TWI424151B - Method and system for chromaticity measurement using light source assembly - Google Patents

Method and system for chromaticity measurement using light source assembly Download PDF

Info

Publication number
TWI424151B
TWI424151B TW99134291A TW99134291A TWI424151B TW I424151 B TWI424151 B TW I424151B TW 99134291 A TW99134291 A TW 99134291A TW 99134291 A TW99134291 A TW 99134291A TW I424151 B TWI424151 B TW I424151B
Authority
TW
Taiwan
Prior art keywords
group
light source
energy conversion
sub
conversion members
Prior art date
Application number
TW99134291A
Other languages
Chinese (zh)
Other versions
TW201215854A (en
Inventor
Ching Jang Fong
Kuei Lin Huang
Tsun I Wang
Original Assignee
Chroma Ate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chroma Ate Inc filed Critical Chroma Ate Inc
Priority to TW99134291A priority Critical patent/TWI424151B/en
Publication of TW201215854A publication Critical patent/TW201215854A/en
Application granted granted Critical
Publication of TWI424151B publication Critical patent/TWI424151B/en

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

組合式光源之色度測量方法與系統Chroma measurement method and system for combined light source

本發明係關於一種組合式光源之色度測量方法與系統,並且特別是關於一種利用組合式光源模擬出適當的子光源以進行量測之色度測量方法與系統。The present invention relates to a chromaticity measurement method and system for a combined light source, and more particularly to a chromaticity measurement method and system for simulating a suitable sub-light source using a combined light source for measurement.

有關物體反射色度的量測方法,可以分為兩種不同技術,其一為分光式量測色度。大致來說,分光式量測色度之技術係利用分光儀(Spectrometer)得到物體反射光的光譜(Spectrum),再計算出其色度。舉例來說,利用光柵(Grating)配合一個一維影像偵測器,可以得到物體單點的色度;如果配合一個二維影像偵測器,可以得到物體某一維的色度,如果再配合物體移動掃描,則可以得到整個物體的二維量測,也稱為影像式光譜儀(Spectral-Imager)。然而,利用“影像式光譜儀”,雖然可以得到二維的物體色度,但是仍然必須配合物體的掃描移動,因而其量測速度仍然不夠快,而且通常其價格昂貴,此為其另一缺點。The measurement method of the reflection chromaticity of an object can be divided into two different techniques, one of which is the spectroscopic measurement chromaticity. In general, the technique of spectroscopic colorimetric measurement uses a spectrometer to obtain a spectrum of reflected light from an object, and then calculates its chromaticity. For example, by using a grating (Grating) with a one-dimensional image detector, the chromaticity of a single point of the object can be obtained; if a two-dimensional image detector is used, the chromaticity of a certain dimension of the object can be obtained, if Moving the object to scan, you can get a two-dimensional measurement of the entire object, also known as Spectral-Imager. However, with the "image spectrometer", although a two-dimensional object chromaticity can be obtained, it is still necessary to cooperate with the scanning movement of the object, so that the measurement speed is still not fast enough, and it is usually expensive, which is another disadvantage.

另一種量測物體反射色度的方法為利用濾鏡式量測色度的技術,配合三色視效函數(Color Matching Function),求其三刺激值(Tri-Stimulus Values),再算出其色度值。如果利用單點光偵測器,則可以量測單點物體色度;如果利用影像偵測器,則可以量測物體二維色度。但利用濾鏡式技術的最大缺點為濾鏡的透射率(Transmittance) T(x)必須配合光感測器的響應函數(Spectrum-Response) R(λ)。尤其當影像偵測器的響應函數因製程的關係,呈現出每個影像偵測器個別差異時,極易造成量測誤差,因此十分不易匹配出完全符合的視效函數,使量測色度之準確度降低。然而,濾鏡式量測色度最大優點為價格低廉,量測速度也比較快。Another method for measuring the chromaticity of an object is to use the technique of measuring the chromaticity by a filter, and using the three-color Color Matching Function to find the Tri-Stimulus Values, and then calculate the color. Degree value. If a single-point photodetector is used, the single-point object chromaticity can be measured; if an image detector is used, the two-dimensional chromaticity of the object can be measured. However, the biggest disadvantage of using the filter technology is that the transmittance of the filter (Transmittance) T(x) must match the response function (Spectrum-Response) R(λ) of the photosensor. Especially when the response function of the image detector shows the individual difference of each image detector due to the process relationship, it is easy to cause measurement error, so it is very difficult to match the fully matched visual effect function, so that the measurement chromaticity is made. The accuracy is reduced. However, the biggest advantage of filter-type measurement is that the price is low and the measurement speed is faster.

此外,在一般的組合式光源的量測系統中,僅僅是將組合式光源所投射出的光源模擬為一標準光源。於實務上以發光二極體(LED)的組合式光源為例,若要模擬出標準光源,則組合式光源必須包含相當多的LED才將模擬誤差縮小,進而逼近真正的標準光源。然而,除了模擬誤差的問題之外,傳統的組合式光源之量測系統更會因LED數量過多所造成的物體表面受光不均或是散熱上的問題。In addition, in the measurement system of a general combined light source, only the light source projected by the combined light source is simulated as a standard light source. For example, in the case of a combined light source of a light-emitting diode (LED), if a standard light source is to be simulated, the combined light source must contain a considerable number of LEDs to reduce the analog error and approach the true standard light source. However, in addition to the problem of analog error, the conventional combined light source measurement system may suffer from uneven light reception or heat dissipation due to the excessive number of LEDs.

有鑑於欲以有限顆數的LED組合成完全等於標準光源是有困難的,通常其間存在有某個程度的誤差。本發明更進一步揭露運用複數個子光源模擬標準光源的方法,以組合出更精確的光源頻譜,並據以得到待測物之色度量測結果。同時,本發明將提出一種新的色溫可調式方法,可達到分光式量測色度技術的精確度,又可以達到濾鏡式量測色度技術的低價格,同時量測速度也可以比濾鏡式量測色度技術更快。In view of the fact that it is difficult to combine a limited number of LEDs to be completely equal to a standard light source, there is usually a certain degree of error therebetween. The invention further discloses a method for simulating a standard light source by using a plurality of sub-light sources to combine a more accurate spectrum of the light source and obtain a color measurement result of the object to be tested. At the same time, the present invention will propose a new color temperature adjustable method, which can achieve the accuracy of the spectroscopic color measurement technology, and can achieve the low price of the filter type color measurement technology, and the measurement speed can also be compared with the filter. Mirror-based colorimetry is faster.

本發明揭露一種組合式光源之色度測量方法與系統,調整組合式光源中複數顆發光體的亮度能進行物體反射色度的量測,並同時適當的運算量測的結果,可精確得出所述物體之色度座標。The invention discloses a method and a system for measuring the chromaticity of a combined light source, and adjusting the brightness of the plurality of illuminants in the combined light source can measure the chromaticity of the object reflection, and at the same time, the result of the appropriate calculation measurement can be accurately obtained. The chromaticity coordinates of the object.

本發明提出一種組合式光源之色度測量方法,所述方法包含下列步驟:提供複數個能量轉換構件,每一能量轉換構件用以將一電能轉換成一光能,且所述多個能量轉換構件所產生之光能具有不同之中心波長;調整所述多個能量轉換構件之發光強度,依序產生複數個子光源,每一子光源係歸類於一第一群組或一第二群組;分別將所述多個子光源照射於一待測物之一表面;分別擷取反射後之所述多個子光源,據以產生複數個影像測量值,當影像測量值所對應之子光源屬於第一群組時,則影像測量值係歸類於一第三群組,當影像測量值所對應之子光源屬於第二群組時,則影像測量值係歸類於一第四群組;將第三群組與第四群組中之所述多個影像測量值相減,據以產生複數個標準測量值。The invention provides a method for measuring the chromaticity of a combined light source, the method comprising the steps of: providing a plurality of energy conversion members, each energy conversion member for converting an electrical energy into a light energy, and the plurality of energy conversion members The generated light energy has different center wavelengths; adjusting the luminous intensity of the plurality of energy conversion members, sequentially generating a plurality of sub-light sources, each sub-light source being classified into a first group or a second group; Illuminating the plurality of sub-light sources on one surface of the object to be tested respectively; respectively, extracting the plurality of sub-light sources after the reflection, thereby generating a plurality of image measurement values, wherein the sub-light source corresponding to the image measurement value belongs to the first group In the group, the image measurement values are classified into a third group. When the sub-light sources corresponding to the image measurement values belong to the second group, the image measurement values are classified into a fourth group; The group is subtracted from the plurality of image measurements in the fourth group to generate a plurality of standard measurements.

於一示範實施例中,本發明之組合式光源之色度測量方法中,其中所述多個能量轉換構件對應一權值組,權值組具有複數個權值,每一權值對應所述多個能量轉換構件其中之一,調整權值係用以調整對應之能量轉換構件之發光強度。在此,本發明更可調整權值組,使所述多個能量轉換構件模擬所述多個子光源其中之一。此外,權值組指示當所述多個能量轉換構件模擬所述多個子光源其中之一時,每一能量轉換構件之最適當的發光強度。In an exemplary embodiment, in the chromaticity measuring method of the combined light source of the present invention, wherein the plurality of energy conversion members correspond to a weight group, the weight group has a plurality of weights, and each weight corresponds to the weight One of the plurality of energy conversion members, the adjustment weight is used to adjust the luminous intensity of the corresponding energy conversion member. Here, the present invention further adjusts the weight group such that the plurality of energy conversion members simulate one of the plurality of sub-light sources. Further, the weight group indicates the most appropriate luminous intensity of each of the energy conversion members when the plurality of energy conversion members simulate one of the plurality of sub-light sources.

於另一示範實施例中,本發明之組合式光源之色度測量方法更依據已求得之多個標準測量值,進一步產生用以指示待測物之一色度座標。在此,依本方法所求得之多個標準測量值可為一組三刺激值,並由三刺激值產生色度座標。此外,組合式光源之色度測量方法更可分別擷取反射後之子光源之影像,據以產生二維之影像測量值。In another exemplary embodiment, the chromaticity measurement method of the combined light source of the present invention further generates a chromaticity coordinate indicating one of the objects to be tested based on a plurality of standard measurement values that have been obtained. Here, the plurality of standard measurements obtained according to the method may be a set of tristimulus values and the chromaticity coordinates are generated from the tristimulus values. In addition, the chromaticity measurement method of the combined light source can separately capture the image of the reflected sub-light source to generate two-dimensional image measurement values.

此外,本發明另揭露一種組合式光源之色度測量系統,調整組合式光源中複數顆發光體的亮度能進行物體反射色度的量測,並同時適當的運算量測的結果,可精確得出所述物體之色度座標。In addition, the present invention further discloses a chromaticity measuring system for a combined light source, which can adjust the brightness of a plurality of illuminants in the combined light source to measure the chromaticity of the object, and at the same time, the result of appropriate calculation and measurement can be accurately obtained. The chromaticity coordinates of the object.

本發明所提出一種組合式光源之色度測量系統,包含複數個能量轉換構件、控制單元、影像偵測器以及處理單元。每一能量轉換構件用以將一電能轉換成一光能,且所述多個能量轉換構件所產生之光能具有不同之中心波長。控制單元耦接所述多個能量轉換構件,用以調整所述多個能量轉換構件之發光強度,驅動所述多個能量轉換構件依序照射複數個子光源於一待測物之一表面,每一子光源係歸類於一第一群組或一第二群組。影像偵測器分別擷取反射後之子光源,據以產生複數個影像測量值。處理單元耦接影像偵測器,將一第三群組與一第四群組中之影像測量值相減,據以產生複數個標準測量值。其中,當影像測量值所對應之子光源屬於第一群組時,則影像測量值係歸類於第三群組,當影像測量值所對應之子光源屬於第二群組時,則影像測量值係歸類於第四群組。The invention provides a chromaticity measuring system for a combined light source, comprising a plurality of energy conversion members, a control unit, an image detector and a processing unit. Each of the energy conversion members is configured to convert an electrical energy into a light energy, and the light energy generated by the plurality of energy conversion members has different center wavelengths. The control unit is coupled to the plurality of energy conversion members for adjusting the illumination intensity of the plurality of energy conversion members, and driving the plurality of energy conversion members to sequentially illuminate the plurality of sub-light sources on one surface of the object to be tested. A sub-light source is classified into a first group or a second group. The image detector separately captures the reflected sub-light source to generate a plurality of image measurements. The processing unit is coupled to the image detector to subtract image measurement values from a third group and a fourth group to generate a plurality of standard measurement values. Wherein, when the sub-light source corresponding to the image measurement value belongs to the first group, the image measurement value is classified into the third group, and when the sub-light source corresponding to the image measurement value belongs to the second group, the image measurement value is Classified in the fourth group.

於一示範實施例中,本發明之處理單元更可依據已求得之多個標準測量值,進一步產生用以指示待測物之一色度座標。在此,依本方法所求得之多個標準測量值可為一組三刺激值,並由三刺激值產生色度座標。此外,本發明之影像偵測器更可分別擷取反射後之子光源之二維畫面,據以產生二維之影像測量值。In an exemplary embodiment, the processing unit of the present invention further generates a chromaticity coordinate indicating one of the objects to be tested according to the plurality of standard measurement values that have been obtained. Here, the plurality of standard measurements obtained according to the method may be a set of tristimulus values and the chromaticity coordinates are generated from the tristimulus values. In addition, the image detector of the present invention can separately capture the two-dimensional image of the reflected sub-light source to generate two-dimensional image measurement values.

因此,本發明之組合式光源之色度測量系統將一標準光源運用複數個子光源加以模擬,並藉由處理單元運算多個影像測量值,據以得到更精確的待測物之色度量測結果。此外,本發明更運用二維的影像偵測器於濾鏡式量測色度之技術,搭配校正參數即可運算得到三刺激值,並藉以產生色度座標,使得量測速度相較於習知濾鏡式量測色度技術快。Therefore, the colorimetric measurement system of the combined light source of the present invention simulates a standard light source by using a plurality of sub-light sources, and calculates a plurality of image measurement values by the processing unit, thereby obtaining a more accurate color measurement of the object to be tested. result. In addition, the present invention further utilizes a two-dimensional image detector to filter the chromaticity of the filter, and the correction parameter can be used to calculate the tristimulus value, thereby generating a chromaticity coordinate, so that the measurement speed is compared with the Knowing the filter type measurement color technology is fast.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

請參閱圖一,圖一係繪示根據本發明之一示範實施例之組合式光源之色度測量系統的功能方塊圖。如圖一所示,本發明之組合式光源之色度測量系統1包含能量轉換構件組10、控制單元12、影像偵測器14、處理單元16以及儲存單元18。其中,能量轉換構件組10耦接控制單元12,處理單元16分別耦接影像偵測器14以及儲存單元18。以下分別描述組合式光源之色度測量系統1之中的元件。Referring to FIG. 1, FIG. 1 is a functional block diagram of a chromaticity measuring system of a combined light source according to an exemplary embodiment of the present invention. As shown in FIG. 1, the colorimetric measurement system 1 of the combined light source of the present invention comprises an energy conversion member group 10, a control unit 12, an image detector 14, a processing unit 16, and a storage unit 18. The energy conversion component group 10 is coupled to the control unit 12, and the processing unit 16 is coupled to the image detector 14 and the storage unit 18, respectively. The elements in the chromaticity measuring system 1 of the combined light source are separately described below.

能量轉換構件組10具有複數個能量轉換構件,其中每一能量轉換構件用以將一電能轉換成一光能,且所述多個能量轉換構件所產生之光能具有不同之中心波長,並將產生之光能投射至待測物2之表面20。於實務中,為了達到足夠精確的量測,能量轉換構件組10中可包含複數顆發光二極體(LED),且這些LED所產生的光能之中心波長必須足夠涵蓋整個可見光區,例如大約由380nm至730nm的範圍內。此外,上述各中心波長間的間距也不能太遠,才足以準確地模擬、組合出所需的光頻譜。The energy conversion member group 10 has a plurality of energy conversion members, wherein each of the energy conversion members is configured to convert an electrical energy into a light energy, and the light energy generated by the plurality of energy conversion members has different center wavelengths and will be generated The light can be projected onto the surface 20 of the object 2 to be tested. In practice, in order to achieve a sufficiently accurate measurement, the energy conversion member group 10 may include a plurality of light emitting diodes (LEDs), and the center wavelength of the light energy generated by the LEDs must be sufficient to cover the entire visible light region, for example, From 380nm to 730nm. In addition, the spacing between the above center wavelengths should not be too far, so that it is sufficient to accurately simulate and combine the desired optical spectrum.

控制單元12用以調整能量轉換構件組10中每一能量轉換構件之發光強度,並驅動能量轉換構件組10依序投射出複數個子光源於待測物2之表面20,其中每一子光源係歸類於一第一群組或一第二群組。詳細來說,這些能量轉換構件對應一包含複數個權值之權值組,每一權值對應這些能量轉換構件其中之一,例如每個LED有其對應之權值。控制單元12調整權值以調整對應之能量轉換構件之發光強度。舉例來說,控制單元12可為一種脈衝寬度變調(PWM)控制器,在此本發明並不加以限制控制單元12的類型,只要是能夠調整發光二極體的亮度大小,皆在本發明之範疇內,於所屬技術領域具有通常知識者可自行替換適當的控制單元12。The control unit 12 is configured to adjust the luminous intensity of each of the energy conversion members in the energy conversion member group 10, and drive the energy conversion member group 10 to sequentially project a plurality of sub-light sources on the surface 20 of the object to be tested 2, wherein each of the sub-light sources Classified as a first group or a second group. In detail, the energy conversion members correspond to a weight group including a plurality of weights, and each weight corresponds to one of the energy conversion members, for example, each LED has its corresponding weight. The control unit 12 adjusts the weight to adjust the luminous intensity of the corresponding energy conversion member. For example, the control unit 12 can be a pulse width modulation (PWM) controller. The invention does not limit the type of the control unit 12, as long as the brightness of the light emitting diode can be adjusted. Within the scope, those having ordinary skill in the art can replace the appropriate control unit 12 by themselves.

承接上述,於實務中,在組合所需的子光源時,須要準確的推導每一LED所需提供的亮度,再由控制單元12依據推導的結果調控每一LED的發光權值,使得能量轉換構件組10中的每個LED能提供最適當的發光強度。由於能量轉換構件組10中的每個LED之亮度應至少為0,如果每一LED推導出的最佳權值不為負數,則控制單元12即可依據所述發光權值控制能量轉換構件組10中的每個LED組合出所需的子光源。In the above, in practice, when combining the required sub-light sources, it is necessary to accurately derive the brightness required for each LED, and then the control unit 12 adjusts the illuminating weight of each LED according to the derivation result, so that the energy conversion Each of the LEDs in component set 10 provides the most appropriate illumination intensity. Since the brightness of each LED in the energy conversion member group 10 should be at least 0, if the optimal weight derived by each LED is not a negative number, the control unit 12 can control the energy conversion member group according to the illumination weight value. Each of the LEDs in 10 combines the desired sub-light source.

然而,如果部分LED推導出的最佳權值為負數,則須將最佳權值為正數的LED所組合出所需的子光源歸類於第一群組,並將最佳權值為負數的LED所組合出所需的子光源歸類於第二群組。更詳細的說,控制單元12係模擬出6個子光源,於第一群組中包含最佳權值為正數的LED所模擬出的子光源Sx + 、Sy + 以及Sz + ,而於第二群組中包含最佳權值為負數的LED所模擬出的子光源Sx - 、Sy - 以及Sz -However, if the optimal weight derived by some LEDs is negative, the required sub-light source must be classified into the first group with the best weighted positive LED, and the best weight is negative. The LEDs combined with the desired sub-light source are classified in the second group. In more detail, the control unit 12 simulates six sub-light sources, and includes the sub-light sources S x + , S y + , and S z + simulated by the LEDs having the best positive value in the first group. The second group contains the sub-light sources S x - , S y - and S z - simulated by the LEDs with the best weight negative.

影像偵測器14分別擷取反射後之子光源,據以產生複數個影像測量值。其中,當影像測量值所對應之子光源屬於第一群組時,則影像測量值係歸類於第三群組,當影像測量值所對應之子光源屬於第二群組時,則影像測量值係歸類於第四群組。換句話說,影像偵測器14在接收不同群組之子光源時,其對應產生的影像測量值也需要對應分類。於實務中,影像偵測器14分別擷取反射後之六個子光源所對應的影像量測值,其中第三群組包含三個對應第一群組之影像測量值X’+ 、Y’+ 以及Z’+ ,第四群組包含三個對應第二群組之影像測量值X’- 、Y’- 以及Z’- 。所述之影像測量值應大致對應到CIE之XYZ色彩空間。The image detector 14 respectively captures the reflected sub-light source to generate a plurality of image measurements. Wherein, when the sub-light source corresponding to the image measurement value belongs to the first group, the image measurement value is classified into the third group, and when the sub-light source corresponding to the image measurement value belongs to the second group, the image measurement value is Classified in the fourth group. In other words, when the image detector 14 receives the sub-light sources of different groups, the corresponding image measurement values also need to be correspondingly classified. In practice, the image detector 14 respectively captures image measurement values corresponding to the reflected six sub-light sources, wherein the third group includes three image measurement values corresponding to the first group X' + , Y' + And Z' + , the fourth group contains three image measurement values X' - , Y' - and Z' - corresponding to the second group. The image measurements should correspond approximately to the XYZ color space of the CIE.

另外,且由於待測物2之表面20反射的色度,通常會隨著入射光的角度及影像偵測器/觀察者的角度而變化,故影像偵測器14以及能量轉換構件10擺設位置須按照CIE的標準(如45/0、0/45、d/0、0/d)。舉例來說,標準45/0表示照射光源以45±5°由垂直物體表面入射,而觀察者角度恰位於垂直物體表面0°附近,但以不超過10°為原則。於本發明所述技術領域具有通常知識者應能了解,故在此不加以贅述In addition, since the chromaticity reflected by the surface 20 of the object 2 is generally changed according to the angle of the incident light and the angle of the image detector/observer, the image detector 14 and the energy conversion member 10 are disposed. Must be in accordance with CIE standards (such as 45/0, 0/45, d/0, 0/d). For example, the standard 45/0 means that the illumination source is incident at 45 ± 5° from the surface of the vertical object, while the observer angle is located near 0° of the surface of the vertical object, but not exceeding 10°. Those having ordinary knowledge in the technical field of the present invention should be able to understand, and therefore will not be described herein.

處理單元16將第三群組與第四群組中之影像測量值相減,據以產生標準測量值。於實務中,第三群組中的影像測量值X’+ 與第四群組中的影像測量值X’- 相減,可得標準測量值X;第三群組中的影像測量值Y’+ 與第四群組中的影像測量值Y’- 相減,可得標準測量值Y;第三群組中的影像測量值Z’+ 與第四群組中的影像測量值Z’- 相減,可得標準測量值Z。進一步來說,這些標準測量值X、Y、Z係一組三刺激值,而處理單元16依據這組三刺激值便可以產生於待測物2之表面20的一色度座標。Processing unit 16 subtracts the image measurements in the third group from the fourth group to generate standard measurements. In practice, the image measurement value X' + in the third group is subtracted from the image measurement value X' - in the fourth group to obtain a standard measurement value X; the image measurement value Y in the third group + subtracted from the image measurement value Y' - in the fourth group to obtain the standard measurement value Y; the image measurement value Z' + in the third group and the image measurement value Z' in the fourth group - phase Subtraction, the standard measurement value Z is obtained. Further, these standard measurements X, Y, Z are a set of tristimulus values, and the processing unit 16 can generate a chromaticity coordinate of the surface 20 of the test object 2 based on the set of tristimulus values.

儲存單元18用以儲存若干之校正參數、儲存影像測量值,或經處理單元16運算過後之色度座標。於實務中,可為一種非揮發性記憶體(例如:EEPROM)中,以作為實際量測時使用。The storage unit 18 is configured to store a plurality of calibration parameters, store image measurement values, or chromaticity coordinates after being processed by the processing unit 16. In practice, it can be used in a non-volatile memory (eg, EEPROM) for actual measurement.

然而,本發明之能量轉換構件組10可不僅僅將子光源投射至表面20上的一點,更可將子光源可投射於表面20上的一個區域,而藉由影像偵測器14接收上述區域的二維畫面,並且處理單元16可從其中運算出三刺激值,以快速且精確的產生待測物之色度量測結果。以下搭配本發明之組合式光源之色度測量方法加以說明。However, the energy conversion member group 10 of the present invention can not only project the sub-light source to a point on the surface 20, but also project the sub-light source onto an area on the surface 20, and receive the above area by the image detector 14. A two-dimensional picture, and the processing unit 16 can calculate a tristimulus value therefrom to quickly and accurately generate a color measurement result of the object to be tested. The following is a description of the chromaticity measurement method of the combined light source of the present invention.

請參閱圖一及圖二,圖二係繪示根據本發明之一示範實施例之組合式光源之色度測量方法的流程圖。於步驟S30中,能量轉換構件組10提供複數個能量轉換構件,每一能量轉換構件用以將一電能轉換成一光能,且所述多個能量轉換構件所產生之光能具有不同之中心波長。於實務中,本發明之能量轉換構件組10更將子光源可投射於待測物2之二維表面20。Referring to FIG. 1 and FIG. 2, FIG. 2 is a flow chart showing a method for measuring the chromaticity of a combined light source according to an exemplary embodiment of the present invention. In step S30, the energy conversion member group 10 provides a plurality of energy conversion members, each of the energy conversion members is configured to convert an electrical energy into a light energy, and the light energy generated by the plurality of energy conversion members has different center wavelengths. . In practice, the energy conversion member group 10 of the present invention can project the sub-light source onto the two-dimensional surface 20 of the object 2 to be tested.

於步驟S31中,一使用者可透過控制單元12調整能量轉換構件組10中每一能量轉換構件之發光強度,使得能量轉換構件組10組合出複數個子光源。於實務上,Sx (xn ,yn ,λ)+ 、Sy (xn ,yn ,λ)+ 以及Sz (xn ,yn ,λ)+ 分別表示第一群組中的子光源於表面20之分佈,同樣的,第二群組中的子光源可表示為Sx (xn ,yn ,λ)- 、Sy (xn ,yn ,λ)- 以及Sz (xn ,yn ,λ)- 。使用者可透過控制單元12調整能量轉換構件組10中每一LED的亮度大小,使其恰足以模擬如Sx (xn ,yn ,λ)+ 的光譜。接著,於步驟S32中,控制單元12驅動能量轉換構件組10將子光源投射於待測物2之表面20上的一個區域。In step S31, a user can adjust the luminous intensity of each energy conversion member in the energy conversion member group 10 through the control unit 12, so that the energy conversion member group 10 combines a plurality of sub-light sources. In practice, S x (x n , y n , λ) + , S y (x n , y n , λ) + and S z (x n , y n , λ) + represent the first group, respectively. The distribution of the sub-light sources on the surface 20, likewise, the sub-light sources in the second group can be expressed as S x (x n , y n , λ) - , S y (x n , y n , λ) - and S z (x n , y n , λ) - . The user can adjust the brightness of each LED in the energy conversion member group 10 through the control unit 12 to just enough to simulate a spectrum such as S x (x n , y n , λ) + . Next, in step S32, the control unit 12 drives the energy conversion member group 10 to project the sub-light source onto an area on the surface 20 of the object 2 to be tested.

於步驟S33中,影像偵測器14分別擷取反射後之子光源,據以產生複數個影像測量值。於實務上,影像偵測器14可以是一種CCD偵測器,所述之影像測量值更可經由一透鏡成像到影像偵測器14中,且所述影像測量值可分為兩群組,其中第三群組中包含於表面20之指定位置(xn ,yn )之三個影像測量值X’(xn ,yn )+ 、Y’(xn ,yn )+ 以及Z’(xn ,yn )+ ,同樣地,第四群組中包含於表面20之指定位置(xn ,yn )之三個影像測量值X’(xn ,yn )- 、Y’(xn ,yn )- 以及Z’(xn ,yn )-In step S33, the image detector 14 respectively captures the reflected sub-light source to generate a plurality of image measurement values. In practice, the image detector 14 can be a CCD detector, and the image measurement value can be imaged into the image detector 14 via a lens, and the image measurement values can be divided into two groups. The three image measurements X'(x n , y n ) + , Y'(x n , y n ) + and Z' included in the third group at the specified position (x n , y n ) of the surface 20 (x n , y n ) + , likewise, three image measurements X'(x n , y n ) - , Y' included in the specified position (x n , y n ) of the surface 20 in the fourth group (x n , y n ) - and Z'(x n , y n ) - .

詳細來說,以第三群組之影像測量值為例,X’(xn ,yn )+ 、Y’(xn ,yn )+ 以及Z’(xn ,yn )+ 分別為:In detail, taking the image measurement of the third group as an example, X'(x n , y n ) + , Y'(x n , y n ) + and Z'(x n , y n ) + are respectively :

X’(xn ,yn )+ =∫Sx (xn ,yn ,λ)+ R(xn ,yn ,λ)D(xn ,yn ,λ)dλ,X'(x n , y n ) + = ∫S x (x n , y n , λ) + R(x n , y n , λ)D(x n , y n , λ)dλ,

Y’(xn ,yn )+ =∫Sy (xn ,yn ,λ)+ R(xn ,yn ,λ)D(xn ,yn ,λ)dλ,Y'(x n , y n ) + = ∫S y (x n , y n , λ) + R(x n , y n , λ)D(x n , y n , λ)dλ,

Z’(xn ,yn )+ =∫Sz (xn ,yn ,λ)+ R(xn ,yn ,λ)D(xn ,yn ,λ)dλ,Z'(x n , y n ) + = ∫S z (x n , y n , λ) + R(x n , y n , λ)D(x n , y n , λ)dλ,

如果子光源照射在表面20上一個區域時,Sx (xn ,yn ,λ)+ 、Sy (xn ,yn ,λ)+ 以及Sz (xn ,yn ,λ)+ 分別為所述三個子光源於表面20上一個區域之分佈,R(xn ,yn ,λ)係於二維畫面之指定位置(xn ,yn )的反射頻譜,D(xn ,yn ,λ)係於二維畫面之指定位置(xn ,yn )時影像偵測器14之響應函數。If the sub-light source illuminates a region on the surface 20, S x (x n , y n , λ) + , S y (x n , y n , λ) + and S z (x n , y n , λ) + Respectively, the distribution of the three sub-light sources on a surface of the surface 20, R(x n , y n , λ) is the reflection spectrum of the specified position (x n , y n ) of the two-dimensional picture, D(x n , y n , λ) is a response function of the image detector 14 when it is at a specified position (x n , y n ) of the two-dimensional picture.

於步驟S34中,處理單元16將第三群組與第四群組中之影像測量值相減,據以產生複數個標準測量值。在此,儲存單元18可另儲存三個校正參數分別為Cx (xn ,yn )、Cy (xn ,yn )以及Cz (xn ,yn ),影像測量值可透過這些校正參數進行正規化或校正。舉例來說,所述校正參數Cx (xn ,yn )、Cy (xn ,yn )以及Cz (xn ,yn )可由利用已知色度的標準片求得。詳細來說,本發明可利用一個非常均勻的已知色度的標準片Rs (λ),作為校正基礎,因為所述標準片在每一個位置的反射係數皆一樣,因此其反射係數R只為波長λ的函數。當利用此標準片置入圖一中的待測物2的位置,利用所述六個標準子光源Sx (xn ,yn ,λ)+ 、Sy (xn ,yn ,λ)+ 、Sz (xn ,yn ,λ)+ 以及Sx (xn ,yn ,λ)- 、Sy (xn ,yn ,λ)- 、Sz (xn ,yn ,λ)- 依序照射,由影像偵測器14已知的響應函數D(xn ,yn ,λ)得到六個量測值,分別為:In step S34, the processing unit 16 subtracts the image measurement values in the third group and the fourth group, thereby generating a plurality of standard measurement values. Here, the storage unit 18 can store three additional correction parameters respectively C x (x n , y n ), C y (x n , y n ) and C z (x n , y n ), and the image measurement value can be transmitted through These correction parameters are normalized or corrected. For example, the correction parameters C x (x n , y n ), C y (x n , y n ), and C z (x n , y n ) can be obtained from a standard slice using known chromaticity. In detail, the present invention can utilize a very uniform standard piece R s (λ) of known chromaticity as a basis for correction, since the standard piece has the same reflection coefficient at each position, so its reflection coefficient R is only Is a function of the wavelength λ. When the standard piece is placed in the position of the object 2 in FIG. 1, the six standard sub-light sources S x (x n , y n , λ) + , S y (x n , y n , λ) are utilized. + , S z (x n , y n , λ) + and S x (x n , y n , λ) - , S y (x n , y n , λ) - , S z (x n , y n , λ) - sequential illumination, obtained by the response function D (x n , y n , λ) known by the image detector 14 to obtain six measurements, respectively:

Xc ’(xn ,yn )+ =∫Sx (xn ,yn ,λ)+ Rs (λ)D(xn ,yn ,λ)dλ,X c '(x n , y n ) + =∫S x (x n , y n , λ) + R s (λ)D(x n , y n , λ)dλ,

Yc ’(xn ,yn )+ =∫Sy (xn ,yn ,λ)+ Rs (λ)D(xn ,yn ,λ)dλ,Y c '(x n , y n ) + = ∫S y (x n , y n , λ) + R s (λ)D(x n , y n , λ)dλ,

Zc ’(xn ,yn )+ =∫Sz (xn ,yn ,λ)+ Rs (λ)D(xn ,yn ,λ)dλ,Z c '(x n , y n ) + = ∫S z (x n , y n , λ) + R s (λ)D(x n , y n , λ)dλ,

Xc ’(xn ,yn )- =∫Sx (xn ,yn ,λ)- Rs (λ)D(xn ,yn ,λ)dλ,X c '(x n , y n ) - = ∫S x (x n , y n , λ) - R s (λ)D(x n , y n , λ)dλ,

Yc ’(xn ,yn )- =∫Sy (xn ,yn ,λ)- Rs (λ)D(xn ,yn ,λ)dλ,Y c '(x n , y n ) - = ∫S y (x n , y n , λ) - R s (λ)D(x n , y n , λ)dλ,

Zc ’(xn ,yn )- =∫Sz (xn ,yn ,λ)- Rs (λ)D(xn ,yn ,λ)dλ。Z c '(x n , y n ) - = ∫S z (x n , y n , λ) - R s (λ) D (x n , y n , λ) dλ.

在此,Xc ’(xn ,yn )+ 與Xc ’(xn ,yn )- 可組合出Xc ’(xn ,yn ),Yc ’(xn ,yn )+ 與Yc ’(xn ,yn )- 可組合出Yc ’(xn ,yn ),Zc ’(xn ,yn )+ 與Zc ’(xn ,yn )- 可組合出Zc ’(xn ,yn ),如下式:Here, X c '(x n , y n ) + and X c '(x n , y n ) - can be combined to form X c '(x n , y n ), Y c '(x n , y n ) + and Y c '(x n , y n ) - can be combined to Y c '(x n , y n ), Z c '(x n , y n ) + and Z c '(x n , y n ) - Z c '(x n , y n ) can be combined as follows:

Xc ’(xn ,yn )=Xc ’(xn ,yn )+ -Xc ’(xn ,yn )-X c '(x n , y n )=X c '(x n , y n ) + -X c '(x n , y n ) - ,

Yc ’(xn ,yn )=Yc ’(xn ,yn )+ -Yc ’(xn ,yn )-Y c '(x n , y n )=Y c '(x n , y n ) + -Y c '(x n , y n ) - ,

Zc ’(xn ,yn )=Zc ’(xn ,yn )+ -Zc ’(xn ,yn )-Z c '(x n , y n )=Z c '(x n , y n ) + -Z c '(x n , y n ) - .

但由按CIE規定可知,如果Rs (λ)為已知,則三個刺激值Xs (xn ,yn )、Ys (xn ,yn )、Zs (xn ,yn )可推算出來。又:However, according to the CIE regulations, if R s (λ) is known, the three stimulus values X s (x n , y n ), Y s (x n , y n ), Z s (x n , y n ) can be derived. also:

Xs (xn ,yn )=Xc ’(xn ,yn )‧Cx(xn ,yn ),X s (x n , y n )=X c '(x n , y n )‧Cx(x n , y n ),

Ys (xn ,yn )=Yc ’(xn ,yn )‧Cy (xn ,yn ),Y s (x n , y n )=Y c '(x n , y n )‧C y (x n , y n ),

Zs (xn ,yn )=Zc ’(xn ,yn )‧Cz (xn ,yn )。Z s (x n , y n )=Z c '(x n , y n )‧C z (x n , y n ).

因此個別的校正參數可分別求得為:Therefore, individual correction parameters can be obtained separately:

Cx (xn ,yn )=Xs /Xc ’(xn ,yn ),C x (x n , y n )=X s /X c '(x n , y n ),

Cy (xn ,yn )=Ys /Yc ’(xn ,yn ),C y (x n , y n )=Y s /Y c '(x n ,y n ),

Cz (xn ,yn )=Zs /Zc ’(xn ,yn )。C z (x n , y n )=Z s /Z c '(x n , y n ).

於步驟S35中,處理單元16依據得到的標準測量值產生於待測物2之表面20的一色度座標,其中這些標準測量值係一組三刺激值。舉例來說,處理單元16可依據所述三刺激值運算於指定位置(xn ,yn )的色度座標(x ,y ),其中:In step S35, the processing unit 16 generates a chromaticity coordinate of the surface 20 of the object to be tested 2 according to the obtained standard measurement value, wherein the standard measurement values are a set of tristimulus values. For example, the processing unit 16 can calculate the chromaticity coordinates ( x , y ) at the specified position (x n , y n ) according to the tristimulus values, wherein:

x (xn ,yn )=X(xn ,yn )/[X(xn ,yn )+Y(xn ,yn )+Z(xn ,yn )],且 x (x n , y n )=X(x n , y n )/[X(x n , y n )+Y(x n , y n )+Z(x n , y n )], and

y (xn ,yn )=Y(xn ,yn )/[X(xn ,yn )+Y(xn ,yn )+Z(xn ,yn )]。 y (x n , y n )=Y(x n , y n )/[X(x n , y n )+Y(x n , y n )+Z(x n , y n )].

進一步來說,所述之X(xn ,yn )可由下式求得:Further, the X(x n , y n ) can be obtained by the following formula:

X(xn ,yn )=X’(xn ,yn )‧Cx (xn ,yn ),X(x n , y n )=X'(x n , y n )‧C x (x n , y n ),

其中,X’(xn ,yn )=X’(xn ,yn )+ -X’(xn ,yn )-Where X'(x n , y n )=X'(x n ,y n ) + -X'(x n ,y n ) - ,

同理可得Y(xn ,yn )、Z(xn ,yn ),在此不予贅述。Similarly, Y(x n , y n ), Z(x n , y n ) can be obtained, and will not be described herein.

藉此,相較於傳統的色度儀,本發明可克服最佳發光權值為負數時的不理想狀態,並快速地得到待測物2之表面20的精確色度座標。Thereby, compared with the conventional colorimeter, the present invention can overcome the unsatisfactory state when the optimal illuminating weight is negative, and quickly obtain the precise chromaticity coordinates of the surface 20 of the object 2 to be tested.

綜上所述,本發明之組合式光源之色度測量方法與系統,可應用於顏料、紡織、太陽能板(Solar Cell)等材質色度的一致性檢驗或是分色作業,未來更可應用於電子紙生產製造產業。此外,本發明運用二維的影像偵測器於濾鏡式量測色度之技術,搭配校正參數即可運算得到三刺激值,並藉以產生色度座標,改善以往利用濾鏡式技術或是相機量測色度不準確,以及使用影像是光譜儀色度量測速度不足的問題。此外,透過本發明揭露之組合子光源技術,可運用控制單元以組合出更精確的子光源頻譜,並可克服最佳發光權值為負數時的不理想狀態,據以得到更精確的待測物之色度量測結果。In summary, the method and system for measuring the chromaticity of the combined light source of the present invention can be applied to the consistency check or color separation operation of materials such as pigments, textiles, solar cells, etc., and can be applied in the future. In the electronic paper manufacturing industry. In addition, the present invention uses a two-dimensional image detector to filter the chromaticity technique, and the correction parameters can be used to calculate the tristimulus values, thereby generating chromaticity coordinates, and improving the previous use of filter technology or Inaccurate camera chromaticity and the use of images are problems with insufficient spectrometer color metrics. In addition, through the combined sub-light source technology disclosed by the present invention, the control unit can be used to combine a more accurate sub-light source spectrum, and can overcome the undesired state when the optimal illuminance weight is negative, so as to obtain a more accurate test. The color measurement results of the object.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

1...組合式光源之色度測量系統1. . . Chromaticity measurement system for combined light source

10...能量轉換構件組10. . . Energy conversion component group

12...控制單元12. . . control unit

14...影像偵測器14. . . Image detector

16...處理單元16. . . Processing unit

18...儲存單元18. . . Storage unit

2...待測物2. . . Analyte

20...待測物之表面20. . . Surface of the object to be tested

S30~S35...流程步驟S30~S35. . . Process step

圖一係繪示根據本發明之一示範實施例之組合式光源之色度測量系統的功能方塊圖。1 is a functional block diagram of a chromaticity measurement system of a combined light source in accordance with an exemplary embodiment of the present invention.

圖二係繪示根據本發明之一示範實施例之組合式光源之色度測量方法的流程圖。2 is a flow chart showing a method of chromaticity measurement of a combined light source according to an exemplary embodiment of the present invention.

1...組合式光源之色度測量系統1. . . Chromaticity measurement system for combined light source

10...能量轉換構件組10. . . Energy conversion component group

12...控制單元12. . . control unit

14...影像偵測器14. . . Image detector

16...處理單元16. . . Processing unit

18...儲存單元18. . . Storage unit

2...待測物2. . . Analyte

20...待測物之表面20. . . Surface of the object to be tested

Claims (15)

一種組合式光源之色度測量方法,該方法包含下列步驟:提供複數個能量轉換構件,每一該能量轉換構件用以將一電能轉換成一光能,且該些能量轉換構件所產生之該些光能具有不同之中心波長;調整該些能量轉換構件之發光強度,依序產生複數個子光源,每一該子光源係歸類於一第一群組或一第二群組,其中該些能量轉換構件對應一權值組,該權值組具有複數個權值,每一該權值對應該些能量轉換構件其中之一,調整該權值係用以調整對應之該能量轉換構件之發光強度;分別將該些子光源照射於一待測物之一表面;分別擷取反射後之該些子光源,據以產生複數個影像測量值,當該影像測量值所對應之該子光源屬於該第一群組時,則該影像測量值係歸類於一第三群組,當該影像測量值所對應之該子光源屬於該第二群組時,則該影像測量值係歸類於一第四群組;以及將該第三群組與該第四群組中之該些影像測量值相減,據以產生複數個標準測量值。 A method for measuring a chromaticity of a combined light source, the method comprising the steps of: providing a plurality of energy conversion members, each of the energy conversion members for converting an electrical energy into a light energy, and the energy conversion members generate the The light energy has different center wavelengths; adjusting the luminous intensity of the energy conversion members, sequentially generating a plurality of sub-light sources, each of the sub-light sources being classified into a first group or a second group, wherein the energy The conversion component corresponds to a weight group, the weight group has a plurality of weights, each of the weights corresponds to one of the energy conversion components, and the weight is adjusted to adjust the luminous intensity of the corresponding energy conversion component And respectively illuminating the sub-light sources on one surface of the object to be tested; respectively, extracting the reflected sub-light sources to generate a plurality of image measurement values, wherein the sub-light source corresponding to the image measurement value belongs to the In the first group, the image measurement value is classified into a third group, and when the sub-light source corresponding to the image measurement value belongs to the second group, the image measurement value is classified into The fourth group; and a third group of the plurality of images with the measured value of the fourth group are subtracted so as to generate a plurality of standard measurements. 如申請專利範圍第1項所述之組合式光源之色度測量方法,其中於調整該些能量轉換構件之發光強度,依序產生複數組子光源之步驟中,更包含下列步驟:調整該權值組,使該些能量轉換構件模擬該些子光源其中之一。 The chromaticity measuring method of the combined light source according to claim 1, wherein the step of sequentially generating the complex array sub-light source in the step of adjusting the luminous intensity of the energy conversion members further comprises the following steps: adjusting the weight a set of values that cause the energy conversion members to simulate one of the sub-light sources. 如申請專利範圍第1項所述之組合式光源之色度測量方法,其中該權值組指示當該些能量轉換構件模擬該些子光源其中之 一時,每一該能量轉換構件之最適當的發光強度。 The chromaticity measuring method of the combined light source according to claim 1, wherein the weight group indicates that the energy conversion members simulate the sub-light sources For a moment, the most appropriate luminous intensity of each of the energy conversion members. 如申請專利範圍第1項所述之組合式光源之色度測量方法,更包含下列步驟:依據該些標準測量值產生於該待測物之該表面的一色度座標,其中該些標準測量值係一組三刺激值。 The chromaticity measuring method of the combined light source according to claim 1, further comprising the step of: generating, according to the standard measurement values, a chromaticity coordinate of the surface of the object to be tested, wherein the standard measurement values A set of tristimulus values. 如申請專利範圍第1項所述之組合式光源之色度測量方法,其中該些能量轉換構件所產生之該些光能之中心波長範圍至少包含380nm至730nm。 The chromaticity measuring method of the combined light source according to claim 1, wherein the light energy generated by the energy conversion members has a central wavelength range of at least 380 nm to 730 nm. 如申請專利範圍第1項所述之組合式光源之色度測量方法,其中於分別擷取反射後之該些子光源,據以產生複數個影像測量值之步驟中,更包含下列步驟:分別擷取反射後之該些子光源之二維畫面,據以產生二維之該些影像測量值。 The chromaticity measuring method of the combined light source according to claim 1, wherein the step of respectively generating the reflected plurality of sub-light sources according to the step of generating a plurality of image measurement values further comprises the following steps: respectively The two-dimensional images of the reflected sub-light sources are captured to generate the two-dimensional image measurement values. 如申請專利範圍第1項所述之組合式光源之色度測量方法,更包括:以複數個校正參數分別對於該些標準量測值進行校正。 The chromaticity measuring method of the combined light source according to claim 1, further comprising: correcting the standard measured values by using a plurality of calibration parameters. 一種組合式光源之色度測量系統,包含:複數個能量轉換構件,每一該能量轉換構件用以將一電能轉換成一光能,且該些能量轉換構件所產生之該些光能具有不同之中心波長;一控制單元,耦接該些能量轉換構件,用以調整該些能量轉換構件之發光強度,驅動該些能量轉換構件依序照射複數個子光源於一待測物之一表面,每一該子光源係歸類於一第一群組或一第二群組;一影像偵測器,分別擷取反射後之該些子光源,據以產生複數個影像測量值,該些影像測量值係歸類於一第 三群組或一第四群組;一處理單元,耦接該影像偵測器,將該第三群組與該第四群組中之該些影像測量值相減,據以產生複數個標準測量值,其中,當該影像測量值所對應之該子光源屬於該第一群組時,則該影像測量值係歸類於該第三群組,當該影像測量值所對應之該子光源屬於該第二群組時,則該影像測量值係歸類於該第四群組。 A colorimetric measurement system for a combined light source, comprising: a plurality of energy conversion members, each of the energy conversion members for converting an electrical energy into a light energy, and the light energy generated by the energy conversion members has different a central wavelength; a control unit coupled to the energy conversion members for adjusting the luminous intensity of the energy conversion members, and driving the energy conversion members to sequentially illuminate the plurality of sub-light sources on one surface of the object to be tested, each The sub-light source is classified into a first group or a second group; an image detector respectively extracts the reflected sub-light sources to generate a plurality of image measurement values, and the image measurement values are obtained Department is classified as one a third group or a fourth group; a processing unit coupled to the image detector to subtract the image measurements from the third group and the fourth group to generate a plurality of criteria a measured value, wherein, when the sub-light source corresponding to the image measurement value belongs to the first group, the image measurement value is classified into the third group, and the sub-light source corresponding to the image measurement value When belonging to the second group, the image measurement value is classified into the fourth group. 如申請專利範圍第8項所述之組合式光源之色度測量系統,其中該些能量轉換構件對應一權值組,該權值組具有複數個權值,每一該權值對應該些能量轉換構件其中之一,該控制單元調整該權值以調整對應之該能量轉換構件之發光強度。 The chromaticity measuring system of the combined light source according to claim 8, wherein the energy conversion members correspond to a weight group, the weight group having a plurality of weights, each of the weights corresponding to the energy One of the conversion members, the control unit adjusting the weight to adjust the luminous intensity of the corresponding energy conversion member. 如申請專利範圍第9項所述之組合式光源之色度測量系統,其中該控制單元調整該權值組,使該些能量轉換構件模擬該些子光源其中之一。 The chromaticity measuring system of the combined light source according to claim 9, wherein the control unit adjusts the weight group such that the energy conversion members simulate one of the sub-light sources. 如申請專利範圍第9項所述之組合式光源之色度測量系統,其中該權值組指示當該些能量轉換構件模擬該些子光源其中之一時,每一該能量轉換構件之最適當的發光強度。 The chromaticity measuring system of the combined light source according to claim 9, wherein the weight group indicates the most appropriate one of each of the energy conversion members when the energy conversion members simulate one of the sub-light sources light intensity. 如申請專利範圍第9項所述之組合式光源之色度測量系統,其中該些標準測量值係一組三刺激值,並該處理單元更依據該組三刺激值產生於該待測物之該表面的一色度座標。 The chromaticity measuring system of the combined light source according to claim 9, wherein the standard measurement values are a set of tristimulus values, and the processing unit is further generated according to the set of three stimuli values in the object to be tested. A chromaticity coordinate of the surface. 如申請專利範圍第8項所述之組合式光源之色度測量系統,其中該些能量轉換構件所產生之該些光能之中心波長範圍至少包含380nm至730nm。 The chromaticity measuring system of the combined light source according to claim 8, wherein the light energy generated by the energy conversion members has a central wavelength range of at least 380 nm to 730 nm. 如申請專利範圍第8項所述之組合式光源之色度測重系統,其中該影像偵測器分別擷取反射後之該些子光源之二維畫面,據以產生二維之該些影像測量值。 The colorimetric weighing system of the combined light source according to claim 8 , wherein the image detector respectively captures the two-dimensional images of the reflected sub-light sources, thereby generating the two-dimensional images Measurements. 如申請專利範圍第8項所述之組合式光源之色度測量系統,其中該處理單元還包括以複數個校正參數分別對於該些標準量測值進行校正。The chromaticity measuring system of the combined light source according to claim 8, wherein the processing unit further comprises correcting the standard measured values by using a plurality of calibration parameters.
TW99134291A 2010-10-08 2010-10-08 Method and system for chromaticity measurement using light source assembly TWI424151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99134291A TWI424151B (en) 2010-10-08 2010-10-08 Method and system for chromaticity measurement using light source assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99134291A TWI424151B (en) 2010-10-08 2010-10-08 Method and system for chromaticity measurement using light source assembly

Publications (2)

Publication Number Publication Date
TW201215854A TW201215854A (en) 2012-04-16
TWI424151B true TWI424151B (en) 2014-01-21

Family

ID=46786982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99134291A TWI424151B (en) 2010-10-08 2010-10-08 Method and system for chromaticity measurement using light source assembly

Country Status (1)

Country Link
TW (1) TWI424151B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201520A (en) * 1995-10-31 1998-12-09 京都第一科学株式会社 Light source apparatus and measurment method
CN1471630A (en) * 2001-05-08 2004-01-28 皇家菲利浦电子有限公司 System for measuring chromaticity coordinates
TWI291549B (en) * 2006-08-04 2007-12-21 Univ Nat Central Method for adjusting the color temperature of a colorimeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201520A (en) * 1995-10-31 1998-12-09 京都第一科学株式会社 Light source apparatus and measurment method
CN1471630A (en) * 2001-05-08 2004-01-28 皇家菲利浦电子有限公司 System for measuring chromaticity coordinates
TWI291549B (en) * 2006-08-04 2007-12-21 Univ Nat Central Method for adjusting the color temperature of a colorimeter

Also Published As

Publication number Publication date
TW201215854A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
US10161796B1 (en) LED lighting based multispectral imaging system for color measurement
TWI626433B (en) Method for two-dimensional, spatially resolved measurement and imaging colorimeter system capable of said measurement
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
CN102466520B (en) Multispectral imaging color measurement system and imaging signal processing method thereof
US8441642B2 (en) Color measuring device
KR102007309B1 (en) Method and device for measuring the colour of an object
US9395292B2 (en) Method and apparatus for image-based color measurement using a smart phone
CN108020519B (en) Virtual multi-light-source spectrum reconstruction method based on color constancy
TWI443311B (en) Optical characteristic detection device
CN105588642B (en) The calibration of colorimeter
CN110945561A (en) Hyperspectral imaging spectrophotometer and system
JP2020012668A (en) Evaluation device, measurement device, evaluation method and evaluation program
Varghese et al. Colorimetric calibration of high dynamic range images with a ColorChecker chart
JP2015178995A (en) Tone calibration device, imaging device and tone inspection device
JP2016194449A (en) Coloring checkup device, and coloring checkup method
TWI384159B (en) Method of calibrating a light source
TWI479134B (en) Two - dimensional timing type colorimeter detection method and the colorimeter
TWI424151B (en) Method and system for chromaticity measurement using light source assembly
CN102455216B (en) Chroma measuring method and chroma measuring system for combined light source
JP6555276B2 (en) Stimulus value reading type colorimetry photometer
JP6631001B2 (en) Stimulus value direct reading type colorimeter
CN104215333A (en) Two-dimensional sequential type colorimeter detection method and colorimeter
Martínez et al. Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage
JP6565174B2 (en) Stimulus value direct-reading colorimeter
JP2019153931A (en) Measuring device, method for setting parameter for color measurement conversion in measuring device, and industrial product inspected by measuring device