻範圍時,多層陶瓷電容等元件會因為壓電效應而發出音頻噪音。傳統解決音頻噪音問題方法,是使用較沒有壓電效應的電容,例如聚合物有機半導體固態電解電容器(Polymerized Organic Semiconductor Capacitors,POSCAP)或是其他電解電容,以降低來自CPU負載變化引起的音頻噪音。然而,POSCAP具有成本高以及元件面積大等缺點。A typical personal computer, such as a notebook (NB) computer, often uses a multilayer ceramic capacitor (Multi-Layer Ceramic Capacitor, MLCC) in the capacitance (for example, input capacitance) of a central processing unit (CPU) power supply circuit. ) to reduce costs and reduce component area. However, when the operating frequency of the central processing unit power supply circuit falls within the audio range that can be perceived by the human ear, components such as multilayer ceramic capacitors emit audible noise due to the piezoelectric effect. A traditional approach to solving audio noise problems is to use capacitors that are less piezoelectric, such as Polymerized Organic Semiconductor Capacitors (POSCAP) or other electrolytic capacitors, to reduce audio noise caused by changes in CPU load. However, POSCAP has disadvantages such as high cost and large component area.

本發明提供一種中央處理單元電源供應電路及其操作方法,可以有效主動抑制音頻噪音。The invention provides a central processing unit power supply circuit and an operation method thereof, which can effectively suppress audio noise actively.

本發明實施例提出一種中央處理單元電源供應電路,其連接於電源供應器與中央處理單元之間。上述電源供應電路包括電壓轉換電路、取樣單元、設定單元及比較器。電壓轉換電路包括輸入電容與電感,輸入電容連接電源供應器,電感的輸出端連接中央處理單元。Embodiments of the present invention provide a central processing unit power supply circuit that is coupled between a power supply and a central processing unit. The power supply circuit includes a voltage conversion circuit, a sampling unit, a setting unit, and a comparator. The voltage conversion circuit includes an input capacitor and an inductor, the input capacitor is connected to the power supply, and the output of the inductor is connected to the central processing unit.

取樣單元連接電感的輸入端,以取樣電感之輸入端的一輸入信號。取樣單元並轉換輸入信號,以提供一取樣電壓。設定單元連接電壓轉換電路之一操作模式控制端。比較器連接取樣單元與設定單元。比較器比較取樣電壓與一參考電壓。當取樣電壓小於參考電壓時,比較器控制設定單元,使得電壓轉換電路進入一連續導通模式(continuous conduction mode,CCM)。The sampling unit is connected to the input end of the inductor to sample an input signal at the input end of the inductor. The sampling unit converts the input signal to provide a sampled voltage. The setting unit is connected to one of the operation mode control terminals of the voltage conversion circuit. The comparator is connected to the sampling unit and the setting unit. The comparator compares the sampled voltage with a reference voltage. When the sampling voltage is less than the reference voltage, the comparator controls the setting unit such that the voltage conversion circuit enters a continuous conduction mode (CCM).

在本發明之一實施例中,電壓轉換電路還包括調節器、第一功率開關、第二功率開關及輸出電容。調節器具有上述操作模式控制端。第一功率開關分別連接電源供應器、調節器、電感之輸入端及取樣單元。第二功率開關串連連接第一功率開關,且分別連接調節器、電感之輸入端及取樣單元。輸出電容連接電感的輸出端與中央處理單元。In an embodiment of the invention, the voltage conversion circuit further includes a regulator, a first power switch, a second power switch, and an output capacitor. The regulator has the above operational mode control terminal. The first power switch is respectively connected to the power supply, the regulator, the input end of the inductor and the sampling unit. The second power switch is connected in series with the first power switch, and is respectively connected to the regulator, the input end of the inductor and the sampling unit. The output capacitor is connected to the output of the inductor and to the central processing unit.

在本發明之一實施例中,電壓轉換電路為多層陶瓷電容,且輸入電容分別連接電源供應器與第一功率開關。In an embodiment of the invention, the voltage conversion circuit is a multilayer ceramic capacitor, and the input capacitor is respectively connected to the power supply and the first power switch.

在本發明之一實施例中,調節器具有一不連續導通模式(DCM)與連續導通模式(CCM),當中央處理單元處於低負載狀態,調節器處於不連續導通模式,且取樣電壓小於參考電壓時,調節器依據設定單元之操作而由不連續導通模式進入連續導通模式。In an embodiment of the invention, the regulator has a discontinuous conduction mode (DCM) and a continuous conduction mode (CCM). When the central processing unit is in a low load state, the regulator is in a discontinuous conduction mode, and the sampling voltage is less than the reference voltage. When the regulator enters the continuous conduction mode by the discontinuous conduction mode according to the operation of the setting unit.

在本發明之一實施例中,取樣單元具有時間延遲效果。In an embodiment of the invention, the sampling unit has a time delay effect.

在本發明之一實施例中,輸入信號為脈波寬度調變信號。In one embodiment of the invention, the input signal is a pulse width modulated signal.

在本發明之一實施例中,取樣單元用以轉換輸入信號成為類比信號。In an embodiment of the invention, the sampling unit is configured to convert the input signal into an analog signal.

在本發明之一實施例中,取樣電壓的大小與輸入信號的頻率大小成正比。In one embodiment of the invention, the magnitude of the sampled voltage is proportional to the frequency of the input signal.

本發明實施例提出一種電源供應電路的操作方法,其用以控制連接於電源供應器與中央處理單元之間的電壓轉換電路。上述電壓轉換電路包括電感,其輸出端連接中央處理單元。上述電源供應電路的操作方法包括:取樣電感之輸入端的輸入信號;轉換輸入信號為取樣電壓;比較取樣電壓與一參考電壓;若取樣電壓小於參考電壓,使得電壓轉換電路進入一連續導通模式(CCM)。Embodiments of the present invention provide a method of operating a power supply circuit for controlling a voltage conversion circuit connected between a power supply and a central processing unit. The voltage conversion circuit includes an inductor, and an output terminal thereof is connected to the central processing unit. The operation method of the power supply circuit includes: sampling an input signal of an input end of the inductor; converting the input signal to a sampling voltage; comparing the sampling voltage with a reference voltage; and if the sampling voltage is less than the reference voltage, causing the voltage conversion circuit to enter a continuous conduction mode (CCM) ).

在本發明之一實施例中,輸入信號為脈波寬度調變信號。In one embodiment of the invention, the input signal is a pulse width modulated signal.

在本發明之一實施例中,其中於轉換輸入信號為取樣電壓的步驟中,取樣電壓的大小與輸入信號的頻率大小成正比。In an embodiment of the invention, wherein the step of converting the input signal to the sampling voltage, the magnitude of the sampling voltage is proportional to the frequency of the input signal.

基於上述,本發明實施例透過取樣單元以及比較器檢測出電壓轉換電路的操作頻率是否落於人耳可以察覺到的音頻範圍。當電壓轉換電路操作於非音頻範圍時,不論電壓轉換電路當時正運行於何種操作模式下,比較器與設定單元並不會改變電壓轉換電路的操作模式。當比較器檢測出電壓轉換電路操作於音頻範圍時,比較器控制設定單元的操作,使設定單元暫時性強迫改變電壓轉換電路的操作模式為連續導通模式,直到電壓轉換電路的操作頻率離開音頻範圍。因此,本發明實施例所揭露的中央處理單元電源供應電路可以有效主動抑制音頻噪音。另外,由於取樣單元是取樣電感輸入端的信號,因此可以避免干擾電壓轉換電路的驅動操作。Based on the above, the embodiment of the present invention detects whether the operating frequency of the voltage conversion circuit falls within an audio range that can be perceived by the human ear through the sampling unit and the comparator. When the voltage conversion circuit operates in the non-audio range, the comparator and the setting unit do not change the operation mode of the voltage conversion circuit regardless of the operation mode in which the voltage conversion circuit is currently operating. When the comparator detects that the voltage conversion circuit operates in the audio range, the comparator controls the operation of the setting unit to temporarily force the setting unit to change the operation mode of the voltage conversion circuit to the continuous conduction mode until the operating frequency of the voltage conversion circuit leaves the audio range. . Therefore, the central processing unit power supply circuit disclosed in the embodiment of the present invention can effectively suppress the audio noise actively. In addition, since the sampling unit is a signal that samples the input end of the inductor, it is possible to avoid the driving operation of the interference voltage conversion circuit.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1是依據本發明實施例說明一種中央處理單元電源供應電路100的功能模塊示意圖。中央處理單元電源供應電路100連接電源供應器102與中央處理單元103。在本實施例中,電源供應器102可以是電源轉接器(adapter)。電源供應器102可以將市電101(交流電壓源)轉換為輸入電壓Vin,然後將輸入電壓Vin提供給電腦系統。FIG. 1 is a schematic diagram showing functional blocks of a central processing unit power supply circuit 100 according to an embodiment of the invention. The central processing unit power supply circuit 100 is connected to the power supply 102 and the central processing unit 103. In this embodiment, the power supply 102 can be a power adapter. The power supply 102 can convert the mains 101 (AC voltage source) to the input voltage Vin and then provide the input voltage Vin to the computer system.

在本實施例中,電源供應器102還包括用以轉換成多組直流電壓的轉換電路,其可將電壓較高的Vin(通常是19V)轉換成各裝置需要的電壓,例如:3.3 V與5V。故,在本實施例中,轉換電路為直流-直流的功率型態轉換。在其他實施例中,輸入電壓Vin亦可由電池模組所供應,本發明並不對此加以限制。In this embodiment, the power supply 102 further includes a conversion circuit for converting into a plurality of sets of DC voltages, which can convert a higher voltage Vin (usually 19V) into a voltage required by each device, for example: 3.3 V and 5V. Therefore, in this embodiment, the conversion circuit is a DC-DC power type conversion. In other embodiments, the input voltage Vin may also be supplied by the battery module, which is not limited by the present invention.

在電腦系統中,電源供應電路100將輸入電壓Vin轉換為中央處理單元103所需的電壓準位,然後將輸出電壓Vout輸出給中央處理單元103,以供電給中央處理單元103。在本實施例中,電源供應電路100包括電壓轉換電路110、取樣單元120、比較器130以及設定單元140。In the computer system, the power supply circuit 100 converts the input voltage Vin to the voltage level required by the central processing unit 103, and then outputs the output voltage Vout to the central processing unit 103 to supply power to the central processing unit 103. In the present embodiment, the power supply circuit 100 includes a voltage conversion circuit 110, a sampling unit 120, a comparator 130, and a setting unit 140.

電壓轉換電路110連接電源供應器102與中央處理單元103,以將輸入電壓Vin轉換為輸出電壓Vout。電壓轉換電路110可操作在不連續導通模式(discontinuous conduction mode,DCM)與連續導通模式(continuous conduction mode,CCM)。當中央處理單元103處於低負載狀態,電壓轉換電路110處於不連續導通模式(DCM),且取樣電壓Vsp小於參考電壓Vref時,電壓轉換電路110則依據設定單元140之操作由不連續導通模式(DCM)強制進入連續導通模式(CCM)。The voltage conversion circuit 110 is connected to the power supply 102 and the central processing unit 103 to convert the input voltage Vin into an output voltage Vout. The voltage conversion circuit 110 is operable in a discontinuous conduction mode (DCM) and a continuous conduction mode (CCM). When the central processing unit 103 is in a low load state, the voltage conversion circuit 110 is in the discontinuous conduction mode (DCM), and the sampling voltage Vsp is less than the reference voltage Vref, the voltage conversion circuit 110 is in a discontinuous conduction mode according to the operation of the setting unit 140 ( DCM) Forced into continuous conduction mode (CCM).

在本實施例中,電壓轉換電路110內部還包括電感L、調節器(regulator)111、第一功率開關MU、第二功率開關MD、輸入電容Cin以及輸出電容Cout。In the embodiment, the voltage conversion circuit 110 further includes an inductor L, a regulator 111, a first power switch MU, a second power switch MD, an input capacitor Cin, and an output capacitor Cout.

上述調節器111具有操作模式控制端CCM#,調節器111具有不連續導通模式(DCM)與連續導通模式(CCM),其可依據操作模式控制端CCM#的信號來控制電壓轉換電路110於不連續導通模式或連續導通模式。一般來說,操作模式控制端CCM#的訊號連接自晶片組(例如南橋晶片或平台設定單元(platform controller hub,PCH),未繪示)或中央處理單元103而接收控制訊號,以進行DCM與CCM的切換。例如,在本實施例中,由中央處理單元103經由晶片組傳送操作模式設定信號Vopm給調節器111,或是由中央處理單元103直接傳送操作模式設定信號Vopm給調節器111。在本實施例中,操作模式控制端CCM#還連接設定單元140,有關其詳細說明,容後詳述。The regulator 111 has an operation mode control terminal CCM#, and the regulator 111 has a discontinuous conduction mode (DCM) and a continuous conduction mode (CCM), which can control the voltage conversion circuit 110 according to the signal of the operation mode control terminal CCM#. Continuous conduction mode or continuous conduction mode. Generally, the signal connection of the operation mode control terminal CCM# receives a control signal from a chipset (such as a south bridge chip or a platform controller hub (PCH), not shown) or the central processing unit 103 to perform DCM and CCM switching. For example, in the present embodiment, the central processing unit 103 transmits the operation mode setting signal Vopm to the regulator 111 via the wafer set, or the central processing unit 103 directly transmits the operation mode setting signal Vopm to the regulator 111. In this embodiment, the operation mode control terminal CCM# is also connected to the setting unit 140, and a detailed description thereof will be described later.

上述調節器111分別連接第一功率開關MU、第二功率開關MD及設定單元140。第一功率開關MU分別連接電源供應器102、調節器111、電感L之輸入端、取樣單元120及輸入電容Cin。第二功率開關MD串連連接第一功率開關MU,且第二功率開關MD分別連接調節器111、電感L之輸入端及取樣單元120。輸入電容Cin分別連接第一功率開關MU與電源供應器102。電感L之輸入端分別連接第一功率開關MU、第二功率開關MD及取樣單元120。電感L之輸出端連接中央處理單元103,以供應輸出電壓Vout。輸出電容Cout連接電感L的輸出端與中央處理單元103。The regulator 111 is connected to the first power switch MU, the second power switch MD, and the setting unit 140, respectively. The first power switch MU is connected to the power supply 102, the regulator 111, the input of the inductor L, the sampling unit 120, and the input capacitor Cin. The second power switch MD is connected in series with the first power switch MU, and the second power switch MD is connected to the regulator 111, the input end of the inductor L and the sampling unit 120, respectively. The input capacitor Cin is connected to the first power switch MU and the power supply 102, respectively. The input ends of the inductors L are respectively connected to the first power switch MU, the second power switch MD and the sampling unit 120. The output of the inductor L is connected to the central processing unit 103 to supply the output voltage Vout. The output capacitor Cout is connected to the output of the inductor L and the central processing unit 103.

在本實施例中,輸入電容Cin為多層陶瓷電容(MLCC),輸出電容Cout為聚合物有機半導體固態電解電容器(POSCAP)。In this embodiment, the input capacitor Cin is a multilayer ceramic capacitor (MLCC), and the output capacitor Cout is a polymer organic semiconductor solid electrolytic capacitor (POSCAP).

上述取樣單元120連接電感L的輸入端、第一功率開關MU、及第二功率開關MD,以取樣電感L之輸入端的輸入信號。取樣單元120轉換電感L之輸入端的輸入信號VL,以提供取樣電壓Vsp給比較器130。上述比較器130分別連接取樣單元120與設定單元140。設定單元140則分別連接比較器130與調節器111之操作模式控制端CCM#。The sampling unit 120 is connected to the input end of the inductor L, the first power switch MU, and the second power switch MD to sample the input signal of the input end of the inductor L. The sampling unit 120 converts the input signal VL at the input of the inductor L to provide the sampling voltage Vsp to the comparator 130. The comparator 130 is connected to the sampling unit 120 and the setting unit 140, respectively. The setting unit 140 is connected to the operation mode control terminal CCM# of the comparator 130 and the regulator 111, respectively.

設定單元140連接電壓轉換電路110的操作模式控制端CCM#,即調節器111之操作模式控制端CCM#。此操作模式控制端CCM#可以控制電壓轉換電路110的操作模式。例如:當此操作模式控制端CCM#為第一邏輯準位時,電壓轉換電路110的操作模式為不連續導通模式(DCM)。當此操作模式控制端CCM#為第二邏輯準位時,電壓轉換電路110的操作模式為連續導通模式(CCM)。The setting unit 140 is connected to the operation mode control terminal CCM# of the voltage conversion circuit 110, that is, the operation mode control terminal CCM# of the regulator 111. This operation mode control terminal CCM# can control the operation mode of the voltage conversion circuit 110. For example, when the operation mode control terminal CCM# is at the first logic level, the operation mode of the voltage conversion circuit 110 is a discontinuous conduction mode (DCM). When the operation mode control terminal CCM# is at the second logic level, the operation mode of the voltage conversion circuit 110 is the continuous conduction mode (CCM).

又例如,當此操作模式控制端為第一邏輯準位時電壓轉換電路110的操作模式為脈頻調變(pulse frequency modulation,PFM)模式,而當此操作模式控制端為第二邏輯準位時電壓轉換電路110的操作模式為脈寬調變(pulse width modulation,PWM)模式。再例如,當此操作模式控制端為第一邏輯準位時,電壓轉換電路110的操作模式為「自動模式」(例如動態地依據負載而自動選擇操作於PFM模式或PWM模式),而當此操作模式控制端為高邏輯準位時,電壓轉換電路110的操作模式被限定為PWM模式。For another example, when the operation mode control terminal is at the first logic level, the operation mode of the voltage conversion circuit 110 is a pulse frequency modulation (PFM) mode, and when the operation mode control terminal is the second logic level, The operation mode of the voltage conversion circuit 110 is a pulse width modulation (PWM) mode. For example, when the operation mode control terminal is at the first logic level, the operation mode of the voltage conversion circuit 110 is “auto mode” (for example, dynamically selecting the operation mode in the PFM mode or the PWM mode according to the load), and when When the operation mode control terminal is at a high logic level, the operation mode of the voltage conversion circuit 110 is limited to the PWM mode.

取樣單元120取樣電感L的輸入端的輸入信號VL,以提供取樣電壓Vsp。在本實施例中,輸入信號VL為數位型態的脈波寬度調變(PWM)信號。取樣單元120可將輸入的數位型態信號轉換為類比信號。在本實施例中,取樣單元120中可包括RC延遲電路(電阻電容延遲電路),以具有一時間延遲效果,以避免取樣信號過於頻繁地切換電壓轉換電路110的操作模式。The sampling unit 120 samples the input signal VL at the input of the inductor L to provide a sampling voltage Vsp. In the present embodiment, the input signal VL is a pulse width modulation (PWM) signal of a digital type. The sampling unit 120 can convert the input digital type signal into an analog signal. In the present embodiment, the RC delay circuit (resistive capacitance delay circuit) may be included in the sampling unit 120 to have a time delay effect to prevent the sampling signal from switching the operation mode of the voltage conversion circuit 110 too frequently.

取樣電壓Vsp的準位是相應於信號VL的脈衝頻率,也就是相應於電壓轉換電路110的操作頻率,即取樣電壓Vsp的大小與輸入信號VL的頻率大小成正比。The level of the sampling voltage Vsp is a pulse frequency corresponding to the signal VL, that is, corresponding to the operating frequency of the voltage conversion circuit 110, that is, the magnitude of the sampling voltage Vsp is proportional to the frequency of the input signal VL.

當電壓轉換電路操作在不連續導通模式(DCM),操作頻率大小會與負載電流大小成正比。常負載電流由高一直降低,會使操作頻率由高一直降低,故取樣電壓Vsp也會由高一直降低。When the voltage conversion circuit operates in discontinuous conduction mode (DCM), the operating frequency is proportional to the magnitude of the load current. The constant load current is always lowered from high, and the operating frequency is always lowered from high, so the sampling voltage Vsp is also lowered from high.

故電源轉換電路110在不連續導通模式(DCM)下,會因負載的變化使得操作頻率進入音頻範圍(20 Hz至20 KHz),此時取樣電壓Vsp會對應地落入某一電壓範圍(以下稱第一電壓範圍);類似地,當電壓轉換電路110操作於非音頻範圍(如:數百KHz)時,取樣電壓Vsp會對應地落入另一個電壓範圍(以下稱第二電壓範圍)。因此,可以在前述第一電壓範圍與第二電壓範圍之間選定一個參考電壓準位,並依此參考電壓準位設定參考電壓Vref。Therefore, in the discontinuous conduction mode (DCM), the power conversion circuit 110 causes the operating frequency to enter the audio range (20 Hz to 20 KHz) due to the change of the load, and the sampling voltage Vsp falls correspondingly into a certain voltage range (below). Similarly, the first voltage range is referred to; similarly, when the voltage conversion circuit 110 operates in a non-audio range (eg, several hundred KHz), the sampling voltage Vsp will correspondingly fall into another voltage range (hereinafter referred to as a second voltage range). Therefore, a reference voltage level can be selected between the aforementioned first voltage range and the second voltage range, and the reference voltage Vref can be set accordingly with reference to the voltage level.

在其他實施例中,取樣單元120可以用計數器與數位類比轉換器來實現。計數器連接電感L的輸入端,以便在單位時間中計數信號VL的脈衝數,然後將計數結果輸出給數位類比轉換器。數位類比轉換器將計數器所輸出的計數結果轉換為類比的取樣電壓Vsp,然後將取樣電壓Vsp輸出給比較器130。In other embodiments, the sampling unit 120 can be implemented with a counter and a digital analog converter. The counter is connected to the input of the inductor L to count the number of pulses of the signal VL in unit time, and then outputs the result to the digital analog converter. The digital analog converter converts the count result output by the counter into an analog sampling voltage Vsp, and then outputs the sampling voltage Vsp to the comparator 130.

比較器130接收取樣電壓Vsp以及控制設定單元140。當取樣電壓Vsp小於參考電壓Vref時,比較器130控制設定單元140的操作,強迫電壓轉換電路110進入連續導通模式(CCM)。The comparator 130 receives the sampling voltage Vsp and the control setting unit 140. When the sampling voltage Vsp is less than the reference voltage Vref, the comparator 130 controls the operation of the setting unit 140 to force the voltage conversion circuit 110 to enter the continuous conduction mode (CCM).

一般而言,如果輸入電容Cin為多層陶瓷電容(MLCC),將電壓轉換電路110操作在不連續導通模式(DCM)會有噪音問題,但電源轉換效率較高。若將電壓轉換電路110操作在連續導通模式(CCM)則沒有噪音問題,但電源轉換效率較低。In general, if the input capacitance Cin is a multilayer ceramic capacitor (MLCC), there is a noise problem in operating the voltage conversion circuit 110 in the discontinuous conduction mode (DCM), but the power conversion efficiency is high. If the voltage conversion circuit 110 is operated in the continuous conduction mode (CCM), there is no noise problem, but the power conversion efficiency is low.

因此,當比較器130檢測出電壓轉換電路110操作於非音頻範圍時,比較器130控制設定單元140的操作,以使電壓轉換電路110的操作模式儘可能為DCM。當比較器130檢測出電壓轉換電路110操作於音頻範圍時,比較器130控制設定單元140的操作,使設定單元140改變電壓轉換電路110的操作模式為CCM,直到電壓轉換電路110的操作頻率離開音頻範圍。Therefore, when the comparator 130 detects that the voltage conversion circuit 110 is operating in the non-audio range, the comparator 130 controls the operation of the setting unit 140 so that the operation mode of the voltage conversion circuit 110 is as DCM as possible. When the comparator 130 detects that the voltage conversion circuit 110 is operating in the audio range, the comparator 130 controls the operation of the setting unit 140 to cause the setting unit 140 to change the operation mode of the voltage conversion circuit 110 to CCM until the operating frequency of the voltage conversion circuit 110 leaves. Audio range.

所以,本實施例可將電壓轉換電路110操作在DCM,同時可使用成本較低的多層陶瓷電容(MLCC)作為輸入電容Cin。也就是說,本實施例可降低音頻噪音,又不犠牲電源轉換效率。因為電壓轉換電路110可以不使用POSCAP與電解電容,本實施例可享受MLCC帶來的成本與空間效益。Therefore, the present embodiment can operate the voltage conversion circuit 110 in the DCM while using a lower cost multilayer ceramic capacitor (MLCC) as the input capacitance Cin. That is to say, the present embodiment can reduce the audio noise without sacrificing the power conversion efficiency. Since the voltage conversion circuit 110 can not use POSCAP and electrolytic capacitors, this embodiment can enjoy the cost and space benefits brought by the MLCC.

在另一個實施例中,當比較器130檢測出電壓轉換電路110操作於非音頻範圍時,比較器130控制設定單元140的操作,使電壓轉換電路110的操作模式為「自動模式」。此自動模式會讓電壓轉換電路110動態地依據負載而自動選擇操作於脈頻調變(PFM)模式或脈寬調變(PWM)模式。一般而言,PWM模式的操作頻率遠高於人耳所能感受的音頻範圍。因此,當比較器130檢測出電壓轉換電路110操作於音頻範圍時,比較器130控制設定單元140的操作,使設定單元140改變電壓轉換電路110的操作模式為PWM模式,直到電壓轉換電路110的操作頻率離開音頻範圍。In another embodiment, when the comparator 130 detects that the voltage conversion circuit 110 is operating in the non-audio range, the comparator 130 controls the operation of the setting unit 140 such that the operation mode of the voltage conversion circuit 110 is "automatic mode". This automatic mode causes the voltage conversion circuit 110 to automatically select to operate in a pulse frequency modulation (PFM) mode or a pulse width modulation (PWM) mode depending on the load. In general, the operating frequency of the PWM mode is much higher than the audio range that the human ear can feel. Therefore, when the comparator 130 detects that the voltage conversion circuit 110 is operating in the audio range, the comparator 130 controls the operation of the setting unit 140 to cause the setting unit 140 to change the operation mode of the voltage conversion circuit 110 to the PWM mode until the voltage conversion circuit 110 The operating frequency leaves the audio range.

調節器111至少具有第一操作模式與第二操作模式。設定單元140可以依據取樣電壓Vsp而改變調節器111的模式控制端CCM#的邏輯準位,進而改變調節器111的操作模式為第一操作模式或第二操作模式。在某些實施例中,前述第一操作模式可以是脈寬調變模式,第二操作模式可以是脈頻調變模式。在另一些實施例中,前述第一操作模式可以是連續導通模式,而第二操作模式可以是不連續導通模式。The regulator 111 has at least a first mode of operation and a second mode of operation. The setting unit 140 can change the logic level of the mode control terminal CCM# of the regulator 111 according to the sampling voltage Vsp, thereby changing the operation mode of the regulator 111 to the first operation mode or the second operation mode. In some embodiments, the aforementioned first mode of operation may be a pulse width modulation mode and the second mode of operation may be a pulse frequency modulation mode. In other embodiments, the aforementioned first mode of operation may be a continuous conduction mode and the second mode of operation may be a discontinuous conduction mode.

在某些實施例中,電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)還經由設定單元140連接中央處理單元103以接收操作模式設定信號Vopm。在另一些實施例中,電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)還經由設定單元140連接晶片組(例如南橋晶片或平台控制單元(PCH),未繪示),使得中央處理單元103可以經由晶片組傳送操作模式設定信號Vopm給電壓轉換電路110。當電壓轉換電路110操作於非音頻範圍時,電壓轉換電路110可以依據中央處理單元103或晶片組所輸出的操作模式設定信號Vopm而動態決定操作模式。當電壓轉換電路110操作於音頻範圍時,設定單元140會強迫改變電壓轉換電路110的操作模式為CCM(或PWM模式),直到電壓轉換電路110的操作頻率離開音頻範圍。In some embodiments, the operation mode control terminal of the voltage conversion circuit 110 (the mode control terminal CCM# of the regulator 111) is also connected to the central processing unit 103 via the setting unit 140 to receive the operation mode setting signal Vopm. In other embodiments, the operation mode control end of the voltage conversion circuit 110 (the mode control terminal CCM# of the regulator 111) is also connected to the chip set via the setting unit 140 (for example, a south bridge wafer or a platform control unit (PCH), not shown The central processing unit 103 can transmit the operation mode setting signal Vopm to the voltage conversion circuit 110 via the wafer set. When the voltage conversion circuit 110 operates in the non-audio range, the voltage conversion circuit 110 can dynamically determine the operation mode according to the operation mode setting signal Vopm outputted by the central processing unit 103 or the chipset. When the voltage conversion circuit 110 operates in the audio range, the setting unit 140 forces the operation mode of the voltage conversion circuit 110 to be changed to CCM (or PWM mode) until the operating frequency of the voltage conversion circuit 110 leaves the audio range.

圖2是依照本發明實施例說明圖1所示中央處理單元電源供應電路100的電路示意圖。取樣單元120包括第一電阻R1以及取樣電容Csp。第一電阻R1的第一端連接電感L的輸入端,而第一電阻R1的第二端連接比較器130,以提供取樣電壓Vsp。取樣電容Csp的第一端連接第一電阻R1的第二端,而取樣電容Csp的第二端接地。2 is a circuit diagram showing the central processing unit power supply circuit 100 of FIG. 1 in accordance with an embodiment of the present invention. The sampling unit 120 includes a first resistor R1 and a sampling capacitor Csp. The first end of the first resistor R1 is connected to the input end of the inductor L, and the second end of the first resistor R1 is connected to the comparator 130 to provide the sampling voltage Vsp. The first end of the sampling capacitor Csp is connected to the second end of the first resistor R1, and the second end of the sampling capacitor Csp is grounded.

於圖2所示實施例中,比較器130包括運算放大器OP。運算放大器OP的第一輸入端(例如反相輸入端)連接取樣單元120的輸出端(第一電阻R1的第二端),以接收取樣電壓Vsp。運算放大器OP的第二輸入端(例如非反相輸入端)連接參考電壓Vref。運算放大器OP的輸出端連接設定單元140。In the embodiment shown in FIG. 2, comparator 130 includes an operational amplifier OP. A first input (eg, an inverting input) of the operational amplifier OP is coupled to the output of the sampling unit 120 (the second end of the first resistor R1) to receive the sampled voltage Vsp. A second input (eg, a non-inverting input) of the operational amplifier OP is coupled to the reference voltage Vref. The output terminal of the operational amplifier OP is connected to the setting unit 140.

於圖2所示實施例中,設定單元140包括第二電阻R2以及模式開關SW。第二電阻R2的第一端連接第一電壓,而第二電阻R2的第二端連接電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)。模式開關SW的第一端連接第二電阻R2的第二端。模式開關SW的第二端連接第二電壓。模式開關SW的控制端連接比較器130的輸出端(運算放大器OP的輸出端)。於圖2所示實施例中,前述第一電壓與第二電壓分別為系統電壓VCC與接地電壓。在另一些實施例中,第一電壓可以是接地電壓,而第二電壓可以是系統電壓VCC。於圖2所示實施例中,前級元件(例如中央處理單元103或晶片組)可以用開汲極(open drain)的方式供應操作模式設定信號Vopm。In the embodiment shown in FIG. 2, the setting unit 140 includes a second resistor R2 and a mode switch SW. The first end of the second resistor R2 is connected to the first voltage, and the second end of the second resistor R2 is connected to the operation mode control end of the voltage conversion circuit 110 (the mode control terminal CCM# of the regulator 111). The first end of the mode switch SW is connected to the second end of the second resistor R2. The second end of the mode switch SW is connected to the second voltage. The control terminal of the mode switch SW is connected to the output terminal of the comparator 130 (the output terminal of the operational amplifier OP). In the embodiment shown in FIG. 2, the first voltage and the second voltage are respectively a system voltage VCC and a ground voltage. In other embodiments, the first voltage can be a ground voltage and the second voltage can be a system voltage VCC. In the embodiment shown in FIG. 2, the front stage component (e.g., central processing unit 103 or chipset) can supply the operating mode setting signal Vopm in an open drain manner.

圖3是依照本發明實施例說明圖2所示電路的信號時序示意圖。請參照圖2與圖3,電壓轉換電路110可以依據中央處理單元103或晶片組所輸出的操作模式設定信號Vopm而動態決定操作模式。當中央處理單元103為重載時,電壓轉換電路110是操作於PWM模式,此時電壓轉換電路110的操作頻率是固定於某一頻率(高於音頻範圍)。3 is a timing diagram showing the timing of the circuit of FIG. 2 in accordance with an embodiment of the present invention. Referring to FIG. 2 and FIG. 3, the voltage conversion circuit 110 can dynamically determine the operation mode according to the operation mode setting signal Vopm outputted by the central processing unit 103 or the chipset. When the central processing unit 103 is heavily loaded, the voltage conversion circuit 110 operates in a PWM mode, at which time the operating frequency of the voltage conversion circuit 110 is fixed at a certain frequency (higher than the audio range).

當中央處理單元103為輕載時,電壓轉換電路110是操作於PFM模式,也就是隨著負載狀態而動態調變操作頻率。因此,於PFM模式中,電壓轉換電路110的操作頻率可能會隨著負載狀態而操作於音頻範圍。當電壓轉換電路110操作於非音頻範圍時,取樣電壓Vsp會高於參考電壓Vref,使得運算放大器OP輸出的控制電壓VC為邏輯低準位,所以模式開關SW為截止狀態。當電壓轉換電路110操作於音頻範圍時,取樣電壓Vsp會低於或等於參考電壓Vref,使得運算放大器OP輸出的控制電壓VC為邏輯高準位,所以模式開關SW為導通狀態。此時,設定單元140會將電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)的電位下拉至邏輯低準位,以強迫改變電壓轉換電路110的操作模式為PWM模式。因此,本發明實施例所揭露的中央處理單元電源供應電路100可以有效主動抑制音頻噪音。When the central processing unit 103 is lightly loaded, the voltage conversion circuit 110 operates in the PFM mode, that is, dynamically adjusts the operating frequency with the load state. Therefore, in the PFM mode, the operating frequency of the voltage conversion circuit 110 may operate in the audio range with the load state. When the voltage conversion circuit 110 operates in the non-audio range, the sampling voltage Vsp is higher than the reference voltage Vref, so that the control voltage VC output from the operational amplifier OP is at a logic low level, so the mode switch SW is in an off state. When the voltage conversion circuit 110 operates in the audio range, the sampling voltage Vsp may be lower than or equal to the reference voltage Vref such that the control voltage VC output by the operational amplifier OP is at a logic high level, so the mode switch SW is in an on state. At this time, the setting unit 140 pulls down the potential of the operation mode control terminal (the mode control terminal CCM# of the regulator 111) of the voltage conversion circuit 110 to a logic low level to forcibly change the operation mode of the voltage conversion circuit 110 to the PWM mode. . Therefore, the central processing unit power supply circuit 100 disclosed in the embodiment of the present invention can effectively suppress audio noise actively.

再例如,當中央處理單元103處於低負載狀態,調節器111處於不連續導通模式(DCM),且取樣電壓Vsp小於參考電壓Vref時,調節器111則依據設定單元140之操作而由不連續導通模式(DCM)進入連續導通模式(CCM)。因此,本發明實施例所揭露的電源供應電路100可以有效主動抑制音頻噪音。For another example, when the central processing unit 103 is in a low load state, the regulator 111 is in the discontinuous conduction mode (DCM), and the sampling voltage Vsp is less than the reference voltage Vref, the regulator 111 is discontinuously turned on according to the operation of the setting unit 140. The mode (DCM) enters continuous conduction mode (CCM). Therefore, the power supply circuit 100 disclosed in the embodiment of the present invention can effectively suppress the audio noise actively.

圖4是依照本發明另一實施例說明圖1所示中央處理單元電源供應電路100的電路示意圖。圖4的詳細內容可以參照圖1與圖2的相關說明。圖4不同於圖2的地方,在於圖4的設定單元140的實施方式。在此假設前級元件(例如中央處理單元103或晶片組)是用推挽式(push-pull)的方式供應操作模式設定信號Vopm。為了避免設定單元140的操作會與前級元件所供應的操作模式設定信號Vopm相衝突,因此第二電阻R2的第一端接收操作模式設定信號Vopm,如圖4所示。當電壓轉換電路110操作於音頻範圍時,運算放大器OP輸出的控制電壓VC為邏輯高準位而使模式開關SW為導通狀態,因此設定單元140會將電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)的電位下拉至邏輯低準位,以強迫改變電壓轉換電路110的操作模式為CCM(或PWM模式),直到電壓轉換電路110的操作頻率離開音頻範圍。4 is a circuit diagram showing the central processing unit power supply circuit 100 of FIG. 1 in accordance with another embodiment of the present invention. For details of FIG. 4, reference may be made to the related description of FIGS. 1 and 2. 4 is different from the place of FIG. 2 in the embodiment of the setting unit 140 of FIG. It is assumed here that the pre-stage element (for example, the central processing unit 103 or the chip set) supplies the operation mode setting signal Vopm in a push-pull manner. In order to prevent the operation of the setting unit 140 from colliding with the operation mode setting signal Vopm supplied from the pre-stage element, the first end of the second resistor R2 receives the operation mode setting signal Vopm as shown in FIG. When the voltage conversion circuit 110 operates in the audio range, the control voltage VC output from the operational amplifier OP is at a logic high level and the mode switch SW is in an on state, so the setting unit 140 will control the operation mode of the voltage conversion circuit 110 (adjustment) The potential of the mode control terminal CCM#) of the device 111 is pulled down to a logic low level to force the operating mode of the voltage conversion circuit 110 to be changed to CCM (or PWM mode) until the operating frequency of the voltage conversion circuit 110 leaves the audio range.

應用上述實施例者可以在比較器130加入遲滯(hysteresis)效果,或是在設定單元140加入RC延遲效果,以調整動作的靈敏度,同時兼顧DCM的節能效益與人耳的感受。例如,圖5是依照本發明又一實施例說明圖1所示中央處理單元電源供應電路100的電路示意圖。圖5的詳細內容可以參照圖1、圖2與圖4的相關說明。圖5不同於圖4的地方,在於圖5的設定單元140的實施方式。圖5所示設定單元140包括第二電阻R2、模式開關SW、第三電阻R3、二極體D1以及延遲電容Cd。第二電阻R2的第一端接收操作模式設定信號Vopm,第二電阻R2的第二端連接電壓轉換電路110的操作模式控制端(調節器111的模式控制端CCM#)。模式開關SW的第一端連接第二電阻R2的第二端,模式開關SW的第二端連接第二電壓(例如接地電壓。第三電阻R3的第一端連接比較器130的輸出端以接收控制電壓VC。第三電阻R3的第二端連接模式開關的控制端。二極體D1的陽極連接第三電阻R3的第一端,二極體D1的陰極連接第三電阻R3的第二端。延遲電容Cd連接第三電阻R3的第二端。在設定單元140加上第三電阻R3、二極體D1以及延遲電容Cd,用意是讓模式開關SW快速導通(turn on),以及延遲截止(turn off),以免電壓轉換電路110一直在PWM模式與PFM模式之間往復切換。The above embodiment can be used to add a hysteresis effect to the comparator 130, or to add an RC delay effect to the setting unit 140 to adjust the sensitivity of the action while taking into account the energy saving benefits of the DCM and the human ear. For example, FIG. 5 is a circuit diagram illustrating a central processing unit power supply circuit 100 of FIG. 1 in accordance with yet another embodiment of the present invention. For details of FIG. 5, reference may be made to the related description of FIGS. 1, 2, and 4. Figure 5 differs from that of Figure 4 in the embodiment of the setting unit 140 of Figure 5. The setting unit 140 shown in FIG. 5 includes a second resistor R2, a mode switch SW, a third resistor R3, a diode D1, and a delay capacitor Cd. The first end of the second resistor R2 receives the operation mode setting signal Vopm, and the second end of the second resistor R2 is connected to the operation mode control terminal of the voltage conversion circuit 110 (the mode control terminal CCM# of the regulator 111). The first end of the mode switch SW is connected to the second end of the second resistor R2, and the second end of the mode switch SW is connected to the second voltage (for example, the ground voltage. The first end of the third resistor R3 is connected to the output end of the comparator 130 for receiving The second end of the third resistor R3 is connected to the control end of the mode switch. The anode of the diode D1 is connected to the first end of the third resistor R3, and the cathode of the diode D1 is connected to the second end of the third resistor R3. The delay capacitor Cd is connected to the second end of the third resistor R3. The third resistor R3, the diode D1 and the delay capacitor Cd are added to the setting unit 140, so that the mode switch SW is turned on quickly, and the delay is cut off. Turn off, so that the voltage conversion circuit 110 does not switch back and forth between the PWM mode and the PFM mode.

圖6是依據本發明實施例說明上述電源供應電路100的操作方法流程示意圖。此操作方法可以控制連接於電源供應器102與中央處理單元103之間的電壓轉換電路110。首先,取樣單元120進行步驟S610,以取樣於電壓轉換電路110中連接中央處理單元103的電感L之輸入端的輸入信號VL。接下來,取樣單元120進行步驟S620,以轉換輸入信號VL為取樣電壓Vsp。然後,比較器130進行步驟S630,以比較取樣電壓Vsp與參考電壓Vref。若取樣電壓Vsp小於參考電壓Vref,則比較器130透過設定單元140控制電壓轉換電路110,使得電壓轉換電路110進入連續導通模式(步驟S640)。若取樣電壓Vsp大於或等於參考電壓Vref,則比較器130透過設定單元140控制電壓轉換電路110,使得電壓轉換電路110進入不連續導通模式(步驟S650)。FIG. 6 is a flow chart showing the operation method of the power supply circuit 100 according to an embodiment of the invention. This method of operation can control the voltage conversion circuit 110 connected between the power supply 102 and the central processing unit 103. First, the sampling unit 120 proceeds to step S610 to sample the input signal VL of the voltage conversion circuit 110 connected to the input terminal of the inductance L of the central processing unit 103. Next, the sampling unit 120 proceeds to step S620 to convert the input signal VL to the sampling voltage Vsp. Then, the comparator 130 proceeds to step S630 to compare the sampling voltage Vsp with the reference voltage Vref. If the sampling voltage Vsp is smaller than the reference voltage Vref, the comparator 130 controls the voltage conversion circuit 110 through the setting unit 140 so that the voltage conversion circuit 110 enters the continuous conduction mode (step S640). If the sampling voltage Vsp is greater than or equal to the reference voltage Vref, the comparator 130 controls the voltage conversion circuit 110 through the setting unit 140 such that the voltage conversion circuit 110 enters the discontinuous conduction mode (step S650).

綜上所述,本發明實施例所揭露的中央處理單元電源供應電路100是在電壓轉換電路110的主回路中,將電感L位於輸入側的切換訊號VL引出來,並轉換成類比訊號Vsp,再用比較器130檢測出電壓轉換電路110是否操作於音頻範圍,再將對應的控制訊號VC導入電壓轉換電路110的操作模式控制端,使電壓轉換電路110離開音頻操作範圍,就可以抑制音頻噪音。上述實施例利用電壓轉換電路110的操作頻率,作為辨識是否有噪音的特徵,一旦經過確認,便主動改變電壓轉換電路110的操作模式。In summary, the central processing unit power supply circuit 100 disclosed in the embodiment of the present invention is in the main circuit of the voltage conversion circuit 110, and the switching signal VL of the inductor L on the input side is extracted and converted into the analog signal Vsp. The comparator 130 detects whether the voltage conversion circuit 110 is operating in the audio range, and then introduces the corresponding control signal VC into the operation mode control terminal of the voltage conversion circuit 110, so that the voltage conversion circuit 110 leaves the audio operation range, and the audio noise can be suppressed. . The above embodiment utilizes the operating frequency of the voltage conversion circuit 110 as a feature for identifying whether or not there is noise, and once confirmed, actively changes the operation mode of the voltage conversion circuit 110.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...電源供應電路100. . . Power supply circuit

101...市電101. . . Mains

102...電源供應器102. . . Power Supplier

103...中央處理單元103. . . Central processing unit

110...電壓轉換電路110. . . Voltage conversion circuit

111...調節器111. . . Regulator

120...取樣單元120. . . Sampling unit

130...比較器130. . . Comparators

140...設定單元140. . . Setting unit

Cd...延遲電容Cd. . . Delay capacitor

Cin...輸入電容Cin. . . Input capacitance

Cout...輸出電容Cout. . . Output capacitor

Csp...取樣電容Csp. . . Sampling capacitor

D1...二極體D1. . . Dipole

L...電感L. . . inductance

MU...第一功率開關MU. . . First power switch

MD...第二功率開關MD. . . Second power switch

OP...運算放大器OP. . . Operational Amplifier

R1...第一電阻R1. . . First resistance

R2...第二電阻R2. . . Second resistance

R3...第三電阻R3. . . Third resistance

S610~S650...步驟S610~S650. . . step

SW...模式開關SW. . . Mode switch

VC...控制電壓VC. . . Control voltage

Vin...輸入電壓Vin. . . Input voltage

VL...電感輸入端的信號VL. . . Signal at the input of the inductor

Vopm...操作模式設定信號Vopm. . . Operating mode setting signal

Vout...輸出電壓Vout. . . The output voltage

Vref...參考電壓Vref. . . Reference voltage

Vsp...取樣電壓Vsp. . . Sampling voltage

圖1是依據本發明實施例說明一種中央處理單元(CPU)電源供應電路的功能模塊示意圖。1 is a schematic diagram showing functional blocks of a central processing unit (CPU) power supply circuit according to an embodiment of the invention.

圖2是依照本發明實施例說明圖1所示中央處理單元電源供應電路的示意圖。2 is a schematic diagram showing the power supply circuit of the central processing unit of FIG. 1 according to an embodiment of the invention.

圖3是依照本發明實施例說明圖2所示電路的信號時序示意圖。3 is a timing diagram showing the timing of the circuit of FIG. 2 in accordance with an embodiment of the present invention.

圖4是依照本發明另一實施例說明圖1所示中央處理單元電源供應電路的示意圖。4 is a schematic diagram showing the power supply circuit of the central processing unit of FIG. 1 according to another embodiment of the present invention.

圖5是依照本發明又一實施例說明圖1所示中央處理單元電源供應電路的示意圖。FIG. 5 is a schematic diagram showing the power supply circuit of the central processing unit of FIG. 1 according to still another embodiment of the present invention.

圖6是依據本發明實施例說明一種電源供應電路的操作方法流程示意圖。FIG. 6 is a flow chart showing an operation method of a power supply circuit according to an embodiment of the invention.

100...電源供應電路100. . . Power supply circuit

101...市電101. . . Mains

102...電源供應器102. . . Power Supplier

103...中央處理單元103. . . Central processing unit

110...電壓轉換電路110. . . Voltage conversion circuit

111...調節器111. . . Regulator

120...取樣單元120. . . Sampling unit

130...比較器130. . . Comparators

140...設定單元140. . . Setting unit

Cin...輸入電容Cin. . . Input capacitance

Cout...輸出電容Cout. . . Output capacitor

L...電感L. . . inductance

MU...第一功率開關MU. . . First power switch

MD...第二功率開關MD. . . Second power switch

R2...第二電阻R2. . . Second resistance

SW...模式開關SW. . . Mode switch

VC...控制電壓VC. . . Control voltage

Vin...輸入電壓Vin. . . Input voltage

VL...電感輸入端的信號VL. . . Signal at the input of the inductor

Vopm...操作模式設定信號Vopm. . . Operating mode setting signal

Vout...輸出電壓Vout. . . The output voltage

Vsp...取樣電壓Vsp. . . Sampling voltage

Claims (11)

一種中央處理單元電源供應電路,連接於一電源供應器與一中央處理單元,包括:一電壓轉換電路,包括一輸入電容與一電感,該輸入電容連接該電源供應器,該電感的一輸出端連接該中央處理單元;一取樣單元,連接該電感的一輸入端,以取樣該電感之該輸入端的一輸入信號,並轉換該輸入信號,以提供一取樣電壓;一設定單元,連接該電壓轉換電路之一操作模式控制端;以及一比較器,連接該取樣單元與該設定單元,該比較器比較該取樣電壓與一參考電壓,當該取樣電壓小於該參考電壓時,該比較器控制該設定單元,使得該電壓轉換電路進入一連續導通模式。A central processing unit power supply circuit is connected to a power supply and a central processing unit, comprising: a voltage conversion circuit comprising an input capacitor and an inductor, the input capacitor being connected to the power supply, an output of the inductor Connecting the central processing unit; a sampling unit, connecting an input end of the inductor to sample an input signal of the input end of the inductor, and converting the input signal to provide a sampling voltage; and a setting unit connecting the voltage conversion One of the circuit operates the mode control terminal; and a comparator that connects the sampling unit to the setting unit, the comparator compares the sampling voltage with a reference voltage, and when the sampling voltage is less than the reference voltage, the comparator controls the setting The unit causes the voltage conversion circuit to enter a continuous conduction mode. 如申請專利範圍第1項所述之電源供應電路,其中該電壓轉換電路還包括:一調節器,具有該操作模式控制端;一第一功率開關,分別連接該電源供應器、該調節器、該電感之該輸入端及該取樣單元;一第二功率開關,串連連接該第一功率開關,且分別連接該調節器、該電感之該輸入端及該取樣單元;以及一輸出電容,連接該電感的該輸出端與該中央處理單元。The power supply circuit of claim 1, wherein the voltage conversion circuit further comprises: a regulator having the operation mode control end; a first power switch connected to the power supply, the regulator, The input end of the inductor and the sampling unit; a second power switch connected in series with the first power switch, and respectively connected to the regulator, the input end of the inductor and the sampling unit; and an output capacitor, connected The output of the inductor is coupled to the central processing unit. 如申請專利範圍第2項所述之電源供應電路,其中該輸入電容為一多層陶瓷電容,且該輸入電容分別連接該電源供應器與該第一功率開關。The power supply circuit of claim 2, wherein the input capacitor is a multilayer ceramic capacitor, and the input capacitor is respectively connected to the power supply and the first power switch. 如申請專利範圍第2項所述之電源供應電路,其中該調節器具有一不連續導通模式與該連續導通模式,當該中央處理單元處於一低負載狀態,該調節器處於該不連續導通模式,且該取樣電壓小於該參考電壓時,該調節器則依據該設定單元之操作而由該不連續導通模式進入該連續導通模式。The power supply circuit of claim 2, wherein the regulator has a discontinuous conduction mode and the continuous conduction mode, and when the central processing unit is in a low load state, the regulator is in the discontinuous conduction mode, And when the sampling voltage is less than the reference voltage, the regulator enters the continuous conduction mode by the discontinuous conduction mode according to the operation of the setting unit. 如申請專利範圍第1項所述之電源供應電路,其中該取樣單元具有一時間延遲效果。The power supply circuit of claim 1, wherein the sampling unit has a time delay effect. 如申請專利範圍第1項所述之電源供應電路,其中該輸入信號為一脈波寬度調變信號。The power supply circuit of claim 1, wherein the input signal is a pulse width modulation signal. 如申請專利範圍第1項所述之電源供應電路,其中該取樣單元用以轉換該輸入信號成為一類比信號。The power supply circuit of claim 1, wherein the sampling unit is configured to convert the input signal into an analog signal. 如申請專利範圍第1項所述之電源供應電路,其中該取樣電壓的大小與該輸入信號的頻率大小成正比。The power supply circuit of claim 1, wherein the magnitude of the sampling voltage is proportional to a frequency of the input signal. 一種電源供應電路的操作方法,用以控制一連接於一電源供應器與一中央處理單元之間的一電壓轉換電路,該電壓轉換電路包括一電感,該電感之一輸出端連接該中央處理單元,該操作方法包括:取樣該電感之一輸入端的一輸入信號;轉換該輸入信號為一取樣電壓;比較該取樣電壓與一參考電壓;以及若該取樣電壓小於該參考電壓,使得該電壓轉換電路進入一連續導通模式。A method for operating a power supply circuit for controlling a voltage conversion circuit connected between a power supply and a central processing unit, the voltage conversion circuit including an inductor, and one output of the inductor is connected to the central processing unit The operating method includes: sampling an input signal at one input end of the inductor; converting the input signal to a sampling voltage; comparing the sampling voltage with a reference voltage; and if the sampling voltage is less than the reference voltage, causing the voltage conversion circuit Enter a continuous conduction mode. 如申請專利範圍第9項所述之操作方法,其中該輸入信號為一脈波寬度調變信號。The method of operation of claim 9, wherein the input signal is a pulse width modulation signal. 如申請專利範圍第9項所述之操作方法,其中於轉換該輸入信號為該取樣電壓的步驟中,該取樣電壓的大小與該輸入信號的頻率大小成正比。The operating method of claim 9, wherein in the step of converting the input signal to the sampling voltage, the magnitude of the sampling voltage is proportional to the frequency of the input signal.
TW99134793A 2010-10-12 2010-10-12 Cpu power supply circuit and operating method thereof TWI424310B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99134793A TWI424310B (en) 2010-10-12 2010-10-12 Cpu power supply circuit and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99134793A TWI424310B (en) 2010-10-12 2010-10-12 Cpu power supply circuit and operating method thereof

Publications (2)

Publication Number Publication Date
TW201216041A TW201216041A (en) 2012-04-16
TWI424310B true TWI424310B (en) 2014-01-21

Family

ID=46787047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99134793A TWI424310B (en) 2010-10-12 2010-10-12 Cpu power supply circuit and operating method thereof

Country Status (1)

Country Link
TW (1) TWI424310B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573006B (en) 2015-06-18 2017-03-01 英特爾股份有限公司 Power supplier, power supply system, and voltage adjustment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200945718A (en) * 2008-04-23 2009-11-01 Niko Semiconductor Co Ltd Switching power supply apparatus with current output limit
US7746254B2 (en) * 2007-12-26 2010-06-29 Denso Corporation Sample and hold circuit, multiplying D/A converter having the same, and A/D converter having the same
TW201024950A (en) * 2008-11-21 2010-07-01 Maxim Integrated Products Digital compensator for power supply applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746254B2 (en) * 2007-12-26 2010-06-29 Denso Corporation Sample and hold circuit, multiplying D/A converter having the same, and A/D converter having the same
TW200945718A (en) * 2008-04-23 2009-11-01 Niko Semiconductor Co Ltd Switching power supply apparatus with current output limit
TW201024950A (en) * 2008-11-21 2010-07-01 Maxim Integrated Products Digital compensator for power supply applications

Also Published As

Publication number Publication date
TW201216041A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
US10250135B2 (en) Fast response control circuit and control method thereof
CN102445976B (en) Power supplying circuit of central processing unit and operational approach thereof
US9236801B2 (en) Switch mode power supply, control circuit and associated control method
US8717002B2 (en) Constant on-time converter and control method thereof
US9559586B2 (en) Switch mode power supply, control circuit and associated control method
US6194875B1 (en) Controller for DC-DC converter
US6717390B2 (en) Switching power supply
US7923977B2 (en) DC-DC converters with transient response control
US7898235B2 (en) Method and apparatus to control voltage conversion mode
US8749216B2 (en) Constant on-time converter with stabilizing operation and method thereof
US9030184B2 (en) DC-DC converter and voltage conversion method thereof
US7501800B2 (en) Power factor correction circuit and output voltage control method thereof
JP5507980B2 (en) Switching power supply control circuit, electronic device, and switching power supply control method
US7199561B2 (en) DC-DC converter and converter device
US20130141070A1 (en) Control system and method for shared inductor regulator
US10148176B2 (en) DC to DC converter with pulse width modulation and a clamping circuit for non-pulse width modulation control
JP2001352750A (en) Dc-dc converter and semiconductor integrated circuit device therefor
TW201143263A (en) Frequency jitter controller for power converter
US20110037443A1 (en) Parallel connected pfc converter
US20120299563A1 (en) Power converter and control method using the same
CN111682763A (en) Voltage converter, controller and control method thereof
US8476877B2 (en) Fuel cell system and power management method thereof
US20110057636A1 (en) Method for Reducing Energy Loss in DC-DC Converter and Related Control Device and DC-DC Converter
TWI424310B (en) Cpu power supply circuit and operating method thereof
JP4832240B2 (en) Multi-output power supply