TWI423738B - A method and apparatus for generating high density hollow electron cloud instantaneously by laser - Google Patents

A method and apparatus for generating high density hollow electron cloud instantaneously by laser Download PDF

Info

Publication number
TWI423738B
TWI423738B TW98114111A TW98114111A TWI423738B TW I423738 B TWI423738 B TW I423738B TW 98114111 A TW98114111 A TW 98114111A TW 98114111 A TW98114111 A TW 98114111A TW I423738 B TWI423738 B TW I423738B
Authority
TW
Taiwan
Prior art keywords
laser
hollow
ion
electron
instantaneously
Prior art date
Application number
TW98114111A
Other languages
Chinese (zh)
Other versions
TW201039699A (en
Inventor
Masayuki Kumada
Original Assignee
Masayuki Kumada
Kumada Yumi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masayuki Kumada, Kumada Yumi filed Critical Masayuki Kumada
Priority to TW98114111A priority Critical patent/TWI423738B/en
Publication of TW201039699A publication Critical patent/TW201039699A/en
Application granted granted Critical
Publication of TWI423738B publication Critical patent/TWI423738B/en

Links

Description

一種以鐳射瞬間生成高密度中空電子雲的方法及裝置Method and device for generating high-density hollow electron cloud by laser moment

本發明涉及一種生成中空電子雲的裝置,尤指一種以鐳射瞬間生成高密度中空電子雲的方法及其裝置。The invention relates to a device for generating a hollow electron cloud, in particular to a method and a device for generating a high-density hollow electron cloud instantaneously by laser.

在受時間、空間限制的帶電粒子束團(charge bunch)上,將具有很強射線強度的電子聚束(electron bunch)在短距離內加速到超過數億電子伏特(GeV)高能量的方法,從1950年中旬開始就有研究員提出發明和建議。例如,美國的貝內德(Bennett)最早提出電子聚束的加速方法,但,蘇聯的貝克斯勒(Veksler)提出的方案既明確又容易在短距離內實現加速電子聚束。On a time- and space-limited charged bunch, an electron bunch with a strong ray intensity is accelerated to a high energy exceeding hundreds of millions of electron volts (GeV) in a short distance. Since the mid-1950s, researchers have come up with inventions and recommendations. For example, Bennett of the United States first proposed an acceleration method for electron bunching. However, the scheme proposed by the Soviet Union's Veksler is clear and easy to accelerate electron bunching in a short distance.

1950年的瑞士日內瓦加速器國際會議,蘇聯的杜布那(Dubna)、貝克斯勒(Veksler)和布朵卡(Budker)共同發表有關帶電粒子利用大強度、高密度電子聚束的離子加速理論和實驗。The Geneva International Accelerator Conference in 1950, the Soviet Union's Dubna, Veksler and Budker jointly published ion acceleration theory and experiments on charged particles using high-intensity, high-density electron bunching. .

在此所說的離子,意指包括質子的所有帶電離子,被稱為重離子時,指的是在元素表上重量大於氦重量以上的帶電離子。As used herein, an ion, meaning all charged ions including a proton, referred to as a heavy ion, refers to a charged ion having a weight greater than 氦 on the elemental table.

1967年的英國劍橋加速器國際會議上,蘇聯的貝克斯勒(Veksler)發表將100億個質子從15m距離處加速到1GeV的誘導線形加速器(induction linac)模型。At the 1967 Cambridge Accelerator International Conference, the Soviet Union's Veksler published an induction linac model that accelerated the 10 billion protons from a distance of 15 m to 1 GeV.

此革新性的離子/電子聚束加速法,造成世界上的主要研究所爭相鑽研相關理論和實驗。例如,美國勞倫斯伯克萊實驗室(LBL,Lawrence Berkley Laboratory)發表了電子圈加速器(ERA,Electron Ring Accelerator)系統;馬里蘭(Maryland)大學則著眼於研究大強度電子射線的電子圈加速器(ERA);電子圈和誘導線形加速器發明人克利斯非羅斯(Christfilos)在美國勞倫斯立衛莫國家實驗室(Lawrence Livermore National Laboratory)啟動核融合技術發展電子圈加速器(ERA)。This revolutionary ion/electron bunching acceleration method has caused major research institutes around the world to rush into relevant theories and experiments. For example, the Lawrence Berkley Laboratory (LBL, LA) published the Electron Ring Accelerator (ERA) system; the University of Maryland focused on the electron beam accelerator (ERA) for studying high-intensity electron beams. The inventor of the electronic circle and induced linear accelerator, Christfilos, launched the Nuclear Fusion Technology Development Electronic Circle Accelerator (ERA) at the Lawrence Livermore National Laboratory.

所稱的電子圈加速器(ERA)的工作原理,如圖1所示,首先將未中和的電子束射入(injection)到一個有輕度聚焦作用的縱向磁場中形成電子圈。爾後,磁場強度隨時間上升,以便使磁場中的電子圈的長、短半徑都得到壓縮,並將電子圈中的電子能量進一步提高。此時,由於電子圈的電子與氣體分子碰撞產生了大量離子,且這些離子被電子圈的位能障壁(Barrier)所俘獲,一方面中和了電子的空間電荷力,使電子圈保持形狀;另一方面也提供了電子圈和它俘獲的離子同時加速。The working principle of the so-called electron ring accelerator (ERA), as shown in Fig. 1, first injects an unneutralized electron beam into a longitudinal magnetic field with a slight focusing effect to form an electron circle. Thereafter, the magnetic field strength rises with time to compress the long and short radii of the electron ring in the magnetic field and further increase the electron energy in the electron circle. At this time, since the electrons of the electron circle collide with the gas molecules to generate a large amount of ions, and the ions are captured by the energy barrier of the electron circle, on the one hand, the space charge force of the electron is neutralized, so that the electron circle maintains the shape; On the other hand, it also provides that the electron circle and the ions it captures accelerate at the same time.

將電子圈和它俘獲的離子同時加速的方式,有兩種方式:一是使用加速腔產出沿磁力線方向的電場,一是使用沿縱向距離逐漸減弱的磁場徑向分量的洛倫茲力。所以,上述電子圈和它俘獲的離子能夠以多大的加速率進行加速,顯然受限及決定於沿磁力線方向的最大電場以及使離子保持在電子圈內的保持能力。There are two ways to accelerate the electron ring and the ions it captures simultaneously: one is to use the accelerating cavity to produce an electric field along the direction of the magnetic field line, and the other is to use the Lorentz force of the radial component of the magnetic field that gradually decreases along the longitudinal distance. Therefore, the above-mentioned electron ring and the ions it captures can be accelerated at a large rate of acceleration, which is obviously limited and determined by the maximum electric field in the direction of the magnetic field lines and the ability to maintain ions in the electron ring.

所以,當前對於電子圈加速器(ERA)的主要研究方向,就在於提高使離子保持在電子圈內的保持能力。例如,美國勞倫斯伯克萊實驗室(LBL)發表的電子圈加速器(ERA)的離子加速方式,是利用弱小収束方式,用一次(one turh)入射的電子迴旋加速器方式,使其在時間上生成變化的軸磁場;拉斯雷特‧塞斯勒(A. Sessler)發表的電子圈加速器(ERA)的離子加速方式,是利用在陰極(cathode)上生成大電子圈,再射入到在軸方向減少的静態軸的磁場;而馬里蘭(Maryland)大學發表的電子圈加速器(ERA)的離子加速方式,是利用在陰極(cathode)上生成大的中空電子射線,再射入卡斯夫磁場(cusp magnetic field)。Therefore, the current research direction for the electron horn accelerator (ERA) is to improve the retention ability of keeping ions in the electron circle. For example, the ion acceleration method of the electron ring accelerator (ERA) published by the Lawrence Berkeley Laboratory (LBL) in the United States uses a small and small convergence method to generate a time by one turh incident electron cyclotron. The changing axis magnetic field; the ion acceleration method of the electron ERA accelerator (ERA) published by A. Sessler is to generate a large electron ring on the cathode and then into the axis. The magnetic field of the static axis with reduced direction; and the ion acceleration method of the electron ring accelerator (ERA) published by the University of Maryland utilizes the generation of large hollow electron rays on the cathode and then into the Kasoff magnetic field ( Cusp magnetic field).

但,上述的任何一種電子圈加速器(ERA)的離子加速方式,均以在軸方向縮短所形成的電子圈的方式作為主流,在這種情況下,所需的電流量很高,會發生各種射線不穩定性的問題,要穩定電子聚束(electron bunch)極為困難。However, the ion acceleration method of any of the above-described electron ring accelerators (ERA) is mainly in the form of shortening the formed electron ring in the axial direction. In this case, the amount of current required is high, and various kinds of occurrences occur. For the problem of ray instability, it is extremely difficult to stabilize the electron bunch.

另一方面,由於近年來大型同步輻射加速器、高能質子加速器及直線型電子和質子對撞器的成熟發展,導致朝向用電子、質子加速到數百GeV或TeV領域的電子圈加速器(ERA)的研究開發,漸漸地衰退了。On the other hand, due to the mature development of large-scale synchrotron accelerators, high-energy proton accelerators, and linear electron and proton colliders in recent years, the electron-trap accelerator (ERA) that accelerates to hundreds of GeV or TeV fields with electrons and protons is used. Research and development have gradually declined.

因此,本發明的主要發明目的,即在提供一種以鐳射瞬間生成高密度中空電子雲的方法及裝置,不需要將電子束射入(injection)到縱向磁場中以形成電子圈,可以解決前面所述的大電流電子圈加速器(ERA)有電子射線不穩定性的問題。Therefore, the main object of the present invention is to provide a method and apparatus for instantaneously generating a high-density hollow electron cloud by laser, which does not require injection of an electron beam into a longitudinal magnetic field to form an electron circle, thereby solving the foregoing The high current electron ring accelerator (ERA) described has the problem of electron ray instability.

本發明的以鐳射瞬間生成高密度中空電子雲的方法,是利用2組鐳射裝置投射不同波長的鐳射光束,分別投射到位於中央的離子標靶源及包圍在外圍的電子發生源,使得電子發生源瞬間生成中空狀或中空圓筒狀電子聚束(或稱電子束團或電子雲),以捕獲離子標靶源瞬間生成的離子束團(ion bunch),且封入在所生成的電子聚束之內,在極短距離內可加速到百MeV/m以上。The method for instantaneously generating a high-density hollow electron cloud by laser is to use two sets of laser devices to project laser beams of different wavelengths, respectively, and project them to a centrally located ion target source and an electron source surrounded by the periphery, so that electron generation occurs. The source instantaneously generates a hollow or hollow cylindrical electron bunch (or electron bunch or electron cloud) to capture an ion bunch instantaneously generated by the ion target source, and is enclosed in the generated electron bunching Within a very short distance, it can be accelerated to more than 100 MeV/m.

根據以上所述,本發明所示的以鐳射瞬間生成高密度中空電子雲的裝置,包括:一第一鐳射裝置,用於射出鐳射光束且使電子發生源瞬間生成電子雲;一第二鐳射裝置,用於射出鐳射光束且使得離子發生源瞬間生成離子束團;一環狀光學陰極,接受所述第一鐳射裝置射出的鐳射光束瞬間生成中空狀或中空圓筒狀電子雲;一離子標靶源,設於所述環狀光學陰極的中央與所述環狀光學陰極形成同心圓,且接受所述第二鐳射裝置射出的鐳射光束瞬間生成被封入在所述中空狀或中空圓筒狀電子雲之內的離子束團。According to the above, the apparatus for generating a high-density hollow electron cloud by laser in the present invention includes: a first laser device for emitting a laser beam and causing an electron generating source to instantaneously generate an electron cloud; and a second laser device , for emitting a laser beam and causing the ion generating source to instantaneously generate an ion beam group; an annular optical cathode receiving a laser beam emitted by the first laser device to instantaneously generate a hollow or hollow cylindrical electron cloud; an ion target a source disposed at a center of the annular optical cathode and forming a concentric circle with the annular optical cathode, and a laser beam emitted by the second laser device is instantaneously generated and enclosed in the hollow or hollow cylindrical electron An ion cluster within the cloud.

本發明的以鐳射瞬間生成高密度中空電子雲的裝置,具有以下優點:完全沒有電子射線不穩定性的問題、可極短距離加速離子及縮短加速器體積,可以應用於實現放射線耐腫瘤治療的桌上型治療用加速器。The device for instantaneously generating a high-density hollow electron cloud by laser has the following advantages: no problem of electron beam instability, acceleration of ions at a very short distance, and shortening of an accelerator volume, and can be applied to a table for implementing radiation-resistant tumor treatment. Upper type therapy accelerator.

如圖2及圖3所示,本發明所示的以鐳射瞬間生成高密度中空電子雲的裝置10,包括一第一鐳射裝置20、一第二鐳射裝置30、一離子標靶源40及一環狀光學陰極50,其中,所述離子標靶源40設於所述環狀光學陰極50的中央,且與所述環狀光學陰極50形成同心圓。As shown in FIG. 2 and FIG. 3, the apparatus 10 for generating a high-density hollow electron cloud by laser in the present invention includes a first laser device 20, a second laser device 30, an ion target source 40, and a The annular optical cathode 50 is provided at the center of the annular optical cathode 50 and is concentric with the annular optical cathode 50.

所述第一鐳射裝置20,用於射出預定波長的鐳射光束25,且所射出的鐳射光束25照射到所述環狀光學陰極50等電子發生源的時候,適合使電子發生源瞬間生成電子雲。The first laser device 20 is configured to emit a laser beam 25 of a predetermined wavelength, and when the emitted laser beam 25 is irradiated to an electron generating source such as the annular optical cathode 50, it is suitable for generating an electron cloud instantaneously by the electron generating source. .

所述第一鐳射裝置20的最佳實施例,是根據光學透鏡的材質和幾何構造的適當設計,使得射出的鐳射光束25的中心部26的光強度為零或較弱。The preferred embodiment of the first laser device 20 is suitably designed such that the light intensity of the central portion 26 of the emitted laser beam 25 is zero or weak, depending on the material and geometric configuration of the optical lens.

所述第二鐳射裝置30,用於射出預定波長的鐳射光束30,但所射出的鐳射光束30的波長不同於第一鐳射裝置20的鐳射光束25,且適合使得離子發生源瞬間生成離子束團。The second laser device 30 is configured to emit a laser beam 30 of a predetermined wavelength, but the wavelength of the emitted laser beam 30 is different from the laser beam 25 of the first laser device 20, and is suitable for the ion generation source to instantaneously generate an ion beam group. .

所述離子標靶源40作為當離子發生源使用,設於所述環狀光學陰極50的中央,形成所述環狀光學陰極50的標靶,當接受所述第二鐳射裝置30射出的鐳射光束35時會瞬間生成離子束團65。The ion target source 40 is used as an ion generating source, and is disposed at the center of the annular optical cathode 50 to form a target of the annular optical cathode 50, and receives the laser emitted from the second laser device 30. The ion beam cluster 65 is instantaneously generated when the light beam 35 is emitted.

所述環狀光學陰極50作為當電子發生源使用,且包圍在所述離子標靶源40的外圍,當電子發生源接受第一鐳射裝置20射出的鐳射光束25時會瞬間生成高密度的中空狀或中空圓筒狀電子雲60,且利用本身的潛在能量(clone potential)迅速捕獲從所述離子標靶源40瞬間生成的離子束團65,並且將其封入在所生成的中空狀或中空圓筒狀電子雲60之內。The annular optical cathode 50 is used as an electron generating source and surrounds the periphery of the ion target source 40. When the electron generating source receives the laser beam 25 emitted from the first laser device 20, a high-density hollow is instantaneously generated. a hollow or cylindrical electron cloud 60, and rapidly capturing the ion cluster 65 instantaneously generated from the ion target source 40 by its own clone potential, and enclosing it in the generated hollow or hollow Within the cylindrical electron cloud 60.

所述中空圓筒狀電子雲60的圓筒狀長度是短的話,與習知電子圈加速器(ERA)的電子圈形狀一致。而且,所述中空狀或中空圓筒狀電子雲60和被捕獲的所述離子束團65,當通過RF電場或電子圈加速器(ERA)的磁場擴張加速(magnetic expansion acceleration)時,可以實現引出和瞬間加速至光速,且利用貝克斯勒等人所發表的提案,可以分離加速後的中空圓筒狀電子雲60和高能量離子束團65。When the cylindrical length of the hollow cylindrical electron cloud 60 is short, it conforms to the shape of the electronic ring of the conventional electron ring accelerator (ERA). Moreover, the hollow or hollow cylindrical electron cloud 60 and the captured ion cluster 65 can be extracted when subjected to magnetic field acceleration by an RF electric field or an electron ring accelerator (ERA). And instantaneously accelerating to the speed of light, and the accelerated hollow cylindrical electron cloud 60 and high energy ion beam cluster 65 can be separated by the proposal published by Bessler et al.

所述離子束團65的能量(energy),係根據中空圓筒狀電子雲60和離子束團65在空間、時間上的位置關係,主要視所述中空圓筒狀電子雲60的電子數以及其能保持有多少離子束團65而定。所以,藉第一鐳射裝置20及第二鐳射裝置30的空間位置及構造、以及所述第一鐳射裝置20及所述第二鐳射裝置30的二條鐳射光束25、35的投射時間,可以調整及控制中空圓筒狀電子雲60和離子束團65的生成時間,並且對於加速後的離子束團65的能量(energy)可以進行設定。The energy of the ion cluster 65 is based on the spatial and temporal positional relationship between the hollow cylindrical electron cloud 60 and the ion cluster 65, mainly depending on the number of electrons of the hollow cylindrical electron cloud 60 and It can be determined by how many ion clusters 65 are held. Therefore, the spatial position and structure of the first laser device 20 and the second laser device 30, and the projection times of the two laser beams 25 and 35 of the first laser device 20 and the second laser device 30 can be adjusted. The generation time of the hollow cylindrical electron cloud 60 and the ion cluster 65 is controlled, and the energy of the accelerated ion cluster 65 can be set.

根據以上所述,本發明的以鐳射瞬間生成高密度中空電子雲的方法,包括以下步驟:According to the above, the method for instantaneously generating a high-density hollow electron cloud by laser according to the present invention comprises the following steps:

a)使用2組鐳射裝置20、30投射不同波長的鐳射光束;a) projecting laser beams of different wavelengths using two sets of laser devices 20, 30;

b)其中一組鐳射裝置30投射鐳射光束35到位於中央的極小尺寸的離子標靶源40以瞬間生成的離子束團65;b) one set of laser devices 30 projecting the laser beam 35 to the centrally located very small size ion target source 40 to instantaneously generate ion clusters 65;

c)另一組鐳射裝置20投射鐳射光束25到構成同心圓但包圍在離子標靶源40外圍的電子發生源(具體實施例為使用環狀光學陰極50)以瞬間生成中空狀或中空圓筒狀電子雲60;d)利用所述中空狀或中空圓筒狀電子雲60捕獲所述離子束團65 ,且封入在所述中空狀或中空圓筒狀電子雲60之內。c) another set of laser devices 20 project a laser beam 25 to an electron generating source that constitutes a concentric circle but surrounds the periphery of the ion target source 40 (in particular, an annular optical cathode 50 is used) to instantaneously generate a hollow or hollow cylinder An electron cloud 60; d) capturing the ion cluster 65 using the hollow or hollow cylindrical electron cloud 60 And enclosed within the hollow or hollow cylindrical electron cloud 60.

本發明實現中空狀或中空圓筒狀電子雲60的具體方法,除了前面所述方法之外,另一種方法,為利用電子和離子同心圓狀發生構造的中空的静的圓筒電子雲(hollow beam)離子射線的生成方法。對同心圓的外側部分,陰極電極的形狀做成環型,且以静電場引出大電流電子射線。在陰極本體不發生離子的狀態下,利用冷束同步源(Cold Beam synchrotron Source,CBS)技術可以實現更強大電流的圓筒電子雲。The specific method for realizing the hollow or hollow cylindrical electron cloud 60 of the present invention, in addition to the method described above, another method is a hollow static cylindrical electron cloud (hollow) constructed by using electrons and ions concentrically. Beam) A method of generating ion rays. For the outer portion of the concentric circle, the shape of the cathode electrode is formed into a ring shape, and a large current electron beam is extracted by an electrostatic field. A cylindrical electron cloud with a more powerful current can be realized by the Cold Beam synchrotron source (CBS) technology in a state where no ions are generated in the cathode body.

根據本發明的以鐳射瞬間生成高密度中空電子雲的方法所生成的圈餅(doughnut)狀中空電子雲,譬如,圈餅(doughnut)狀中空電子雲的大半徑為R、小半徑為a、電子聚束中的電子數為Ne,則在圈餅狀中空電子雲的電場大小Emax(或稱為保持力(holding power))的計算方法為: According to the present invention, a doughnut-shaped hollow electron cloud generated by a method of instantaneously generating a high-density hollow electron cloud by laser, for example, a doughnut-shaped hollow electron cloud having a large radius of R and a small radius of a, The number of electrons in the electron bunching is Ne, and the electric field size Emax (or called holding power) in the bubble-shaped hollow electron cloud is calculated as:

將電荷以及誘電率值代入 Substitute the charge and the value of the induction rate

舉R=0.46cm、a=0.1cm以及N=1013 為例,經過計算可取得Emax =1,000MV/m。這是對應電子雲保持力的電場,表示出被封入的離子能量的最大數值。因此,内藏離子束團65的中空狀或中空圓筒狀電子雲60的加速,可利用通過RF電場或電子圈加速器(ERA)的磁場擴張加速(magnetic expansion acceleration)瞬間加速至光速。Taking R = 0.46 cm, a = 0.1 cm, and N = 10 13 as an example, E max = 1,000 MV/m can be obtained by calculation. This is the electric field corresponding to the electron cloud holding force, indicating the maximum value of the enclosed ion energy. Therefore, the acceleration of the hollow or hollow cylindrical electron cloud 60 in which the ion clusters 65 are contained can be instantaneously accelerated to the speed of light by the magnetic field acceleration of the RF electric field or the electron beam accelerator (ERA).

本發明所示的以鐳射瞬間生成高密度中空電子雲的裝置10,具有極短距離使離子加速的優點,可以實現更加精簡化縮短加速器的體積,可應用於人體的高生命品質(Quality Of Life,QOL)癌治療裝置上,例如,可以應用於實現放射線耐腫瘤治療的桌上型治療用加速器(在此所稱的桌上型加速器尺寸,意指可放入既有病院的放射線照射室裝置的尺寸而言)。The device 10 for instantaneously generating a high-density hollow electron cloud by laser has the advantages of accelerating ions at a very short distance, and can realize a more simplified and shortened volume of the accelerator, and can be applied to a human body with high quality of life (Quality Of Life) , QOL) cancer treatment device, for example, can be applied to a desktop type therapeutic accelerator for achieving radiation-resistant tumor treatment (referred to herein as a desktop accelerator size, meaning a radiation irradiation room device that can be placed in an existing hospital) In terms of size).

舉例來說,身體深部(30cm以下)的耐放射線腫瘤的重離子線治療,每個核子的重離子線的能量有400MeV/u以上則可。在這種條件下,應用本發明的以鐳射瞬間生成高密度中空電子雲的裝置10設計完成的加速器,其整體加速器的本體部分長度僅2m左右,縱使經過強化放射線遮蔽,仍然可在原有病院內設置本體部分長度僅2m左右的重離子線治療裝置。For example, in the deep body (30 cm or less) of radiation-resistant tumor heavy ion line therapy, the energy of the heavy ion line of each nucleus may be 400 MeV/u or more. Under such conditions, the accelerator designed by the device 10 for generating a high-density hollow electron cloud by laser in the instant of the present invention has a body portion of only 2 m in length, which can still be in the original hospital even after being shielded by enhanced radiation. A heavy ion treatment device having a body portion length of only about 2 m is provided.

而且,本體部分長度僅2m左右的重離子線治療裝置,可設計成具獨立分切交換重離子射線和電子射線功能,因此它可作為標靶照射、強大電子射線X線源、且適用在癌患者的確認位置、位置監測、臟器跳動監測等,在腫瘤治療時,還具有定位、現時同步監測及治療三種功能。Moreover, the heavy ion treatment device with a body portion length of only about 2 m can be designed to have independent slitting and exchange of heavy ion beam and electron beam function, so it can be used as a target irradiation, a strong electron beam X-ray source, and is suitable for cancer. The patient's confirmed position, position monitoring, organ pulsation monitoring, etc., also have three functions of positioning, current simultaneous monitoring and treatment during tumor treatment.

此外,所述本體部分長度僅2m左右的重離子線治療裝置,其重量輕性且尺寸精確,平面上的回轉自由度很高,且容易回轉。該回轉軸的周圍360度的任何一個方向均可射出重離子射線的緣故,與同步輻射加速器和迴旋加速器等的圓形加速器的情況相異,不需使用偏向電磁鐵等,故在複數的治療室,可在短時間內切換射線路線,射線也可被分時段分享利用。In addition, the heavy ion treatment device having a body portion length of only about 2 m is light in weight and accurate in size, and has a high degree of freedom in rotation on a plane and is easy to rotate. The direction of the heavy ion beam can be emitted in any direction of 360 degrees around the rotary axis, which is different from the case of a circular accelerator such as a synchrotron accelerator and a cyclotron, and does not require a biasing electromagnet or the like, so that the plurality of treatments The room can switch the ray route in a short time, and the ray can also be shared and used in different time periods.

倘若將所述重離子線治療裝置的加速器設計成線型加速器,還可增加離子射線射出的來回次數,使得每個脈衝(pulse)的離子數不多,連帶地受到射線負載(beam loading)影響而導致於會減少加速電場強度的因素也會變小。If the accelerator of the heavy ion treatment device is designed as a linear accelerator, the number of times of ion beam emission can be increased, so that the number of ions per pulse is small, and the beam loading is affected by the beam loading. The factors that cause the acceleration of the electric field to be reduced are also reduced.

以上所揭示的內容,乃本發明較佳的具體實施例,舉凡與本發明的發明目的與所能達成的效果,係構成所謂的等效或均等,且屬為熟習該項技術者能夠輕易完成的簡易修改、修飾、改良或變化,應俱不脫離本發明得以涵蓋主張的專利權範疇。The above disclosure is a preferred embodiment of the present invention, and the effects achievable with the object of the present invention constitute a so-called equivalent or equal, and can be easily accomplished by those skilled in the art. Any simplifications, modifications, improvements, or variations of the invention may be made without departing from the scope of the claimed invention.

10...以鐳射瞬間生成高密度中空電子雲的裝置10. . . Device for generating high-density hollow electron cloud instantaneously by laser

20...第一鐳射裝置20. . . First laser device

25...鐳射光束25. . . Laser beam

26...中心部26. . . Central department

30...第二鐳射裝置30. . . Second laser device

35...鐳射光束35. . . Laser beam

40...離子標靶源40. . . Ion target source

50...環狀光學陰極50. . . Annular optical cathode

60...中空電子雲60. . . Hollow electron cloud

65...離子束團65. . . Ion bunch

圖1為電子圈加速器的習知結構示意圖。FIG. 1 is a schematic diagram of a conventional structure of an electron ring accelerator.

圖2為本發明以鐳射瞬間生成高密度中空電子雲的裝置結構示意圖。2 is a schematic view showing the structure of an apparatus for instantaneously generating a high-density hollow electron cloud by laser.

圖3為圖2所生成的中空電子雲的示意圖。3 is a schematic diagram of the hollow electron cloud generated by FIG. 2.

10...以鐳射瞬間生成高密度中空電子雲的裝置10. . . Device for generating high-density hollow electron cloud instantaneously by laser

20...第一鐳射裝置20. . . First laser device

25...鐳射光束25. . . Laser beam

26...中心部26. . . Central department

30...第二鐳射裝置30. . . Second laser device

35...鐳射光束35. . . Laser beam

40...離子標靶源40. . . Ion target source

50...環狀光學陰極50. . . Annular optical cathode

60...中空電子雲60. . . Hollow electron cloud

65...離子束團65. . . Ion bunch

Claims (4)

一種以鐳射瞬間生成高密度中空電子雲的裝置,包括:一第一鐳射裝置,用於射出鐳射光束且使電子發生源瞬間生成電子雲;一第二鐳射裝置,用於射出鐳射光束且使得離子發生源瞬間生成離子束團;一環狀光學陰極,接受所述第一鐳射裝置射出的鐳射光束瞬間生成中空狀或中空圓筒狀電子雲;一離子標靶源,設於所述環狀光學陰極的中央與所述環狀光學陰極形成同心圓,且接受所述第二鐳射裝置射出的鐳射光束瞬間生成被捕獲且封入在所述中空狀或中空圓筒狀電子雲之內的離子束團。A device for instantaneously generating a high-density hollow electron cloud by laser, comprising: a first laser device for emitting a laser beam and causing an electron generating source to instantaneously generate an electron cloud; and a second laser device for emitting a laser beam and causing the ion Generating an ion beam cluster instantaneously; a ring-shaped optical cathode receives a laser beam emitted from the first laser device to instantaneously generate a hollow or hollow cylindrical electron cloud; an ion target source is disposed at the ring-shaped optical The center of the cathode forms a concentric circle with the annular optical cathode, and the laser beam emitted by the second laser device instantaneously generates an ion cluster that is trapped and enclosed in the hollow or hollow cylindrical electron cloud. . 如申請專利範圍第1項所述之以鐳射瞬間生成高密度中空電子雲的裝置,其中,所述第一鐳射裝置射出的鐳射光束的中心部光強度為零。An apparatus for instantaneously generating a high-density hollow electron cloud by laser according to the first aspect of the invention, wherein the central portion of the laser beam emitted from the first laser device has a light intensity of zero. 一種以鐳射瞬間生成高密度中空電子雲的方法,其特徵在於,包括以下步驟:a)使用2組鐳射裝置投射不同波長的鐳射光束;b)其中一組鐳射裝置投射鐳射光束到位於中央的離子標靶源,以瞬間生成的離子束團;c)另一組鐳射裝置投射鐳射光束到構成同心圓但包圍在離子標靶源外圍的環狀光學陰極,以瞬間生成中空狀或中空圓筒狀電子雲;d)利用所述中空狀或中空圓筒狀電子雲捕獲所述離子束團,且封入在所述中空狀或中空圓筒狀電子雲之內。A method for instantaneously generating a high-density hollow electron cloud by laser, comprising the steps of: a) projecting laser beams of different wavelengths using two sets of laser devices; b) one of the laser devices projecting the laser beam to the centrally located ion The target source is an instantaneously generated ion beam cluster; c) another group of laser devices project a laser beam to a ring-shaped optical cathode that forms a concentric circle but surrounds the periphery of the ion target source to instantaneously generate a hollow or hollow cylindrical shape An electron cloud; d) capturing the ion cluster by the hollow or hollow cylindrical electron cloud and enclosing it within the hollow or hollow cylindrical electron cloud. 如申請專利範圍第3項所述之以鐳射瞬間生成高密度中空電子雲的方法,其中,所述內含離子束團的中空狀或中空圓筒狀電子雲,經過RF電場或電子圈加速器(ERA)的磁場擴張加速方式引出及加速所述離子束團。A method for instantaneously generating a high-density hollow electron cloud by laser, as described in claim 3, wherein the hollow or hollow cylindrical electron cloud containing the ion cluster is subjected to an RF electric field or an electron ring accelerator ( The magnetic field expansion of ERA) accelerates and accelerates the ion cluster.
TW98114111A 2009-04-28 2009-04-28 A method and apparatus for generating high density hollow electron cloud instantaneously by laser TWI423738B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98114111A TWI423738B (en) 2009-04-28 2009-04-28 A method and apparatus for generating high density hollow electron cloud instantaneously by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98114111A TWI423738B (en) 2009-04-28 2009-04-28 A method and apparatus for generating high density hollow electron cloud instantaneously by laser

Publications (2)

Publication Number Publication Date
TW201039699A TW201039699A (en) 2010-11-01
TWI423738B true TWI423738B (en) 2014-01-11

Family

ID=44995646

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98114111A TWI423738B (en) 2009-04-28 2009-04-28 A method and apparatus for generating high density hollow electron cloud instantaneously by laser

Country Status (1)

Country Link
TW (1) TWI423738B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190117970A1 (en) * 2017-10-23 2019-04-25 Cardiac Pacemakers, Inc. Electric field shaping leads for treatment of cancer
US11338135B2 (en) 2017-10-23 2022-05-24 Cardiac Pacemakers, Inc. Medical devices for cancer therapy with electric field shaping elements
JP2022530872A (en) 2019-04-22 2022-07-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Electrical stimulation device for cancer treatment
US11420049B2 (en) 2019-04-22 2022-08-23 Boston Scientific Scimed, Inc. Systems for administering electrical stimulation to treat cancer
EP3958960A1 (en) 2019-04-23 2022-03-02 Boston Scientific Scimed Inc. Electrical stimulation with thermal treatment or thermal monitoring
WO2020219517A2 (en) 2019-04-23 2020-10-29 Boston Scientific Scimed, Inc. Electrical stimulation for cancer treatment with internal and external electrodes
EP3958956B1 (en) 2019-04-23 2024-02-28 Boston Scientific Scimed Inc. Electrodes for electrical stimulation to treat cancer
EP4110455A1 (en) 2020-02-24 2023-01-04 Boston Scientific Scimed, Inc. Systems and methods for treatment of pancreatic cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086084A2 (en) * 2004-12-22 2006-08-17 Fox Chase Cancer Center Target design for high-power laser accelerated ions
TW200742507A (en) * 2006-04-26 2007-11-01 Virgin Islands Microsystems Charged particle acceleration apparatus and method
JP2008198566A (en) * 2007-02-15 2008-08-28 Japan Atomic Energy Agency Ion accelerating method and device
TW200841776A (en) * 2006-10-24 2008-10-16 L Livermore Nat Security Llc Compact accelerator for medical therapy
JP2009014671A (en) * 2007-07-09 2009-01-22 Hamamatsu Photonics Kk Target for laser plasma ion source, and laser plasma ion generating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086084A2 (en) * 2004-12-22 2006-08-17 Fox Chase Cancer Center Target design for high-power laser accelerated ions
TW200742507A (en) * 2006-04-26 2007-11-01 Virgin Islands Microsystems Charged particle acceleration apparatus and method
TW200841776A (en) * 2006-10-24 2008-10-16 L Livermore Nat Security Llc Compact accelerator for medical therapy
JP2008198566A (en) * 2007-02-15 2008-08-28 Japan Atomic Energy Agency Ion accelerating method and device
JP2009014671A (en) * 2007-07-09 2009-01-22 Hamamatsu Photonics Kk Target for laser plasma ion source, and laser plasma ion generating apparatus

Also Published As

Publication number Publication date
TW201039699A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
TWI423738B (en) A method and apparatus for generating high density hollow electron cloud instantaneously by laser
CN104001270B (en) Extrahigh energy electron beam or photon beam radiation treatment robot system
US20200219694A1 (en) Bremsstrahlung target for radiation therapy system
JP5450602B2 (en) Tumor treatment device for treating tumor using charged particles accelerated by synchrotron
RU2416439C2 (en) Electron beam and x-ray beam generator for interstitial and intraoperative radiation therapy
JP6256974B2 (en) Charged particle beam system
US20110085632A1 (en) Systems and methods for magnetically assisted inertial electrostatic confinement fusion
US8835870B2 (en) Targets for generating ions and treatment apparatuses using the targets
JP2015084886A5 (en)
KR20130110994A (en) Target for generating ion and treatment apparatus using the same
JP6465677B2 (en) Boron Neutron Capture Therapy System
JP6947934B2 (en) Neutron capture therapy system
Balakin et al. Status of the proton therapy complex Prometheus
JP2010251275A (en) Ion collective accelerator and application thereof
JP2018057858A (en) Particle therapy apparatus comprising mri
JP2015144846A (en) Charged particle beam acceleration method and device as part of charged particle cancer treatment system
WO2019015412A1 (en) X-ray focusing method and apparatus, and a radiotherapy device
CN103188860B (en) The laser target accelerating for generation of ion
JP2004132718A (en) Inertial electrostatic confinement nuclear fusion system
JP6266092B2 (en) Particle beam therapy system
Masuda et al. Numerical study of ion recirculation in an improved spherical inertial electrostatic confinement fusion scheme by use of a multistage high voltage feedthrough
US8796639B2 (en) Target for generating positive ions, method of fabricating the same, and treatment apparatus using the target
JP6042226B2 (en) Accelerator and Neutron Capture Therapy Device
JP3839652B2 (en) Charged particle acceleration magnet using permanent magnet and high magnetic field circular charged particle accelerator
CN101702867A (en) Method for instantaneously generating high density hollow electron cloud by using laser and device thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees