TWI423611B - Wireless communication apparatus and wireless communication method - Google Patents

Wireless communication apparatus and wireless communication method Download PDF

Info

Publication number
TWI423611B
TWI423611B TW98133344A TW98133344A TWI423611B TW I423611 B TWI423611 B TW I423611B TW 98133344 A TW98133344 A TW 98133344A TW 98133344 A TW98133344 A TW 98133344A TW I423611 B TWI423611 B TW I423611B
Authority
TW
Taiwan
Prior art keywords
signal
processing
unit
wireless communication
wireless
Prior art date
Application number
TW98133344A
Other languages
Chinese (zh)
Other versions
TW201112668A (en
Inventor
Tetsuya Yano
Yoshihiro Kawasaki
Yoshinori Tanaka
Shunji Miyazaki
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW98133344A priority Critical patent/TWI423611B/en
Publication of TW201112668A publication Critical patent/TW201112668A/en
Application granted granted Critical
Publication of TWI423611B publication Critical patent/TWI423611B/en

Links

Description

無線通訊裝置及無線通訊方法Wireless communication device and wireless communication method 發明領域Field of invention

本發明係關於一種無線通訊裝置及無線通訊方法。The present invention relates to a wireless communication device and a wireless communication method.

發明背景Background of the invention

現今廣泛利用行動電話系統或無線LAN(Local Area Network:區域網路)等無線通訊系統。關於無線通訊技術,為使通訊速度與通訊品質更提升而頻繁地進行下一代技術的討論。此類無線通訊技術包括可於2個無線通訊裝置之間(例如無線基地台與行動台之間),利用複數載波進行通訊之技術。有時稱利用複數載波為載波結合,該情況下之各載波有時稱為成分載波。Wireless communication systems such as mobile phone systems or wireless LANs (Local Area Networks) are widely used today. With regard to wireless communication technology, discussions on next-generation technologies are frequently conducted to improve communication speed and communication quality. Such wireless communication technologies include techniques for communicating over a plurality of wireless communication devices (eg, between a wireless base station and a mobile station) using a plurality of carriers. It is sometimes said that a complex carrier is used for carrier combining, and in this case, each carrier is sometimes referred to as a component carrier.

於無線通訊中,一無線通訊裝置有時向另一無線通訊裝置傳送控制訊號。作為控制訊號而傳達之資訊,可能包含對方裝置用以接收我方裝置所傳送資料而參考之資訊(例如表示使用於資料傳送之格式之資訊)。又,亦可能包含指定對方裝置傳送資料時之傳送方法之資訊(例如指定應使用於資料傳送之格式之資訊)。例如從無線基地台傳達至行動台之資訊,可能包含行動台接收下行資料通道時所參考的資訊、或行動台傳送上行資料通道時所參考的資訊。In wireless communication, a wireless communication device sometimes transmits a control signal to another wireless communication device. The information conveyed as a control signal may include information that the other device uses to receive information transmitted by our device (for example, information indicating the format used for data transmission). It may also contain information specifying the method of transmission when the other party's device transmits the data (for example, specifying the information that should be used in the format of the data transmission). For example, the information transmitted from the wireless base station to the mobile station may include information that the mobile station refers to when receiving the downlink data channel, or information that the mobile station refers to when transmitting the uplink data channel.

在此,亦可考慮在2個無線通訊裝置之間,利用複數載波進行無線通訊的情況下,用於控制訊號傳送之無線資源與用於該控制訊號適用對象之資料收發之無線資源屬於不同載波的情況。該情況下構成問題者在於,識別控制訊號為適用於何載波之訊號之方法。Here, in the case where wireless communication is performed using a plurality of carriers between two wireless communication devices, the radio resources for controlling signal transmission and the radio resources for data transmission and reception of the control signal application object belong to different carriers. Case. The problem in this case lies in the method of identifying the signal to which the control signal is applied.

作為識別方法之一,已提案一種於控制訊號附加載波識別用之位元(載波指示元),以明示適用對象之載波的方法(參考例如非專利文獻1之第15.4章節)。又,已提案一種識別方法,其係適用在以與分配給通訊對象之行動台之ID(IDentifier:識別符)相應的攪碼序列,將附加於控制訊號之CRC(Cyclic Redundancy Check:循環冗餘檢查)位元進行攪碼處理之無線基地台(參考例如非專利文獻2)。於該方法中,對各行動台僅分配載波數之ID,以與任一ID相應之攪碼序列,將CRC位元進行攪碼處理,藉此可從CRC同時識別行動台與適用對象之載波。As one of the identification methods, a method of adding a carrier (carrier indicator) for carrier identification to a control signal to indicate a carrier to be applied has been proposed (refer to, for example, Section 15.4 of Non-Patent Document 1). Further, a recognition method has been proposed which is applied to a CRC (Cyclic Redundancy Check) attached to a control signal in a codec sequence corresponding to an ID (IDentifier: identifier) of a mobile station assigned to a communication object. The radio base station in which the bit is subjected to the scramble processing is checked (refer to, for example, Non-Patent Document 2). In the method, only the ID of the number of carriers is allocated to each mobile station, and the CRC bits are subjected to the codec processing by the codec sequence corresponding to any ID, thereby simultaneously identifying the carrier of the mobile station and the applicable object from the CRC. .

先行技術文獻Advanced technical literature 非專利文獻Non-patent literature

非專利文獻1:3GPP(3rd Generation Partnership Project),“Final Report of 3GPP TSG-RAN WG1 #57 v1. 0.0”,TSG RAN WG1 #57bis,R1-092292,July 2009.Non-Patent Document 1: 3GPP (3rd Generation Partnership Project), "Final Report of 3GPP TSG-RAN WG1 #57 v1. 0.0", TSG RAN WG1 #57bis, R1-092292, July 2009.

非專利文獻2:3GPP(3rd Generation Partnership Project),“Control signal for carrier aggregation”,TSG-RAN WG1 #55bis,R1-090375,Jan. 2009.Non-Patent Document 2: 3GPP (3rd Generation Partnership Project), "Control signal for carrier aggregation", TSG-RAN WG1 #55bis, R1-090375, Jan. 2009.

然而,非專利文獻1所記載的方法具有為了將載波指示元附加於控制訊號而額外地消耗無線資源,控制訊號之傳送效率降低的問題。又,非專利文獻2所記載的方法係對每通訊對象,分配與載波同數之ID,ID耗盡因而構成問題。ID之位元串列之長度固定的情況下,可並行地通訊之通訊對象數之上限變小。例如可使用5個載波的情況下,與僅利用1個載波的情況相比,通訊對象數之上限可能成為1/5。However, the method described in Non-Patent Document 1 has a problem that the radio frequency resource is additionally consumed in order to add a carrier indicator element to the control signal, and the transmission efficiency of the control signal is lowered. Further, in the method described in Non-Patent Document 2, the ID of the same number as the carrier is assigned to each communication target, and the ID is exhausted, which poses a problem. When the length of the bit string of the ID is fixed, the upper limit of the number of communication objects that can be communicated in parallel becomes small. For example, when five carriers are used, the upper limit of the number of communication objects may be 1/5 as compared with the case of using only one carrier.

又,會出現以另外的控制訊號,通知表示上述控制訊號與資料通道之邊界之資訊的情況。該情況下,於無法正確接收上述另外的控制訊號的情況時,由於無法正確檢測控制訊號與資料通道之邊界,因此會有無法正確接收資料通道的問題。In addition, there will be another control signal to inform the information indicating the boundary between the control signal and the data channel. In this case, when the above-mentioned additional control signal cannot be correctly received, since the boundary between the control signal and the data channel cannot be correctly detected, there is a problem that the data channel cannot be correctly received.

就本發明之一態樣而言,本發明之目的在於提供一種無線通訊裝置及無線通訊方法,其係可有效率地向通訊對象,通知從複數無線資源所選擇的處理對象之無線資源。In one aspect of the present invention, an object of the present invention is to provide a wireless communication device and a wireless communication method capable of efficiently notifying a communication target of a wireless resource of a processing target selected from a plurality of wireless resources.

作為第1態樣而提供一種無線通訊裝置,其係以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號。該無線通訊裝置具有訊號生成部及傳送部。訊號生成部係生成用於其他無線通訊裝置所進行之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號,並生成包含第1訊號及第2訊號,且一部分區間之訊號經進行攪碼處理之第3訊號。於攪碼處理中,於對應複數第2無線資源且互異之複數區間中,選擇與用到第1訊號之處理的對象之第2無線資源對應之區間,並對所選擇區間之訊號進行攪碼處理。傳送部係以第1無線資源傳送生成之第3訊號。As a first aspect, there is provided a wireless communication device that transmits a signal for processing by a wireless communication device by any of a plurality of second wireless resources by a first wireless resource. The wireless communication device has a signal generation unit and a transmission unit. The signal generation unit generates a first signal for processing by another wireless communication device and a second signal for error detection of the first signal, and generates a signal including a first signal and a second signal, and a part of the interval The third signal subjected to the agitation process. In the codec processing, the section corresponding to the second radio resource to be processed by the first signal is selected in the complex section corresponding to the plurality of second radio resources, and the signal of the selected section is stirred. Code processing. The transmitting unit transmits the third signal generated by the first radio resource.

作為第2態樣而提供一種無線通訊裝置,其係以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號。該無線通訊裝置具有訊號生成部及傳送部。訊號生成部係生成用於其他無線通訊裝置所進行之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號,並生成包含第1訊號及第2訊號,且至少第1訊號之一部分經進行攪碼處理之第3訊號。於攪碼處理中,利用對應複數第2無線資源且互異之複數攪碼序列中,與用到第1訊號之處理的對象之第2無線資源對應之攪碼序列。傳送部係以第1無線資源傳送生成之第3訊號。As a second aspect, there is provided a wireless communication device that transmits a signal for processing by a wireless communication device to any of a plurality of second wireless resources by a first wireless resource. The wireless communication device has a signal generation unit and a transmission unit. The signal generation unit generates a first signal for processing by another wireless communication device and a second signal for error detection of the first signal, and generates a first signal and a second signal, and at least the first signal A part of the third signal subjected to the agitation process. In the codec process, a codec sequence corresponding to the second radio resource to be processed by the first signal is used in the complex codec sequence corresponding to the plurality of second radio resources. The transmitting unit transmits the third signal generated by the first radio resource.

作為第3態樣而提供一種無線通訊裝置,其係以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號。該無線通訊裝置具有訊號生成部及傳送部。訊號生成部係生成用於其他無線通訊裝置所進行之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號,並生成在包含第1訊號及第2訊號之訊號串列之至少一部分區間內,已置換位元順序之第3訊號。於位元順序之置換中,按照對應複數第2無線資源且互異之複數置換方法中,與用到第1訊號之處理的對象之第2無線資源對應之置換方法。傳送部係以第1無線資源傳送生成之第3訊號。As a third aspect, there is provided a wireless communication device that transmits a signal for processing by a wireless communication device to any of a plurality of second wireless resources by using a first wireless resource. The wireless communication device has a signal generation unit and a transmission unit. The signal generating unit generates a first signal for processing by another wireless communication device and a second signal for error detection of the first signal, and generates a signal sequence including the first signal and the second signal. In at least part of the interval, the third signal of the bit order has been replaced. In the replacement of the bit order, the permutation method corresponding to the second radio resource to be processed by the first signal is used in the complex multiplication method corresponding to the plurality of second radio resources. The transmitting unit transmits the third signal generated by the first radio resource.

作為第4態樣而提供一種具有接收部及檢測部之無線通訊裝置。接收部係以第1無線資源,從其他無線通訊裝置,接收第3訊號,該第3訊號包含用於複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號,且一部分區間之訊號受到攪碼處理。檢測部係針對對應複數第2無線資源且互異之複數區間之各區間,將接收之第3訊號進行解攪碼處理,檢測與解攪碼處理後之錯誤檢測的結果符合預定條件之區間對應之第2無線資源,以作為用到第1訊號之處理的對象。As a fourth aspect, a wireless communication device having a receiving unit and a detecting unit is provided. The receiving unit receives the third signal from the other wireless communication device by using the first wireless resource, and the third signal includes the first signal for processing the processing of any of the plurality of second wireless resources, and the first signal for the first signal. The second signal of the error detection, and the signal of a part of the interval is subjected to the codec processing. The detection unit performs a de-agglomeration process on the received third signal for each of the plurality of mutually complex complex sections corresponding to the plurality of second radio resources, and detects that the result of the error detection after the de-coupling process is in accordance with a predetermined condition The second radio resource is used as a target for the processing of the first signal.

作為第5態樣而提供一種具有接收部及檢測部之無線通訊裝置。接收部係以第1無線資源,從其他無線通訊裝置,接收包含用於複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號,且至少第1訊號之一部分受到攪碼處理之第3訊號。檢測部係利用對應複數第2無線資源且互異之複數攪碼序列之各序列,將接收之第3訊號進行解攪碼處理,檢測與解攪碼處理後之錯誤檢測的結果符合預定條件之攪碼序列對應之第2無線資源,以作為用到第1訊號之處理的對象。As a fifth aspect, a wireless communication device having a receiving unit and a detecting unit is provided. The receiving unit receives the first signal including the processing for any one of the plurality of second radio resources and the second signal for the error detection of the first signal from the other wireless communication device by using the first radio resource, and At least one of the first signals is subjected to the third signal of the coded processing. The detecting unit performs the de-agglomeration processing on the received third signal by using each sequence of the complex second-frequency complex and the complex multi-coded sequence, and detects that the result of the error detection after the de-coalling process is in accordance with a predetermined condition. The second radio resource corresponding to the code sequence is used as the target of the process of using the first signal.

作為第6態樣而提供一種具有接收部及檢測部之無線通訊裝置。接收部係以第1無線資源,從其他無線通訊裝置,接收在包含用於複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號之訊號串列之至少一部分區間內,位元順序受到置換之第3訊號。檢測部係按照對應於複數第2無線資源且互異之複數重排方法之各方法,重排接收之第3訊號之位元順序,檢測與重排後之錯誤檢測的結果符合預定條件之重排方法對應之第2無線資源,以作為用到第1訊號之處理的對象。As a sixth aspect, a wireless communication device having a receiving unit and a detecting unit is provided. The receiving unit receives the first signal including the processing for any one of the plurality of second radio resources and the second signal for the error detection of the first signal from the other wireless communication device by the first radio resource. In at least a part of the interval of the signal sequence, the bit order is replaced by the third signal. The detecting unit rearranges the bit order of the received third signal according to each method corresponding to the plural second radio resource and the different complex rearrangement method, and detects that the result of the error detection after the rearrangement meets the predetermined condition The second radio resource corresponding to the row method is used as the object of the process of using the first signal.

作為第7態樣而提供一種無線通訊方法,其係利用第1無線資源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行。於該無線通訊方法,生成用於對複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號。生成第3訊號,該第3訊號包含第1訊號及第2訊號,且已將對應複數第2無線資源且互異之複數區間中,與用到第1訊號之處理的對象之第2無線資源對應之區間之訊號進行攪碼處理。以第1無線資源傳送第3訊號。針對複數區間之各區間,將接收之第3訊號進行解攪碼處理,檢測與解攪碼處理後之錯誤檢測的結果符合預定條件之區間對應之第2無線資源。對檢測到之第2無線資源,進行用到第1訊號之處理。As a seventh aspect, a wireless communication method is provided which is performed between a first wireless communication device and a second wireless communication device by using a first wireless resource and a plurality of second wireless resources. In the wireless communication method, a first signal for processing one of the plurality of second radio resources and a second signal for error detection of the first signal are generated. Generating a third signal, wherein the third signal includes the first signal and the second signal, and the second wireless resource corresponding to the plurality of second radio resources and the mutually different complex interval and the target used for processing the first signal The signal of the corresponding interval is subjected to the codec processing. The third signal is transmitted in the first radio resource. For each section of the complex section, the received third signal is subjected to descrambling processing, and the second radio resource corresponding to the section corresponding to the predetermined condition is detected as a result of the error detection after the de-glitching process. The first signal is processed for the detected second radio resource.

作為第8態樣而提供一種無線通訊方法,其係利用第1無線資源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行。於該無線通訊方法,生成用於對複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號。生成第3訊號,該第3訊號包含第1訊號及第2訊號,且已利用對應複數第2無線資源且互異之複數攪碼序列中,與用到第1訊號之處理的對象之第2無線資源對應之攪碼序列,將至少第1訊號之一部分進行攪碼處理。以第1無線資源傳送第3訊號。利用複數攪碼序列之各序列,將接收之第3訊號進行解攪碼處理,檢測與解攪碼處理後之錯誤檢測的結果符合預定條件之攪碼序列對應之第2無線資源。對檢測到之第2無線資源,進行用到第1訊號之處理。As a eighth aspect, a wireless communication method is provided which is performed between a first wireless communication device and a second wireless communication device by using a first wireless resource and a plurality of second wireless resources. In the wireless communication method, a first signal for processing one of the plurality of second radio resources and a second signal for error detection of the first signal are generated. Generating a third signal, wherein the third signal includes the first signal and the second signal, and the second and second plurality of radio resources corresponding to the plurality of radio resources are used, and the second object of the processing using the first signal is used. The agitation code sequence corresponding to the radio resource performs at least one part of the first signal to be coded. The third signal is transmitted in the first radio resource. The received third signal is subjected to descrambling processing using each sequence of the complex codec sequence, and the second radio resource corresponding to the coded sequence corresponding to the predetermined condition is detected as a result of the error detection after the de-glitching process. The first signal is processed for the detected second radio resource.

作為第9態樣而提供一種無線通訊方法,其係利用第1無線資源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行。於該無線通訊方法,生成用於對複數第2無線資源之任一者之處理之第1訊號、及用於第1訊號之錯誤檢測之第2訊號。生成第3訊號,該第3訊號包含第1訊號及第2訊號,且已利用對應複數第2無線資源且互異之複數置換方法中,與用到第1訊號之處理的對象之第2無線資源對應之置換方法,將至少一部分區間內之訊號之位元順序進行置換。以第1無線資源傳送第3訊號。按照對應複數置換方法之複數重排方法之各方法,重排接收之第3訊號之位元順序,檢測與重排後之錯誤檢測的結果符合預定條件之重排方法對應之第2無線資源。對檢測到之第2無線資源,進行用到第1訊號之處理。As a ninth aspect, a wireless communication method is provided which is performed between a first wireless communication device and a second wireless communication device by using a first wireless resource and a plurality of second wireless resources. In the wireless communication method, a first signal for processing one of the plurality of second radio resources and a second signal for error detection of the first signal are generated. Generating a third signal, wherein the third signal includes the first signal and the second signal, and the second wireless device that is used for the processing of the first signal is used in the complex multiple replacement method corresponding to the second plurality of radio resources The replacement method corresponding to the resource replaces the bit sequence of the signal in at least a part of the interval. The third signal is transmitted in the first radio resource. According to each method of the complex rearrangement method corresponding to the complex replacement method, the bit order of the received third signal is rearranged, and the second radio resource corresponding to the rearrangement method in which the result of the error detection after the rearrangement meets the predetermined condition is detected. The first signal is processed for the detected second radio resource.

若藉由上述無線通訊裝置及無線通訊方法,可有效率地向通訊對象,通知從複數無線資源所選擇的處理對象之無線資源。According to the wireless communication device and the wireless communication method, the wireless resource of the processing target selected from the plurality of wireless resources can be efficiently notified to the communication target.

本發明之上述及其他目的、特徵及優點,將會藉由表示作為本發明例較佳之實施形態之附圖及相關連之以下說明而闡明。The above and other objects, features and advantages of the present invention will be apparent from

圖式簡單說明Simple illustration

第1圖係表示第1實施形態之無線通訊系統之圖。Fig. 1 is a view showing a wireless communication system according to the first embodiment.

第2圖係表示第2實施形態之移動通訊系統之圖。Fig. 2 is a view showing a mobile communication system according to a second embodiment.

第3圖係表示第2實施形態之成分載波之設定例之圖。Fig. 3 is a view showing an example of setting a component carrier in the second embodiment.

第4圖係表示第2實施形態之無線訊框之構造例之圖。Fig. 4 is a view showing a configuration example of a radio frame of the second embodiment.

第5圖係表示第2實施形態之PDSCH及PUSCH之分配例之圖。Fig. 5 is a view showing an example of allocation of PDSCH and PUSCH in the second embodiment.

第6圖係表示第2實施形態之無線基地台之方塊圖。Fig. 6 is a block diagram showing a radio base station according to the second embodiment.

第7圖係表示第2實施形態之PDCCH生成部之詳細之方塊圖。Fig. 7 is a block diagram showing the details of the PDCCH generating unit in the second embodiment.

第8圖係表示第2實施形態之行動台之方塊圖。Fig. 8 is a block diagram showing a mobile station according to the second embodiment.

第9圖係表示第2實施形態之控制訊號解碼部之詳細之圖。Fig. 9 is a view showing the details of the control signal decoding unit of the second embodiment.

第10圖係表示第2實施形態之傳送處理之流程圖。Fig. 10 is a flow chart showing the transfer processing of the second embodiment.

第11圖係表示第2實施形態之接收處理之流程圖。Fig. 11 is a flow chart showing the receiving process of the second embodiment.

第12圖係表示第2實施形態之控制訊號之第1例之圖。Fig. 12 is a view showing a first example of the control signal of the second embodiment.

第13圖係表示第2實施形態之控制訊號之第2例之圖。Fig. 13 is a view showing a second example of the control signal of the second embodiment.

第14圖係表示第2實施形態之控制訊號之第3例之圖。Fig. 14 is a view showing a third example of the control signal of the second embodiment.

第15圖係表示第3實施形態之PDSCH之分配例之圖。Fig. 15 is a view showing an example of allocation of PDSCH in the third embodiment.

第16圖係表示第3實施形態之傳送處理之流程圖。Fig. 16 is a flow chart showing the transfer processing of the third embodiment.

第17圖係表示第3實施形態之接收處理之流程圖。Fig. 17 is a flow chart showing the receiving process of the third embodiment.

第18圖係表示第4實施形態之傳送處理之流程圖。Fig. 18 is a flow chart showing the transfer processing of the fourth embodiment.

第19圖係表示第4實施形態之接收處理之流程圖。Fig. 19 is a flow chart showing the receiving process of the fourth embodiment.

第20圖係表示第4實施形態之控制訊號例之圖。Fig. 20 is a view showing an example of a control signal in the fourth embodiment.

第21圖係表示第5實施形態之PDCCH生成部之詳細之圖。Fig. 21 is a view showing the details of the PDCCH generating unit in the fifth embodiment.

第22圖係表示第5實施形態之控制訊號解碼部之詳細之圖。Fig. 22 is a view showing the details of the control signal decoding unit of the fifth embodiment.

第23圖係表示第5實施形態之控制訊號例之圖。Fig. 23 is a view showing an example of the control signal of the fifth embodiment.

第24圖係表示第5實施形態之控制訊號之變形例之圖。Fig. 24 is a view showing a modification of the control signal of the fifth embodiment.

第25圖係表示第6實施形態之PDCCH生成部之詳細之圖。Fig. 25 is a view showing the details of the PDCCH generating unit in the sixth embodiment.

第26圖係表示第6實施形態之控制訊號解碼部之詳細之圖。Fig. 26 is a view showing the details of the control signal decoding unit of the sixth embodiment.

第27圖係表示第6實施形態之控制訊號之第1例之圖。Figure 27 is a view showing a first example of the control signal of the sixth embodiment.

第28圖係表示第6實施形態之控制訊號之第2例之圖。Fig. 28 is a view showing a second example of the control signal of the sixth embodiment.

第29圖係表示第6實施形態之控制訊號之變形例之圖。Fig. 29 is a view showing a modification of the control signal of the sixth embodiment.

第30圖係表示第7實施形態之PDCCH生成部之詳細之圖。Fig. 30 is a view showing the details of the PDCCH generating unit in the seventh embodiment.

第31圖係表示第7實施形態之控制訊號解碼部之詳細之圖。Figure 31 is a view showing the details of the control signal decoding unit of the seventh embodiment.

第32圖係表示第7實施形態之控制訊號之第1例之圖。Fig. 32 is a view showing a first example of the control signal of the seventh embodiment.

第33圖係表示第7實施形態之控制訊號之第2例之圖。Figure 33 is a view showing a second example of the control signal of the seventh embodiment.

第34圖係表示第8實施形態之PDCCH生成部之詳細之圖。Fig. 34 is a view showing the details of the PDCCH generating unit in the eighth embodiment.

第35圖係表示第8實施形態之控制訊號解碼部之詳細之圖。Fig. 35 is a view showing the details of the control signal decoding unit of the eighth embodiment.

第36圖係表示第8實施形態之控制訊號例之圖。Fig. 36 is a view showing an example of the control signal of the eighth embodiment.

第37圖係表示第8實施形態之控制訊號之變形例之圖。Fig. 37 is a view showing a modification of the control signal of the eighth embodiment.

用以實施發明之形態Form for implementing the invention

以下,參考圖式來詳細說明本實施形態。Hereinafter, the present embodiment will be described in detail with reference to the drawings.

[第1實施形態][First Embodiment]

第1圖係表示第1實施形態之無線通訊系統之圖。該無線通訊系統包含無線通訊裝置1、2。無線通訊系統1、2係利用無線資源3a(第1無線資源)及無線資源3b、3c、3d(複數第2無線資源)進行無線通訊。作為移動通訊系統實現的情況下,可考慮使用例如無線基地台作為無線通訊裝置1,使用行動台作為無線通訊裝置2。無線資源3b、3c、3d有互異之載波內之無線資源的情況、或同一載波內互異時序之無線資源的情況等。Fig. 1 is a view showing a wireless communication system according to the first embodiment. The wireless communication system includes wireless communication devices 1, 2. The wireless communication systems 1 and 2 perform wireless communication using the radio resource 3a (first radio resource) and the radio resources 3b, 3c, and 3d (the plurality of second radio resources). In the case of implementation as a mobile communication system, it is conceivable to use, for example, a wireless base station as the wireless communication device 1 and a mobile station as the wireless communication device 2. The radio resources 3b, 3c, and 3d have radio resources in mutually different carriers, or radio resources in mutually different timings in the same carrier.

無線通訊裝置1具有訊號生成部1a及傳送部1b。訊號生成部1a係生成用於無線通訊裝置2所進行的處理之訊號#1(第1訊號)、及用於訊號#1之錯誤檢測之訊號#2(第2訊號)。訊號#2為例如CRC訊號。然後,根據訊號#1、#2生成訊號#3(第3訊號)。傳送部1b係以無線資源3a傳送由訊號生成部1a所生成的訊號#3。The wireless communication device 1 has a signal generating unit 1a and a transmitting unit 1b. The signal generating unit 1a generates a signal #1 (first signal) for processing by the wireless communication device 2, and a signal #2 (second signal) for error detection of the signal #1. Signal #2 is for example a CRC signal. Then, according to the signals #1, #2, the signal #3 (the third signal) is generated. The transmission unit 1b transmits the signal #3 generated by the signal generation unit 1a via the radio resource 3a.

在此,訊號#3係於包含訊號#1、#2之訊號串列已施行轉換處理者。訊號生成部1a係從對應無線資源3b、3c、3d且互異之複數轉換方法,選擇對應於訊號#1之適用對象的無線資源之轉換方法。作為轉換方法之種類可考慮以下方法:(1)攪碼處理之區間設為可變,將包含訊號#1、#2之訊號串列之一部分區間進行攪碼處理之方法;(2)攪碼序列設為可變,至少將訊號#1之一部分進行攪碼處理之方法;及(3)於包含訊號#1、#2之訊號序列之至少一部分區間內,置換位元順序之方法。Here, the signal #3 is applied to the signal sequence including the signals #1 and #2. The signal generation unit 1a selects a conversion method of the radio resource corresponding to the application target of the signal #1 from the complex conversion method corresponding to the radio resources 3b, 3c, and 3d. As the type of the conversion method, the following method can be considered: (1) the interval of the codec processing is set to be variable, and the method of agitating the code part of the signal series including the signals #1 and #2 is performed; (2) the code is processed. The sequence is set to be variable, at least one of the signals #1 is subjected to a codec process; and (3) a method of replacing the bit order in at least a portion of the signal sequence including the signals #1 and #2.

方法(1)的情況下,訊號生成部1a預先將互異之複數攪碼處理之區間與無線資源3b、3c、3d賦予對應。區間不同係指區間並非完全同一即可,在對應於某無線資源之區間與對應於其他無線資源之區間之間有重複亦可。然後,訊號生成部1a係於複數區間中,選擇對應於訊號#1之適用對象之無線資源之區間,對所選擇區間之訊號進行攪碼處理。例如於所選擇區間之訊號與攪碼序列之間,以位元單位進行互斥邏輯或的運算。用於攪碼處理之攪碼序列為預定之固定位元串列,或與通訊狀況等相應而決定之可變位元串列均可。In the case of the method (1), the signal generation unit 1a associates the sections of the complex multiplication coding process with the radio resources 3b, 3c, and 3d in advance. Different sections mean that the sections are not completely identical, and there may be a repetition between a section corresponding to a certain radio resource and a section corresponding to another radio resource. Then, the signal generating unit 1a selects a section corresponding to the radio resource to which the signal #1 is applied in the complex section, and performs a codec processing on the signal of the selected section. For example, between the signal of the selected interval and the codec sequence, the logical OR operation is performed in units of bits. The codec sequence for the codec processing may be a predetermined fixed bit string, or a variable bit string determined in accordance with a communication condition or the like.

方法(2)的情況下,訊號生成部1a預先將互異之複數攪碼序列與無線資源3b、3c、3d賦予對應。然後,於複數攪碼序列中,選擇對應於訊號#1之適用對象之無線資源之攪碼序列,利用所選擇序列進行攪碼處理。攪碼處理之區間為訊號#1之全部或一部分區間均可。後者的情況下,一部分區間為預定之固定區間,或與通訊狀況等相應而決定之可變區間均可。又,複數攪碼序列亦可將預定攪碼序列,僅予以循環移位(cyclic shift)互異之位元數而獲得。In the case of the method (2), the signal generating unit 1a associates the complex multiplicative codec sequences with the radio resources 3b, 3c, and 3d in advance. Then, in the complex codec sequence, the codec sequence of the radio resource corresponding to the applicable object of the signal #1 is selected, and the coded process is performed by using the selected sequence. The interval of the code processing is all or part of the interval of the signal #1. In the latter case, a part of the section may be a predetermined fixed section or a variable section determined in accordance with a communication condition or the like. Further, the complex codec sequence may also be obtained by subjecting the predetermined codec sequence to only cyclically shifting the number of bits different from each other.

方法(3)的情況下,訊號生成部1a預先將互異之複數置換方法與無線資源3b、3c、3d賦予對應。然後,按照複數置換方法中對應於訊號#1之適用對象之無線資源之置換方法,置換位元順序。例如作為置換方法之種類,可考慮將訊號#1之全部或一部分區間,僅以與適用對象之無線資源相應之位元數予以循環移位之方法。又,亦可考慮將訊號#2之全部或一部分區間予以循環移位之方法。又,亦可考慮在訊號#1內與適用對象之無線資源相應之位置,插入訊號#2之方法。In the case of the method (3), the signal generating unit 1a associates the complex multiplicative replacement method with the radio resources 3b, 3c, and 3d in advance. Then, the bit order is replaced in accordance with the replacement method of the radio resource corresponding to the applicable object of the signal #1 in the complex replacement method. For example, as the type of the replacement method, a method of cyclically shifting only the number of bits corresponding to the radio resource to be applied to all or a part of the section of the signal #1 can be considered. Also, a method of cyclically shifting all or part of the interval of the signal #2 may be considered. Also, a method of inserting the signal #2 in the position corresponding to the radio resource of the applicable object in the signal #1 may be considered.

無線通訊裝置2具有接收部2a及檢測部2b。接收部2a係從無線通訊裝置1,以無線資源3a接收訊號#3。檢測部2b係對於由接收部2a所接收的訊號#3,以對應無線資源3b、3c、3d且互異之複數轉換方法之各方法嘗試轉換處理。該轉換處理相當於在無線通訊裝置1所進行的轉換處理之逆向處理。然後,對於轉換後之訊號分別進行錯誤檢測,特定出錯誤檢測之結果符合預定條件之轉換方法。對應於經特定出之轉換方法之無線資源係檢測作為訊號#1之適用對象。The wireless communication device 2 includes a receiving unit 2a and a detecting unit 2b. The receiving unit 2a receives the signal #3 from the wireless communication device 1 with the wireless resource 3a. The detecting unit 2b attempts a conversion process for each of the methods of the complex number conversion method corresponding to the radio resources 3b, 3c, and 3d with respect to the signal #3 received by the receiving unit 2a. This conversion processing corresponds to the reverse processing of the conversion processing performed by the wireless communication device 1. Then, error detection is performed on the converted signals, and a conversion method in which the result of the error detection meets the predetermined condition is specified. The radio resource corresponding to the specific conversion method is detected as the applicable object of the signal #1.

在此,作為複數轉換方法,檢測部2b係採用對應於無線通訊裝置1所採用的複數轉換方法之方法。亦即,方法(1)之情況下,檢測部2b係針對複數區間之各區間,進行訊號#3之解攪碼處理及錯誤檢測。例如利用與攪碼處理所用的攪碼序列相同之序列,就每位元進行互斥邏輯或的運算。方法(2)的情況下,檢測部2b係利用複數攪碼序列之各序列,進行訊號#3之解攪碼處理及錯誤檢測。方法(3)的情況下,檢測部2b係按照複數重排方法之各方法,進行訊號#3之位元順序重排及錯誤檢測。藉此,可推定複數轉換方法中之無線通訊裝置1所選擇的轉換方法。Here, as the complex conversion method, the detecting unit 2b adopts a method corresponding to the complex conversion method employed by the wireless communication device 1. That is, in the case of the method (1), the detecting unit 2b performs the descrambling process and the error detection of the signal #3 for each section of the complex section. For example, by using the same sequence as the codec sequence used for the codec process, a mutually exclusive logical OR operation is performed for each bit. In the case of the method (2), the detecting unit 2b performs the descrambling process and the error detection of the signal #3 by using each sequence of the complex codec sequence. In the case of the method (3), the detecting unit 2b performs the order rearrangement and error detection of the signal #3 in accordance with each method of the complex rearrangement method. Thereby, the conversion method selected by the wireless communication device 1 in the complex conversion method can be estimated.

而且,錯誤檢測可藉由從已施行解攪碼或位元順序重排等轉換處理後之訊號#3,擷取相當於訊號#1、#2之訊號,比較從相當於訊號#1之訊號所算出的同位(parity)與相當於訊號#2之訊號而實現。作為錯誤檢測是否成功之判斷條件,可考慮例如無錯誤或錯誤位元數在臨限值以下等。Moreover, the error detection can be compared with the signal #1, #2, and the signal equivalent to the signal #1, by the signal #3 after the conversion processing has been performed, such as the de-sequencing code or the bit sequence rearrangement. The calculated parity is achieved by a signal equivalent to signal #2. As a judgment condition for the success of the error detection, for example, no error or the number of error bits is below the threshold value.

又,檢測部2b並行地執行或逐次執行複數轉換方法均可。亦即,可考慮檢測部2b與轉換方法之候補數相應而複製訊號#3,並行地執行關於複數轉換方法之轉換處理及錯誤檢測處理。又,針對複數轉換方法之一進行轉換處理及錯誤檢測處理,於錯誤檢測之結果未符合預定條件的情況下,嘗試下一轉換方法亦可。Further, the detecting unit 2b may execute in parallel or successively execute the complex conversion method. In other words, it is conceivable that the detecting unit 2b copies the signal #3 in accordance with the candidate number of the conversion method, and performs conversion processing and error detection processing on the complex conversion method in parallel. Further, the conversion processing and the error detection processing are performed on one of the complex conversion methods, and if the result of the error detection does not satisfy the predetermined condition, the next conversion method may be tried.

又,作為訊號#1而傳達之控制資訊包含:無線通訊裝置2從無線通訊裝置1接收資料時所參考的資訊、或無線通訊裝置2向無線通訊裝置1傳送資料時所參考的資訊。前者的情況下,無線通訊裝置2係以無線資源3b、3c、3d中被檢測到之無線資源,接收資料訊號,並參考訊號#1而擷取資料。後者的情況則參考訊號#1而生成資料訊號,利用無線資源3b、3c、3d中被檢測到之無線資源傳送資料訊號。Further, the control information transmitted as the signal #1 includes information referred to when the wireless communication device 2 receives data from the wireless communication device 1, or information referred to when the wireless communication device 2 transmits data to the wireless communication device 1. In the former case, the wireless communication device 2 receives the data signal from the detected wireless resources in the wireless resources 3b, 3c, and 3d, and retrieves the data by referring to the signal #1. In the latter case, a data signal is generated with reference to signal #1, and the data signal is transmitted using the detected wireless resources in the wireless resources 3b, 3c, and 3d.

若依據此類第1實施形態之無線通訊系統,藉由無線通訊裝置1,生成用於對複數無線資源3b、3c、3d(第2無線資源)之任一者之處理之訊號#1、及用於訊號#1之錯誤檢測之訊號#2。然後,從對應於無線資源3b、3c、3d之複數轉換方法中,選擇對應於訊號#1之適用對象之無線資源之轉換方法,藉由適用所選擇的轉換方法而生成訊號#3。於訊號#3中,包含相當於訊號#1、#2之內容。訊號#3係以無線資源3a(第1無線資源)傳送。According to the wireless communication system of the first embodiment, the wireless communication device 1 generates the signal #1, and the processing for processing any of the plurality of radio resources 3b, 3c, and 3d (the second radio resource). Signal #2 for error detection of signal #1. Then, from the complex conversion method corresponding to the radio resources 3b, 3c, and 3d, the conversion method of the radio resource corresponding to the applicable object of the signal #1 is selected, and the signal #3 is generated by applying the selected conversion method. In the signal #3, the content corresponding to the signals #1, #2 is included. The signal #3 is transmitted by the radio resource 3a (first radio resource).

另,藉由無線通訊裝置2,針對複數轉換方法嘗試接收之訊號#3之轉換處理(無線通訊裝置1所進行的轉換處理之逆向處理)。然後,於轉換處理後,擷取相當於訊號#1、#2之訊號,進行錯誤檢測,從錯誤檢測之結果推定無線通訊裝置1所採用的轉換方法。無線資源3b、3c、3d中對應於所推定的轉換方法之無線資源係檢測作為訊號#1之適用對象。其後,進行對檢測到之無線資源之處理(例如資料接收或資料傳送)。Further, the wireless communication device 2 performs conversion processing of the signal #3 (reverse processing of the conversion processing by the wireless communication device 1) that is attempted to be received by the complex conversion method. Then, after the conversion process, the signals corresponding to the signals #1 and #2 are extracted, error detection is performed, and the conversion method employed by the wireless communication device 1 is estimated from the result of the error detection. The radio resource corresponding to the estimated conversion method among the radio resources 3b, 3c, and 3d is detected as the applicable object of the signal #1. Thereafter, processing of the detected wireless resources (e.g., data reception or data transmission) is performed.

藉此,可從無線通訊裝置1,有效率地向無線通訊裝置2通知訊號#1之適用對象之無線資源。亦即,與前述非專利文獻1的方法相比,於訊號#1不附加用以識別無線資源3b、3c、3d之位元亦可,因此可抑制無線資源3a之消耗量。又,與前述非專利文獻2之方法相比,僅需對於訊號#2之攪碼處理,不識別通訊對象與無線資源雙方亦可,可抑制應準備之攪碼序列數增大。因此,可抑制用以識別攪碼序列之ID耗盡。Thereby, the wireless communication device 1 can be efficiently notified to the wireless communication device 2 of the wireless resource to which the signal #1 is applied. In other words, compared with the method of the above-described Non-Patent Document 1, the bit number for identifying the radio resources 3b, 3c, and 3d is not added to the signal #1, so that the amount of consumption of the radio resource 3a can be suppressed. Further, compared with the method of Non-Patent Document 2, it is only necessary to perform the codec processing of the signal #2, and it is possible to suppress the increase in the number of the code sequences to be prepared without recognizing both the communication target and the radio resource. Therefore, the ID depletion for identifying the codec sequence can be suppressed.

而且,第1實施形態之無線通訊系統可作為LTE-A(Long Term Evolution-Advanced:長期演進先進)系統等移動通訊系統而實現。該情況下,如前述,可考慮使用無線基地台作為無線通訊裝置1,使用行動台作為無線通訊裝置2。後面的實施形態係說明於無線基地台與行動台之間之通訊,適用無線通訊裝置1、2間之通訊方法的情況。其中,第1實施形態之通訊方法亦可適用於固定無線通訊等移動通訊以外之無線通訊。Further, the wireless communication system according to the first embodiment can be realized as a mobile communication system such as an LTE-A (Long Term Evolution-Advanced) system. In this case, as described above, it is conceivable to use the radio base station as the radio communication device 1 and the mobile station as the radio communication device 2. The following embodiments are described for the communication between the wireless base station and the mobile station, and the communication method between the wireless communication devices 1 and 2 is applied. The communication method according to the first embodiment can also be applied to wireless communication other than mobile communication such as fixed wireless communication.

[第2實施形態][Second Embodiment]

第2圖係表示第2實施形態之移動通訊系統之圖。關於第2實施形態之移動通訊系統具備無線基地台100及行動台200、200a。Fig. 2 is a view showing a mobile communication system according to a second embodiment. The mobile communication system according to the second embodiment includes a radio base station 100 and mobile stations 200 and 200a.

無線基地台100係與我台細胞(cell)內之行動台進行無線通訊之無線通訊裝置。無線基地台100可與複數行動台並行地進行無線通訊。行動台200、200a係連接於無線基地台100而進行無線通訊之移動無線終端裝置。作為行動台200、200a可舉例如行動電話或攜帶式資訊終端等。The wireless base station 100 is a wireless communication device that wirelessly communicates with a mobile station in a cell. The wireless base station 100 can perform wireless communication in parallel with the plurality of mobile stations. The mobile stations 200 and 200a are mobile radio terminal devices that are connected to the radio base station 100 and perform wireless communication. Examples of the mobile stations 200 and 200a include a mobile phone or a portable information terminal.

無線基地台100與行動台200、200a可進行雙向通訊。亦即,可進行方向從無線基地台100往行動台200、200a之資料傳送(下行鏈通訊),及方向從行動台200、200a往無線基地台100之資料傳送(上行鏈通訊)。又,無線基地台100與行動台200、200a係於下行鏈及上行鏈之各鏈,進行用到複數成分載波之通訊(載波結合)。The wireless base station 100 and the mobile stations 200, 200a can perform two-way communication. That is, data transfer (downlink communication) from the wireless base station 100 to the mobile stations 200, 200a and data transfer from the mobile stations 200, 200a to the wireless base station 100 (uplink communication) can be performed. Further, the radio base station 100 and the mobile stations 200 and 200a are connected to each of the downlink and uplink chains, and perform communication (carrier coupling) using a plurality of component carriers.

無線基地台100係針對下行鏈通訊及上行鏈通訊進行排程化等控制。從無線基地台100對行動台200適當地傳送有控制資訊。而且,無線基地台100可視為前述無線通訊裝置1之一例,行動台200、200a可視為前述無線通訊裝置2之一例。The wireless base station 100 controls the scheduling of downlink communication and uplink communication. Control information is appropriately transmitted from the radio base station 100 to the mobile station 200. Further, the wireless base station 100 can be regarded as an example of the wireless communication device 1, and the mobile stations 200 and 200a can be regarded as an example of the wireless communication device 2.

第3圖係表示第2實施形態之成分載波之設定例之圖。於關於第2實施形態之移動通訊系統,可分別針對上行鏈(UL)及下行鏈(DL),最大利用5個成分載波(CC)進行資料傳送。各成分載波被分配預定帶寬(例如20MHz)之頻帶。Fig. 3 is a view showing an example of setting a component carrier in the second embodiment. In the mobile communication system according to the second embodiment, data can be transmitted using up to five component carriers (CC) for uplink (UL) and downlink (DL), respectively. Each component carrier is allocated a frequency band of a predetermined bandwidth (for example, 20 MHz).

無線基地台100可利用下行鏈之5個成分載波(CC#1~#5)中之1個或複數成分載波內之無線資源,來傳送資料。又,行動台200、200a可利用上行鏈之5個成分載波(CC#1~#5)中之1個或複數成分載波內之無線資源,來傳送資料。The radio base station 100 can transmit data by using one of the five component carriers (CC#1 to #5) in the downlink or the radio resources in the plurality of component carriers. Further, the mobile stations 200 and 200a can transmit data by using one of the five component carriers (CC#1 to #5) in the uplink or the radio resources in the plurality of component carriers.

而且,於第3圖之例中,雖分別於上行鏈及下行鏈,被分配有5個成分載波連續的頻帶,但被分配有不連續的頻帶亦可。又,上行鏈與下行鏈之成分載波數可設定為任意數。成分載波數在上行鏈與下行鏈不同亦可。例如於下行鏈設5個,於上行鏈設3個成分載波亦可。又,各成分載波並非全部同一帶寬亦可。Further, in the example of FIG. 3, although five frequency bands are consecutively allocated in the uplink and the downlink, a discontinuous frequency band may be allocated. Further, the number of component carriers of the uplink and the downlink can be set to an arbitrary number. The number of component carriers may be different between the uplink and the downlink. For example, five downlinks may be provided, and three component carriers may be provided in the uplink. Further, each component carrier may not have the same bandwidth.

第4圖係表示第2實施形態之無線訊框之構造例之圖。為了讓無線基地台100與行動台200進行無線通訊,於每成分載波形成無線訊框。1個無線訊框包含複數子訊框(例如10個子訊框)。Fig. 4 is a view showing a configuration example of a radio frame of the second embodiment. In order to allow the wireless base station 100 to communicate wirelessly with the mobile station 200, a radio frame is formed on each component carrier. One radio frame contains a plurality of sub-frames (for example, 10 sub-frames).

子訊框內之無線資源係由無線基地台100所管理。資源管理之頻率方向最小單位為子載波,時間方向最小單位為符元。無線資源之使用方法在上行鏈與下行鏈不同。於UL子訊框設有上行鏈共有通道(PUSCH:Physical Uplink Shared CHannel(實體上行鏈分享通道))用之區域。另,於DL子訊框設有下行鏈共有通道(PDSCH:Physical Downlink Shared CHannel(實體下行鏈分享通道))及下行鏈控制通道(PDCCH:Physical Downlink Control CHannel(實體下行鏈控制通道))用之區域。The radio resources in the subframe are managed by the radio base station 100. The minimum unit of frequency direction of resource management is subcarrier, and the smallest unit of time direction is symbol. The use of radio resources differs between the uplink and the downlink. An area for the uplink shared channel (PUSCH: Physical Uplink Shared CHannel) is provided in the UL subframe. In addition, the DL subframe is provided with a downlink shared channel (PDSCH: Physical Downlink Shared CHannel) and a downlink control channel (PDCCH: Physical Downlink Control CHannel). region.

PUSCH係行動台200、200a用以對無線基地台100,傳送使用者資料及控制資訊之實體實體通道。以PUSCH傳送之控制資訊包含用以傳送使用者資料之無線資源之分配要求。分別對行動台200、200a,設定有PUSCH。於1個 UL子訊框,可藉由分頻而設定複數行動台份之PUSCH。對PUSCH之無線資源分配係由無線基地台100動態地進行。The PUSCH mobile station 200, 200a is used to transmit the physical entity channel of the user data and control information to the wireless base station 100. The control information transmitted by the PUSCH includes the allocation requirements of the radio resources for transmitting the user data. A PUSCH is set for each of the mobile stations 200 and 200a. In one UL subframe, the PUSCH of the multiple mobile stations can be set by frequency division. The radio resource allocation to the PUSCH is dynamically performed by the radio base station 100.

PDSCH係無線基地台100用以對行動台200、200a,傳送使用者資料或上層之控制資料之實體實體通道。分別對行動台200、200a,設定有PDSCH。於1個DL子訊框,可藉由正交分頻而設定複數行動台份之PDSCH。亦即,作為可分配給PDSCH之區域而設有複數符元份之無線資源,可將該區域予以分頻而設定複數PDSCH。對PDSCH之無線資源分配係由無線基地台100動態地進行。The PDSCH-based radio base station 100 is configured to transmit physical data channels of user data or upper layer control data to the mobile stations 200, 200a. A PDSCH is set for each of the mobile stations 200 and 200a. In one DL subframe, the PDSCH of the complex mobile station can be set by orthogonal frequency division. That is, as a radio resource in which a plurality of symbols are allocated as an area that can be allocated to the PDSCH, the area can be divided to set a complex PDSCH. The radio resource allocation to the PDSCH is dynamically performed by the radio base station 100.

PDCCH係無線基地台100用以對行動台200、200a,傳送控制資訊之實體實體通道。以PDCCH傳送之控制資訊包含關於PUSCH及PDSCH之資訊。關於PUSCH之資訊包含:表示分配給PUSCH之無線資源之資訊;指定調變編碼方式(MCS:Modulation and Coding Scheme)等資料格式之資訊;及藉由HARQ(Hybrid Automation Repeat reQuest:混合自動重複要求)表示上行再傳送控制之資訊。關於PDSCH之資訊包含:表示已分配給PDSCH之無線資源之資訊;表示資料格式之資訊;及表示下行再傳送控制之資訊。The PDCCH-based radio base station 100 is configured to transmit physical entity channels of control information to the mobile stations 200, 200a. The control information transmitted on the PDCCH contains information about the PUSCH and the PDSCH. The information about the PUSCH includes: information indicating a radio resource allocated to the PUSCH; information specifying a data format such as Modulation and Coding Scheme (MCS); and HARQ (Hybrid Automation Repeat reQuest) Indicates the information of the uplink retransmission control. The information about the PDSCH includes: information indicating the radio resources allocated to the PDSCH; information indicating the format of the data; and information indicating the downlink retransmission control.

PDCCH分別對應於PUSCH、PDSCH而設定。亦即,關於PUSCH之控制資訊與關於PDSCH之控制資訊係以不同的PDCCH傳送。又,對於不同行動台之控制資訊係以不同的PDCCH傳送。於1個DL子訊框,可藉由正交分頻而設定複數PDCCH。亦即,作為可分配給PDCCH之區域,從DL子訊框之開頭設有複數符元份之無線資源,於該區域內可設定複數PDCCH。The PDCCH is set corresponding to the PUSCH and the PDSCH, respectively. That is, the control information about the PUSCH and the control information about the PDSCH are transmitted in different PDCCHs. Also, control information for different mobile stations is transmitted with different PDCCHs. In one DL subframe, the complex PDCCH can be set by orthogonal frequency division. That is, as an area that can be allocated to the PDCCH, a radio resource of a plurality of symbols is provided from the beginning of the DL subframe, and a complex PDCCH can be set in the area.

而且,第3、4圖所示之載波構造及無線訊框之構造,係僅用以實現關於第2實施形態之移動通訊系統之一例。例如於第3、4圖,為了進行雙向通訊而利用分頻雙工(Frequency Division Duplex),但利用分時雙工(Time Division Duplex)亦可。亦即,UL子訊框與DL子訊框亦可利用分時地交替出現之無線資源而通訊。Further, the carrier structure and the structure of the radio frame shown in Figs. 3 and 4 are only for realizing an example of the mobile communication system according to the second embodiment. For example, in the third and fourth figures, a frequency division duplex (Frequency Division Duplex) is used for bidirectional communication, but a time division duplex (Time Division Duplex) may be used. That is, the UL subframe and the DL subframe can also communicate using wireless resources that alternately appear in a time-sharing manner.

又,於上述說明中,以不同的PDCCH,傳送關於PUSCH之控制資訊Moreover, in the above description, the control information about the PUSCH is transmitted with different PDCCHs.

與關於PDSCH之控制資訊,但能夠以1個PDCCH傳送該2個控制資訊亦可。又,於上述說明中,以不同的PDCCH傳送對於不同行動台之控制資訊,但能夠以1個PDCCH傳送對於複數行動台之控制資訊亦可。The control information about the PDSCH may be transmitted, but the two control information may be transmitted on one PDCCH. Further, in the above description, the control information for the different mobile stations is transmitted with different PDCCHs, but the control information for the plurality of mobile stations may be transmitted by one PDCCH.

第5圖係表示第2實施形態之PDSCH及PUSCH之分配例之圖。於第5圖之例中,於下行鏈之CC#1設定有使用者#1(行動台200)之PDCCH,於CC#2設定有使用者#2(行動台200a)之PDCCH,於CC#3設定有使用者#3之PDCCH。如此,藉由於1個成分載波聚合關於同一行動台之PDCCH,行動台200、200a可縮小所監視的成分載波之範圍,在省電化方面有利。其中,同一行動台之PDCCH亦可分散於複數成分載波。Fig. 5 is a view showing an example of allocation of PDSCH and PUSCH in the second embodiment. In the example of FIG. 5, the PDCCH of user #1 (mobile station 200) is set in CC#1 of the downlink, and the PDCCH of user #2 (mobile station 200a) is set in CC#2, in CC#. 3 The PDCCH of user #3 is set. As described above, since the PDCCHs for the same mobile station are aggregated by one component carrier, the mobile stations 200 and 200a can narrow the range of the monitored component carriers, which is advantageous in terms of power saving. The PDCCH of the same mobile station may also be dispersed in the complex component carrier.

又,於第5圖之例中,在某時序,於下行鏈之CC#1設定有使用者#1、#2之PDSCH,於CC#2設定有使用者#1、#2之PDSCH。如前述,關於使用者#1之PDSCH之控制資訊係以CC#1傳送,關於使用者#2之PDSCH之控制資訊係以CC#2傳送。Further, in the example of Fig. 5, at a certain timing, PDSCHs of users #1 and #2 are set in CC#1 of the downlink, and PDSCHs of users #1 and #2 are set in CC#2. As described above, the control information of the PDSCH of the user #1 is transmitted by CC#1, and the control information of the PDSCH of the user #2 is transmitted by CC#2.

又,於另外的時序,於上行鏈之CC#1設定有使用者#1、#3之PUSCH,於CC#2設定有使用者#2、#3之PUSCH。如前述,關於使用者#1之PUSCH之控制資訊係以上行鏈之CC#1傳送,關於使用者#2之PUSCH之控制資訊係以CC#2傳送,關於CC#3之PUSCH之控制資訊係以CC#3傳送。Further, at another timing, PUSCHs of users #1 and #3 are set in CC#1 of the uplink, and PUSCHs of users #2 and #3 are set in CC#2. As described above, the control information of the PUSCH of the user #1 is transmitted by CC#1 of the above-mentioned line chain, and the control information of the PUSCH of the user #2 is transmitted by CC#2, and the control information of the PUSCH of CC#3 is transmitted. Transfer by CC#3.

如此,以PDCCH所傳送的資訊亦包含,關於與該PDCCH所屬之成分載波不同成分載波內之通道之控制資訊。因此,行動台200、200a以可容易地特定出,以PDCCH所接收的控制資訊是關於何載波之控制資訊為佳。As such, the information transmitted by the PDCCH also includes control information about a channel in a carrier that is different from the component carrier to which the PDCCH belongs. Therefore, the mobile stations 200 and 200a can be easily specified, and the control information received by the PDCCH is preferably control information about the carrier.

而且,關於PUSCH之控制資訊係以例如較設定有該PUSCH之UL訊框,僅提早預定時序前之DL子訊框傳送。又,關於PDSCH之控制資訊係以例如與設定有該PDSCH之DL子訊框同一子訊框傳送。Moreover, the control information about the PUSCH is, for example, a UL frame in which the PUSCH is set, and only the DL subframe transmission before the predetermined timing is advanced. Further, the control information on the PDSCH is transmitted, for example, in the same sub-frame as the DL subframe in which the PDSCH is set.

第6圖係表示第2實施形態之無線基地台之方塊圖。無線基地台100具有天線110、無線接收部120、PUSCH處理部130、排程器140、PDSCH生成部150、PDCCH生成部160及無線傳送部170。Fig. 6 is a block diagram showing a radio base station according to the second embodiment. The radio base station 100 includes an antenna 110, a radio reception unit 120, a PUSCH processing unit 130, a scheduler 140, a PDSCH generation unit 150, a PDCCH generation unit 160, and a radio transmission unit 170.

天線110為傳送‧接收兩用之天線。天線110係將接收自行動台200、200a之無線訊號輸出至無線接收部120。又,將取得自無線傳送部170之傳送訊號予以無線輸出。而且,亦可於無線基地台100個別設置傳送用天線與接收用天線。又,為了分集通訊而設置複數收發天線亦可。The antenna 110 is an antenna for transmitting and receiving. The antenna 110 outputs the wireless signals received from the mobile stations 200 and 200a to the wireless receiving unit 120. Further, the transmission signal obtained from the wireless transmission unit 170 is wirelessly output. Furthermore, the transmission antenna and the reception antenna may be separately provided in the radio base station 100. Further, a plurality of transmitting and receiving antennas may be provided for diversity communication.

無線接收部120係將取得自天線110之接收訊號,轉換為基頻訊號,並將轉換後之接收訊號輸出至PUSCH處理部130。為了從無線訊號轉換為基頻訊號,無線接收部120具備例如低雜訊放大器(LNA:Low Noise Amplifier)、頻率轉換器、帶通濾波器(BPF:Band Pass Filter)、A/D(Analog to Digital:類比轉數位)轉換器等。The radio receiving unit 120 converts the received signal obtained from the antenna 110 into a baseband signal, and outputs the converted received signal to the PUSCH processing unit 130. In order to convert from a wireless signal to a baseband signal, the wireless receiving unit 120 includes, for example, a low noise amplifier (LNA), a frequency converter, a band pass filter (BPF: Band Pass Filter), and an A/D (Analog to Digital: Analog to digital converter).

PUSCH處理部130係從取得自無線接收部120之基頻訊號,擷取PUSCH訊號並予以錯誤訂正解碼。於PUSCH之解碼時,參考無線基地台100以PDCCH向行動台200、200a所通知的調變編碼方式之資訊。藉此擷取行動台200、200a所傳送的使用者資料或控制資訊。於擷取到之控制資訊包含表示要求UL無線資源之資訊的情況下,PUSCH處理部130係將該控制資訊輸出至排程器140。The PUSCH processing unit 130 extracts the PUSCH signal from the fundamental frequency signal acquired from the radio receiving unit 120 and performs error correction decoding. At the time of decoding of the PUSCH, the radio base station 100 refers to the information of the modulation coding method notified to the mobile stations 200 and 200a by the PDCCH. Thereby, the user data or control information transmitted by the mobile station 200, 200a is captured. The PUSCH processing unit 130 outputs the control information to the scheduler 140 when the control information obtained includes information indicating that the UL radio resource is required.

排程器140係管理DL無線資源與UL無線資源之分配。亦即,當寄給行動台200、200a之使用者資料到達無線基地台100所具備的緩衝區(未圖示)時,排程器140就將DL無線資源分配給行動台200、200a。又,從取得自PUSCH處理部130之控制資訊,檢測行動台200、200a所欲傳送之使用者資料量,並將UL無線資源分配給行動台200、200a。然後,排程器140向PDSCH生成部150及PDCCH生成部160通知排程化結果。Scheduler 140 manages the allocation of DL radio resources and UL radio resources. That is, when the user data sent to the mobile stations 200 and 200a reaches the buffer (not shown) provided in the radio base station 100, the scheduler 140 allocates the DL radio resources to the mobile stations 200 and 200a. Further, from the control information acquired from the PUSCH processing unit 130, the amount of user data to be transmitted by the mobile stations 200 and 200a is detected, and the UL radio resources are allocated to the mobile stations 200 and 200a. Then, the scheduler 140 notifies the PDSCH generation unit 150 and the PDCCH generation unit 160 of the scheduling result.

PDSCH生成部150係因應從排程部140所通知的排程化結果,從無線基地台100所具備的緩衝區(未圖示)取出寄給行動台200、200a之使用者資料。然後,將使用者資料予以錯誤訂正編碼而生成PDSCH,並輸出至無線傳送部170。The PDSCH generation unit 150 extracts the user data sent to the mobile stations 200 and 200a from the buffer (not shown) included in the radio base station 100 in response to the scheduling result notified from the scheduling unit 140. Then, the user data is subjected to error correction coding to generate a PDSCH, and is output to the wireless transmission unit 170.

PDCCH生成部160係因應從排程器140所通知關於DL無線資源之排程化結果,生成關於PDSCH之控制資訊。又,因應從排程器140所通知關於UL無線資源之排程化結果,生成關於PUSCH之控制資訊。然後,PDCCH生成部160係將控制資訊予以錯誤訂正編碼而生成PDCCH,並輸出至無線傳送部170。PDCCH生成部160之詳細將於後面敘述。The PDCCH generation unit 160 generates control information about the PDSCH in response to the scheduling result regarding the DL radio resource notified from the scheduler 140. Further, control information regarding the PUSCH is generated in response to the scheduling result regarding the UL radio resource notified from the scheduler 140. Then, the PDCCH generation unit 160 generates an PDCCH by error correction coding of the control information, and outputs the PDCCH to the wireless transmission unit 170. The details of the PDCCH generation unit 160 will be described later.

無線傳送部170係將取得自PDSCH生成部150之PDSCH訊號(資料訊號)及取得自PDCCH生成部160之PDCCH訊號(控制訊號),轉換為無線訊號並輸出至天線110。為了從基頻訊號轉換為無線訊號,無線傳送部170具備例如D/A(Digital to Analog)轉換器、頻率轉換器、帶通濾波器等。The radio transmission unit 170 converts the PDSCH signal (data signal) acquired from the PDSCH generation unit 150 and the PDCCH signal (control signal) acquired from the PDCCH generation unit 160 into a radio signal and outputs it to the antenna 110. In order to convert from a fundamental frequency signal to a wireless signal, the wireless transmission unit 170 includes, for example, a D/A (Digital to Analog) converter, a frequency converter, a band pass filter, and the like.

第7圖係表示第2實施形態之PDCCH生成部之詳細之方塊圖。PDCCH生成部160具有控制資訊生成部161、同位附加部162、攪碼位置控制部163、攪碼序列生成部164、攪碼部165及錯誤訂正編碼部166。Fig. 7 is a block diagram showing the details of the PDCCH generating unit in the second embodiment. The PDCCH generation unit 160 includes a control information generation unit 161, a parity addition unit 162, an agitation position control unit 163, a codec sequence generation unit 164, a codec unit 165, and an error correction coding unit 166.

控制資訊生成部161係生成關於PDSCH及PUSCH之控制資訊。如前述,關於PDSCH之控制資訊包含:無線基地台100適用於該PDSCH之調變編碼方式、或表示PDSCH在DL子訊框內之位置之資訊。關於PUSCH之控制資訊包含:行動台200、200a應適用於該PUSCH之調變編碼方式、或PUSCH在UL子訊框內之位置之資訊。然後,控制資訊生成部161係將表示控制資訊之位元串列,輸出至同位附加部162。而且,位元串列之長度為固定或可變均可。The control information generating unit 161 generates control information on the PDSCH and the PUSCH. As described above, the control information about the PDSCH includes: the radio base station 100 is adapted to the modulation coding method of the PDSCH or the information indicating the location of the PDSCH in the DL subframe. The control information about the PUSCH includes: the mobile stations 200 and 200a should be adapted to the modulation coding method of the PUSCH or the information of the location of the PUSCH in the UL subframe. Then, the control information generating unit 161 outputs a bit string indicating the control information to the co-located adding unit 162. Moreover, the length of the bit string can be fixed or variable.

同位附加部162係根據取得自控制資訊生成部161之位元串列(資訊位元),生成錯誤檢測用之位元串列(同位位元)。作為錯誤檢測方式可利用例如CRC。然後,同位附加部162係生成在資訊位元附加有同位位元之控制訊號,並輸出至攪碼部165。The co-location adding unit 162 generates a bit string (colocated bit) for error detection based on the bit string (information bit) obtained from the control information generating unit 161. As the error detection method, for example, CRC can be utilized. Then, the parity addition unit 162 generates a control signal to which the information bit is added with the parity bit, and outputs it to the codec unit 165.

屆時,同位附加部162係利用與控制訊號傳送去處之行動台相應之攪碼序列,將同位位元進行攪碼處理。所使用的攪碼序列係與預先分配給各行動台之ID,即RNTI(Radio Network Temporary Identifier:廣播網路臨時識別符)相應之序列。藉此,行動台200、200a可藉由是否能夠解除同位位元之攪碼,來判斷是否為寄給我台之控制訊號。而且,同位位元之攪碼處理在結合資訊位元與同位位元前進行,或於結合後進行均可。At that time, the co-located add-on unit 162 performs the scramble processing on the co-located bit by using the scramble code sequence corresponding to the mobile station to which the control signal is transmitted. The codec sequence used is a sequence corresponding to an ID assigned in advance to each mobile station, that is, an RNTI (Radio Network Temporary Identifier). Thereby, the mobile station 200, 200a can determine whether it is a control signal sent to the station by whether or not the agitation of the parity bit can be cancelled. Moreover, the code processing of the parity bits is performed before the information bits and the parity bits are combined, or after the combination.

攪碼位置控制部163係於同位附加部162所生成之控制訊號中,進一步控制進行攪碼處理之區間。於攪碼位置控制部163,預先登錄有5個成分載波(CC#1~#5)與5種區間之對應關係。攪碼位置控制部163判斷其為關於何成分載波之控制訊號,並向攪碼部165通知攪碼處理之區間。The codec position control unit 163 is controlled by the control signal generated by the co-location adding unit 162 to further control the interval in which the code is processed. The stitching position control unit 163 registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five types of sections. The codec position control unit 163 determines that it is a control signal for the component carrier, and notifies the codec unit 165 of the interval of the codec process.

例如攪碼位置控制部163係在其為關於上行鏈之CC#1內之PUSCH之控制訊號的情況下,向攪碼部165通知對應於CC#1之區間。又,在其為關於下行鏈之CC#2內之PDSCH之控制訊號的情況下,向攪碼部165通知對應於CC#2之區間。For example, when the codec position control unit 163 is a control signal for the PUSCH in the CC#1 of the uplink, the codec position control unit 163 notifies the codec unit 165 of the section corresponding to CC#1. Further, when it is the control signal of the PDSCH in the CC#2 of the downlink, the buffer unit 165 is notified of the section corresponding to CC#2.

攪碼序列生成部164係生成攪碼序列並輸出至攪碼部165。輸出之攪碼序列之位元長亦可與位於攪碼處理之區間內的控制訊號之位元長相同。The codec sequence generation unit 164 generates a codec sequence and outputs it to the codec unit 165. The bit length of the output code sequence can also be the same as the bit length of the control signal located in the interval of the code processing.

作為攪碼序列之一例可考慮以下者。亦可在關於PDSCH之控制訊號的情況與關於PUSCH之控制訊號的情況下,使用不同序列。As an example of the agitating sequence, the following can be considered. It is also possible to use different sequences in the case of the control signal for the PDSCH and the control signal for the PUSCH.

(a)表示已分配給控制訊號傳送去處之行動台之RNTI之位元串列(a) indicates the RNTI bit sequence assigned to the mobile station where the control signal is transmitted.

(b)表示細胞ID之位元串列(b) indicates the bit sequence of the cell ID

(c)與行動台200、200a預先達成協議之任意隨機序列(c) Any random sequence agreed upon in advance with the mobile stations 200, 200a

(d)將RNTI與細胞ID之一方或雙方作為初始值而生成之擬似隨機序列(d) A pseudo-random sequence generated by using one or both of the RNTI and the cell ID as initial values

(e)全為「1」之位元串列(e) all "1" bit string

(f)「0」、「1」輪替之位元串列(f) "0" and "1" rotations

攪碼部165係利用取得自攪碼序列生成部164之攪碼序列,將取得自同位附加部162之控制訊號之一部分區間進行攪碼處理。具體而言,於區間內之訊號與攪碼序列之間,就每位元運算互斥邏輯或,將區間內之訊號置換為所獲得的位元串列。從攪碼位置控制部163通知攪碼處理之對象區間。然後,攪碼處理後之控制訊號輸出至錯誤訂正編碼部166。藉此,行動台200、200a係藉由推定被施行攪碼處理之區間,可特定出其為關於何成分載波之控制訊號。The codec unit 165 performs a codec process on a portion of the control signal obtained from the co-located adder 162 by using the codec sequence obtained by the self-mixing code sequence generation unit 164. Specifically, between the signal in the interval and the codec sequence, a mutually exclusive logical OR is performed for each bit, and the signal in the interval is replaced with the obtained bit string. The object range of the agitation processing is notified from the scramble code position control unit 163. Then, the control signal after the scramble processing is output to the error correction encoding unit 166. Thereby, the mobile stations 200 and 200a can specify the control signal for the component carrier by estimating the section subjected to the codec processing.

而且,於同位附加部162所進行的攪碼處理與在攪碼部165所進行的攪碼處理為個別的處理。於上述說明中,因應RNTI而攪碼同位位元後,攪碼與成分載波相應之區間,但後者之攪碼處理僅以資訊位元作為對象的情況下,兩攪碼處理得以任意順序執行。Further, the agitating process performed by the co-located adding unit 162 and the agitating process performed by the agitating unit 165 are individual processes. In the above description, after the parity bit is agitated in response to the RNTI, the code is matched with the component carrier, but in the case where the latter is only targeted by the information bit, the two codec processes are executed in an arbitrary order.

錯誤訂正編碼部166係將取得自攪碼部165之攪碼處理後之控制訊號,進行錯誤訂正編碼。PDCCH之編碼係利用預定編碼方式。然後,錯誤訂正編碼部166係將生成之PDCCH訊號輸出至無線傳送部170。而且,於上述說明中,在將與成分載波相應之區間進行攪碼處理後,進行錯誤訂正編碼,但亦可考慮使兩者的順序相反的方法。The error correction coding unit 166 acquires the control signal after the agitation processing by the agitation unit 165, and performs error correction coding. The coding of the PDCCH utilizes a predetermined coding scheme. Then, the error correction coding unit 166 outputs the generated PDCCH signal to the wireless transmission unit 170. Further, in the above description, the error correction coding is performed after the coding process is performed in the section corresponding to the component carrier, but a method in which the order of the two is reversed may be considered.

第8圖係表示第2實施形態之行動台之方塊圖。行動台200具有天線210、無線接收部220、控制訊號擷取部230、控制訊號解碼部240、PDSCH擷取部250、PDSCH解碼部260、PUSCH生成部270及無線傳送部280。行動台200a亦可藉由與行動台200同樣的構成來實現。Fig. 8 is a block diagram showing a mobile station according to the second embodiment. The mobile station 200 includes an antenna 210, a radio reception unit 220, a control signal acquisition unit 230, a control signal decoding unit 240, a PDSCH acquisition unit 250, a PDSCH decoding unit 260, a PUSCH generation unit 270, and a radio transmission unit 280. The mobile station 200a can also be realized by the same configuration as the mobile station 200.

天線210為傳送‧接收兩用之天線。天線210係將接收自無線基地台100之無線訊號輸出至無線接收部220。又,將取得自無線傳送部280之傳送訊號予以無線輸出。而且,亦可於行動台200個別設置傳送用天線與接收用天線。又,亦可設置複數收發天線。The antenna 210 is an antenna for transmitting and receiving. The antenna 210 outputs the wireless signal received from the wireless base station 100 to the wireless receiving unit 220. Further, the transmission signal obtained from the wireless transmission unit 280 is wirelessly output. Further, the transmission antenna and the reception antenna may be separately provided in the mobile station 200. Further, a plurality of transmitting and receiving antennas may be provided.

無線接收部220係將取得自天線210之接收訊號,轉換為基頻訊號,並將轉換後之接收訊號輸出至控制訊號擷取部230及PDSCH擷取部250。為了從無線訊號轉換為基頻訊號,無線接收部220具備例如低雜訊放大器、頻率轉換器、帶通濾波器、A/D轉換器等。The wireless receiving unit 220 converts the received signal obtained from the antenna 210 into a baseband signal, and outputs the converted received signal to the control signal capturing unit 230 and the PDSCH capturing unit 250. In order to convert from a wireless signal to a baseband signal, the wireless receiving unit 220 includes, for example, a low noise amplifier, a frequency converter, a band pass filter, an A/D converter, and the like.

控制訊號擷取部230係從取得自無線接收部220之作為基頻訊號之接收訊號,擷取有可能為寄給我台之PDCCH訊號之訊號(PDCCH訊號候補)。然後,控制訊號擷取部230係將擷取到之PDCCH訊號候補輸出至控制訊號解碼部240。The control signal extracting unit 230 extracts a signal (a PDCCH signal candidate) that may be a PDCCH signal sent to the station from the receiving signal of the baseband signal obtained from the wireless receiving unit 220. Then, the control signal extraction unit 230 outputs the extracted PDCCH signal candidate to the control signal decoding unit 240.

控制訊號解碼部240係將取得自控制訊號擷取部230之PDCCH訊號候補進行錯誤訂正編碼,並擷取寄給我台之控制訊號。屆時,控制訊號解碼部240係特定出,所擷取到的控制訊號是關於何成分載波之資訊。又,從控制資訊之內容,判斷其為關於PDSCH與PUSCH何者之資訊。The control signal decoding unit 240 performs error correction coding on the PDCCH signal candidate acquired from the control signal acquisition unit 230, and retrieves the control signal sent to the station. At that time, the control signal decoding unit 240 specifies that the captured control signal is information about the component carrier. Further, from the content of the control information, it is judged as information about which of the PDSCH and the PUSCH.

在其為關於PDSCH之資訊的情況下,控制訊號解碼部240係向PDSCH擷取部250及PDSCH解碼部260,輸出控制資訊並且通知經特定出之成分載波。在其為關於PUSCH之資訊的情況下,向PUSCH生成部270,輸出控制資訊並且通知經特定出之成分載波。控制訊號解碼部240之詳細將於後面敘述。When it is the information about the PDSCH, the control signal decoding unit 240 outputs the control information to the PDSCH extraction unit 250 and the PDSCH decoding unit 260, and notifies the specified component carrier. When it is information about the PUSCH, the PUSCH generation unit 270 outputs control information and notifies the specified component carrier. The details of the control signal decoding unit 240 will be described later.

PDSCH擷取部250係從取得自無線接收部220之作為基頻訊號之接收訊號,擷取PDSCH訊號。應擷取之訊號係藉由從控制訊號解碼部240所通知的成分載波、及取得自控制訊號解碼部240之空之訊號所表示之子訊框內的位置而特定出來。然後,PDSCH擷取部250係將擷取到之PDSCH訊號輸出至PDSCH解碼部260。The PDSCH acquisition unit 250 extracts the PDSCH signal from the reception signal obtained as the fundamental frequency signal from the radio reception unit 220. The signal to be captured is specified by the component carrier signal notified from the control signal decoding unit 240 and the position in the sub-frame indicated by the signal obtained from the control signal decoding unit 240. Then, the PDSCH acquisition unit 250 outputs the extracted PDSCH signal to the PDSCH decoding unit 260.

PDSCH解碼部260係將取得自PDSCH擷取部250之PDSCH訊號,進行錯誤訂正解碼。於PDSCH之解碼時,參考取得自控制訊號解碼部240之控制資訊所示之調變編碼方式。藉此擷取無線基地台100所傳送的寄給行動台200之使用者資料。然後,PDSCH解碼部260係將擷取到之使用者資料輸出至上層之處理部(未圖示)。The PDSCH decoding unit 260 performs the error correction decoding by acquiring the PDSCH signal from the PDSCH acquisition unit 250. At the time of decoding of the PDSCH, the modulation coding method shown by the control information obtained from the control signal decoding unit 240 is referred to. Thereby, the user data sent to the mobile station 200 transmitted by the wireless base station 100 is captured. Then, the PDSCH decoding unit 260 outputs the extracted user data to the processing unit (not shown) of the upper layer.

PUSCH生成部270係根據取得自控制訊號解碼部240之關於PUSCH之控制資訊,生成PUSCH訊號。亦即,PUSCH生成部270係從行動台200所具備之緩衝區(未圖示)取出使用者資料。又,生成寄給無線基地台100之控制資訊。在此所生成的控制資訊包含UL無線資源之分配要求。然後,以使用者資料及控制資訊已指定之方式進行錯誤訂正編碼,生成PUSCH訊號並輸出至無線傳送部280。PUSCH訊號之傳送時序係例如從控制資訊之接收,僅延後預定子訊框數之後。The PUSCH generation unit 270 generates a PUSCH signal based on the control information on the PUSCH acquired from the control signal decoding unit 240. In other words, the PUSCH generating unit 270 extracts user data from a buffer (not shown) included in the mobile station 200. Further, control information sent to the wireless base station 100 is generated. The control information generated here contains the allocation requirements of the UL radio resources. Then, the error correction coding is performed in such a manner that the user data and the control information are specified, and the PUSCH signal is generated and output to the wireless transmission unit 280. The transmission timing of the PUSCH signal is, for example, received from the control information, and only after the predetermined number of subframes is delayed.

無線傳送部280係將取得自PUSCH生成部270之PUSCH訊號,轉換為無線訊號並輸出至天線210。為了從基頻訊號轉換為無線訊號,無線傳送部280具備例如D/A轉換器、頻率轉換器、帶通濾波器等。The radio transmission unit 280 converts the PUSCH signal acquired from the PUSCH generation unit 270 into a radio signal and outputs it to the antenna 210. In order to convert from a fundamental frequency signal to a wireless signal, the wireless transmission unit 280 includes, for example, a D/A converter, a frequency converter, a band pass filter, and the like.

第9圖係表示第2實施形態之控制訊號解碼部之詳細之圖。控制訊號解碼部240具有錯誤訂正解碼部241、解攪碼位置控制部242、攪碼序列生成部243、解攪碼部244及錯誤檢測部245。Fig. 9 is a view showing the details of the control signal decoding unit of the second embodiment. The control signal decoding unit 240 includes an error correction decoding unit 241, a descrambled code position control unit 242, a codec sequence generation unit 243, a descramble code unit 244, and an error detection unit 245.

錯誤訂正解碼部241係將取得自控制訊號擷取部230之PDCCH訊號候補,進行錯誤訂正解碼。如前述,PDCCH之編碼係利用預定編碼方式。錯誤訂正解碼部241係將藉由解碼所獲得的控制訊號輸出至解攪碼部244。The error correction decoding unit 241 acquires the PDCCH signal candidates from the control signal acquisition unit 230 and performs error correction decoding. As described above, the coding of the PDCCH utilizes a predetermined coding scheme. The error correction decoding unit 241 outputs the control signal obtained by the decoding to the descramble code unit 244.

解攪碼位置控制部242係於錯誤訂正解碼部241所輸出之控制訊號中,控制進行解攪碼處理之區間。於解攪碼位置控制部242,預先登錄有5個成分載波(CC#1~#5)與5種區間之對應關係。該對應關係與登錄在無線基地台100之攪碼位置控制部163者相同。解攪碼位置控制部242係向解攪碼部244,通知對應於有可能設定有PDSCH或PUSCH之成分載波(成分載波候補)之解攪碼處理之區間。The de-aggregation code position control unit 242 controls the section in which the de-agglomeration processing is performed, in the control signal output from the error correction decoding unit 241. The de-aggregation code position control unit 242 registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five types of sections. This correspondence is the same as that of the codec position control unit 163 registered in the radio base station 100. The de-aggregation code position control unit 242 notifies the de-agglomeration code unit 244 of the section of the de-agglomeration code processing corresponding to the component carrier (component carrier candidate) in which the PDSCH or the PUSCH may be set.

而且,成分載波候補係依行動台200之通訊狀況而改變。例如已決定行動台200使用CC#1~#3而不使用CC#4、#5的情況下,僅有CC#1~#3成為候補。未有前述限定的情況下,所有成分載波(CC#1~#5)均可能成為候補。Moreover, the component carrier candidates are changed depending on the communication status of the mobile station 200. For example, when it is determined that the mobile station 200 uses CC #1 to #3 instead of CC #4 and #5, only CC #1 to #3 are candidates. When there is no such limitation, all component carriers (CC#1 to #5) may be candidates.

攪碼序列生成部243係生成攪碼序列並輸出至解攪碼部244。攪碼序列生成部243係與無線基地台100之攪碼序列生成部164生成相同的攪碼序列。攪碼序列例係如前述。輸出之攪碼序列之位元長亦可與位於攪碼處理之區間內的控制訊號之位元長相同。The codec sequence generation unit 243 generates a codec sequence and outputs it to the descramble code unit 244. The codec sequence generation unit 243 generates the same codec sequence as the codec sequence generation unit 164 of the wireless base station 100. The code sequence is as described above. The bit length of the output code sequence can also be the same as the bit length of the control signal located in the interval of the code processing.

解攪碼部244係利用取得自攪碼序列生成部243之攪碼序列,將取得自錯誤訂正解碼部241之解碼完畢的控制訊號之一部分區間進行解攪碼處理。該解攪碼處理相當於無線基地台100之攪碼部165所進行的攪碼處理之逆向處理。具體而言,於區間內之訊號與攪碼序列之間,就每位元運算互斥邏輯或,將區間內之訊號置換為所獲得的位元串列。若以相同的攪碼序列進行2次互斥邏輯或,則可復原原本的位元串列。解攪碼處理之對象區間係利用從解攪碼位置控制部242所通知的區間之任一個。然後,將解攪碼處理後之控制訊號輸出至錯誤檢測部245。The de-aggregation code unit 244 performs a descrambling process on a portion of the control signal obtained from the error correction decoding unit 241 by the agitation code sequence obtained by the self-aggregation code sequence generation unit 243. This descrambling code processing corresponds to the reverse processing of the agitation processing performed by the agitation unit 165 of the radio base station 100. Specifically, between the signal in the interval and the codec sequence, a mutually exclusive logical OR is performed for each bit, and the signal in the interval is replaced with the obtained bit string. If the exclusive logical OR is performed twice with the same codec sequence, the original bit string can be restored. The target section of the descrambling code processing is used in any of the sections notified from the descrambled code position control unit 242. Then, the control signal after the descrambled processing is output to the error detecting unit 245.

錯誤檢測部245係對於取得自解攪碼部244之控制訊號,進行錯誤檢測。具體而言,錯誤檢測部245係將控制訊號所含之同位位元進行解攪碼處理。所使用的攪碼序列係與已由無線基地台100分配給行動台200之RNTI相應之序列。又,根據控制訊號所含之資訊位元,與無線基地台100之同位附加部162採相同方法生成位元串列。然後,比較所生成的位元串列與解攪碼完畢之同位位元,檢測資訊位元之錯誤。作為錯誤檢測方法可使用例如CRC。The error detecting unit 245 performs error detection on the control signal obtained from the de-agglomerating unit 244. Specifically, the error detecting unit 245 performs deserial processing on the parity bits included in the control signal. The codec sequence used is a sequence corresponding to the RNTI that has been assigned to the mobile station 200 by the radio base station 100. Further, based on the information bit included in the control signal, the bit addition sequence is generated in the same manner as the parity addition unit 162 of the radio base station 100. Then, the generated bit string is compared with the unsigned bit and the information bit error is detected. As the error detection method, for example, a CRC can be used.

錯誤檢測合格(檢測結果為OK)的情況下,亦即判斷無錯誤的情況下,錯誤檢測部245判斷該控制訊號為寄給行動台200之正確訊號。然後,廢棄同位位元部分,將資訊位元部分之位元串列視為控制資訊,判斷其為關於PDSCH亦或關於PUSCH之資訊。另,錯誤檢測不合格(檢測結果為NG)的情況下,亦即判斷有錯誤的情況下,廢棄該控制訊號。When the error detection is successful (the detection result is OK), that is, when it is determined that there is no error, the error detecting unit 245 determines that the control signal is the correct signal to be sent to the mobile station 200. Then, the co-located bit portion is discarded, and the bit string of the information bit portion is regarded as control information, and it is judged to be information about the PDSCH or about the PUSCH. In the case where the error detection is unsuccessful (the detection result is NG), that is, when it is determined that there is an error, the control signal is discarded.

錯誤檢測不合格的原因,除在無線通訊道發生錯誤以外,尚有以下兩個原因。一原因係該控制訊號非寄給行動台200之訊號的情況。該情況下,即便利用與行動台200之RNTI相應之攪碼序列,將同位位元進行解攪碼處理,仍無法復原攪碼處理前之同位位元。另一原因係在解攪碼部244經解攪碼處理之區間,與在無線基地台100之攪碼部165經攪碼處理之區間不同的情況。該情況下,亦無法復原攪碼處理前之控制訊號。There are two reasons for the failure of the error detection, in addition to the error in the wireless communication channel. One reason is the case where the control signal is not sent to the signal of the mobile station 200. In this case, even if the cosine bit is subjected to the descrambling process using the codec sequence corresponding to the RNTI of the mobile station 200, the parity bit before the codec process cannot be restored. Another reason is that the section in which the descrambling code section 244 is subjected to the descrambling code processing is different from the section in which the codec section 165 of the radio base station 100 is subjected to the agitation processing. In this case, the control signal before the jamming process cannot be restored.

在此,解攪碼位置控制部242指定複數區間之情況下,亦即已進行攪碼處理之區間之候補有複數個的情況下,解攪碼部244及錯誤檢測部245係針對各候補嘗試解攪碼處理及錯誤檢測。然後,錯誤檢測部245係特定出錯誤檢測合格時之已進行解攪碼處理之區間,並特定出對應於所特定出的區間之成分載波。Here, when the de-aggregation code position control unit 242 specifies the complex section, that is, when there are a plurality of candidates for the section in which the codec processing has been performed, the de-agglomerating code section 244 and the error detecting section 245 are for each candidate attempt. Uncoupling code processing and error detection. Then, the error detecting unit 245 specifies a section in which the descramble code processing has been performed when the error detection is passed, and specifies a component carrier corresponding to the specified section.

而且,解攪碼部244係針對複數候補區間,並行地進行解攪碼處理,將複數解攪碼處理後之控制訊號輸出至錯誤檢測部245亦可。或者,針對1個候補區間進行解攪碼處理,該解攪碼處理後之控制訊號未於錯誤檢測中合格的情況下,針對下一候補區間進行解攪碼處理而逐次執行亦可。Further, the de-aggregation code unit 244 performs the de-agglomeration processing in parallel for the plurality of candidate sections, and outputs the control signal after the complex descrambling processing to the error detecting unit 245. Alternatively, the de-agxing code processing is performed on one candidate section, and if the control signal after the de-agglomeration processing is not qualified in the error detection, the next candidate section may be subjected to the descrambling process and sequentially executed.

又,如前述,無線基地台100亦可在錯誤訂正編碼後,進行與成分載波相應之攪碼處理。該情況下,行動台200若於錯誤訂正解碼前,針對各候補區間進行解攪碼處理即可。其中,由於若在攪碼處理後進行錯誤訂正編碼,則無須以行動台200對於同一接收訊號進行複數次錯誤訂正解碼即可完成,因此在可抑制行動台200的負載方面有利。Further, as described above, the radio base station 100 may perform the scramble processing corresponding to the component carrier after the error correction encoding. In this case, the mobile station 200 may perform the descrambling code processing for each candidate section before the error correction decoding. However, since the error correction coding is performed after the codec processing, it is not necessary to perform the error correction decoding for the same reception signal by the mobile station 200. Therefore, it is advantageous in suppressing the load of the mobile station 200.

第10圖係表示第2實施形態之傳送處理之流程圖。該處理係於無線基地台100持續地執行。以下依循步驟號碼說明第10圖所示之處理。Fig. 10 is a flow chart showing the transfer processing of the second embodiment. This processing is continuously performed by the wireless base station 100. The processing shown in Fig. 10 will be described below by following the step numbers.

(步驟S11)控制訊號生成部161生成關於PDSCH之控制資訊或關於PUSCH之控制資訊。(Step S11) The control signal generation unit 161 generates control information on the PDSCH or control information on the PUSCH.

(步驟S12)同位附加部162係將步驟S11所生成的控制資訊之位元串列視為資訊位元,按照預定錯誤檢測方式(例如CRC),從資訊位元生成同位位元。(Step S12) The co-location adding unit 162 regards the bit string of the control information generated in step S11 as the information bit, and generates the co-located bit from the information bit in accordance with a predetermined error detecting method (for example, CRC).

(步驟S13)同位附加部162係利用與傳送去處之行動台之RNTI相應之攪碼序列,將步驟S12所生成的同位位元進行攪碼處理。具體而言,運算同位位元與攪碼序列之互斥邏輯或,將運算後之位元串列與同位位元置換。(Step S13) The co-located adding unit 162 performs the scramble processing on the parity bit generated in the step S12 by using the scramble code sequence corresponding to the RNTI of the mobile station. Specifically, the exclusive OR logic OR of the parity bit and the codec sequence is calculated, and the bit string after the operation is replaced with the parity bit.

藉由以上處理,獲得包含表示控制資訊之內容之資訊位元、及與RNTI相應而被攪碼處理之同位位元之控制訊號。Through the above processing, the control signal including the information bit indicating the content of the control information and the parity bit processed by the RNTI is obtained.

(步驟S14)攪碼位置控制部163係特定出控制訊號之適用對象之PDSCH或PUSCH,是設定於第幾個成分載波之通道。然後,選擇被與特定出之成分載波賦予對應之攪碼處理所作為對象之區間。(Step S14) The codec position control unit 163 specifies the PDSCH or PUSCH to which the control signal is applied, and is a channel set to the first component carrier. Then, a section to which the scramble processing corresponding to the specific component carrier is given is selected.

(步驟S15)攪碼部165係以預定攪碼序列,將步驟S11~S13所生成的控制訊號中,由步驟S14所選擇的區間之訊號進行攪碼處理。具體而言,運算區間內之位元串列與攪碼序列之互斥邏輯或,將運算後之位元串列與區間內之位元串列置換。(Step S15) The codec unit 165 performs a codec process on the signals of the sections selected in the step S14 among the control signals generated in the steps S11 to S13 in a predetermined codec sequence. Specifically, the exclusive OR of the bit string and the codec sequence in the calculation interval replaces the bit sequence after the operation with the bit string in the interval.

(步驟S16)錯誤訂正編碼部166係按照預定編碼方式,將在步驟S15經施行攪碼處理後之控制訊號進行錯誤訂正編碼,並作為PDCCH訊號輸出。無線傳送部170係將PDCCH訊號轉換為無線訊號並傳送。(Step S16) The error correction coding unit 166 performs error correction coding on the control signal subjected to the codec processing in step S15 in accordance with a predetermined coding scheme, and outputs it as a PDCCH signal. The wireless transmission unit 170 converts the PDCCH signal into a wireless signal and transmits it.

如此,無線基地台100事先登錄複數成分載波、與互異之複數種攪碼處理的區間之對應關係。然後,將與控制訊號之適用對象之成分載波相應之區間進行攪碼處理。In this way, the radio base station 100 registers in advance the correspondence between the complex component carrier and the interval of the plurality of different types of codec processing. Then, the interval corresponding to the component carrier of the object to which the control signal is applied is subjected to the codec processing.

第11圖係表示第2實施形態之接收處理之流程圖。該處理係於行動台200持續地執行。於行動台200a亦執行同樣的處理。以下依循步驟號碼說明第11圖所示之處理。Fig. 11 is a flow chart showing the receiving process of the second embodiment. This processing is continuously performed by the mobile station 200. The same processing is also performed on the mobile station 200a. The processing shown in Fig. 11 will be described below by following the step number.

(步驟S21)控制訊號擷取部230擷取寄給行動台200之PDCCH訊號之候補。錯誤訂正解碼部241係將擷取到之PDCCH訊號之候補進行錯誤訂正解碼,並作為控制訊號輸出。(Step S21) The control signal extracting unit 230 retrieves candidates for the PDCCH signal sent to the mobile station 200. The error correction decoding unit 241 performs error correction decoding on the candidate of the PDCCH signal that is captured, and outputs it as a control signal.

(步驟S22)解攪碼位置控制部242特定出與控制訊號相關之成分載波的候補。然後,選擇被與特定出之成分載波的候補賦予對應之攪碼處理之區間的候補。解攪碼部244係分別針對所選擇區間之候補,以預定攪碼序列進行解攪碼處理。具體而言,運算區間內之位元串列與攪碼序列之互斥邏輯或,將運算後之位元串列與區間內之位元串列置換。(Step S22) The descrambled code position control unit 242 specifies a candidate for the component carrier associated with the control signal. Then, a candidate for the section of the agitation processing corresponding to the candidate of the specific component carrier is selected. The de-aggregation code unit 244 performs de-agglomeration processing in a predetermined agitation sequence for each candidate of the selected section. Specifically, the exclusive OR of the bit string and the codec sequence in the calculation interval replaces the bit sequence after the operation with the bit string in the interval.

(步驟S23)錯誤檢測部245係利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行解攪碼處理。具體而言,運算同位位元與攪碼序列之互斥邏輯或,將運算後之位元串列與同位位元置換。(Step S23) The error detecting unit 245 performs the descrambling process on the parity bits included in the control signal by using the codec sequence corresponding to the RNTI of the mobile station 200. Specifically, the exclusive OR logic OR of the parity bit and the codec sequence is calculated, and the bit string after the operation is replaced with the parity bit.

(步驟S24)錯誤檢測部245係從在步驟S22、S23經攪碼處理後之控制訊號,擷取資訊位元及同位位元,並進行錯誤檢測。然後,針對任一解攪碼處理後之控制訊號,判斷錯誤檢測結果是否為OK(判斷無錯誤)。任一控制訊號之檢測結果為OK的情況下,使處理前進至步驟S25。任一控制訊號之檢測結果均為NG的情況下,結束處理。(Step S24) The error detecting unit 245 extracts the information bit and the parity bit from the control signal after the codec processing in steps S22 and S23, and performs error detection. Then, for any control signal after the descrambling code processing, it is judged whether the error detection result is OK (determination is no error). When the detection result of any of the control signals is OK, the process proceeds to step S25. When the detection result of any of the control signals is NG, the processing is terminated.

(步驟S25)錯誤檢測部245係將控制訊號所含之資訊位元部分之位元串列視為控制資訊,從控制資訊之內容,判斷該控制資訊是否為關於PDSCH之資訊。其為關於PDSCH之資訊的情況下,使處理前進至步驟S26。其為關於PUSCH之資訊的情況下,使處理前進至步驟S28。(Step S25) The error detecting unit 245 regards the bit string of the information bit portion included in the control signal as control information, and judges whether the control information is information about the PDSCH from the content of the control information. In the case of the information about the PDSCH, the process proceeds to step S26. In the case of the information about the PUSCH, the process proceeds to step S28.

(步驟S26)錯誤檢測部245係特定出錯誤檢測結果為OK時之已進行解攪碼處理之區間。然後,特定出被與所特定出的區間賦予對應之下行鏈之成分載波。(Step S26) The error detecting unit 245 specifies a section in which the descramble code processing has been performed when the error detection result is OK. Then, the component carrier assigned to the corresponding lower row chain is specified.

(步驟S27)PDSCH擷取部250係根據關於PDSCH之控制資訊,從步驟S26所特定出的成分載波之接收訊號擷取PDSCH訊號。PDSCH解碼部260係將擷取到之PDSCH訊號解碼,擷取寄給行動台200之使用者資料。(Step S27) The PDSCH acquisition unit 250 extracts the PDSCH signal from the received signal of the component carrier specified in step S26 based on the control information on the PDSCH. The PDSCH decoding unit 260 decodes the captured PDSCH signal and retrieves the user data sent to the mobile station 200.

(步驟S28)錯誤檢測部245係特定出錯誤檢測結果為OK時之已進行解攪碼處理之區間。然後,特定出被與所特定出的區間賦予對應之上行鏈之成分載波。(Step S28) The error detecting unit 245 specifies a section in which the descramble code processing has been performed when the error detection result is OK. Then, the component carrier of the uplink corresponding to the specified section is specified.

(步驟S29)PUSCH生成部270係根據關於PUSCH之控制資訊,生成以步驟S28所特定出的成分載波傳送之PUSCH訊號。無線傳送部280係將PUSCH訊號轉換為無線訊號並傳送。(Step S29) The PUSCH generation unit 270 generates a PUSCH signal transmitted by the component carrier specified in step S28 based on the control information on the PUSCH. The wireless transmission unit 280 converts the PUSCH signal into a wireless signal and transmits it.

如此,行動台200事先登錄複數成分載波、與互異之複數種解攪碼處理的區間之對應關係。然後,對於接收之控制訊號,針對複數區間之候補之各個嘗試解攪碼處理,從錯誤檢測之結果推定被施行攪碼處理之區間。從推定的區間,可特定出與控制資訊相關連之成分載波。而且,如前述,針對複數區間的候補之解攪碼處理及錯誤檢測可並行地執行或逐次執行。In this manner, the mobile station 200 registers in advance the correspondence between the complex component carrier and the interval in which the plurality of different types of de-aggregation codes are processed. Then, for the received control signal, each of the candidates for the complex interval is subjected to the unwrapping code processing, and the interval subjected to the agitation processing is estimated from the result of the error detection. From the estimated interval, the component carrier associated with the control information can be specified. Further, as described above, the descrambling processing and the error detection for the candidates of the complex section can be performed in parallel or sequentially.

第12圖係表示第2實施形態之控制訊號之第1例之圖。在此,於同位附加後之控制訊號中,包含30位元之資訊位元及16位元之同位位元。又,將資訊位元中之16位元進行攪碼處理。Fig. 12 is a view showing a first example of the control signal of the second embodiment. Here, the control signal after the co-location is included in the information bit of 30 bits and the parity bit of 16 bits. Moreover, the 16 bits in the information bit are subjected to the codec processing.

於第1例中,對應於設有控制訊號之適用對象之通道(PDSCH或PUSCH)的成分載波之號碼,使攪碼處理之區間各錯開1位元。於控制訊號之對象區間之16位元與攪碼序列之16位元之間,就每位元運算互斥邏輯或。In the first example, the number of component carriers of the channel (PDSCH or PUSCH) to which the control signal is applied is set, and the interval of the codec processing is shifted by one bit. Between the 16-bit object of the control signal and the 16-bit code of the codec sequence, the exclusive logical OR of each bit operation.

具體而言,在關於CC#1之控制訊號的情況下,攪碼開頭16位元之區間(C0~C15)。在關於CC#2之控制訊號的情況下,攪碼較CC#1的情況往後方錯開1位元之區間(C1~C16)。同樣地,在關於CC#3之控制訊號的情況下攪碼C2~C17,在關於CC#4之控制訊號的情況下攪碼C3~C18,在關於CC#5之控制訊號的情況下攪碼C4~C19。Specifically, in the case of the control signal of CC #1, the interval of the first 16 bits (C0 to C15) is stirred. In the case of the control signal of CC#2, the code is shifted by one bit interval (C1 to C16) from the case of CC#1. Similarly, C2 to C17 are mixed in the case of the control signal of CC#3, C3 to C18 are mixed in the case of the control signal of CC#4, and the code is agitated in the case of the control signal of CC#5. C4 ~ C19.

第13圖係表示第2實施形態之控制訊號之第2例之圖。於第2例中,對應於設有控制訊號之適用對象之通道的成分載波之號碼,使攪碼處理之區間各錯開2位元。Fig. 13 is a view showing a second example of the control signal of the second embodiment. In the second example, the number of the component carriers of the channel to which the control signal is applied is set, and the interval of the codec processing is shifted by two bits.

具體而言,在關於CC#1之控制訊號的情況下,將開頭16位元之區間(C0~C15)擾碼。在關於CC#2之控制訊號的情況下,攪碼較CC#1的情況往後方錯開2位元之區間(C2~C17)。同樣地,在關於CC#3之控制訊號的情況下攪碼C4~C19,在關於CC#4之控制訊號的情況下攪碼C6~C21,在關於CC#5之控制訊號的情況下攪碼C8~C23。Specifically, in the case of the control signal of CC #1, the section (C0 to C15) of the first 16 bits is scrambled. In the case of the control signal of CC#2, the agitation code is shifted rearward by a 2-bit interval (C2 to C17) than the case of CC#1. Similarly, in the case of the control signal of CC#3, the code C4 to C19 are mixed, and in the case of the control signal of CC#4, the code C6 to C21 are mixed, and in the case of the control signal of CC#5, the code is agitated. C8 ~ C23.

第14圖係表示第2實施形態之控制訊號之第3例之圖。於第3例中,對應於設有控制訊號之適用對象之通道的成分載波之號碼,使攪碼處理之區間各錯開1位元。其中,與第1例之不同點為,從資訊位元的結尾往前方錯開。Fig. 14 is a view showing a third example of the control signal of the second embodiment. In the third example, the number of component carriers corresponding to the channel to which the control signal is applied is set, and the interval of the codec processing is shifted by one bit. Among them, the difference from the first example is that it is shifted forward from the end of the information bit.

具體而言,在關於CC#1之控制訊號的情況下,將結尾16位元之區間(C14~C29)擾碼。在關於CC#2之控制訊號的情況下,攪碼較CC#1的情況往前方錯開1位元之區間(C13~C28)。同樣地,在關於CC#3之控制訊號的情況下攪碼C12~C27,在關於CC#4之控制訊號的情況下攪碼C11~C26,在關於CC#5之控制訊號的情況下攪碼C10~C25。Specifically, in the case of the control signal for CC #1, the interval (C14 to C29) of the last 16 bits is scrambled. In the case of the control signal of CC#2, the agitation code is shifted forward by one bit (C13 to C28) in the case of CC#1. Similarly, in the case of the control signal for CC#3, the codes C12 to C27 are mixed, and in the case of the control signal for CC#4, the codes C11 to C26 are mixed, and in the case of the control signal for CC#5, the code is stirred. C10 ~ C25.

如此,5個成分載波(CC#1~#5)與攪碼處理之區間之賦予對應,可考慮各種方法。第12圖~第14圖所示之方法只不過為其一例。例如與CC#1賦予對應之區間不為資訊位元之開頭或結尾亦可。又,錯開區間的量並非等間隔亦可。又,第12~14圖所示之方法係將連續區間進行攪碼處理,但不連續區間亦可。又,攪碼處理之區間跨越資訊位元與同位位元亦可。As described above, the five component carriers (CC #1 to #5) correspond to the assignment of the section of the codec processing, and various methods can be considered. The methods shown in Figs. 12 to 14 are merely examples. For example, the section corresponding to CC#1 is not the beginning or the end of the information bit. Moreover, the amount of the staggered interval may not be equal intervals. Further, in the methods shown in Figs. 12 to 14, the continuous section is subjected to the agitation processing, but the discontinuous section may be used. Moreover, the interval of the codec processing may also span the information bit and the parity bit.

又,攪碼區間之長度非為16位元亦可,關於CC#1~#5之全部而言非為同一長度亦可。其中,攪碼區間長時,行動台200、200a可較減低誤檢測成分載波之機率。如第12~14圖之方法,設定錯開N位元之區間的情況下,攪碼區間之長度可在資訊位元長-(成分載波數-1)×N以下之範圍內設定。Further, the length of the agitation section is not 16 bits, and the same length may not be used for all of CC #1 to #5. Wherein, when the coded interval is long, the mobile stations 200 and 200a can reduce the probability of erroneously detecting the component carrier. In the case of the method of FIGS. 12 to 14, when the interval of the N-bit is set, the length of the agitation section can be set within the range of the information bit length - (component carrier number - 1) × N or less.

若依據前述關於第2實施形態之移動通訊系統,可從無線基地台100有效率地向行動台200、200a,通知設有控制訊號之適用對象之PDSCH或PUSCH之成分載波。亦即,與對控制訊號附加成分載波之號碼的方法相比,可抑制PDCCH之無線資源之消耗量。又,與以成分載波數將RNTI分配給行動台200、200a之方法相比,可抑制RNTI耗盡。According to the mobile communication system according to the second embodiment, the radio base station 100 can efficiently notify the mobile stations 200 and 200a of the component carriers of the PDSCH or the PUSCH to which the control signal is applied. That is, compared with the method of adding the component number of the control signal to the control signal, the consumption of the radio resource of the PDCCH can be suppressed. Further, compared with the method of allocating the RNTI to the mobile stations 200 and 200a by the number of component carriers, it is possible to suppress the RNTI from being exhausted.

而且,以上所說明的第2實施形態係從經攪碼處理之區間,特定出成分載波之號碼,但未區別下行鏈與上行鏈。此係由於從控制資訊之內容,可判斷控制資訊為關於PDSCH之資訊亦或關於PUSCH之資訊。其中,亦可能夠從經攪碼處理之區間,區別下行鏈與上行鏈。例如準備10種攪碼區間,一對一地識別10個成分載波亦可。Further, in the second embodiment described above, the number of the component carrier is specified from the section subjected to the codec processing, but the downlink and the uplink are not distinguished. This is because the control information can be judged as information about the PDSCH or information about the PUSCH from the content of the control information. Among them, it is also possible to distinguish between the downlink and the uplink from the interval in which the code is processed. For example, 10 types of coded intervals are prepared, and 10 component carriers can be identified one-to-one.

又,第2實施形態係針對PDSCH之控制訊號與PUSCH之控制訊號雙方,藉由攪碼處理特定出成分載波。然而,僅任一方進行上述處理亦可。例如僅就PDSCH之控制訊號,藉由攪碼處理特定出成分載波,關於PUSCH之控制資訊,則明示地附加成分載波號碼亦可。反之,亦可僅就PUSCH之控制訊號,藉由攪碼處理特定出成分載波,關於PDSCH之控制資訊,則明示地附加成分載波之號碼。Further, in the second embodiment, both the control signal of the PDSCH and the control signal of the PUSCH are processed by the scrambling process to specify the component carrier. However, only one of the above processes may be performed. For example, only the control signal of the PDSCH is processed by the agitation code to process the specific component carrier, and the control information of the PUSCH may be explicitly added with the component carrier number. On the other hand, the specific component carrier can be processed by the agitation code only for the control signal of the PUSCH, and the component carrier number is explicitly added to the control information of the PDSCH.

又,以上所說明的第2實施形態係表示於關於所有成分載波之控制訊號的情況下,進行攪碼處理及解攪碼處理之例,但於關於預定成分載波之控制訊號的情況(例如PDCCH與PDSCH相同,以成分載波傳送的情況,或傳送PDCCH之成分載波之號碼與傳送PUSCH之成分載波之號碼相同的情況)下,不進行攪碼處理及解攪碼處理亦可。Further, the second embodiment described above is an example of performing a codec process and a de-agglomeration process in the case of a control signal for all component carriers, but in the case of a control signal for a predetermined component carrier (for example, PDCCH) Similarly to the PDSCH, in the case of component carrier transmission, or when the number of the component carrier transmitting the PDCCH is the same as the number of the component carrier transmitting the PUSCH, the codec processing and the descrambling code processing may not be performed.

又,以上所說明的第2實施形態係利用PDCCH、PDSCH、PUSCH等用語來說明,但更一般而言,亦可分別稱為下行鏈控制通道、下行鏈共有通道、上行鏈共有通道。亦即,上述無線通訊方法不限定適用領域,亦可適用於固定無線通訊等移動通訊以外之無線通訊或無線LAN等。此在後面的實施形態中亦同理。Further, the second embodiment described above is described using terms such as PDCCH, PDSCH, and PUSCH, but more generally, it may be referred to as a downlink control channel, a downlink shared channel, and an uplink shared channel. That is, the above-described wireless communication method is not limited to the applicable field, and can be applied to wireless communication other than mobile communication such as fixed wireless communication or wireless LAN. This is also the same in the following embodiments.

[第3實施形態][Third embodiment]

接著,說明關於第3實施形態。針對與第2實施形態之差異為中心來說明,關於與第2實施形態同樣的事項則省略說明。第2實施形態係藉由攪碼處理之區間,特定出被適用控制訊號之通道所屬的成分載波。相對於此,第3實施形態係藉由攪碼處理之區間,特定出通道開頭之無線資源。Next, a third embodiment will be described. The difference from the second embodiment will be mainly described, and the description of the same matters as those of the second embodiment will be omitted. In the second embodiment, the component carrier to which the channel to which the control signal is applied is specified by the interval of the codec processing. On the other hand, in the third embodiment, the radio resource at the beginning of the channel is specified by the interval of the scramble processing.

關於第3實施形態之移動通訊系統可藉由與第2圖同樣的構成而實現。又,用於第3實施形態之無線通訊之成分載波及無線訊框的構造,係與第3~5圖所示之第2實施形態相同。在此,DL子訊框之PDCCH與PDSCH之邊界為可變。The mobile communication system according to the third embodiment can be realized by the same configuration as that of Fig. 2. Further, the structure of the component carrier and the radio frame used for the wireless communication of the third embodiment is the same as that of the second embodiment shown in Figs. Here, the boundary between the PDCCH and the PDSCH of the DL subframe is variable.

第15圖係表示第3實施形態之PDSCH之分配例之圖。於各DL子訊框,開頭的數符元被分配作為PDCCH的區域,剩餘符元被分配作為PDSCH的區域。在此,PDCCH的區域之符元數係依DL子訊框而不同。Fig. 15 is a view showing an example of allocation of PDSCH in the third embodiment. In each DL subframe, the first symbol is allocated as the region of the PDCCH, and the remaining symbols are allocated as the region of the PDSCH. Here, the number of symbols of the area of the PDCCH differs depending on the DL subframe.

於以下說明中,PDCCH的區域之符元數係設為在1~3符元之範圍內可變。第15圖例的情況下,於CC#1之DL子訊框,對PDCCH的區域分配有2符元。故,PDSCH係從第3符元開始。於CC#2之DL子訊框,對PDCCH的區域分配有3符元。故,PDSCH係從第4符元開始。於CC#3之DL子訊框,對PDCCH的區域分配有1符元。故,PDSCH係從第2符元開始。In the following description, the number of symbols in the area of the PDCCH is set to be variable within the range of 1 to 3 symbols. In the case of the fifteenth example, in the DL subframe of CC#1, two symbols are allocated to the area of the PDCCH. Therefore, the PDSCH starts from the third symbol. In the DL subframe of CC#2, the PDCCH area is allocated with 3 symbols. Therefore, the PDSCH starts from the 4th symbol. In the DL subframe of CC#3, the PDCCH area is allocated with 1 symbol. Therefore, the PDSCH starts from the second symbol.

於各DL子訊框之PDCCH的區域設有PCFICH(Physical Control Format Indicator CHannel:實體控制格式指示元通道)。PCFICH傳送我方子訊框之PDCCH區域之符元數。故,第15圖所示之CC#1之DL子訊框之PCFICH係傳送「2」。CC#2之DL子訊框之PCFICH係傳送「3」。CC#3之DL子訊框之PCFICH係傳送「1」。A PCFICH (Physical Control Format Indicator CHannel) is provided in a region of the PDCCH of each DL subframe. The PCFICH transmits the number of symbols in the PDCCH region of our subframe. Therefore, the PCFICH of the DL sub-frame of CC#1 shown in Fig. 15 transmits "2". The PCFICH of the DL sub-frame of CC#2 transmits "3". The PCFICH of the DL sub-frame of CC#3 transmits "1".

接收該無線訊框之裝置係藉由參考PCFICH,可特定出PDSCH被傳送之符元位置。然而,僅以該方法,當PCFICH之辨識失敗時,無法正確擷取PDSCH訊號。因此,於第3實施形態,即便PCFICH之辨識失敗,仍使得PDSCH訊號可正確擷取。The device receiving the radio frame can specify the location of the symbol to which the PDSCH is transmitted by referring to the PCFICH. However, in this method alone, when the identification of the PCFICH fails, the PDSCH signal cannot be correctly captured. Therefore, in the third embodiment, even if the identification of the PCFICH fails, the PDSCH signal can be correctly captured.

關於第3實施形態之無線基地台,可藉由與第6、7圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,攪碼位置控制部163之控制係於上述點不同。關於第3實施形態之行動台,可藉由與第8、9圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,解攪碼位置控制部242及錯誤檢測部245之控制係於上述點不同。以下利用與第2實施形態同樣的符號來說明第3實施形態之控制。The radio base station according to the third embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in Figs. The control of the agitating position control unit 163 is different at the above points. The mobile station according to the third embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in Figs. The control of the de-agglomerating code position control unit 242 and the error detecting unit 245 is different at the above points. The control of the third embodiment will be described below using the same reference numerals as in the second embodiment.

第16圖係表示第3實施形態之傳送處理之流程圖。該處理係於無線基地台100持續地執行。以下依循步驟號碼說明第16圖所示之處理。Fig. 16 is a flow chart showing the transfer processing of the third embodiment. This processing is continuously performed by the wireless base station 100. The processing shown in Fig. 16 will be described below by following the step numbers.

(步驟S31)控制訊號生成部161生成關於PDSCH之控制資訊或關於PUSCH之控制資訊。而且,為了識別設有PDSCH或PUSCH之成分載波,於控制資訊附加成分載波號碼亦可。(Step S31) The control signal generation unit 161 generates control information on the PDSCH or control information on the PUSCH. Further, in order to identify the component carrier in which the PDSCH or the PUSCH is provided, the component carrier number may be added to the control information.

(步驟S32)同位附加部162係將步驟S31所生成的控制資訊之位元串列視為資訊位元,從資訊位元生成同位位元。(Step S32) The co-location adding unit 162 regards the bit string of the control information generated in the step S31 as the information bit, and generates the co-located bit from the information bit.

(步驟S33)同位附加部162係利用與傳送去處之RNTI相應之攪碼序列,將步驟S32所生成的同位位元進行攪碼處理。(Step S33) The parity addition unit 162 performs the codec processing on the parity bit generated in step S32 by using the codec sequence corresponding to the RNTI of the transmission destination.

藉由以上處理,獲得包含表示控制資訊之內容之資訊位元、及與RNTI相應而被攪碼處理之同位位元之控制訊號。Through the above processing, the control signal including the information bit indicating the content of the control information and the parity bit processed by the RNTI is obtained.

(步驟S34)攪碼位置控制部163判斷控制訊號是否為關於PDSCH之控制訊號。其為關於PDSCH之控制訊號的情況下,使處理前進至步驟S35。其為關於PUSCH之控制訊號的情況下,使處理前進至步驟S37。(Step S34) The codec position control unit 163 determines whether or not the control signal is a control signal for the PDSCH. In the case of the control signal for the PDSCH, the process proceeds to step S35. In the case of the control signal for the PUSCH, the process proceeds to step S37.

(步驟S35)攪碼位置控制部163係特定出設定有控制訊號之適用對象之PDSCH之DL子訊框,並特定出經特定出的DL子訊框之PDCCH的區域與PDSCH的區域之邊界(亦即PDSCH之開頭為第幾符元)。然後,選擇被與特定出之邊界賦予對應之攪碼處理之區間。而且,於攪碼位置控制部163,預先登錄有3種邊界與3種攪碼處理之區間之對應關係。(Step S35) The codec position control unit 163 specifies the DL subframe of the PDSCH to which the control signal is applied, and specifies the boundary between the PDCCH region of the specified DL subframe and the PDSCH region ( That is, the beginning of PDSCH is the first symbol). Then, the interval of the scramble processing corresponding to the specific boundary is selected. Further, the stitching position control unit 163 registers in advance the correspondence between the three kinds of boundaries and the three kinds of the coded processing sections.

(步驟S36)攪碼部165係以預定攪碼序列,將步驟S31~S33所生成的控制訊號中,由步驟S35所選擇的區間之訊號進行攪碼處理。(Step S36) The codec unit 165 performs a codec process on the signals of the sections selected in the step S35 among the control signals generated in the steps S31 to S33 in a predetermined codec sequence.

(步驟S37)錯誤訂正編碼部166係將控制訊號進行錯誤訂正編碼,並作為PDCCH訊號輸出。無線傳送部170係將PDCCH訊號轉換為無線訊號並傳送。(Step S37) The error correction coding unit 166 performs error correction coding on the control signal and outputs it as a PDCCH signal. The wireless transmission unit 170 converts the PDCCH signal into a wireless signal and transmits it.

如此,無線基地台100事先登錄複數種子訊框之構造、與互異之複數種攪碼區間之對應關係。然後,將與設有控制訊號之適用對象之PDSCH之子訊框相應之區間進行攪碼處理。而且,關於PUSCH之控制訊號,不進行步驟S36之攪碼處理亦可。In this manner, the radio base station 100 registers in advance the structure of the plurality of seed frames and the correspondence relationship between the plurality of different code blocks. Then, the section corresponding to the sub-frame of the PDSCH to which the control signal is applied is subjected to the scramble processing. Further, regarding the control signal of the PUSCH, the codec processing of step S36 may not be performed.

第17圖係表示第3實施形態之接收處理之流程圖。該處理係於行動台200持續地執行。於行動台200a亦執行同樣的處理。以下依循步驟號碼說明第17圖所示之處理。Fig. 17 is a flow chart showing the receiving process of the third embodiment. This processing is continuously performed by the mobile station 200. The same processing is also performed on the mobile station 200a. The processing shown in Fig. 17 will be described below by following the step number.

(步驟S41)控制訊號擷取部230擷取寄給行動台200之PDCCH訊號之候補。錯誤訂正解碼部241係將擷取到之PDCCH訊號之候補進行錯誤訂正解碼,並作為控制訊號輸出。(Step S41) The control signal extraction unit 230 retrieves candidates for the PDCCH signal sent to the mobile station 200. The error correction decoding unit 241 performs error correction decoding on the candidate of the PDCCH signal that is captured, and outputs it as a control signal.

(步驟S42)解攪碼位置控制部242特定出PDCCH的區域與PDSCH的區域之邊界的候補。然後,選擇被與特定出之邊界的候補賦予對應之解攪碼處理之區間的候補。解攪碼部244係分別針對所選擇區間之候補,以預定攪碼序列進行解攪碼處理。而且,於解攪碼位置控制部242,預先登錄有3種邊界與3種解攪碼處理之區間之對應關係。(Step S42) The descrambled code position control unit 242 specifies a candidate for the boundary between the region of the PDCCH and the region of the PDSCH. Then, candidates for the section of the de-aggregation code processing corresponding to the candidate of the specific boundary are selected. The de-aggregation code unit 244 performs de-agglomeration processing in a predetermined agitation sequence for each candidate of the selected section. Further, the decoupling code position control unit 242 registers in advance the correspondence between the three kinds of boundaries and the sections of the three kinds of decomposed code processing.

(步驟S43)錯誤檢測部245係利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行解攪碼處理。(Step S43) The error detecting unit 245 performs the descrambling process on the parity bits included in the control signal by using the codec sequence corresponding to the RNTI of the mobile station 200.

(步驟S44)錯誤檢測部245係對於經步驟S43之解攪碼處理之控制訊號、及未進行步驟S43之解攪碼處理之控制訊號,進行錯誤檢測。然後,針對任一控制訊號,判斷錯誤檢測結果是否為OK。任一控制訊號之檢測結果為OK的情況下,使處理前進至步驟S45。任一控制訊號之檢測結果均為NG的情況下,結束處理。(Step S44) The error detecting unit 245 performs error detection on the control signal subjected to the descramble processing in step S43 and the control signal in which the descramble processing in step S43 is not performed. Then, for any control signal, it is judged whether the error detection result is OK. When the detection result of any of the control signals is OK, the process proceeds to step S45. When the detection result of any of the control signals is NG, the processing is terminated.

(步驟S45)錯誤檢測部245係從控制資訊之內容,判斷該控制資訊是否為關於PDSCH之資訊。其為關於PDSCH之資訊的情況下,使處理前進至步驟S46。其為關於PUSCH之資訊的情況下,使處理前進至步驟S48。而且,關於PDSCH之控制資訊係擷取自經進行步驟S43之解攪碼處理之控制訊號。關於PUSCH之控制資訊係擷取自未進行步驟S43之解攪碼處理之控制訊號。(Step S45) The error detecting unit 245 determines whether or not the control information is information about the PDSCH from the content of the control information. In the case of the information on the PDSCH, the process proceeds to step S46. In the case of the information about the PUSCH, the process proceeds to step S48. Moreover, the control information about the PDSCH is extracted from the control signal subjected to the descrambling process of step S43. The control information about the PUSCH is extracted from the control signal that has not been subjected to the descrambling process of step S43.

(步驟S46)錯誤檢測部245係特定出錯誤檢測結果為OK時之解攪碼區間。然後,從已特定出之區間,特定出PDSCH之開頭符元。(Step S46) The error detecting unit 245 specifies the descrambling code section when the error detection result is OK. Then, the initial symbol of the PDSCH is specified from the specified interval.

(步驟S47)PDSCH擷取部250係根據關於PDSCH之控制資訊、及於步驟S46所特定出之開頭符元,從接收訊號擷取PDSCH訊號。PDSCH解碼部260係將擷取到之PDSCH訊號解碼,擷取寄給行動台200之使用者資料。而且,PDSCH擷取部250亦可進一步參考以PDCCH區域內之PCFICH所傳送的資訊,來確認PDSCH之開頭符元。(Step S47) The PDSCH extraction unit 250 extracts the PDSCH signal from the received signal based on the control information on the PDSCH and the start symbol specified in step S46. The PDSCH decoding unit 260 decodes the captured PDSCH signal and retrieves the user data sent to the mobile station 200. Furthermore, the PDSCH acquisition unit 250 may further confirm the start symbol of the PDSCH by referring to the information transmitted by the PCFICH in the PDCCH region.

(步驟S48)PUSCH生成部270係根據關於PUSCH之控制資訊而生成PUSCH訊號。無線傳送部280係將PUSCH訊號轉換為無線訊號並傳送。(Step S48) The PUSCH generation unit 270 generates a PUSCH signal based on the control information on the PUSCH. The wireless transmission unit 280 converts the PUSCH signal into a wireless signal and transmits it.

如此,行動台200事先登錄複數種子訊框、與互異之複數種解攪碼區間之對應關係。然後,對於接收之控制訊號,針對複數區間之候補之各個嘗試解攪碼處理,從錯誤檢測之結果推定被施行攪碼處理之區間。從推定的區間可特定出PDSCH之開頭符元。In this way, the mobile station 200 registers in advance the correspondence between the plurality of seed frames and the plurality of different kinds of decomposed code intervals. Then, for the received control signal, each of the candidates for the complex interval is subjected to the unwrapping code processing, and the interval subjected to the agitation processing is estimated from the result of the error detection. The initial symbol of the PDSCH can be specified from the estimated interval.

DL子訊框之構造與攪碼區間之賦予對應方法可考慮各種方法。可考慮例如將第12~14圖之相當於CC#1之區間,在PDCCH區域為1符元之情況下賦予對應,將相當於CC#2之區間在PDCCH區域為2符元之情況下賦予對應,將相當於CC#3之區間在PDCCH區域為3符元之情況下賦予對應之方法。Various methods can be considered for the method of assigning the DL sub-frame and the method of assigning the coded interval. For example, the section corresponding to CC#1 in the 12th to 14th graphs is given a correspondence when the PDCCH region is one symbol, and the interval corresponding to CC#2 is given when the PDCCH region is two symbols. Correspondingly, a method corresponding to CC#3 is assigned to the corresponding case when the PDCCH region is three symbols.

若依據前述關於第3實施形態之移動通訊系統,可從無線基地台100有效率地向行動台200、200a,通知控制訊號被適用之PDSCH之開頭符元。因此,即便於DL子訊框內,PDSCH之符元位置為可變的情況下,仍可減低行動台200、200a擷取PDSCH訊號失敗的機率。According to the mobile communication system according to the third embodiment, the radio base station 100 can efficiently notify the mobile stations 200 and 200a of the start symbols of the PDSCH to which the control signal is applied. Therefore, even if the symbol position of the PDSCH is variable in the DL subframe, the probability that the mobile station 200, 200a fails to acquire the PDSCH signal can be reduced.

[第4實施形態][Fourth embodiment]

接著,說明關於第4實施形態。針對與第2、第3實施形態之差異為中心來說明,關於與第2、第3實施形態同樣的事項則省略說明。第4實施形態係藉由攪碼處理之區間,特定出適用控制訊號之通道所屬的成分載波、與通道開頭之無線資源雙方。Next, a fourth embodiment will be described. The difference from the second and third embodiments will be mainly described, and the description of the same matters as those of the second and third embodiments will be omitted. In the fourth embodiment, the component carrier to which the channel to which the control signal is applied and the radio resource at the head of the channel are specified by the section of the codec processing.

關於第4實施形態之無線基地台,可藉由與第6、7圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,攪碼位置控制部163之控制係於上述點不同。關於第4實施形態之行動台,可藉由與第8、9圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,解攪碼位置控制部242及錯誤檢測部245之控制係於上述點不同。以下利用與第2實施形態同樣的符號來說明第4實施形態之控制。The radio base station according to the fourth embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in Figs. The control of the agitating position control unit 163 is different at the above points. The mobile station according to the fourth embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in Figs. The control of the de-agglomerating code position control unit 242 and the error detecting unit 245 is different at the above points. The control of the fourth embodiment will be described below using the same reference numerals as in the second embodiment.

第18圖係表示第4實施形態之傳送處理之流程圖。該處理係於無線基地台100持續地執行。以下依循步驟號碼說明第18圖所示之處理。Fig. 18 is a flow chart showing the transfer processing of the fourth embodiment. This processing is continuously performed by the wireless base station 100. The processing shown in Fig. 18 will be described below by following the step numbers.

(步驟S51)控制訊號生成部161生成關於PDSCH之控制資訊或關於PUSCH之控制資訊。(Step S51) The control signal generation unit 161 generates control information on the PDSCH or control information on the PUSCH.

(步驟S52)同位附加部162係將步驟S51所生成的控制資訊之位元串列視為資訊位元,從資訊位元生成同位位元。(Step S52) The co-location adding unit 162 regards the bit string of the control information generated in the step S51 as the information bit, and generates the co-located bit from the information bit.

(步驟S53)同位附加部162係利用與傳送去處之RNTI相應之攪碼序列,將步驟S52所生成的同位位元進行攪碼處理。(Step S53) The co-located adding unit 162 performs the scramble processing on the parity bit generated in the step S52 by using the codec sequence corresponding to the RNTI at the transmission.

藉由以上處理,獲得包含表示控制資訊之內容之資訊位元、及與RNTI相應而被攪碼處理之同位位元之控制訊號。Through the above processing, the control signal including the information bit indicating the content of the control information and the parity bit processed by the RNTI is obtained.

(步驟S54)攪碼位置控制部163判斷控制訊號是否為關於PDSCH之控制訊號。其為關於PDSCH之控制訊號的情況下,使處理前進至步驟S55。其為關於PUSCH之控制訊號的情況下,使處理前進至步驟S56。(Step S54) The codec position control unit 163 determines whether or not the control signal is a control signal for the PDSCH. In the case of the control signal for the PDSCH, the process proceeds to step S55. In the case of the control signal for the PUSCH, the process proceeds to step S56.

(步驟S55)攪碼位置控制部163係特定出設有控制訊號之適用對象之PDSCH之成分載波。接著,特定出設有該PDSCH之DL子訊框,並特定出經特定出的DL子訊框之PDCCH的區域與PDSCH的區域之邊界。然後,攪碼位置控制部163選擇被與特定出之成分載波及邊界賦予對應之攪碼處理之區間。而且,於攪碼位置控制部163,預先登錄有成分載波及DL子訊框之邊界與攪碼處理之區間之對應關係。(Step S55) The codec position control unit 163 specifies the component carrier of the PDSCH to which the control signal is applied. Next, the DL subframe with the PDSCH is specified, and the boundary between the region of the PDCCH of the specified DL subframe and the region of the PDSCH is specified. Then, the stitching position control unit 163 selects a section to be subjected to the stitching processing corresponding to the specified component carrier and the boundary. Further, the stitching position control unit 163 registers in advance the correspondence between the boundary of the component carrier and the DL subframe and the section of the codec processing.

(步驟S56)攪碼位置控制部163係特定出設定有控制訊號之適用對象之PUSCH之成分載波。然後,選擇被與特定出之成分載波及邊界賦予對應之攪碼處理之區間。而且,於攪碼位置控制部163,預先登錄有成分載波與攪碼處理之區間之對應關係。(Step S56) The codec position control unit 163 specifies the component carrier of the PUSCH to which the control signal is applied. Then, the interval to be subjected to the agitation processing corresponding to the specific component carrier and the boundary is selected. Further, the stitching position control unit 163 registers in advance the correspondence between the component carrier and the section of the codec processing.

(步驟S57)攪碼部165係以預定攪碼序列,將步驟S51~S53所生成的控制訊號中,由步驟S55或步驟S56所選擇的區間之訊號進行攪碼處理。(Step S57) The codec unit 165 performs a codec process on the signals of the sections selected in the step S55 or the step S56 among the control signals generated in the steps S51 to S53 in a predetermined codec sequence.

(步驟S58)錯誤訂正編碼部166係將在步驟S57經施行攪碼處理後之控制訊號進行錯誤訂正編碼,並作為PDCCH訊號輸出。無線傳送部170係將PDCCH訊號轉換為無線訊號並傳送。(Step S58) The error correction coding unit 166 performs error correction coding on the control signal subjected to the codec processing in step S57, and outputs it as a PDCCH signal. The wireless transmission unit 170 converts the PDCCH signal into a wireless signal and transmits it.

如此,無線基地台100係於關於PDSCH之控制訊號的情況下,將與設有PDSCH之成分載波及DL子訊框之構造相應之區間進行攪碼處理。於關於PUSCH之控制訊號的情況下,將與設有PUSCH之成分載波相應之區間進行攪碼處理。In this manner, when the radio base station 100 is in the control signal for the PDSCH, the radio base station 100 performs the scramble processing on the section corresponding to the configuration of the component carrier and the DL sub-frame in which the PDSCH is provided. In the case of the PUSCH control signal, the section corresponding to the component carrier in which the PUSCH is provided is subjected to the codec processing.

第19圖係表示第4實施形態之接收處理之流程圖。該處理係於行動台200持續地執行。於行動台200a亦執行同樣的處理。以下依循步驟號碼說明第19圖所示之處理。Fig. 19 is a flow chart showing the receiving process of the fourth embodiment. This processing is continuously performed by the mobile station 200. The same processing is also performed on the mobile station 200a. The processing shown in Fig. 19 will be described below by following the step number.

(步驟S61)控制訊號擷取部230擷取寄給行動台200之PDCCH訊號之候補。錯誤訂正解碼部241係將擷取到之PDCCH訊號之候補進行錯誤訂正解碼,並作為控制訊號輸出。(Step S61) The control signal extracting unit 230 picks up the candidate of the PDCCH signal sent to the mobile station 200. The error correction decoding unit 241 performs error correction decoding on the candidate of the PDCCH signal that is captured, and outputs it as a control signal.

(步驟S62)解攪碼位置控制部242選擇解攪碼處理之區間的候補。解攪碼部244係分別針對所選擇區間之候補,以預定攪碼序列進行解攪碼處理。(Step S62) The descramble code position control unit 242 selects a candidate for the section of the de-agglomeration code processing. The de-aggregation code unit 244 performs de-agglomeration processing in a predetermined agitation sequence for each candidate of the selected section.

(步驟S63)錯誤檢測部245係利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行解攪碼處理。(Step S63) The error detecting unit 245 performs the descrambling process on the parity bits included in the control signal by using the codec sequence corresponding to the RNTI of the mobile station 200.

(步驟S64)錯誤檢測部245分別對於經施行步驟S62、S63之解攪碼處理之控制訊號,進行錯誤檢測。然後,針對任一控制訊號,判斷錯誤檢測結果是否為OK。任一控制訊號之檢測結果為OK的情況下,使處理前進至步驟S65。任一檢測結果均為NG的情況下,結束處理。(Step S64) The error detecting unit 245 performs error detection on the control signals subjected to the descrambling process of steps S62 and S63, respectively. Then, for any control signal, it is judged whether the error detection result is OK. When the detection result of any of the control signals is OK, the process proceeds to step S65. When any of the detection results is NG, the processing is terminated.

(步驟S65)錯誤檢測部245係從控制資訊之內容,判斷該控制資訊是否為關於PDSCH之資訊。其為關於PDSCH之資訊的情況下,使處理前進至步驟S66。其為關於PUSCH之資訊的情況下,使處理前進至步驟S68。(Step S65) The error detecting unit 245 determines whether or not the control information is information about the PDSCH from the content of the control information. In the case of the information on the PDSCH, the process proceeds to step S66. In the case of the information about the PUSCH, the process proceeds to step S68.

(步驟S66)錯誤檢測部245係特定出錯誤檢測結果為OK時之經解攪碼處理之區間。然後,從已特定出之區間,特定出成分載波及PDSCH之開頭符元。而且,成分載波及DL子訊框內之邊界與攪碼處理之區間之對應關係,係預先登錄於解攪碼位置控制部242。(Step S66) The error detecting unit 245 specifies a section of the de-agglomerated code processing when the error detection result is OK. Then, the component carrier and the start symbol of the PDSCH are specified from the specified interval. Further, the correspondence between the boundary between the component carrier and the DL subframe and the interval of the codec processing is previously registered in the descrambled code position control unit 242.

(步驟S67)PDSCH擷取部250係根據關於PDSCH之控制資訊、及於步驟S66所特定出之開頭符元,從於步驟S66所特定出之成分載波之接收訊號擷取PDSCH訊號。PDSCH解碼部260係將擷取到之PDSCH訊號解碼,擷取寄給行動台200之使用者資料。(Step S67) The PDSCH acquisition unit 250 extracts the PDSCH signal from the reception signal of the component carrier specified in step S66 based on the control information on the PDSCH and the start symbol specified in step S66. The PDSCH decoding unit 260 decodes the captured PDSCH signal and retrieves the user data sent to the mobile station 200.

(步驟S68)錯誤檢測部245係特定出錯誤檢測結果為OK時之已進行解攪碼處理之區間。然後,從已特定出之區間,特定出成分載波。而且,成分載波與解攪碼處理之區間之對應關係,係預先登錄於解攪碼位置控制部242。(Step S68) The error detecting unit 245 specifies a section in which the descramble code processing has been performed when the error detection result is OK. Then, the component carrier is specified from the specified interval. Further, the correspondence between the component carrier and the section of the descramble code processing is registered in advance in the descrambled code position control unit 242.

(步驟S69)PUSCH生成部270係根據關於PUSCH之控制資訊,生成以步驟S68所特定出的成分載波傳送之PUSCH訊號。無線傳送部280係將PUSCH訊號轉換為無線訊號並傳送。(Step S69) The PUSCH generation unit 270 generates a PUSCH signal transmitted by the component carrier specified in step S68 based on the control information on the PUSCH. The wireless transmission unit 280 converts the PUSCH signal into a wireless signal and transmits it.

如此,行動台20係對於接收之控制訊號,針對複數解攪碼區間之候補之各個嘗試解攪碼處理,從錯誤檢測之結果推定被施行攪碼處理之區間。關於PDSCH之控制資訊的情況下,從推定的區間可特定出控制訊號之適用對象之成分載波及PDSCH之開頭符元。關於PDCCH之控制資訊的情況下,從推定的區間可特定出控制訊號之適用對象之成分載波。In this manner, the mobile station 20 attempts to decode the code for each of the candidates of the complex descrambling code section for the received control signal, and estimates the section subjected to the codec processing from the result of the error detection. In the case of the control information of the PDSCH, the component carrier to which the control signal is applied and the start symbol of the PDSCH can be specified from the estimated section. Regarding the control information of the PDCCH, the component carrier to which the control signal is applied can be specified from the estimated section.

在此,關於適用於PDSCH之控制訊號而言,為了可從攪碼處理之區間識別成分載波及開頭符元雙方而設定有該等之對應關係。例如為了識別5個成分載波及3種符元位置而設定有15種攪碼處理的區間。Here, regarding the control signal applied to the PDSCH, the correspondence relationship between the component carrier and the start symbol can be identified from the interval of the codec processing. For example, in order to identify five component carriers and three symbol positions, 15 types of coded processing sections are set.

第20圖係表示第4實施形態之控制訊號例之圖。在此,與第12~14圖之例相同,於同位附加後之控制訊號中,包含30位元之資訊位元及16位元之同位位元。又,將資訊位元中之16位元進行攪碼處理。Fig. 20 is a view showing an example of a control signal in the fourth embodiment. Here, as in the example of FIGS. 12 to 14, the control signal after the co-location is included in the information bit of 30 bits and the parity bit of 16 bits. Moreover, the 16 bits in the information bit are subjected to the codec processing.

於該例中,對應於5個成分載波(CC#1~#5)與3種符元位置(位置#1~#3)之組合,將攪碼處理之區間各錯開1位元。In this example, the sections of the codec processing are shifted by one bit in accordance with the combination of the five component carriers (CC#1 to #5) and the three symbol positions (positions #1 to #3).

具體而言,在表示CC#1‧位置#1的情況下,攪碼開頭16位元之區間(C0~C15)。在表示CC#1‧位置#2的情況下,攪碼較CC#1‧位置#1的情況往後方錯開1位元之區間(C1~C16)。以下同樣地在表示CC#5‧位置#2的情況下,攪碼C13~C28,在表示CC#5‧位置#3的情況下,攪碼C14~C29。Specifically, when CC#1‧ position #1 is indicated, the first 16-bit interval (C0 to C15) is agitated. When the CC #1‧ position #2 is displayed, the agitation code is shifted rearward by one bit (C1 to C16) from the case of CC#1‧ position #1. Similarly, when CC#5‧ position #2 is displayed, the codes C13 to C28 are mixed, and when CC#5‧ position #3 is indicated, the codes C14 to C29 are mixed.

若依據前述關於第4實施形態之移動通訊系統,可從無線基地台100有效率地向行動台200、200a,通知適用控制訊號之成分載波及PDSCH之開頭符元雙方。According to the mobile communication system according to the fourth embodiment, the radio base station 100 can efficiently notify the mobile stations 200 and 200a of both the component carrier to which the control signal is applied and the start symbol of the PDSCH.

[第5實施形態][Fifth Embodiment]

接著,說明關於第5實施形態。針對與第2實施形態之差異為中心來說明,關於與第2實施形態同樣的事項則省略說明。相對於第2實施形態藉由攪碼處理之區間來識別成分載波,第5實施形態係藉由所使用的攪碼序列之循環移位量來識別成分載波。Next, a fifth embodiment will be described. The difference from the second embodiment will be mainly described, and the description of the same matters as those of the second embodiment will be omitted. In the second embodiment, the component carrier is identified by the interval of the codec processing. In the fifth embodiment, the component carrier is identified by the cyclic shift amount of the used code sequence.

關於第5實施形態之無線基地台,可藉由與第6圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,取代PDCCH生成部160而利用以下所述之PDCCH生成部160a。關於第4實施形態之行動台,可藉由與第8圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,取代控制訊號解碼部240而利用以下所述之控制訊號解碼部240a。The radio base station according to the fifth embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in FIG. The PDCCH generation unit 160a described below is used instead of the PDCCH generation unit 160. The mobile station according to the fourth embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in FIG. Here, instead of the control signal decoding unit 240, the control signal decoding unit 240a described below is used.

第21圖係表示第5實施形態之PDCCH生成部之詳細之圖。PDCCH生成部160a具有控制資訊生成部161a、同位附加部162a、攪碼序列生成部163a、移位量控制部164a、循環移位部165a、攪碼部166a及錯誤訂正編碼部167a。Fig. 21 is a view showing the details of the PDCCH generating unit in the fifth embodiment. The PDCCH generation unit 160a includes a control information generation unit 161a, a parity addition unit 162a, a codec sequence generation unit 163a, a shift amount control unit 164a, a cyclic shift unit 165a, a codec unit 166a, and an error correction coding unit 167a.

控制資訊生成部161a係生成關於PDSCH及PUSCH之控制資訊,並將表示控制資訊之位元串列輸出至同位附加部162a。The control information generating unit 161a generates control information on the PDSCH and the PUSCH, and outputs a bit string indicating the control information to the co-located adding unit 162a.

同位附加部162a係根據取得自控制資訊生成部161a之位元串列(資訊位元),生成錯誤檢測用之同位位元。然後,生成在資訊位元附加有同位位元之控制訊號,並輸出至攪碼部166a。屆時,利用與傳送去處之行動台之RNTI相應之攪碼序列,將同位位元進行攪碼處理。The co-location adding unit 162a generates a parity bit for error detection based on the bit string (information bit) obtained from the control information generating unit 161a. Then, a control signal to which the information bit is attached with the parity bit is generated and output to the codec unit 166a. At that time, the parity bit is subjected to the codec processing by using the code sequence corresponding to the RNTI of the mobile station.

攪碼序列生成部163a係生成攪碼序列並輸出至循環移位部165a。生成之攪碼序列可考慮固定之位元串列、隨機序列、擬似隨機序列等各種序列。其中,以在循環移位時,於循環1次的期間不會出現與原本的攪碼序列同一序列之攪碼序列為宜。The codec sequence generation unit 163a generates a codec sequence and outputs it to the cyclic shift unit 165a. The generated agitated code sequence may take into account various sequences such as a fixed bit string, a random sequence, and a pseudo random sequence. Among them, in the case of cyclic shift, it is preferable that the agitation sequence of the same sequence as the original agitation sequence does not occur during the cycle of one cycle.

移位量控制部164a係控制對於攪碼序列之循環移位之移位量。於移位量控制部164a,預先登錄有5個成分載波(CC#1~#5)與互異之5個移位量之對應關係。移位量亦可包含「0」(無循環移位)。移位量控制部164a係向循環移位部165a,通知與控制訊號之適用對象之成分載波對應之移位量。The shift amount control unit 164a controls the shift amount for the cyclic shift of the scramble sequence. The shift amount control unit 164a registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five shift amounts that are different from each other. The shift amount can also contain "0" (no cyclic shift). The shift amount control unit 164a notifies the cyclic shift unit 165a of the shift amount corresponding to the component carrier to which the control signal is applied.

例如移位量控制部164a係於關於CC#1內之PUSCH之控制訊號的情況下,向循環移位部165a通知對應於CC#1之移位量。又,於關於CC#2內之PDSCH之控制訊號的情況下,向循環移位部165a通知對應於CC#2之移位量。For example, when the shift amount control unit 164a is connected to the control signal of the PUSCH in the CC #1, the shift amount corresponding to the CC #1 is notified to the cyclic shift unit 165a. Further, in the case of the PDSCH control signal in CC #2, the cyclic shift unit 165a is notified of the shift amount corresponding to CC#2.

循環移位部165a係僅以從移位量控制部164a通知之移位量,將取得自攪碼序列生成部163a之攪碼序列予以循環移位。移位方向亦可預先任意地決定。然後,循環移位部165a係將循環移位後之攪碼序列輸出至攪碼部166a。The cyclic shift unit 165a cyclically shifts the scramble sequence obtained by the self-stitching code sequence generating unit 163a only by the shift amount notified from the shift amount control unit 164a. The shift direction can also be determined arbitrarily in advance. Then, the cyclic shift unit 165a outputs the cyclically shifted agitated sequence to the agitating unit 166a.

攪碼部166a係利用取得自循環移位部165a之攪碼序列,將取得自同位附加部162a之控制訊號進行攪碼處理。然後,將攪碼處理後之控制訊號輸出至錯誤訂正編碼部167a。而且,於同位附加部162a所進行的攪碼處理與在攪碼部166a所進行的攪碼處理為個別的處理。The codec unit 166a performs a codec process on the control signal obtained from the co-located adder 162a by the codec sequence obtained from the cyclic shift unit 165a. Then, the control signal after the scramble processing is output to the error correction encoding unit 167a. Further, the agitating process performed by the co-located adding unit 162a and the scramble processing performed by the agitating unit 166a are individual processes.

錯誤訂正編碼部167a係將取得自攪碼部166a之攪碼處理後之控制訊號,進行錯誤訂正編碼。然後,將生成之PDCCH訊號輸出至無線傳送部170。The error correction coding unit 167a obtains the control signal after the agitation processing from the agitation unit 166a, and performs error correction coding. Then, the generated PDCCH signal is output to the wireless transmission unit 170.

第22圖係表示第5實施形態之控制訊號解碼部之詳細之圖。控制訊號解碼部240a具有錯誤訂正解碼部241a、攪碼序列生成部242a、移位量控制部243a、循環移位部244a、解攪碼部245a及錯誤檢測部246a。Fig. 22 is a view showing the details of the control signal decoding unit of the fifth embodiment. The control signal decoding unit 240a includes an error correction decoding unit 241a, a codec sequence generation unit 242a, a shift amount control unit 243a, a cyclic shift unit 244a, a descramble code unit 245a, and an error detection unit 246a.

錯誤訂正解碼部241a係將取得自控制訊號擷取部230之PDCCH訊號候補,進行錯誤訂正解碼,並將所獲得的控制訊號輸出至解攪碼部245a。The error correction decoding unit 241a obtains the PDCCH signal candidate from the control signal acquisition unit 230, performs error correction decoding, and outputs the obtained control signal to the descrambled code unit 245a.

攪碼序列生成部242a係生成與無線基地台100之攪碼序列生成部163a相同之攪碼序列,並輸出至循環移位部244a。The codec sequence generation unit 242a generates the same codec sequence as the codec sequence generation unit 163a of the radio base station 100, and outputs it to the cyclic shift unit 244a.

移位量控制部243a係控制對於攪碼序列之循環移位之移位量。於移位量控制部243a,預先登錄有5個成分載波(CC#1~#5)與互異之5個移位量之對應關係。該對應關係係與登錄於無線基地台100之移位量控制部164a相同。移位量控制部243a係向循環移位部244a,通知對應於有可能設定有PDSCH或PUSCH之成分載波之移位量。The shift amount control unit 243a controls the shift amount for the cyclic shift of the scramble sequence. The shift amount control unit 243a registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five shift amounts that are different from each other. This correspondence relationship is the same as the shift amount control unit 164a registered in the radio base station 100. The shift amount control unit 243a notifies the cyclic shift unit 244a of the shift amount corresponding to the component carrier in which the PDSCH or the PUSCH is likely to be set.

循環移位部244a係僅以從移位量控制部243a通知之移位量,將取得自攪碼序列生成部242a之攪碼序列予以循環移位。移位方向係與無線基地台100之循環移位部165a所進行的循環移位相同。The cyclic shift unit 244a cyclically shifts the scramble sequence obtained from the scramble code sequence generation unit 242a only by the shift amount notified from the shift amount control unit 243a. The shift direction is the same as the cyclic shift performed by the cyclic shift unit 165a of the radio base station 100.

解攪碼部245a係利用取得自循環移位部244a之攪碼序列,將取得自錯誤訂正解碼部241a之控制訊號進行解攪碼處理。該解攪碼處理相當於無線基地台100之攪碼部166a所進行的攪碼處理之逆向處理。然後,將解攪碼處理後之控制訊號輸出至錯誤檢測部246a。The de-agring code unit 245a performs the descrambling process on the control signal obtained from the error correction decoding unit 241a by the codec sequence obtained from the cyclic shift unit 244a. This descrambling code processing corresponds to the reverse processing of the agitation processing performed by the agitating unit 166a of the radio base station 100. Then, the control signal after the descrambled processing is output to the error detecting unit 246a.

錯誤檢測部246a係對於取得自解攪碼部245a之控制訊號進行錯誤檢測。亦即,首先利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行攪碼處理。然後,根據控制訊號所含之資訊位元及解攪碼完畢之同位位元,判斷有無資訊位元的錯誤。The error detecting unit 246a performs error detection on the control signal obtained from the de-agring unit 245a. That is, first, the parity bit included in the control signal is subjected to the codec processing by using the codec sequence corresponding to the RNTI of the mobile station 200. Then, according to the information bit included in the control signal and the parity bit of the descrambled code, it is determined whether there is an error of the information bit.

在此,移位量控制部243a已指定複數移位量之候補的情況下,循環移位部244a輸出移位量不同之複數攪碼序列。然後,解攪碼部245a及錯誤檢測部246a係針對複數攪碼序列之各序列,嘗試解攪碼處理及錯誤檢測。錯誤檢測部246a特定出錯誤檢測結果為OK時之移位量,特定出相對應之成分載波。而且,循環移位部244a、解攪碼部245a及錯誤檢測部246a並行地執行或逐次執行針對複數攪碼序列之處理均可。When the shift amount control unit 243a has designated the candidate of the complex shift amount, the cyclic shift unit 244a outputs a complex scramble sequence having different shift amounts. Then, the de-agglomerating code unit 245a and the error detecting unit 246a attempt to de-agile code processing and error detection for each sequence of the complex scramble sequence. The error detecting unit 246a specifies the shift amount when the error detection result is OK, and specifies the corresponding component carrier. Further, the cyclic shift unit 244a, the descrambled code unit 245a, and the error detecting unit 246a may perform the processing in parallel or sequentially for the complex scramble sequence.

第23圖係表示第5實施形態之控制訊號例之圖。在此,於同位附加後之控制訊號中,包含30位元之資訊位元及16位元之同位位元。又,將30位元之資訊位元中全部進行攪碼處理。Fig. 23 is a view showing an example of the control signal of the fifth embodiment. Here, the control signal after the co-location is included in the information bit of 30 bits and the parity bit of 16 bits. In addition, all of the 30-bit information bits are subjected to the codec processing.

於該例中,對應於設有控制訊號之適用對象之通道(PDSCH或PUSCH)的成分載波之號碼,將30位元之攪碼序列(S0~S29)往右方各循環移位1位元。In this example, the 30-bit codec sequence (S0-S29) is cyclically shifted by one bit to the right corresponding to the component carrier number of the channel (PDSCH or PUSCH) to which the control signal is applied. .

具體而言,關於CC#1之控制訊號的情況時,不予以循環移位而使用原本的攪碼序列(S0、S1、…、S29)。關於CC#2之控制訊號的情況時,使用僅往右方循環移位1位元之攪碼序列(S29、S0、…、S28)。同樣地,關於CC#3之控制訊號的情況則使其僅循環移位2位元,關於CC#4之控制訊號的情況則使其僅循環移位3位元,關於CC#5之控制訊號的情況則使其僅循環移位4位元。Specifically, in the case of the control signal of CC #1, the original codec sequence (S0, S1, ..., S29) is used without cyclic shift. In the case of the control signal of CC#2, a codec sequence (S29, S0, ..., S28) which cyclically shifts only one bit to the right is used. Similarly, the case of the control signal of CC#3 is such that it is only cyclically shifted by 2 bits, and the case of the control signal of CC#4 is such that it is only cyclically shifted by 3 bits, and the control signal for CC#5 The case is such that it only shifts by 4 bits.

而且,循環移位之最小單位不設為1位元而設為2位元以上亦可。該情況下,為了使得攪碼序列不循環1次,宜具備循環移位之最小單位×(成分載波數-1)<攪碼序列長之條件。又,攪碼處理之區間跨越資訊位元與同位位元亦可。Further, the minimum unit of the cyclic shift is not set to 1 bit and may be set to 2 bits or more. In this case, in order to prevent the codec sequence from being cycled once, it is preferable to have a condition that the minimum unit of cyclic shift × (number of component carriers - 1) < the length of the coded sequence. Moreover, the interval of the codec processing may also span the information bit and the parity bit.

又,僅有資訊位元之一部分區間進行攪碼處理亦可。該情況下,亦可與關於第2實施形態之方法,亦即與藉由攪碼處理之區間識別成分載波之方法組合。藉此,可從無線基地台100向行動台200、200a通知更多資訊。例如可識別許多成分載波。又,亦容易如第4實施形態通知成分載波及PDSCH之開頭符元雙方。Moreover, only one part of the information bit may be subjected to the codec processing. In this case, it is also possible to combine with the method of the second embodiment, that is, the method of identifying the component carrier by the section of the codec processing. Thereby, more information can be notified from the wireless base station 100 to the mobile stations 200, 200a. For example, many component carriers can be identified. Further, it is also easy to notify both the component carrier and the first symbol of the PDSCH in the fourth embodiment.

第24圖係表示第5實施形態之控制訊號之變形例之圖。在此,與第12~14圖之例相同,將資訊位元中之16位元進行攪碼處理。於該例中,藉由攪碼處理之區間識別5個成分載波(CC#1~#5),並且藉由攪碼序列之移位量識別3種符元位置(位置#1~#3)。Fig. 24 is a view showing a modification of the control signal of the fifth embodiment. Here, as in the example of Figs. 12 to 14, the 16 bits in the information bit are subjected to the codec processing. In this example, five component carriers (CC#1 to #5) are identified by the interval of the codec processing, and three kinds of symbol positions (positions #1 to #3) are identified by the shift amount of the coded sequence. .

具體而言,在表示CC#1‧位置#1的情況下,以未循環移位之攪碼序列,將開頭16位元之區間(C0~C15)攪碼。在表示CC#1‧位置#2的情況下,以循環移位1位元後之攪碼序列將同區間(C0~C15)攪碼。在表示CC#1‧位置#3的情況下,以循環移位2位元後之攪碼序列將同區間(C0~C15)攪碼。Specifically, when CC #1‧ position #1 is indicated, the first 16-bit interval (C0 to C15) is coded by the uninterrupted shift code sequence. When CC#1‧ position #2 is indicated, the same interval (C0 to C15) is coded by a codec sequence after cyclically shifting by one bit. In the case of indicating CC#1‧ position #3, the same interval (C0 to C15) is coded by a codec sequence after cyclic shift of 2 bits.

在表示CC#2‧位置#1的情況下,以未循環移位之攪碼序列,攪碼從開頭錯開3位元之區間(C3~C18)。在表示CC#2‧位置#2的情況下,以循環移位1位元後之攪碼序列攪碼同區間(C3~C18)。以下則同樣地備有全部15種攪碼處理方法。When CC#2‧ position #1 is indicated, the code is shifted by a three-bit interval (C3 to C18) from the beginning in the agitation sequence without cyclic shift. When CC#2‧ position #2 is indicated, the coded sequence after cyclic shift of 1 bit is coded in the same interval (C3 to C18). In the following, all 15 kinds of code processing methods are provided in the same manner.

若依據前述關於第5實施形態之移動通訊系統,亦可獲得與第2實施形態同樣的效果。又,由於第5實施形態容易加長攪碼處理之區間,因此可更抑制行動台200、200a誤檢測的機率。而且,亦可如第3實施形態,將關於第5實施形態之方法用於識別PDSCH之符元位置。According to the mobile communication system according to the fifth embodiment, the same effects as those of the second embodiment can be obtained. Further, in the fifth embodiment, it is easy to lengthen the section of the jamming process, so that the probability of erroneous detection by the mobile stations 200 and 200a can be further suppressed. Further, as in the third embodiment, the method according to the fifth embodiment can be used to identify the symbol position of the PDSCH.

[第6實施形態][Sixth embodiment]

接著,說明關於第6實施形態。針對與第2實施形態之差異為中心來說明,關於與第2實施形態同樣的事項則省略說明。第6實施形態係藉由所生成的攪碼序列之差異來識別成分載波。Next, the sixth embodiment will be described. The difference from the second embodiment will be mainly described, and the description of the same matters as those of the second embodiment will be omitted. In the sixth embodiment, the component carrier is identified by the difference in the generated codec sequence.

關於第6實施形態之無線基地台,可藉由與第6圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,取代PDCCH生成部160而利用以下所述之PDCCH生成部160b。關於第6實施形態之行動台,可藉由與第8圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,取代控制訊號解碼部240而利用以下所述之控制訊號解碼部240b。The radio base station according to the sixth embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in FIG. The PDCCH generation unit 160b described below is used instead of the PDCCH generation unit 160. The mobile station according to the sixth embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in FIG. Here, instead of the control signal decoding unit 240, the control signal decoding unit 240b described below is used.

第25圖係表示第6實施形態之PDCCH生成部之詳細之圖。PDCCH生成部160b具有控制資訊生成部161b、同位附加部162b、序列選擇部163b、攪碼序列生成部164b、攪碼部165b及錯誤訂正編碼部166b。Fig. 25 is a view showing the details of the PDCCH generating unit in the sixth embodiment. The PDCCH generation unit 160b includes a control information generation unit 161b, a parity addition unit 162b, a sequence selection unit 163b, a codec sequence generation unit 164b, a codec unit 165b, and an error correction coding unit 166b.

控制資訊生成部161b係生成關於PDSCH及PUSCH之控制資訊,並將表示控制資訊之位元串列輸出至同位附加部162b。The control information generating unit 161b generates control information on the PDSCH and the PUSCH, and outputs a bit string indicating the control information to the co-located adding unit 162b.

同位附加部162b係根據取得自控制資訊生成部161a之位元串列(資訊位元),生成錯誤檢測用之同位位元。然後,生成在資訊位元附加有同位位元之控制訊號,並輸出至攪碼部165b。屆時,利用與控制訊號傳送去處之行動台之RNTI相應之攪碼序列,將同位位元進行攪碼處理。The co-location adding unit 162b generates a parity bit for error detection based on the bit string (information bit) obtained from the control information generating unit 161a. Then, a control signal to which the information bit is attached with the parity bit is generated and output to the codec unit 165b. At that time, the co-located bit is subjected to the codec processing by using the code sequence corresponding to the RNTI of the mobile station to which the control signal is transmitted.

序列選擇部163b係控制攪碼序列之切換。於序列選擇部163b,預先登錄有5個成分載波(CC#1~#5)與5種攪碼序列之對應關係。序列選擇部163b係向攪碼序列生成部164b,通知與控制訊號之適用對象之成分載波對應之攪碼序列。The sequence selection unit 163b controls switching of the codec sequence. The sequence selection unit 163b registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five types of codec sequences. The sequence selection unit 163b notifies the codec sequence generation unit 164b of the codec sequence corresponding to the component carrier to which the control signal is applied.

例如序列選擇部163b係於關於CC#1內之PUSCH之控制訊號的情況下,向攪碼序列生成部164b通知對應於CC#1之攪碼序列。又,於關於CC#2內之PDSCH之控制訊號的情況下,向攪碼序列生成部164b通知要生成對應於CC#2之攪碼序列。For example, when the sequence selection unit 163b is connected to the control signal of the PUSCH in CC#1, the sequence selection unit 163b notifies the codec sequence generation unit 164b of the codec sequence corresponding to CC#1. Further, in the case of the PDSCH control signal in CC#2, the codec sequence generation unit 164b is notified that the codec sequence corresponding to CC#2 is to be generated.

攪碼序列生成部164b係生成預定複數攪碼序列中由序列選擇部163b所選擇的攪碼序列,並輸出至攪碼部165b。The codec sequence generation unit 164b generates a codec sequence selected by the sequence selection unit 163b in the predetermined complex code sequence, and outputs the code sequence to the codec unit 165b.

作為攪碼序列之一例可考慮以下序列。The following sequence can be considered as an example of a scramble sequence.

(a)表示對象成分載波之號碼之位元串列,或配合攪碼區間之長度而重複該位元串列者;(a) a bit string indicating the number of the component component carrier, or repeating the bit string with the length of the agitation interval;

(b)以對象成分載波之號碼的函數作為初始值而生成之擬似隨機序列;(b) a pseudo-random sequence generated as a function of a function of the number of the component component carrier;

(c)表示對象成分載波之號碼與傳送控制訊號之成分載波之號碼的差分之位元串列,或配合攪碼區間之長度而重複該位元串列者;及(c) indicating a bit string of the difference between the number of the component component carrier and the number of the component carrier transmitting the control signal, or repeating the bit string with the length of the agitation section; and

(d)以表示對象成分載波之號碼與傳送控制訊號之成分載波之號碼的差分之函數,作為初始值而生成之擬似隨機序列。(d) A pseudo-random sequence generated as an initial value as a function of the difference between the number of the component component carrier and the component carrier signal of the transmission control signal.

攪碼部165b係利用取得自攪碼序列生成部164b之攪碼序列,將取得自同位附加部162b之控制訊號進行攪碼處理。然後,將攪碼處理後之控制訊號輸出至錯誤訂正編碼部166b。而且,於同位附加部162a所進行的攪碼處理與在攪碼部165b所進行的攪碼處理為個別的處理。The codec unit 165b performs a codec process on the control signal obtained from the co-located adder 162b by the codec sequence obtained by the self-cohesion code sequence generation unit 164b. Then, the control signal after the scramble processing is output to the error correction encoding unit 166b. Further, the agitating process performed by the co-located adding unit 162a and the scramble processing performed by the scramble unit 165b are individual processes.

錯誤訂正編碼部166b係將取得自攪碼部165b之攪碼處理後之控制訊號,進行錯誤訂正編碼。然後,將生成之PDCCH訊號輸出至無線傳送部170。The error correction coding unit 166b acquires the control signal after the codec processing from the agitation unit 165b, and performs error correction coding. Then, the generated PDCCH signal is output to the wireless transmission unit 170.

第26圖係表示第6實施形態之控制訊號解碼部之詳細之圖。控制訊號解碼部240b具有錯誤訂正解碼部241b、序列選擇部242b、攪碼序列生成部243b、解攪碼部244b及錯誤檢測部245b。Fig. 26 is a view showing the details of the control signal decoding unit of the sixth embodiment. The control signal decoding unit 240b includes an error correction decoding unit 241b, a sequence selection unit 242b, a codec sequence generation unit 243b, a descramble code unit 244b, and an error detection unit 245b.

錯誤訂正解碼部241b係將取得自控制訊號擷取部230之PDCCH訊號候補,進行錯誤訂正解碼,並將所獲得的控制訊號輸出至解攪碼部244b。The error correction decoding unit 241b acquires the PDCCH signal candidate from the control signal acquisition unit 230, performs error correction decoding, and outputs the obtained control signal to the descramble code unit 244b.

序列選擇部242b係控制攪碼序列之切換。於序列選擇部242b,預先登錄有5個成分載波(CC#1~#5)與5種攪碼序列之對應關係。該對應關係係與登錄於無線基地台100之序列選擇部163b相同。序列選擇部242b係向攪碼序列生成部243b,通知對應於有可能設定有PDSCH或PUSCH之成分載波之攪碼序列(攪碼序列之候補)。The sequence selection unit 242b controls the switching of the codec sequence. The sequence selection unit 242b registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five types of codec sequences. This correspondence is the same as the sequence selection unit 163b registered in the radio base station 100. The sequence selection unit 242b notifies the codec sequence generation unit 243b of the codec sequence (the candidate for the codec sequence) corresponding to the component carrier in which the PDSCH or the PUSCH may be set.

攪碼序列生成部243b係生成預定複數攪碼序列中由序列選擇部242b所選擇的攪碼序列,並輸出至解攪碼部244b。可生成之攪碼序列之集合係與無線基地台100之攪碼序列生成部164b相同。The codec sequence generation unit 243b generates a codec sequence selected by the sequence selection unit 242b in the predetermined complex code sequence, and outputs the code sequence to the descramble code unit 244b. The set of the codec sequences that can be generated is the same as the codec sequence generation unit 164b of the radio base station 100.

解攪碼部244b係利用取得自攪碼序列生成部243b之攪碼序列,將取得自錯誤訂正解碼部241b之控制訊號進行解攪碼處理。該解攪碼處理相當於無線基地台100之攪碼部165b所進行的攪碼處理之逆向處理。然後,將解攪碼處理後之控制訊號輸出至錯誤檢測部245b。The de-agglomerating code unit 244b performs the descrambling process on the control signal obtained from the error correction decoding unit 241b by the aliasing sequence obtained by the self-stitching code sequence generating unit 243b. This descramble code processing corresponds to the reverse processing of the codec processing performed by the codec unit 165b of the radio base station 100. Then, the control signal after the descrambled processing is output to the error detecting unit 245b.

錯誤檢測部245b係對於取得自解攪碼部244b之控制訊號進行錯誤檢測。亦即,首先利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行攪碼處理。然後,根據控制訊號所含之資訊位元及解攪碼完畢之同位位元,判斷有無資訊位元的錯誤。The error detecting unit 245b performs error detection on the control signal obtained from the de-agglomerating unit 244b. That is, first, the parity bit included in the control signal is subjected to the codec processing by using the codec sequence corresponding to the RNTI of the mobile station 200. Then, according to the information bit included in the control signal and the parity bit of the descrambled code, it is determined whether there is an error of the information bit.

在此,序列選擇部242b選擇複數攪碼序列之候補的情況下,攪碼序列生成部243b分別輸出選擇的攪碼序列。解攪碼部244b及錯誤檢測部245b係分別利用攪碼序列,嘗試解攪碼處理及錯誤檢測。錯誤檢測部245b特定出對應於錯誤檢測結果為OK時之攪碼序列之成分載波。而且,攪碼序列生成部243b、解攪碼部244b及錯誤檢測部245b並行地執行或逐次執行針對複數攪碼序列之處理均可。Here, when the sequence selection unit 242b selects the candidate of the complex code sequence, the code sequence generation unit 243b outputs the selected code sequence. The de-agring code unit 244b and the error detecting unit 245b attempt to de-agile code processing and error detection using the codec sequence, respectively. The error detecting unit 245b specifies a component carrier corresponding to the codec sequence when the error detection result is OK. Further, the codec sequence generating unit 243b, the descrambled code portion 244b, and the error detecting unit 245b may perform the processing for the complex codec sequence in parallel or sequentially.

第27圖係表示第6實施形態之控制訊號之第1例之圖。在第1例中,將資訊位元30位元中之開頭16位元進行攪碼處理。因此,對應於5個成分載波(CC#1~#5)而準備5種16位元之攪碼序列。藉由將攪碼處理之區間設定在資訊位元之一部分,可抑制無線基地台100之電路規模。Figure 27 is a view showing a first example of the control signal of the sixth embodiment. In the first example, the first 16 bits of the information bit 30 bits are subjected to the codec processing. Therefore, five kinds of 16-bit codec sequences are prepared corresponding to the five component carriers (CC#1 to #5). By setting the interval of the codec processing to one of the information bits, the circuit scale of the wireless base station 100 can be suppressed.

具體而言,在關於CC#1之控制訊號的情況下,以第1序列(S0~S15)攪碼其開頭16位元。在關於CC#2之控制訊號的情況下,以第2序列(T0~T15)攪碼其開頭16位元。同樣地,在關於CC#3之控制訊號的情況下以第3序列(U0~U15)攪碼,在關於CC#4之控制訊號的情況下以第4序列(V0~V15)攪碼,在關於CC#5之控制訊號的情況下以第5序列(W0~W15)攪碼。Specifically, in the case of the control signal of CC #1, the first 16 bits are encoded by the first sequence (S0 to S15). In the case of the control signal of CC#2, the first 16 bits are agitated by the second sequence (T0 to T15). Similarly, in the case of the control signal of CC#3, the third sequence (U0 to U15) is used for the coding, and in the case of the control signal of CC#4, the fourth sequence (V0 to V15) is used for the coding. In the case of the control signal of CC#5, the code is agitated in the fifth sequence (W0 to W15).

而且,攪碼處理之區間並非資訊位元之開頭亦可,其為資訊位元之任意區間均無妨。又,攪碼處理之區間的長度並非16位元亦可,關於CC#1~#5全部均為同一長度亦可。又,跨越資訊位元與同位位元進行攪碼處理亦可。又,攪碼處理不連續區間而非連續區間亦可。Moreover, the interval of the codec processing may not be the beginning of the information bit, and it may be any interval of the information bit. Further, the length of the section in which the code is processed may not be 16 bits, and all of CC #1 to #5 may be the same length. Moreover, it is also possible to perform the codec processing across the information bits and the parity bits. Also, the agitating code may treat a discontinuous interval instead of a continuous interval.

第28圖係表示第6實施形態之控制訊號之第2例之圖。在第2例中,將資訊位元之全區間進行攪碼處理。因此,對應於5個成分載波(CC#1~#5)而準備5種30位元之攪碼序列。藉由加長攪碼處理之區間,可降低行動台200、200a誤檢測成分載波之機率。Fig. 28 is a view showing a second example of the control signal of the sixth embodiment. In the second example, the entire interval of the information bits is subjected to the coding process. Therefore, five kinds of 30-bit codec sequences are prepared corresponding to the five component carriers (CC #1 to #5). By lengthening the interval of the codec processing, the probability that the mobile stations 200, 200a mistakenly detect the component carrier can be reduced.

具體而言,在關於CC#1之控制訊號的情況下,以第1序列(S0~S29)攪碼其資訊位元全體。在關於CC#2之控制訊號的情況下,以第2序列(T0~T29)攪碼其資訊位元全體。同樣地,在關於CC#3之控制訊號的情況下以第3序列(U0~U29)攪碼,在關於CC#4之控制訊號的情況下以第4序列(V0~V29)攪碼,在關於CC#5之控制訊號的情況下以第5序列(W0~W29)攪碼。Specifically, in the case of the control signal of CC #1, the entire information bit is agitated in the first sequence (S0 to S29). In the case of the control signal of CC#2, the entire information bit is agitated by the second sequence (T0 to T29). Similarly, in the case of the CC#3 control signal, the third sequence (U0 to U29) is used to agitate the code, and in the case of the CC#4 control signal, the fourth sequence (V0 to V29) is used to agitate the code. In the case of the control signal of CC #5, the code is agitated in the fifth sequence (W0 to W29).

而且,傳送控制訊號之成分載波之號碼、與設有PDSCH或PUSCH之成分載波之號碼相同的情況下,取代利用與後者之成分載波相應之序列而利用全位元「0」之位元串列亦可。利用全位元「0」之序列而進行攪碼處理,係與不進行攪碼處理等價。Further, when the number of the component carrier transmitting the control signal is the same as the number of the component carrier in which the PDSCH or the PUSCH is provided, the bit sequence of the all-bit "0" is used instead of the sequence corresponding to the component carrier of the latter. Also. The agitation process using the sequence of all bits "0" is equivalent to not performing the agitation process.

而圖27所示方法的情況下,亦可與關於第2實施形態之方法,亦即與藉由攪碼處理之區間識別成分載波之方法組合。藉此,可從無線基地台100向行動台200、200a通知更多資訊。例如亦容易如第4實施形態通知成分載波及PDSCH之開頭符元雙方。On the other hand, in the case of the method shown in Fig. 27, it is also possible to combine with the method of the second embodiment, that is, the method of identifying the component carrier by the section of the codec processing. Thereby, more information can be notified from the wireless base station 100 to the mobile stations 200, 200a. For example, it is also easy to notify both the component carrier and the first symbol of the PDSCH in the fourth embodiment.

第29圖係表示第6實施形態之控制訊號之變形例之圖。於該例中,藉由攪碼處理之區間識別5個成分載波(CC#1~#5),並且藉由攪碼序列之差異識別3種符元位置(位置#1~#3)。藉此可備有全部15種攪碼處理方法。Fig. 29 is a view showing a modification of the control signal of the sixth embodiment. In this example, five component carriers (CC#1 to #5) are identified by the interval of the codec processing, and three symbol positions (positions #1 to #3) are identified by the difference in the codec sequence. This allows for all 15 types of code processing methods.

具體而言,在表示CC#1‧位置#1的情況下,以第1序列(C0~C15)攪碼開頭16位元之區間(C0~C15)。在表示CC#1‧位置#2的情況下,以第2序列(T0~T15)攪碼同區間(C0~C15)。在表示CC#5‧位置#2的情況下,以第2序列(T0~T15)攪碼從開頭錯開4位元之區間(C4~C19)。在表示CC#5‧位置#3的情況下,以第3序列(U0~U15)攪碼同區間(C4~C19)。Specifically, when CC #1‧ position #1 is indicated, the first 16-bit interval (C0 to C15) is agitated by the first sequence (C0 to C15). When CC#1‧ position #2 is indicated, the same sequence (C0 to C15) is stirred by the second sequence (T0 to T15). When CC#5‧ position #2 is indicated, the second sequence (T0 to T15) is coded and shifted from the beginning to the 4-bit interval (C4 to C19). When CC#5‧ position #3 is indicated, the same sequence (C4 to C19) is stirred in the third sequence (U0 to U15).

若依據前述關於第6實施形態之移動通訊系統,亦可獲得與第2實施形態同樣的效果。而且,亦可如第3實施形態,為了識別PDSCH之符元位置而利用關於第6實施形態之方法。According to the mobile communication system according to the sixth embodiment, the same effects as those of the second embodiment can be obtained. Further, as in the third embodiment, the method according to the sixth embodiment can be used to identify the symbol position of the PDSCH.

[第7實施形態][Seventh embodiment]

接著,說明關於第7實施形態。針對與第2實施形態之差異為中心來說明,關於與第2實施形態同樣的事項則省略說明。第7實施形態係藉由控制訊號本身之循環移位量來識別成分載波。Next, a seventh embodiment will be described. The difference from the second embodiment will be mainly described, and the description of the same matters as those of the second embodiment will be omitted. In the seventh embodiment, the component carrier is identified by controlling the cyclic shift amount of the signal itself.

關於第7實施形態之無線基地台,可藉由與第6圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,取代PDCCH生成部160而利用以下所述之PDCCH生成部160c。關於第7實施形態之行動台,可藉由與第8圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,取代控制訊號解碼部240而利用以下所述之控制訊號解碼部240c。The radio base station according to the seventh embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in FIG. The PDCCH generation unit 160c described below is used instead of the PDCCH generation unit 160. The mobile station according to the seventh embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in FIG. Here, instead of the control signal decoding unit 240, the control signal decoding unit 240c described below is used.

第30圖係表示第7實施形態之PDCCH生成部之詳細之圖。PDCCH生成部160c具有控制資訊生成部161c、同位附加部162c、移位量控制部163c、循環移位部164c及錯誤訂正編碼部165c。Fig. 30 is a view showing the details of the PDCCH generating unit in the seventh embodiment. The PDCCH generation unit 160c includes a control information generation unit 161c, a co-location addition unit 162c, a shift amount control unit 163c, a cyclic shift unit 164c, and an error correction coding unit 165c.

控制資訊生成部161c係生成關於PDSCH及PUSCH之控制資訊,並將表示控制資訊之位元串列輸出至同位附加部162c。The control information generating unit 161c generates control information on the PDSCH and the PUSCH, and outputs a bit string indicating the control information to the co-located adding unit 162c.

同位附加部162c係根據取得自控制資訊生成部161c之位元串列(資訊位元),生成錯誤檢測用之同位位元。然後,生成在資訊位元附加有同位位元之控制訊號,並輸出至循環移位部164c。屆時,利用與傳送去處之行動台之RNTI相應之攪碼序列,將同位位元進行攪碼處理。The parity addition unit 162c generates a parity bit for error detection based on the bit string (information bit) obtained from the control information generation unit 161c. Then, a control signal to which the parity bit is added to the information bit is generated and output to the cyclic shift unit 164c. At that time, the parity bit is subjected to the codec processing by using the code sequence corresponding to the RNTI of the mobile station.

移位量控制部163c係控制對於控制訊號之循環移位之移位量。於移位量控制部163c,預先登錄有5個成分載波(CC#1~#5)與互異之5個移位量之對應關係。移位量亦可包含「0」(無循環移位)。移位量控制部163c係向循環移位部164c,通知與控制訊號之適用對象之成分載波對應之移位量。The shift amount control unit 163c controls the shift amount for the cyclic shift of the control signal. The shift amount control unit 163c registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five shift amounts that are different from each other. The shift amount can also contain "0" (no cyclic shift). The shift amount control unit 163c notifies the cyclic shift unit 164c of the shift amount corresponding to the component carrier to which the control signal is applied.

作為對於CC#1~#5之移位量設定方法之一例可考慮以下方法。The following method can be considered as an example of the shift amount setting method for CC #1 to #5.

(a)對象之成分載波之號碼-1(a) The component carrier number of the object -1

(b)對象之成分載波之號碼(b) the number of the component carrier of the object

(c)(對象之成分載波之號碼-1)×N(N≧2)(c) (the component carrier number of the object -1) × N (N ≧ 2)

(d)對象之成分載波之號碼×N(N≧2)(d) The number of the component carrier of the object × N (N ≧ 2)

(e)對象之成分載波之號碼與傳送控制訊號之成分載波之號碼之差分(e) The difference between the component carrier number of the object and the component carrier number of the transmission control signal

(f)對象之成分載波之號碼與傳送控制訊號之成分載波之號碼之差分×N(N≧2)(f) The difference between the component carrier number of the object and the component carrier number of the transmission control signal × N (N ≧ 2)

循環移位部164c係僅以從移位量控制部163c通知之移位量,將取得自同位附加部162c之控制訊號之一部分之預定區間的訊號予以循環移位。移位方向亦可預先任意地決定。然後,循環移位部164c係將循環移位後之控制訊號輸出至錯誤訂正編碼部165c。The cyclic shift unit 164c cyclically shifts the signal of the predetermined section obtained from one of the control signals of the co-located adding unit 162c only by the shift amount notified from the shift amount control unit 163c. The shift direction can also be determined arbitrarily in advance. Then, the cyclic shift unit 164c outputs the cyclically shifted control signal to the error correction encoding unit 165c.

錯誤訂正編碼部165c係將取得自循環移位部164c之循環移位後之控制訊號,進行錯誤訂正編碼。然後,將生成之PDCCH訊號輸出至無線傳送部170。The error correction coding unit 165c obtains a control signal obtained by cyclically shifting from the cyclic shift unit 164c, and performs error correction coding. Then, the generated PDCCH signal is output to the wireless transmission unit 170.

第31圖係表示第7實施形態之控制訊號解碼部之詳細之圖。控制訊號解碼部240c具有錯誤訂正解碼部241c、移位量控制部242c、循環移位部243c及錯誤檢測部244c。Figure 31 is a view showing the details of the control signal decoding unit of the seventh embodiment. The control signal decoding unit 240c includes an error correction decoding unit 241c, a shift amount control unit 242c, a cyclic shift unit 243c, and an error detecting unit 244c.

錯誤訂正解碼部241c係將取得自控制訊號擷取部230之PDCCH訊號候補,進行錯誤訂正解碼,並將所獲得的控制訊號輸出至循環移位部243c。The error correction decoding unit 241c obtains the PDCCH signal candidate from the control signal extraction unit 230, performs error correction decoding, and outputs the obtained control signal to the cyclic shift unit 243c.

移位量控制部242c係控制對於控制訊號之循環移位之移位量。於移位量控制部242c,預先登錄有5個成分載波(CC#1~#5)與互異之5個移位量之對應關係。該對應關係係與登錄於無線基地台100之移位量控制部163c相同。移位量控制部242c係向循環移位部243c,通知對應於有可能設定有PDSCH或PUSCH之成分載波之移位量。The shift amount control unit 242c controls the shift amount for the cyclic shift of the control signal. The shift amount control unit 242c registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five shift amounts that are different from each other. This correspondence relationship is the same as the shift amount control unit 163c registered in the radio base station 100. The shift amount control unit 242c notifies the cyclic shift unit 243c of the shift amount corresponding to the component carrier in which the PDSCH or the PUSCH is likely to be set.

循環移位部243c係僅以從移位量控制部242c通知之移位量,將取得自錯誤訂正解碼部241c之控制訊號之一部分之預定區間的訊號予以循環移位。該循環移位相當於無線基地台100之循環移位部164c所進行的處理之逆向處理。亦即,移位方向與循環移位部164c相反方向。The cyclic shift unit 243c cyclically shifts the signal of the predetermined section of the control signal obtained from the error correction decoding unit 241c by only the shift amount notified from the shift amount control unit 242c. This cyclic shift corresponds to the reverse processing of the processing performed by the cyclic shift unit 164c of the radio base station 100. That is, the shift direction is opposite to the cyclic shift portion 164c.

錯誤檢測部244c係對於取得自循環移位部243c之循環移位後之控制訊號進行錯誤檢測。亦即,首先利用與行動台200之RNTI相應之攪碼序列,將控制訊號所含之同位位元進行解攪碼處理。然後,根據控制訊號所含之資訊位元及解攪碼完畢之同位位元,判斷有無資訊位元的錯誤。The error detecting unit 244c performs error detection on the control signal obtained by the cyclic shift from the cyclic shift unit 243c. That is, first, the parity bit included in the control signal is subjected to descrambling processing by using the codec sequence corresponding to the RNTI of the mobile station 200. Then, according to the information bit included in the control signal and the parity bit of the descrambled code, it is determined whether there is an error of the information bit.

在此,移位量控制部242c指定複數移位量之候補的情況下,循環移位部243c及錯誤檢測部244c係針對複數移位量之各個,嘗試循環移位及錯誤檢測。錯誤檢測部244c特定出錯誤檢測結果為OK時之移位量,特定出相對應之成分載波。而且,循環移位部243c及錯誤檢測部244c並行地執行或逐次執行針對複數移位量之處理均可。When the shift amount control unit 242c specifies the candidate of the complex shift amount, the cyclic shift unit 243c and the error detecting unit 244c attempt cyclic shift and error detection for each of the complex shift amounts. The error detecting unit 244c specifies the shift amount when the error detection result is OK, and specifies the corresponding component carrier. Further, the cyclic shift unit 243c and the error detecting unit 244c may perform the processing for the complex shift amount in parallel or sequentially.

第32圖係表示第7實施形態之控制訊號之第1例之圖。在第1例中,將30位元之資訊位元全體予以循環移位。作為對於5個成分載波(CC#1~#5)之移位量之設定方法,係採用前述(a)。而且,同位位元係從循環移位前之資訊位元生成。Fig. 32 is a view showing a first example of the control signal of the seventh embodiment. In the first example, the entire information bit of 30 bits is cyclically shifted. As a method of setting the shift amount for the five component carriers (CC #1 to #5), the above (a) is employed. Moreover, the parity bit is generated from the information bits before the cyclic shift.

具體而言,關於CC#1之控制訊號的情況時不予以循環移位。關於CC#2之控制訊號的情況時,將資訊位元往右方循環移位1位元。以下同樣地,關於CC#3之控制訊號的情況則循環移位2位元,關於CC#4之控制訊號的情況則循環移位3位元,關於CC#5之控制訊號的情況則循環移位4位元。Specifically, the case of the control signal of CC #1 is not cyclically shifted. Regarding the case of the control signal of CC#2, the information bit is cyclically shifted by one bit to the right. Similarly, the case of the control signal of CC#3 is cyclically shifted by 2 bits, and the case of the control signal of CC#4 is cyclically shifted by 3 bits, and the case of the control signal of CC#5 is cyclically shifted. Bit 4 bits.

第33圖係表示第7實施形態之控制訊號之第2例之圖。在第2例中,將16位元之資訊位元全體予以循環移位。作為對於5個成分載波(CC#1~#5)之移位量之設定方法,係採用前述(a)。而且,資訊位元係對應於循環移位前之同位位元。Figure 33 is a view showing a second example of the control signal of the seventh embodiment. In the second example, the entire 16-bit information bits are cyclically shifted. As a method of setting the shift amount for the five component carriers (CC #1 to #5), the above (a) is employed. Moreover, the information bit corresponds to the co-bit before the cyclic shift.

具體而言,關於CC#1之控制訊號的情況時不予以循環移位。關於CC#2之控制訊號的情況時,將同位位元往右方循環移位1位元。以下同樣地,關於CC#3之控制訊號的情況則循環移位2位元,關於CC#4之控制訊號的情況則循環移位3位元,關於CC#5之控制訊號的情況則循環移位4位元。Specifically, the case of the control signal of CC #1 is not cyclically shifted. Regarding the case of the control signal of CC#2, the parity bit is cyclically shifted by one bit to the right. Similarly, the case of the control signal of CC#3 is cyclically shifted by 2 bits, and the case of the control signal of CC#4 is cyclically shifted by 3 bits, and the case of the control signal of CC#5 is cyclically shifted. Bit 4 bits.

而且,循環移位之區間並非資訊位元或同位位元全體而為預定一部分區間亦可。又,亦可將控制訊號之一部分,且跨越資訊位元與同位位元之區間之訊號予以循環移位。Moreover, the interval of the cyclic shift is not a whole of the information bit or the parity bit but may be a predetermined part of the interval. Moreover, the signal of one part of the control signal and the interval between the information bit and the parity bit may be cyclically shifted.

若依據前述關於第7實施形態之移動通訊系統,亦可獲得與第2實施形態同樣的效果。進一步而言,於第7實施形態,不伴隨有攪碼處理即可識別成分載波,可刪減無線基地台100及行動台200、200a之處理負載及電路規模。而且,亦可如第3實施形態,將關於第7實施形態之方法用於識別PDSCH之符元位置。According to the mobile communication system according to the seventh embodiment, the same effects as those of the second embodiment can be obtained. Further, in the seventh embodiment, the component carrier can be identified without the codec processing, and the processing load and the circuit scale of the wireless base station 100 and the mobile stations 200 and 200a can be deleted. Further, as in the third embodiment, the method according to the seventh embodiment may be used to identify the symbol position of the PDSCH.

[第8實施形態][Eighth Embodiment]

接著,說明關於第8實施形態。針對與第2實施形態之差異為中心來說明,關於與第2實施形態同樣的事項則省略說明。第2~第7實施形態係於資訊位元的結尾追加有同位位元。相對於此,第8實施形態係使得插入同位位元之位置可變,以便可藉由插入位置識別成分載波。Next, the eighth embodiment will be described. The difference from the second embodiment will be mainly described, and the description of the same matters as those of the second embodiment will be omitted. In the second to seventh embodiments, the same bit is added to the end of the information bit. On the other hand, in the eighth embodiment, the position at which the parity bit is inserted is made variable so that the component carrier can be identified by the insertion position.

關於第8實施形態之無線基地台,可藉由與第6圖所示之關於第2實施形態之無線基地台100同樣的構成而實現。其中,取代PDCCH生成部160而利用以下所述之PDCCH生成部160d。關於第8實施形態之行動台,可藉由與第8圖所示之關於第2實施形態之行動台200同樣的構成而實現。其中,取代控制訊號解碼部240而利用以下所述之控制訊號解碼部240d。The radio base station according to the eighth embodiment can be realized by the same configuration as that of the radio base station 100 according to the second embodiment shown in FIG. The PDCCH generation unit 160d described below is used instead of the PDCCH generation unit 160. The mobile station according to the eighth embodiment can be realized by the same configuration as that of the mobile station 200 according to the second embodiment shown in FIG. Here, instead of the control signal decoding unit 240, the control signal decoding unit 240d described below is used.

第34圖係表示第8實施形態之PDCCH生成部之詳細之圖。PDCCH生成部160d具有控制資訊生成部161d、插入位置控制部162d、同位附加部163d及錯誤訂正編碼部164d。Fig. 34 is a view showing the details of the PDCCH generating unit in the eighth embodiment. The PDCCH generation unit 160d includes a control information generation unit 161d, an insertion position control unit 162d, a parity addition unit 163d, and an error correction coding unit 164d.

控制資訊生成部161d係生成關於PDSCH及PUSCH之控制資訊,並將表示控制資訊之位元串列輸出至同位附加部163d。The control information generating unit 161d generates control information on the PDSCH and the PUSCH, and outputs a bit string indicating the control information to the co-located adding unit 163d.

插入位置控制部162d係控制對於控制資訊之資訊位元之同位位元的插入位置。於插入位置控制部162d,預先登錄有5個成分載波(CC#1~#5)與互異之5種插入位置之對應關係。插入位置控制部162d係向同位附加部163d,通知與控制訊號之適用對象之成分載波對應之插入位置。The insertion position control unit 162d controls the insertion position of the parity bit of the information bit for the control information. In the insertion position control unit 162d, the correspondence relationship between the five component carriers (CC #1 to #5) and the five different insertion positions is registered in advance. The insertion position control unit 162d notifies the parity addition unit 163d of the insertion position corresponding to the component carrier to which the control signal is applied.

作為同位位元之插入位置之一例可考慮以下位置。As an example of the insertion position of the parity bit, the following positions can be considered.

(a)從資訊位元的結尾,僅以與成分載波之號碼相應之位元數位插入於前方(a) From the end of the information bit, only the number of bits corresponding to the number of the component carrier is inserted in front

(b)從資訊位元之開頭,僅以與成分載波之號碼相應之位元數位插入於後方(b) From the beginning of the information bit, only the digit corresponding to the number of the component carrier is inserted in the rear

同位附加部163d係根據取得自控制資訊生成部161d之位元串列(資訊位元),生成錯誤檢測用之同位位元。然後,在從插入位置控制部162d通知之位置,插入所生成的同位位元,生成控制訊號並輸出至錯誤訂正編碼部164d。屆時,同位附加部163d係利用與傳送去處之行動台之RNTI相應之攪碼序列,將同位位元進行攪碼處理。而且,攪碼處理係於同位位元插入於資訊位元前進行,或於插入後進行均可。The co-location adding unit 163d generates a parity bit for error detection based on the bit string (information bit) obtained from the control information generating unit 161d. Then, the generated parity bit is inserted at the position notified from the insertion position control unit 162d, and a control signal is generated and output to the error correction coding unit 164d. At that time, the parity addition unit 163d performs the codec processing on the parity bits by using the codec sequence corresponding to the RNTI of the mobile station to which the mobile station is transmitted. Moreover, the codec processing is performed before the insertion of the parity bit in the information bit, or after the insertion.

錯誤訂正編碼部164d係將取得自同位附加部163d之控制訊號,進行錯誤訂正編碼。然後,將生成之PDCCH訊號輸出至無線傳送部170。The error correction coding unit 164d obtains the control signal from the parity addition unit 163d and performs error correction coding. Then, the generated PDCCH signal is output to the wireless transmission unit 170.

第35圖係表示第8實施形態之控制訊號解碼部之詳細之圖。控制訊號解碼部240d具有錯誤訂正解碼部241d、重排控制部242d、重排部243d及錯誤檢測部244d。Fig. 35 is a view showing the details of the control signal decoding unit of the eighth embodiment. The control signal decoding unit 240d includes an error correction decoding unit 241d, a rearrangement control unit 242d, a rearrangement unit 243d, and an error detection unit 244d.

錯誤訂正解碼部241d係將取得自控制訊號擷取部230之PDCCH訊號候補,進行錯誤訂正解碼,並將所獲得的控制訊號輸出至重排部243d。The error correction decoding unit 241d obtains the PDCCH signal candidate from the control signal extraction unit 230, performs error correction decoding, and outputs the obtained control signal to the rearrangement unit 243d.

重排控制部242d係控制控制訊號之位元順序之重排方法。於重排控制部242d,預先登錄有5個成分載波(CC#1~#5)與插入同位位元之5種區間之對應關係。該對應關係係與登錄於無線基地台100之插入位置控制部162d所管理之插入方法相整合。重排控制部242d係向重排部243d,通知有可能插入同位位元之區間。The rearrangement control unit 242d controls a rearrangement method of the bit order of the control signals. The rearrangement control unit 242d registers in advance the correspondence between the five component carriers (CC #1 to #5) and the five types of interpolated cells. This correspondence is integrated with the insertion method managed by the insertion position control unit 162d registered in the radio base station 100. The rearrangement control unit 242d notifies the rearrangement unit 243d that it is possible to insert a section of the same bit.

重排部243d係從取得自錯誤訂正解碼部241d之控制訊號,切割出從重排控制部242d通知之區間之訊號(可視為同位位元者),並移動至結尾。然後,將重排後之控制訊號輸出至錯誤檢測部244d。The rearrangement unit 243d cuts out the signal (which can be regarded as a co-located bit) from the section notified by the rearrangement control unit 242d from the control signal obtained from the error correction decoding unit 241d, and moves to the end. Then, the rearranged control signal is output to the error detecting unit 244d.

錯誤檢測部244d係對於取得自重排部243d之重排後之控制訊號進行錯誤檢測。亦即,首先利用與行動台200之RNTI相應之攪碼序列,將控制訊號結尾之預定數的位元(可視為同位位元者)進行解攪碼處理。然後,根據控制訊號開頭之預定數的位元(可視為同位位元者)及經解攪碼處理之位元,進行錯誤檢測。The error detecting unit 244d performs error detection on the control signal obtained by the rearrangement from the rearrangement unit 243d. That is, first, a predetermined number of bits (which can be regarded as co-located bits) at the end of the control signal are subjected to descrambling processing using a codec sequence corresponding to the RNTI of the mobile station 200. Then, error detection is performed based on a predetermined number of bits at the beginning of the control signal (which can be regarded as a parity bit) and a bit processed by the de-glitch code.

在此,重排控制部242d指定複數區間之候補的情況下,重排部243d及錯誤檢測部244d係針對複數區間之各個,嘗試重排及錯誤檢測。錯誤檢測部244d特定出錯誤檢測結果為OK時之區間,特定出相對應之成分載波。而且,重排部243d及錯誤檢測部244d並行地執行或逐次執行針對複數移位量之處理均可。Here, when the rearrangement control unit 242d specifies the candidate for the complex section, the rearrangement unit 243d and the error detection unit 244d attempt rearrangement and error detection for each of the complex sections. The error detecting unit 244d specifies a section when the error detection result is OK, and specifies a corresponding component carrier. Further, the rearrangement unit 243d and the error detecting unit 244d may perform the processing for the complex shift amount in parallel or sequentially.

第36圖係表示第8實施形態之控制訊號例之圖。於該例中,對於30位元之資訊位元插入16位元之同位位元。作為對應於5個成分載波(CC#1~#5)之插入位置,係採用前述(a)。Fig. 36 is a view showing an example of the control signal of the eighth embodiment. In this example, a 16-bit isomorph is inserted for a 30-bit information bit. As the insertion position corresponding to the five component carriers (CC #1 to #5), the above (a) is employed.

具體而言,關於CC#1之控制訊號的情況下,於資訊位元的結尾插入同位位元。關於CC#2之控制訊號的情況下,在從資訊位元的結尾算起第3個與第4個位元之間插入同位位元。關於CC#3之控制訊號的情況下,在從資訊位元的結尾算起第6個與第7個位元之間插入同位位元。關於CC#4之控制訊號的情況下,在從資訊位元的結尾算起第9個與第10個位元之間插入同位位元。關於CC#5之控制訊號的情況下,在從資訊位元的結尾算起第12個與第13個位元之間插入同位位元。Specifically, in the case of the control signal of CC#1, the parity bit is inserted at the end of the information bit. Regarding the control signal of CC#2, the parity bit is inserted between the third and fourth bits from the end of the information bit. Regarding the control signal of CC#3, the parity bit is inserted between the sixth and seventh bits from the end of the information bit. Regarding the control signal of CC#4, the parity bit is inserted between the ninth and tenth bits from the end of the information bit. Regarding the control signal of CC#5, the parity bit is inserted between the 12th and 13th bits from the end of the information bit.

而且,圖36之方法係將CC#1~#5之插入位置各錯開3位元,但錯開量為任意位元數或錯開量非為等間隔均可。又,圖36之方法係不分割16位元之同位位元而插入於資訊位元中,但亦可考慮分割為複數區塊,分別插入於不同位置之方法。Further, in the method of FIG. 36, the insertion positions of CC #1 to #5 are each shifted by three bits, but the amount of shift is an arbitrary number of bits or the amount of shift may not be equal intervals. Moreover, the method of FIG. 36 is inserted into the information bit without dividing the 16-bit co-located bit, but may be considered as a method of dividing into a plurality of blocks and inserting them into different positions.

又,亦可與關於第7實施形態之方法,亦即與藉由循環移位之移位量識別成分載波之方法組合。藉此,可從無線基地台100向行動台200、200a通知更多資訊。例如亦容易如第4實施形態通知成分載波及PDSCH之開頭符元雙方。Further, it is also possible to combine with the method of the seventh embodiment, that is, the method of recognizing the component carrier by the shift amount of the cyclic shift. Thereby, more information can be notified from the wireless base station 100 to the mobile stations 200, 200a. For example, it is also easy to notify both the component carrier and the first symbol of the PDSCH in the fourth embodiment.

第37圖係表示第8實施形態之控制訊號之變形例之圖。於該例中,藉由插入同位位元之區間識別5個成分載波(CC#1~#5),並且藉由同位位元之移位量識別3種符元位置(位置#1~#3)。藉此可備有全部15種之同位位元之插入位置與同位位元之循環移位量的組合。Fig. 37 is a view showing a modification of the control signal of the eighth embodiment. In this example, five component carriers (CC#1 to #5) are identified by inserting the same bit, and three kinds of symbol positions (positions #1 to #3) are identified by the shift amount of the parity bits. ). Thereby, a combination of the insertion position of all fifteen parity bits and the cyclic shift amount of the parity bits can be prepared.

具體而言,在表示CC#1‧位置#1的情況下,於資訊位元的結尾附加同位位元。在表示CC#1‧位置#1的情況下,於資訊位元的結尾附加同位位元,將同位位元往右方循環移位1位元。Specifically, when CC#1‧ position #1 is indicated, the same bit is added to the end of the information bit. In the case of indicating CC#1‧ position #1, the same bit is added to the end of the information bit, and the same bit is cyclically shifted by one bit to the right.

在表示CC#5‧位置#2的情況下,在從資訊位元的結尾算起第12個與第13個位元之間,插入同位位元,將同位位元往右方循環移位1位元。在表示CC#5‧位置#3的情況下,在從資訊位元的結尾算起第12個與第13個位元之間,插入同位位元,將同位位元往右方循環移位2位元。In the case of CC#5‧ position #2, the same bit is inserted between the 12th and 13th bits from the end of the information bit, and the same bit is rotated to the right by 1 Bit. In the case of CC#5‧ position #3, the same bit is inserted between the 12th and 13th bits from the end of the information bit, and the same bit is rotated to the right by 2 Bit.

若依據該類關於第8實施形態之移動通訊系統,亦可獲得與第2實施形態同樣的效果。又,與第7實施形態相同,不伴隨有攪碼處理即可識別成分載波,可刪減無線基地台100及行動台200、200a之處理負載及電路規模。而且,亦可如第3實施形態,將關於第8實施形態之方法用於識別PDSCH之符元位置。According to the mobile communication system of the eighth embodiment, the same effects as those of the second embodiment can be obtained. Further, similarly to the seventh embodiment, the component carrier can be identified without the codec processing, and the processing load and circuit scale of the wireless base station 100 and the mobile stations 200 and 200a can be deleted. Further, as in the third embodiment, the method according to the eighth embodiment can be used to identify the symbol position of the PDSCH.

關於上述僅表示本發明之原理。對於熟悉此項技藝者而言,當可進一步實現許多變形、變更,本發明不限定於上述所示、所說明的正確構成及應用例,相對應之所有變形例及均等物係視為依據所附申請專利範圍及其均等物之本發明範圍。The foregoing merely illustrates the principles of the invention. It will be apparent to those skilled in the art that many modifications and changes can be made without departing from the scope of the invention described herein. The scope of the invention is attached to the scope of the claims and the equivalents thereof.

1、2...無線通訊裝置1, 2. . . Wireless communication device

1a...訊號生成部1a. . . Signal generation department

1b...傳送部1b. . . Transmission department

2a...接收部2a. . . Receiving department

2b...檢測部2b. . . Detection department

3a、3b、3c、3d...無線資源3a, 3b, 3c, 3d. . . Wireless resource

100...無線基地台100. . . Wireless base station

110...天線110. . . antenna

120...無線接收部120. . . Wireless receiving unit

130...PUSCH處理部130. . . PUSCH processing unit

140...排程器140. . . Scheduler

150...PDSCH生成部150. . . PDSCH generation unit

160...PDCCH生成部160. . . PDCCH generation unit

161...控制資訊生成部161. . . Control information generation department

162...同位附加部162. . . Co-location addendum

163...攪碼位置控制部163. . . Cogging position control unit

164...攪碼序列生成部164. . . Stirring code generation unit

165...攪碼部165. . . Stirring department

166...錯誤訂正編碼部166. . . Error correction coding department

170...無線傳送部170. . . Wireless transmission unit

200,200a...行動台200,200a. . . Mobile station

210...天線210. . . antenna

220...無線接收部220. . . Wireless receiving unit

230...控制訊號擷取部230. . . Control signal acquisition unit

240...控制訊號解碼部240. . . Control signal decoding unit

241...錯誤訂正解碼部241. . . Error correction decoding unit

242...攪碼位置控制部242. . . Cogging position control unit

243...攪碼序列生成部243. . . Stirring code generation unit

244...解攪碼部244. . . Uncoupling code section

245...錯誤檢測部245. . . Error detection unit

250...PDSCH擷取部250. . . PDSCH acquisition department

260...PDSCH解碼部260. . . PDSCH decoding unit

270...PUSCH生成部270. . . PUSCH generation unit

280...無線傳送部280. . . Wireless transmission unit

160a...PDCCH生成部160a. . . PDCCH generation unit

161a...控制資訊生成部161a. . . Control information generation department

162a...同位附加部162a. . . Co-location addendum

163a...攪碼序列生成部163a. . . Stirring code generation unit

164a...移位量控制部164a. . . Shift amount control unit

165a...循環移位部165a. . . Cycle shifting

166a...攪碼部166a. . . Stirring department

167a...錯誤訂正編碼部167a. . . Error correction coding department

240a...控制訊號解碼部240a. . . Control signal decoding unit

241a...錯誤訂正解碼部241a. . . Error correction decoding unit

242a...攪碼序列生成部242a. . . Stirring code generation unit

243a...移位量控制部243a. . . Shift amount control unit

244a...循環移位部244a. . . Cycle shifting

245a...亂攪碼部245a. . . Chaos code department

246a...錯誤檢測部246a. . . Error detection unit

160b...PDCCH生成部160b. . . PDCCH generation unit

161b...控制資訊生成部161b. . . Control information generation department

162b...同位附加部162b. . . Co-location addendum

163b...序列選擇部163b. . . Sequence selection unit

164b...攪碼序列生成部164b. . . Stirring code generation unit

165b...攪碼部165b. . . Stirring department

166b...錯誤訂正編碼部166b. . . Error correction coding department

240b...控制訊號解碼部240b. . . Control signal decoding unit

241b...錯誤訂正解碼部241b. . . Error correction decoding unit

242b...序列選擇部242b. . . Sequence selection unit

243b...攪碼序列生成部243b. . . Stirring code generation unit

244b...解攪碼部244b. . . Uncoupling code section

245b...錯誤檢測部245b. . . Error detection unit

160c...PDCCH生成部160c. . . PDCCH generation unit

161c...控制資訊生成部161c. . . Control information generation department

162c...同位附加部162c. . . Co-location addendum

163c...移位量控制部163c. . . Shift amount control unit

164c...循環移位部164c. . . Cycle shifting

165c...錯誤訂正編碼部165c. . . Error correction coding department

240c...控制訊號解碼部240c. . . Control signal decoding unit

241c...錯誤訂正解碼部241c. . . Error correction decoding unit

242c...移位量控制部242c. . . Shift amount control unit

243c...循環移位部243c. . . Cycle shifting

244c...錯誤檢測部244c. . . Error detection unit

160d...PDCCH生成部160d. . . PDCCH generation unit

161d...控制資訊生成部161d. . . Control information generation department

162d...插入位置控制部162d. . . Insert position control

163d...同位附加部163d. . . Co-location addendum

164d...錯誤訂正編碼部164d. . . Error correction coding department

240d...控制訊號解碼部240d. . . Control signal decoding unit

241d...錯誤訂正解碼部241d. . . Error correction decoding unit

242d...重排控制部242d. . . Rearrangement control

243d...重排部243d. . . Rearrangement

244d...錯誤檢測部244d. . . Error detection unit

第1圖係表示第1實施形態之無線通訊系統之圖。Fig. 1 is a view showing a wireless communication system according to the first embodiment.

第2圖係表示第2實施形態之移動通訊系統之圖。Fig. 2 is a view showing a mobile communication system according to a second embodiment.

第3圖係表示第2實施形態之成分載波之設定例之圖。Fig. 3 is a view showing an example of setting a component carrier in the second embodiment.

第4圖係表示第2實施形態之無線訊框之構造例之圖。Fig. 4 is a view showing a configuration example of a radio frame of the second embodiment.

第5圖係表示第2實施形態之PDSCH及PUSCH之分配例之圖。Fig. 5 is a view showing an example of allocation of PDSCH and PUSCH in the second embodiment.

第6圖係表示第2實施形態之無線基地台之方塊圖。Fig. 6 is a block diagram showing a radio base station according to the second embodiment.

第7圖係表示第2實施形態之PDCCH生成部之詳細之方塊圖。Fig. 7 is a block diagram showing the details of the PDCCH generating unit in the second embodiment.

第8圖係表示第2實施形態之行動台之方塊圖。Fig. 8 is a block diagram showing a mobile station according to the second embodiment.

第9圖係表示第2實施形態之控制訊號解碼部之詳細之圖。Fig. 9 is a view showing the details of the control signal decoding unit of the second embodiment.

第10圖係表示第2實施形態之傳送處理之流程圖。Fig. 10 is a flow chart showing the transfer processing of the second embodiment.

第11圖係表示第2實施形態之接收處理之流程圖。Fig. 11 is a flow chart showing the receiving process of the second embodiment.

第12圖係表示第2實施形態之控制訊號之第1例之圖。Fig. 12 is a view showing a first example of the control signal of the second embodiment.

第13圖係表示第2實施形態之控制訊號之第2例之圖。Fig. 13 is a view showing a second example of the control signal of the second embodiment.

第14圖係表示第2實施形態之控制訊號之第3例之圖。Fig. 14 is a view showing a third example of the control signal of the second embodiment.

第15圖係表示第3實施形態之PDSCH之分配例之圖。Fig. 15 is a view showing an example of allocation of PDSCH in the third embodiment.

第16圖係表示第3實施形態之傳送處理之流程圖。Fig. 16 is a flow chart showing the transfer processing of the third embodiment.

第17圖係表示第3實施形態之接收處理之流程圖。Fig. 17 is a flow chart showing the receiving process of the third embodiment.

第18圖係表示第4實施形態之傳送處理之流程圖。Fig. 18 is a flow chart showing the transfer processing of the fourth embodiment.

第19圖係表示第4實施形態之接收處理之流程圖。Fig. 19 is a flow chart showing the receiving process of the fourth embodiment.

第20圖係表示第4實施形態之控制訊號例之圖。Fig. 20 is a view showing an example of a control signal in the fourth embodiment.

第21圖係表示第5實施形態之PDCCH生成部之詳細之圖。Fig. 21 is a view showing the details of the PDCCH generating unit in the fifth embodiment.

第22圖係表示第5實施形態之控制訊號解碼部之詳細之圖。Fig. 22 is a view showing the details of the control signal decoding unit of the fifth embodiment.

第23圖係表示第5實施形態之控制訊號例之圖。Fig. 23 is a view showing an example of the control signal of the fifth embodiment.

第24圖係表示第5實施形態之控制訊號之變形例之圖。Fig. 24 is a view showing a modification of the control signal of the fifth embodiment.

第25圖係表示第6實施形態之PDCCH生成部之詳細之圖。Fig. 25 is a view showing the details of the PDCCH generating unit in the sixth embodiment.

第26圖係表示第6實施形態之控制訊號解碼部之詳細之圖。Fig. 26 is a view showing the details of the control signal decoding unit of the sixth embodiment.

第27圖係表示第6實施形態之控制訊號之第1例之圖。Figure 27 is a view showing a first example of the control signal of the sixth embodiment.

第28圖係表示第6實施形態之控制訊號之第2例之圖。Fig. 28 is a view showing a second example of the control signal of the sixth embodiment.

第29圖係表示第6實施形態之控制訊號之變形例之圖。Fig. 29 is a view showing a modification of the control signal of the sixth embodiment.

第30圖係表示第7實施形態之PDCCH生成部之詳細之圖。Fig. 30 is a view showing the details of the PDCCH generating unit in the seventh embodiment.

第31圖係表示第7實施形態之控制訊號解碼部之詳細之圖。Figure 31 is a view showing the details of the control signal decoding unit of the seventh embodiment.

第32圖係表示第7實施形態之控制訊號之第1例之圖。Fig. 32 is a view showing a first example of the control signal of the seventh embodiment.

第33圖係表示第7實施形態之控制訊號之第2例之圖。Figure 33 is a view showing a second example of the control signal of the seventh embodiment.

第34圖係表示第8實施形態之PDCCH生成部之詳細之圖。Fig. 34 is a view showing the details of the PDCCH generating unit in the eighth embodiment.

第35圖係表示第8實施形態之控制訊號解碼部之詳細之圖。Fig. 35 is a view showing the details of the control signal decoding unit of the eighth embodiment.

第36圖係表示第8實施形態之控制訊號例之圖。Fig. 36 is a view showing an example of the control signal of the eighth embodiment.

第37圖係表示第8實施形態之控制訊號之變形例之圖。Fig. 37 is a view showing a modification of the control signal of the eighth embodiment.

1、2...無線通訊裝置1, 2. . . Wireless communication device

1a...訊號生成部1a. . . Signal generation department

1b...傳送部1b. . . Transmission department

3a...無線資源#13a. . . Wireless resource #1

3b、3c、3d...無線資源#23b, 3c, 3d. . . Wireless resource #2

2a...接收部2a. . . Receiving department

2b...檢測部2b. . . Detection department

Claims (20)

一種無線通訊裝置,其特徵在於,以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號者,且具有:訊號生成部,係生成用於前述其他無線通訊裝置所進行之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號,並生成包含前述第1訊號及前述第2訊號,且一部分區間之訊號經進行攪碼處理之第3訊號;及傳送部,係以前述第1無線資源傳送生成之前述第3訊號;前述訊號生成部係於對應前述複數第2無線資源且互異之複數區間中,選擇與用到前述第1訊號之處理的對象之第2無線資源對應之區間,並對所選擇區間之訊號進行前述攪碼處理。 A wireless communication device that transmits a signal for processing by a wireless communication device to any of a plurality of second wireless resources by using a first radio resource, and includes: a signal generation unit for generating The first signal processed by the other wireless communication device and the second signal for error detection of the first signal are generated, and the first signal and the second signal are generated, and a part of the interval signal is performed. And a third signal generated by the codec processing; and the transmitting unit is configured to transmit the third signal generated by the first radio resource; and the signal generating unit is selected from the plurality of inter-subjects corresponding to the plurality of second radio resources The section corresponding to the second radio resource of the target of the processing of the first signal is used, and the above-mentioned codec processing is performed on the signal of the selected section. 如申請專利範圍第1項之無線通訊裝置,其中前述複數第2無線資源係屬於互異頻帶之無線資源。 The wireless communication device of claim 1, wherein the plurality of second wireless resources belong to radio resources of different frequency bands. 如申請專利範圍第1項之無線通訊裝置,其中前述複數第2無線資源係位於用到前述第1訊號之處理之對象通道開頭之無線資源。 The wireless communication device according to claim 1, wherein the plurality of second radio resources are located in a radio resource at the beginning of the target channel in which the first signal is processed. 如申請專利範圍第1至3項中任一項之無線通訊裝置,其中前述訊號生成部係於前述攪碼處理後,將前述第3訊號予以錯誤訂正編碼;前述傳送部係傳送經錯誤訂正編碼之前述第3訊號。 The wireless communication device according to any one of claims 1 to 3, wherein the signal generating unit performs error correction encoding on the third signal after the stitching process; and the transmitting unit transmits the error correction code. The third signal mentioned above. 如申請專利範圍第1項之無線通訊裝置,其中前述訊號生成部係將前述第2訊號從前述攪碼處理之對象中除 外。 The wireless communication device of claim 1, wherein the signal generating unit divides the second signal from the object of the aforementioned agitation processing outer. 如申請專利範圍第1項之無線通訊裝置,其中前述訊號生成部係利用根據前述第3訊號之傳送去處之前述其他無線通訊裝置而選擇之攪碼序列,對前述第2訊號進行其他攪碼處理。 The wireless communication device of claim 1, wherein the signal generating unit performs another codec processing on the second signal by using a codec sequence selected by the other wireless communication device transmitted by the third signal. . 如申請專利範圍第1項之無線通訊裝置,其中前述複數第2無線資源係可使用於資料傳送之無線資源;前述傳送部係以前述複數第2無線資源中與已進行前述攪碼處理之區間對應之第2無線資源,傳送寄給前述其他無線通訊裝置之資料。 The wireless communication device of claim 1, wherein the plurality of second radio resources are wireless resources for data transmission; and the transmission unit is configured by the plurality of second radio resources and the interval in which the agitation processing has been performed. Corresponding to the second wireless resource, the data sent to the other wireless communication device is transmitted. 如申請專利範圍第1項之無線通訊裝置,其中前述複數第2無線資源係可使用於資料接收之無線資源;且,進一步具有接收部,其係以前述第2無線資源中與已進行前述攪碼處理之區間對應之第2無線資源,從前述其他無線通訊裝置接收資料。 The wireless communication device of claim 1, wherein the plurality of second radio resources are wireless resources for receiving data; and further comprising a receiving unit that performs the agitation in the second radio resource The second wireless resource corresponding to the code processing interval receives data from the other wireless communication device. 一種無線通訊裝置,其特徵在於,以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號者,且具有:訊號生成部,係生成用於前述其他無線通訊裝置所進行之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號,並生成包含前述第1訊號及前述第2訊號,且至少前述第1訊號之一部分經進行攪碼處理之第3訊號;及傳送部,係以前述第1無線資源傳送生成之前述第3訊號; 前述訊號生成部係利用對應前述複數第2無線資源且互異之複數攪碼序列中,與用到前述第1訊號之處理的對象之第2無線資源對應之攪碼序列,進行前述攪碼處理。 A wireless communication device that transmits a signal for processing by a wireless communication device to any of a plurality of second wireless resources by using a first radio resource, and includes: a signal generation unit for generating And the first signal processed by the other wireless communication device and the second signal used for error detection of the first signal, and generating the first signal and the second signal, and at least the first signal a third signal subjected to the codec processing; and a transmitting unit that transmits the third signal generated by the first radio resource; The signal generating unit performs the above-described codec processing by using a codec sequence corresponding to the second radio resource to be processed by the first signal in the complex codec sequence corresponding to the plurality of second radio resources. . 如申請專利範圍第9項之無線通訊裝置,其中前述複數攪碼序列係藉由將預定攪碼序列,僅以互異之位元數予以循環移位而獲得之攪碼序列。 The wireless communication device of claim 9, wherein the plurality of codec sequences are obtained by cyclically shifting the predetermined codec sequence by only the number of different bits. 如申請專利範圍第9或10項之無線通訊裝置,其中前述訊號生成部係利用根據前述第3訊號之傳送去處之前述其他無線通訊裝置而選擇之攪碼序列,對前述第2訊號進行其他攪碼處理。 The wireless communication device of claim 9 or 10, wherein the signal generating unit performs another stirring on the second signal by using a coding sequence selected by the other wireless communication device according to the transmission of the third signal. Code processing. 一種無線通訊裝置,其特徵在於,以第1無線資源,傳送用於其他無線通訊裝置對複數第2無線資源之任一者所進行之處理之訊號者,且具有:訊號生成部,係生成用於前述其他無線通訊裝置所進行之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號,並生成在包含前述第1訊號及前述第2訊號之訊號串列之至少一部分區間內,已置換位元順序之第3訊號;及傳送部,係以前述第1無線資源傳送生成之前述第3訊號;前述訊號生成部係按照對應前述複數第2無線資源且互異之複數置換方法中,與用到前述第1訊號之處理的對象之第2無線資源對應之置換方法,置換前述位元順序。 A wireless communication device that transmits a signal for processing by a wireless communication device to any of a plurality of second wireless resources by using a first radio resource, and includes: a signal generation unit for generating a first signal processed by the other wireless communication device and a second signal used for error detection of the first signal, and generating at least a part of the signal sequence including the first signal and the second signal a third signal in which the bit order is replaced; and a transmitting unit that transmits the third signal generated by the first radio resource; and the signal generating unit is in accordance with the plurality of second radio resources and different numbers In the replacement method, the bit order is replaced with a replacement method corresponding to the second radio resource to which the processing of the first signal is performed. 如申請專利範圍第12項之無線通訊裝置,其中前述複數置換方法係僅以互異之位元數循環移位之方法;前述訊號生成部係將前述第1訊號及前述第2訊號之至少一者,僅以與前述處理的對象之第2無線資源對應之位元數循換移位。 The wireless communication device of claim 12, wherein the plurality of replacement methods are only cyclically shifted by mutually different number of bits; the signal generation unit is configured to at least one of the first signal and the second signal The shift is only shifted by the number of bits corresponding to the second radio resource of the object to be processed. 如申請專利範圍第12項之無線通訊裝置,其中前述複數置換方法係於前述第1訊號內互異之位置,插入前述第2訊號之方法;前述訊號生成部係於與前述處理的對象之第2無線資源對應之前述第1訊號內之位置,插入前述第2訊號。 The wireless communication device of claim 12, wherein the plural replacement method is a method of inserting the second signal at a position different from the first signal; and the signal generation unit is the object of the processing 2 The second signal is inserted at a position in the first signal corresponding to the radio resource. 一種無線通訊裝置,其特徵在於具有:接收部,係以第1無線資源,從其他無線通訊裝置接收第3訊號,該第3訊號包含用於複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號,且一部分區間之訊號受到攪碼處理;及檢測部,係針對對應前述複數第2無線資源且互異之複數區間之各區間,將接收之前述第3訊號進行解攪碼處理,檢測與前述解攪碼處理後之前述錯誤檢測的結果符合預定條件之區間對應之第2無線資源,以作為用到前述第1訊號之處理的對象。 A wireless communication device, comprising: a receiving unit configured to receive a third signal from another wireless communication device by using a first wireless resource, the third signal including a process for processing any one of the plurality of second wireless resources a signal and a second signal for error detection of the first signal, and a signal of a part of the interval is subjected to a codec processing; and a detecting unit is for each interval of the complex number interval corresponding to the plurality of second wireless resources And performing the de-agglomeration processing on the received third signal, and detecting the second radio resource corresponding to the section in which the result of the error detection after the de-glitching processing is in accordance with a predetermined condition, as the processing using the first signal Object. 一種無線通訊裝置,其特徵在於具有:接收部,係以第1無線資源,從其他無線通訊裝置接收第3訊號,該第3訊號包含用於對複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號,且至少前述第1訊號之一部分受到攪碼 處理;及檢測部,其係利用對應前述複數第2無線資源且互異之複數攪碼序列之各序列,將接收之前述第3訊號進行解攪碼處理,檢測與前述解攪碼處理後之前述錯誤檢測的結果符合預定條件之攪碼序列對應之第2無線資源,以作為用到前述第1訊號之處理的對象。 A wireless communication device, comprising: a receiving unit configured to receive a third signal from another wireless communication device by using a first wireless resource, the third signal including processing for processing any one of the plurality of second wireless resources a first signal, and a second signal for error detection of the first signal, and at least one of the first signals is subjected to a codec And detecting, wherein the received third signal is subjected to de-agglomeration processing using each sequence of the plurality of complex wireless code sequences corresponding to the plurality of second radio resources, and detecting and decoding the descrambled code The result of the error detection is in accordance with the second radio resource corresponding to the coding sequence of the predetermined condition, and is used as the target of the processing of the first signal. 一種無線通訊裝置,其特徵在於具有:接收部,其係以第1無線資源,從其他無線通訊裝置,接收在包含用於複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號之訊號串列之至少一部分區間內,位元順序受到置換之第3訊號;及檢測部,其係按照對應前述複數第2無線資源且互異之複數重排方法之各方法,重排接收之前述第3訊號之位元順序,檢測與重排後之前述錯誤檢測的結果符合預定條件之重排方法對應之第2無線資源,以作為用到前述第1訊號之處理的對象。 A wireless communication device comprising: a receiving unit configured to receive, by a first wireless resource, a first signal including processing for any one of a plurality of second wireless resources from another wireless communication device, and a third signal in which the bit order is replaced in at least a part of the signal sequence of the second signal of the error detection of the first signal; and a detecting unit that is different from the second wireless resource corresponding to the plurality of radio resources Each method of the plurality of rearrangement methods rearranges the bit order of the received third signal, and detects the second radio resource corresponding to the rearrangement method of the predetermined condition after the rearrangement of the error detection is used as the second radio resource The object of the processing of the first signal. 一種無線通訊方法,其特徵在於,其係利用第1無線資源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行者;生成用於對前述複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號;生成第3訊號,該第3訊號包含前述第1訊號及前述第2訊號,且已將對應前述複數第2無線資源且互異之複數區間中,與用到前述第1訊號之處理的對象之第2無線 資源對應之區間之訊號進行攪碼處理;以前述第1無線資源傳送前述第3訊號;針對前述複數區間之各區間,將接收之前述第3訊號進行解攪碼處理,檢測與於前述解攪碼處理後之前述錯誤檢測的結果符合預定條件之區間對應之第2無線資源;對檢測到之第2無線資源,進行用到前述第1訊號之處理。 A wireless communication method, wherein the first wireless resource and the plurality of second wireless resources are used between the first wireless communication device and the second wireless communication device; and the second wireless resource is generated for the plurality of second wireless resources The first signal processed by either of the first signal and the second signal used for error detection of the first signal; generating a third signal, the third signal including the first signal and the second signal, and corresponding The second wireless of the plurality of second radio resources and the mutually different complex interval, and the target of the processing using the first signal The signal corresponding to the section corresponding to the resource is subjected to the codec processing; the third signal is transmitted by the first radio resource; and the received third signal is subjected to de-agglomeration processing for each section of the complex section, and the foregoing untwisting is detected The result of the error detection after the code processing is in accordance with the second radio resource corresponding to the section of the predetermined condition, and the processing of using the first signal is performed on the detected second radio resource. 一種無線通訊方法,其特徵在於,其係利用第1無線資源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行者;生成用於對前述複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號;生成第3訊號,該第3訊號包含前述第1訊號及前述第2訊號,且已利用對應前述複數第2無線資源且互異之複數攪碼序列中,與用到前述第1訊號之處理的對象之第2無線資源對應之攪碼序列,將至少前述第1訊號之一部分進行攪碼處理;以前述第1無線資源傳送前述第3訊號;利用前述複數攪碼序列之各序列,將接收之前述第3訊號進行解攪碼處理,檢測與前述解攪碼處理後之前述錯誤檢測的結果符合預定條件之攪碼序列對應之第2無線資源;對檢測到之第2無線資源,進行用到前述第1訊號之處理。 A wireless communication method, wherein the first wireless resource and the plurality of second wireless resources are used between the first wireless communication device and the second wireless communication device; and the second wireless resource is generated for the plurality of second wireless resources The first signal processed by any one of the first signal and the second signal used for error detection of the first signal; generating a third signal, wherein the third signal includes the first signal and the second signal, and the corresponding signal has been utilized In the complex codec sequence of the plurality of second radio resources and different from each other, at least one of the first signals is subjected to a codec processing in a codec sequence corresponding to the second radio resource to be processed by the first signal. Transmitting the third signal by using the first radio resource; performing de-sampling processing on the received third signal by using each sequence of the complex scramble sequence, and detecting the result of the error detection after the descramble code processing The second radio resource corresponding to the sequence of the code that meets the predetermined condition; and the process of using the first signal for the detected second radio resource. 一種無線通訊方法,其特徵在於,其係利用第1無線資 源及複數第2無線資源,於第1無線通訊裝置與第2無線通訊裝置之間進行者;生成用於對前述複數第2無線資源之任一者之處理之第1訊號、及用於前述第1訊號之錯誤檢測之第2訊號;生成第3訊號,該第3訊號包含前述第1訊號及前述第2訊號,且已利用對應前述複數第2無線資源且互異之複數置換方法中,與用到前述第1訊號之處理的對象之第2無線資源對應之置換方法,將至少一部分區間內之訊號之位元順序進行置換;以前述第1無線資源傳送前述第3訊號;按照對應前述複數置換方法之複數重排方法之各方法,重排接收之前述第3訊號之位元順序,檢測與重排後之前述錯誤檢測的結果符合預定條件之重排方法對應之第2無線資源;對檢測到之第2無線資源,進行用到前述第1訊號之處理。A wireless communication method, characterized in that it utilizes a first wireless resource a source and a plurality of second radio resources are performed between the first wireless communication device and the second wireless communication device; generating a first signal for processing the any of the plurality of second wireless resources, and for using the first signal The second signal of the error detection of the first signal; generating a third signal, wherein the third signal includes the first signal and the second signal, and the multiplicative replacement method corresponding to the plurality of second radio resources is used And a replacement method corresponding to the second radio resource to be used in the processing of the first signal, the bit of the signal in at least part of the interval is sequentially replaced; and the third signal is transmitted by the first radio resource; Each of the methods of the complex rearrangement method of the complex replacement method rearranges the bit order of the received third signal, and detects the second wireless resource corresponding to the rearrangement method of the predetermined condition after the rearrangement of the error detection result; The processing of using the first signal is performed on the detected second radio resource.
TW98133344A 2009-09-30 2009-09-30 Wireless communication apparatus and wireless communication method TWI423611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98133344A TWI423611B (en) 2009-09-30 2009-09-30 Wireless communication apparatus and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98133344A TWI423611B (en) 2009-09-30 2009-09-30 Wireless communication apparatus and wireless communication method

Publications (2)

Publication Number Publication Date
TW201112668A TW201112668A (en) 2011-04-01
TWI423611B true TWI423611B (en) 2014-01-11

Family

ID=44909330

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98133344A TWI423611B (en) 2009-09-30 2009-09-30 Wireless communication apparatus and wireless communication method

Country Status (1)

Country Link
TW (1) TWI423611B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050138531A1 (en) * 2003-10-02 2005-06-23 Kim Min-Goo Apparatus and method for receiving a forward packet data control channel in a mobile communication system supporting packet data service
US20060023634A1 (en) * 2004-07-30 2006-02-02 Cisco Technology, Inc. Transmission control protocol (TCP)
TW200635394A (en) * 2005-02-02 2006-10-01 Interdigital Tech Corp Method and apparatus for improving network resource planning in a wireless communication network
US20070049308A1 (en) * 2005-08-30 2007-03-01 Bengt Lindoff Selection of channel for radio resource control signaling in HSDPA
US7266102B2 (en) * 2001-06-08 2007-09-04 Nec Corporation Mobile communication system, base station, method of controlling packet transmission timing used for the same mobile communication system and base station, and recording medium recording program thereof
US7349540B2 (en) * 2002-05-07 2008-03-25 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for high speed shared control channel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266102B2 (en) * 2001-06-08 2007-09-04 Nec Corporation Mobile communication system, base station, method of controlling packet transmission timing used for the same mobile communication system and base station, and recording medium recording program thereof
US7349540B2 (en) * 2002-05-07 2008-03-25 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for high speed shared control channel
US7536013B2 (en) * 2002-05-07 2009-05-19 Interdigital Technology Corporation User equipment identification specific scrambling
US20090219907A1 (en) * 2002-05-07 2009-09-03 Interdigital Technology Corporation User equipment identification specific scrambling
US20050138531A1 (en) * 2003-10-02 2005-06-23 Kim Min-Goo Apparatus and method for receiving a forward packet data control channel in a mobile communication system supporting packet data service
US20060023634A1 (en) * 2004-07-30 2006-02-02 Cisco Technology, Inc. Transmission control protocol (TCP)
TW200635394A (en) * 2005-02-02 2006-10-01 Interdigital Tech Corp Method and apparatus for improving network resource planning in a wireless communication network
US20070049308A1 (en) * 2005-08-30 2007-03-01 Bengt Lindoff Selection of channel for radio resource control signaling in HSDPA

Also Published As

Publication number Publication date
TW201112668A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
CN109417428B (en) Superposition coding of PDSCH and PDCCH
JP5344045B2 (en) Wireless communication apparatus and wireless communication method
CN109314952B (en) Method for designing new radio physical downlink control channel and transmitting equipment thereof
CN107359967B (en) Blind detection method for reducing PDCCH blind detection times based on polarization code
US8559946B2 (en) Discontinuous transmission signaling over an uplink control channel
JP5461855B2 (en) Physical resource allocation method, apparatus, data receiving method, and receiving side
US11095414B2 (en) Method and apparatus for sending and receiving control channel in wireless communication system
CN107104779B (en) User equipment, base station and method for receiving/transmitting control information
EP2611243B1 (en) Methods of Reliably Sending Control Signal
CN107070605A (en) The dynamically distributes of ACK resources in wireless communication system
KR102473793B1 (en) Communication terminal and transmission method
US20120076043A1 (en) Wireless communication base station device, wireless communication terminal device, control channel transmission method, and control channel reception method
US20100054188A1 (en) Wireless Communication Base Station Apparatus and Wireless Communication Method
CN107431563B (en) Network node, user equipment and method thereof
CN102273298A (en) A method and apparatus for encoding and decoding
WO2016131477A1 (en) Methods, computer programs, network nodes and communication device
CN110855587A (en) Blind detection method for downlink control channel of 5G system
TWI718242B (en) Communication method, terminal equipment, and network equipment
CN110266451B (en) Method and device used in user equipment and base station of unlicensed spectrum
WO2017026091A1 (en) Terminal, base station, transmission method, and reception method
CN109525377A (en) A kind of method and apparatus in the user equipment for being used for narrow band communication, base station
CN109391355B (en) Method, chip and system for wireless communication
TWI423611B (en) Wireless communication apparatus and wireless communication method
CN110192362B (en) Method for transmitting downlink control information, network side equipment and terminal equipment
JP7091387B2 (en) Communication method, terminal device and network device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees