TWI423449B - Oxide semiconductor thin film transistor and manufacturing method thereof - Google Patents

Oxide semiconductor thin film transistor and manufacturing method thereof Download PDF

Info

Publication number
TWI423449B
TWI423449B TW99142992A TW99142992A TWI423449B TW I423449 B TWI423449 B TW I423449B TW 99142992 A TW99142992 A TW 99142992A TW 99142992 A TW99142992 A TW 99142992A TW I423449 B TWI423449 B TW I423449B
Authority
TW
Taiwan
Prior art keywords
oxide semiconductor
patterned
semiconductor layer
layer
hydrogen
Prior art date
Application number
TW99142992A
Other languages
Chinese (zh)
Other versions
TW201225301A (en
Inventor
Shin Shueh Chen
Wu Hsiung Lin
Po Hsueh Chen
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW99142992A priority Critical patent/TWI423449B/en
Priority to CN 201110009601 priority patent/CN102122672A/en
Publication of TW201225301A publication Critical patent/TW201225301A/en
Application granted granted Critical
Publication of TWI423449B publication Critical patent/TWI423449B/en

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

氧化物半導體薄膜電晶體及其製作方法Oxide semiconductor thin film transistor and manufacturing method thereof

本發明係關於一種氧化物半導體薄膜電晶體及其製造方法,尤指一種具有氧化物半導體層與源極電極/汲極電極之間低接觸阻抗及高電子遷移率特性之氧化物半導體薄膜電晶體與其製造方法。The present invention relates to an oxide semiconductor thin film transistor and a method of fabricating the same, and more particularly to an oxide semiconductor thin film transistor having low contact resistance and high electron mobility between an oxide semiconductor layer and a source/drain electrode. And its manufacturing method.

薄膜電晶體(thin film transistor,TFT)係一種廣泛應用於顯示器技術之半導體元件,例如應用在液晶顯示器(liquid crystal display panel,LCD)、有機發光二極體顯示器(organic light emitting diode display panel,OLED)及電子紙(electronic paper,E-paper)等顯示器產品。利用薄膜電晶體提供電壓或電流的切換,使得各顯示器中的畫素呈現亮、暗以及灰階的顯示效果。而薄膜電晶體的電子遷移率(mobility)大小為薄膜電晶體利用於顯示器時之重要指標特性。電子遷移率直接影響到該薄膜電晶體的切換速度,進而對顯示器之顯示畫面品質有很大的影響。A thin film transistor (TFT) is a semiconductor component widely used in display technology, for example, in a liquid crystal display panel (LCD), an organic light emitting diode display panel (OLED). ) and electronic paper (E-paper) and other display products. The switching of voltage or current is provided by the thin film transistor, so that the pixels in each display exhibit bright, dark and gray scale display effects. The electron mobility of the thin film transistor is an important index characteristic when the thin film transistor is used in a display. The electron mobility directly affects the switching speed of the thin film transistor, which in turn has a great influence on the display quality of the display.

舉例來說,先前一般傳統電視影像訊號的畫面解析度及更換頻率的規格為VGA(640 x 480個畫素)及60Hz,而目前一般數位電視的規格則進步到full HD(1920 x 1080個畫素)及120Hz,後續更是朝4K2K(3840 x 2160個畫素)及240Hz的規格,也就是更高解析度及更短的畫面更新頻率來不斷地提升顯示器的畫面品質。然而,隨著畫面解析度及更換頻率的規格提升,對顯示器中每一個單一畫素要求的反應速率會越來越嚴苛。所以當各畫素中使用之薄膜電晶體的電子遷移率無法快到滿足其反應速率的要求時,即會造成顯示畫面異常的問題。For example, the specifications of the previous conventional TV video signals and the frequency of replacement are VGA (640 x 480 pixels) and 60 Hz, while the current specifications of digital TVs have improved to full HD (1920 x 1080 paintings). And 120Hz, followed by 4K2K (3840 x 2160 pixels) and 240Hz specifications, which is higher resolution and shorter picture update frequency to continuously improve the picture quality of the display. However, as the resolution of the screen and the frequency of replacement are increased, the response rate to each single pixel requirement in the display will become more stringent. Therefore, when the electron mobility of the thin film transistor used in each pixel cannot be as fast as the response rate is required, the display screen is abnormal.

目前顯示器業界使用之薄膜電晶體可根據使用之半導體層材料來做區分,包括非晶矽薄膜電晶體(amorphous silicon TFT,a-Si TFT)、多晶矽薄膜電晶體(poly silicon TFT)以及氧化物半導體薄膜電晶體(oxide semiconductor TFT)。其中非晶矽薄膜電晶體由於具有製程技術成熟以及良率高之優點,目前仍是顯示器業界中的主流。但非晶矽薄膜電晶體受到非晶矽半導體材料本身特性的影響,使其電子遷移率無法大幅且有效地藉由製程或元件設計的調整來改善(目前非晶矽薄膜電晶體之電子遷移率大體上在1cm2 /Vs以內),故無法滿足目前可見的未來更高規格顯示器的需求。而多晶矽薄膜電晶體受惠於其多晶矽材料的特性,於電子遷移率上有大幅的改善(多晶矽薄膜電晶體之電子遷移率大體上最佳可達100cm2 /Vs)。但由於多晶矽薄膜電晶體的製程複雜(相對地成本提升)且於大尺寸面板應用時會有結晶化製程導致結晶程度均勻性不佳的問題存在,故目前多晶矽薄膜電晶體仍以小尺寸面板應用為主。而氧化物半導體薄膜電晶體則是應用近年來新崛起的氧化物半導體材料,此類材料一般為非晶相(amorphous)結構,沒有應用於大尺寸面板上均勻性不佳的問題,且可利用多種方式成膜,例如濺鍍(sputter)、旋塗(spin-on)以及印刷(inkjet printing)等方式。因此在製程上甚至還較非晶矽薄膜電晶體更有製程簡化的彈性。而氧化物半導體薄膜電晶體的電子遷移率一般可較非晶矽薄膜電晶體高10倍以上(氧化物半導體薄膜電晶體之電子遷移率大體上介於10cm2 /Vs到50cm2 /Vs之間),此程度已可滿足目前可見的未來高規格顯示器的需求。Currently, thin film transistors used in the display industry can be distinguished according to the semiconductor layer materials used, including amorphous silicon TFTs (a-Si TFTs), polysilicon TFTs, and oxide semiconductors. Thin film transistor (oxide semiconductor TFT). Among them, amorphous germanium thin film transistors are still the mainstream in the display industry due to their mature process technology and high yield. However, the amorphous germanium thin film transistor is affected by the properties of the amorphous germanium semiconductor material, so that the electron mobility cannot be improved greatly and effectively by the adjustment of the process or component design (currently the electron mobility of the amorphous germanium thin film transistor) It is generally within 1 cm 2 /Vs), so it cannot meet the needs of higher-profile displays that are currently visible in the future. Polycrystalline germanium thin film transistors benefit from the properties of polycrystalline germanium materials, and have a significant improvement in electron mobility (the electron mobility of polycrystalline germanium thin film transistors is generally optimal up to 100 cm 2 /Vs). However, due to the complicated process of the polycrystalline germanium film transistor (relatively costly improvement) and the crystallization process in the large-size panel application, the problem of poor uniformity of crystallinity exists, so the polycrystalline germanium thin film transistor is still applied to the small-sized panel. Mainly. The oxide semiconductor thin film transistor is a newly emerging oxide semiconductor material which has been widely used in recent years. Such a material is generally an amorphous structure, and is not applied to the problem of poor uniformity on a large-sized panel, and can be utilized. Film formation in a variety of ways, such as sputtering, spin-on, and inkjet printing. Therefore, the process is even more flexible than the amorphous germanium film transistor. The electron mobility of the oxide semiconductor thin film transistor is generally 10 times higher than that of the amorphous germanium thin film transistor (the electron mobility of the oxide semiconductor thin film transistor is generally between 10 cm 2 /Vs and 50 cm 2 /Vs). ), to the extent that the demand for future high-profile displays is currently available.

然而,於氧化物半導體薄膜電晶體的結構中,源極電極/汲極電極與氧化物半導體層間的接觸阻抗若過大,將使得此薄膜電晶體的效能降低且無法有效發揮其高電子遷移率的特性。故有必要降低氧化物半導體層與源極電極/汲極電極間的接觸阻抗,以使得氧化物半導體薄膜電晶體展現高電子遷移率的特性。However, in the structure of the oxide semiconductor thin film transistor, if the contact impedance between the source electrode/drain electrode and the oxide semiconductor layer is too large, the performance of the thin film transistor is lowered and the high electron mobility cannot be effectively exerted. characteristic. Therefore, it is necessary to reduce the contact resistance between the oxide semiconductor layer and the source/drain electrodes so that the oxide semiconductor thin film transistor exhibits characteristics of high electron mobility.

本發明之主要目的之一在於提供一種氧化物半導體薄膜電晶體及其製作方法,以降低氧化物半導體層與源極電極/汲極電極之間的接觸阻抗來提升電子遷移率。One of the main objects of the present invention is to provide an oxide semiconductor thin film transistor and a method of fabricating the same, which can reduce the contact resistance between the oxide semiconductor layer and the source/drain electrodes to improve electron mobility.

本發明之一較佳實施例提供一種氧化物半導體薄膜電晶體。上述氧化物半導體薄膜電晶體包括一基板、一閘極電極、一源極電極與一汲極電極、一閘極介電層、一圖案化氧化物半導體層、以及一圖案化含氫材料層。其中閘極電極、源極電極與汲極電極係設置於基板上,而源極電極與汲極電極分別具有一上表面與一側表面。閘極介電層係設置於閘極電極與源極電極/汲極電極之間。圖案化氧化物半導體層係設置於基板上,其中圖案化氧化物半導體層具有一通道區以及一非通道區,非通道區至少部分覆蓋源極電極之上表面與側表面以及至少部分覆蓋汲極電極之上表面與側表面,而通道區係位於源極電極與汲極電極之間的基板之上。圖案化含氫材料層係設置於圖案化氧化物半導體層上,其中圖案化含氫材料層至少覆蓋部分之圖案化氧化物半導體層之非通道區,且被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率小於未被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率。A preferred embodiment of the present invention provides an oxide semiconductor thin film transistor. The oxide semiconductor thin film transistor includes a substrate, a gate electrode, a source electrode and a drain electrode, a gate dielectric layer, a patterned oxide semiconductor layer, and a patterned hydrogen-containing material layer. The gate electrode, the source electrode and the drain electrode are disposed on the substrate, and the source electrode and the drain electrode respectively have an upper surface and a side surface. The gate dielectric layer is disposed between the gate electrode and the source electrode/drain electrode. The patterned oxide semiconductor layer is disposed on the substrate, wherein the patterned oxide semiconductor layer has a channel region and a non-channel region, the non-channel region at least partially covering the upper surface and the side surface of the source electrode and at least partially covering the drain The upper surface and the side surface of the electrode, and the channel region is located above the substrate between the source electrode and the drain electrode. The patterned hydrogen-containing material layer is disposed on the patterned oxide semiconductor layer, wherein the patterned hydrogen-containing material layer covers at least a portion of the non-channel region of the patterned oxide semiconductor layer, and is covered by the patterned hydrogen-containing material layer The resistivity of the patterned oxide semiconductor layer is less than the resistivity of the patterned oxide semiconductor layer not covered by the patterned hydrogen-containing material layer.

本發明之另一較佳實施例提供一種氧化物半導體薄膜電晶體之製作方法,包括下列步驟。首先,提供一基板。接著,於基板上形成一閘極電極。然後,於基板及閘極電極上形成一閘極介電層。隨後,於閘極介電層上形成一源極電極與一汲極電極,其中源極電極與汲極電極分別具有一上表面與一側表面。接下來,於源極電極、汲極電極與閘極介電層上形成一圖案化氧化物半導體層,其中圖案化氧化物半導體層具有一通道區以及一非通道區,非通道區至少部分覆蓋源極電極之一上表面與一側表面以及至少部分覆蓋汲極電極之一上表面與一側表面,而通道區係位於源極電極與汲極電極之間的閘極介電層上。再者,於該圖案化氧化物半導體層上形成一圖案化含氫材料層,其中圖案化含氫材料層至少覆蓋部分之圖案化氧化物半導體層之非通道區。然後,進行一退火製程,將圖案化含氫材料層之氫向下驅入至圖案化氧化物半導體層內,以使得被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率降低且小於未被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率。Another preferred embodiment of the present invention provides a method of fabricating an oxide semiconductor thin film transistor, comprising the following steps. First, a substrate is provided. Next, a gate electrode is formed on the substrate. Then, a gate dielectric layer is formed on the substrate and the gate electrode. Subsequently, a source electrode and a drain electrode are formed on the gate dielectric layer, wherein the source electrode and the drain electrode respectively have an upper surface and a side surface. Next, a patterned oxide semiconductor layer is formed on the source electrode, the drain electrode and the gate dielectric layer, wherein the patterned oxide semiconductor layer has a channel region and a non-channel region, and the non-channel region is at least partially covered One of the source electrode has an upper surface and a side surface and at least partially covers an upper surface and a side surface of the drain electrode, and the channel region is located on the gate dielectric layer between the source electrode and the drain electrode. Furthermore, a patterned hydrogen-containing material layer is formed on the patterned oxide semiconductor layer, wherein the patterned hydrogen-containing material layer covers at least a portion of the non-channel region of the patterned oxide semiconductor layer. Then, an annealing process is performed to drive the hydrogen of the patterned hydrogen-containing material layer into the patterned oxide semiconductor layer such that the resistivity of the patterned oxide semiconductor layer covered by the patterned hydrogen-containing material layer Reducing and less than the resistivity of the patterned oxide semiconductor layer not covered by the patterned hydrogen-containing material layer.

本發明利用於圖案化氧化物半導體層上部分覆蓋一圖案化含氫材料層,搭配一退火製程來降低被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率,進而達到降低氧化物半導體層與源極電極/汲極電極之間的接觸阻抗以提升其電子遷移率之目的。The invention utilizes a partially patterned hydrogen-containing material layer on the patterned oxide semiconductor layer, and an annealing process is used to reduce the resistivity of the patterned oxide semiconductor layer covered by the patterned hydrogen-containing material layer, thereby achieving a reduction The contact resistance between the oxide semiconductor layer and the source/drain electrodes improves the electron mobility thereof.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖。第1圖繪示了本發明一較佳實施例之氧化物半導體薄膜電晶體的示意圖。如第1圖所示,氧化物半導體薄膜電晶體20為一底部閘極薄膜電晶體(Bottom-Gate TFT)結構。氧化物半導體薄膜電晶體20包括一基板10、一閘極電極11、一源極電極13A與一汲極電極13B、一閘極介電層12、一圖案化氧化物半導體層14、以及一圖案化含氫材料層15。如第1圖所示,閘極電極11係設置於基板10上,閘極介電層12係設置於基板10及閘極電極11上,源極電極13A與汲極電極13B係設置於閘極介電層12之上,其中源極電極13A具有一上表面13A1與一側表面13A2,汲極電極13B具有一上表面13B1與一側表面13B2。圖案化氧化物半導體層14係設置於源極電極13A、汲極電極13B以及閘極介電層12之上,其中圖案化氧化物半導體層14具有一通道區14C以及一非通道區14D,非通道區14D至少部分覆蓋源極電極13A之上表面13A1與側表面13A2以及至少部分覆蓋汲極電極13B之上表面13B1與側表面13B2,而通道區14C係位於源極電極13A與汲極電極13B之間的閘極介電層12之上。圖案化含氫材料層15係設置於圖案化氧化物半導體層14上,且圖案化含氫材料層15至少覆蓋部分之圖案化氧化物半導體層14之非通道區14D。例如在本實施例中,圖案化含氫材料層15係全面性地覆蓋圖案化氧化物半導體層14之非通道區14D,然而並不以此為限,在本發明之其它實施例中,可視設計需要選擇性地使圖案化含氫材料層15僅局部性地覆蓋圖案化氧化物半導體層14之非通道區14D,或使圖案化含氫材料層15向外延伸而覆蓋於源極電極13A與汲極電極13B上。此外,在本發明中,被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為覆蓋區14A,而未被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為未覆蓋區14B。覆蓋區14A之電阻率小於未覆蓋區14B之電阻率。在本實施例中,圖案化氧化物半導體層14的材料包括氧化銦鎵鋅(InGaZnOx,IGZO)或氧化鋅(ZnOx),但並不以此為限而亦可為其它各類型之氧化物半導體材料。此外,圖案化氧化物半導體層14的較佳厚度值大體上係介於10奈米至60奈米之間,但並不以此為限。圖案化含氫材料層15的材料可包括含氫氮化矽、含氫氧化矽、含氫氮氧化矽或其它適合之材料,其主要的功用在於提供氫成分至所覆蓋之圖案化氧化物半導體層14,使被覆蓋之圖案化氧化物半導體層14的電阻率下降,進而達到降低圖案化氧化物半導體層14與源極電極13A/汲極電極13B之間接觸阻抗的效果。值得注意的是,在本實施例中,圖案化含氫材料層15可更覆蓋部分之圖案化氧化物半導體層14之通道區14C,並暴露出部分之圖案化氧化物半導體層14之通道區14C,以確保有效降低圖案化氧化物半導體層14與源極電極13A/汲極電極13B之間的接觸阻抗。而於本發明之其他實施例中,圖案化含氫材料層15亦可依設計需求選擇性地不覆蓋圖案化氧化物半導體層14之通道區14C。Please refer to Figure 1. FIG. 1 is a schematic view showing an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention. As shown in Fig. 1, the oxide semiconductor thin film transistor 20 is a bottom gate-gate film (Bottom-Gate TFT) structure. The oxide semiconductor thin film transistor 20 includes a substrate 10, a gate electrode 11, a source electrode 13A and a drain electrode 13B, a gate dielectric layer 12, a patterned oxide semiconductor layer 14, and a pattern. The hydrogen containing material layer 15 is formed. As shown in FIG. 1, the gate electrode 11 is disposed on the substrate 10, the gate dielectric layer 12 is disposed on the substrate 10 and the gate electrode 11, and the source electrode 13A and the drain electrode 13B are disposed on the gate. Above the dielectric layer 12, the source electrode 13A has an upper surface 13A1 and a side surface 13A2, and the drain electrode 13B has an upper surface 13B1 and a side surface 13B2. The patterned oxide semiconductor layer 14 is disposed on the source electrode 13A, the drain electrode 13B, and the gate dielectric layer 12, wherein the patterned oxide semiconductor layer 14 has a channel region 14C and a non-channel region 14D, The channel region 14D at least partially covers the upper surface 13A1 and the side surface 13A2 of the source electrode 13A and at least partially covers the upper surface 13B1 and the side surface 13B2 of the drain electrode 13B, and the channel region 14C is located at the source electrode 13A and the drain electrode 13B. Between the gate dielectric layer 12 is between. The patterned hydrogen-containing material layer 15 is disposed on the patterned oxide semiconductor layer 14, and the patterned hydrogen-containing material layer 15 covers at least a portion of the non-channel region 14D of the patterned oxide semiconductor layer 14. For example, in the present embodiment, the patterned hydrogen-containing material layer 15 covers the non-channel region 14D of the patterned oxide semiconductor layer 14 in a comprehensive manner, but is not limited thereto. In other embodiments of the present invention, it is visible. The design needs to selectively cause the patterned hydrogen-containing material layer 15 to only partially cover the non-channel region 14D of the patterned oxide semiconductor layer 14, or to extend the patterned hydrogen-containing material layer 15 to cover the source electrode 13A. With the drain electrode 13B. Further, in the present invention, a portion of the patterned oxide semiconductor layer 14 covered by the patterned hydrogen-containing material layer 15 is defined as a blanket region 14A without patterning oxidation covered by the patterned hydrogen-containing material layer 15. A portion of the semiconductor layer 14 is defined as an uncovered region 14B. The resistivity of the footprint 14A is less than the resistivity of the uncovered region 14B. In this embodiment, the material of the patterned oxide semiconductor layer 14 includes indium gallium zinc oxide (InGaZnOx, IGZO) or zinc oxide (ZnOx), but not limited thereto, and may be other types of oxide semiconductors. material. In addition, the preferred thickness of the patterned oxide semiconductor layer 14 is generally between 10 nm and 60 nm, but is not limited thereto. The material of the patterned hydrogen-containing material layer 15 may include cerium hydroxide-containing cerium, cerium hydroxide-containing, cerium oxyhydroxide or other suitable material, and its main function is to provide a hydrogen component to the patterned oxide semiconductor to be covered. The layer 14 lowers the resistivity of the covered patterned oxide semiconductor layer 14 and further reduces the contact resistance between the patterned oxide semiconductor layer 14 and the source electrode 13A/drain electrode 13B. It should be noted that in the present embodiment, the patterned hydrogen-containing material layer 15 may cover a portion of the channel region 14C of the patterned oxide semiconductor layer 14 and expose a portion of the channel region of the patterned oxide semiconductor layer 14. 14C to ensure effective reduction of the contact resistance between the patterned oxide semiconductor layer 14 and the source electrode 13A/drain electrode 13B. In other embodiments of the present invention, the patterned hydrogen-containing material layer 15 may also selectively cover the channel region 14C of the patterned oxide semiconductor layer 14 according to design requirements.

請參考第2圖。第2圖繪示了本發明另一較佳實施例之氧化物半導體薄膜電晶體21的示意圖。在此實施例中,氧化物半導體薄膜電晶體21的各元件及材料特質與上述氧化物半導體薄膜電晶體20相同,為簡化說明,各元件以相同標號進行標示。如第2圖所示,氧化物半導體薄膜電晶體21為一頂部閘極薄膜電晶體(Top-Gate TFT)結構。源極電極13A與汲極電極13B係設置於基板10上,其中源極電極13A具有一上表面13A1與一側表面13A2,汲極電極13B具有一上表面13B1與一側表面13B2。圖案化氧化物半導體層14係設置於源極電極13A、汲極電極13B以及基板10之上,其中圖案化氧化物半導體層14具有一通道區14C以及一非通道區14D,非通道區14D至少部分覆蓋源極電極13A之上表面13A1與側表面13A2以及至少部分覆蓋汲極電極13B之上表面13B1與側表面13B2,而通道區14C係位於源極電極13A與汲極電極13B之間的基板10之上。圖案化含氫材料層15係設置於圖案化氧化物半導體層14上,其中圖案化含氫材料層15至少覆蓋部分之圖案化氧化物半導體層14之非通道區14D。例如在本實施例中,圖案化含氫材料層15係全面性地覆蓋圖案化氧化物半導體層14之非通道區14D,但本發明並不以此為限。而被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為覆蓋區14A,未被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為未覆蓋區14B,且覆蓋區14A之電阻率小於未覆蓋區14B之電阻率。如第2圖所示,閘極介電層12係覆蓋於基板10、源極電極13A、汲極電極13B、圖案化氧化物半導體層14、以及圖案化含氫材料層15之上,而閘極電極11係設置於閘極介電層12之上。本實施例中各元件材料特質與前一較佳實施例中的氧化物半導體薄膜電晶體相同,在此不再贅述。Please refer to Figure 2. FIG. 2 is a schematic view showing an oxide semiconductor thin film transistor 21 according to another preferred embodiment of the present invention. In this embodiment, the respective elements and material characteristics of the oxide semiconductor thin film transistor 21 are the same as those of the above-described oxide semiconductor thin film transistor 20. For simplification of description, the respective elements are denoted by the same reference numerals. As shown in Fig. 2, the oxide semiconductor thin film transistor 21 is a top-gate TFT structure. The source electrode 13A and the drain electrode 13B are disposed on the substrate 10, wherein the source electrode 13A has an upper surface 13A1 and a side surface 13A2, and the drain electrode 13B has an upper surface 13B1 and a side surface 13B2. The patterned oxide semiconductor layer 14 is disposed on the source electrode 13A, the drain electrode 13B, and the substrate 10. The patterned oxide semiconductor layer 14 has a channel region 14C and a non-channel region 14D, and the non-channel region 14D is at least Partially covering the upper surface 13A1 and the side surface 13A2 of the source electrode 13A and at least partially covering the upper surface 13B1 and the side surface 13B2 of the drain electrode 13B, and the channel region 14C is located between the source electrode 13A and the drain electrode 13B. Above 10. The patterned hydrogen-containing material layer 15 is disposed on the patterned oxide semiconductor layer 14, wherein the patterned hydrogen-containing material layer 15 covers at least a portion of the non-channel region 14D of the patterned oxide semiconductor layer 14. For example, in the present embodiment, the patterned hydrogen-containing material layer 15 covers the non-channel region 14D of the patterned oxide semiconductor layer 14 in a comprehensive manner, but the invention is not limited thereto. The portion of the patterned oxide semiconductor layer 14 covered by the patterned hydrogen-containing material layer 15 is defined as a footprint 14A, and a portion of the patterned oxide semiconductor layer 14 that is not covered by the patterned hydrogen-containing material layer 15 is defined. It is defined as an uncovered area 14B, and the resistivity of the covered area 14A is smaller than the resistivity of the uncovered area 14B. As shown in FIG. 2, the gate dielectric layer 12 covers the substrate 10, the source electrode 13A, the drain electrode 13B, the patterned oxide semiconductor layer 14, and the patterned hydrogen-containing material layer 15, and the gate The electrode 11 is disposed on the gate dielectric layer 12. The material characteristics of the respective elements in this embodiment are the same as those of the oxide semiconductor thin film transistor in the previous preferred embodiment, and will not be described herein.

請參考第3A圖至第3F圖。第3A圖至第3F圖繪示了本發明一較佳實施例之氧化物半導體薄膜電晶體的製作方法示意圖。首先,如第3A圖所示,提供一基板10。接著,於基板10上形成一閘極電極11。在本實施例中,基板10包括硬質基板例如玻璃基板(glass substrate)或可撓式基板(flexible substrate),但並不以此為限。然後,如第3B圖所示,於基板10及閘極電極11上形成一閘極介電層12,閘極介電層12之材料包括含氫氮化矽、含氫氧化矽、含氫氮氧化矽或其它適合之材料。接著,如第3C圖所示,於閘極介電層12上形成一源極電極13A與一汲極電極13B,其中源極電極13A具有一上表面13A1與一側表面13A2,汲極電極13B具有一上表面13B1與一側表面13B2。接下來,如第3D圖所示,於源極電極13A、汲極電極13B與閘極介電層12上形成一圖案化氧化物半導體層14,圖案化氧化物半導體層14具有一通道區14C以及一非通道區14D,其中非通道區14D至少部分覆蓋源極電極13A之一上表面13A1與一側表面13A2以及至少部分覆蓋汲極電極13B之一上表面13B1與一側表面13B2,且通道區14C係位於源極電極13A與汲極電極13B之間的閘極介電層12之上。然後,如第3E圖所示,於圖案化氧化物半導體層14上形成一圖案化含氫材料層15,其中圖案化含氫材料層15至少覆蓋部分之圖案化氧化物半導體層14之非通道區14D。例如在本實施例中,圖案化含氫材料層15係全面性地覆蓋圖案化氧化物半導體層14之非通道區14D,但本發明並不以此為限。最後,如第3F圖所示,進行一退火製程16。其中,被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為覆蓋區14A,未被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為未覆蓋區14B。退火製程16係用來將圖案化含氫材料層15之氫向下驅入至覆蓋區14A內,使得覆蓋區14A之電阻率小於未覆蓋區14B之電阻率,而形成如第1圖所示之氧化物半導體薄膜電晶體20。在本實施例中,退火製程16包括一準分子雷射退火(Excimer Laser Annealing,ELA)製程或高溫退火製程,但並不以此為限。此外,在本實施例中,圖案化氧化物半導體層14的材料包括氧化銦鎵鋅或氧化鋅,但並不以此為限而亦可為其它各類型之氧化物半導體材料。且圖案化氧化物半導體層14的較佳厚度值大體上係介於10奈米至60奈米之間。而圖案化含氫材料層15的材料包括含氫氮化矽、含氫氧化矽或含氫氮氧化矽。值得注意的是,在本實施例中,圖案化含氫材料層15可更覆蓋部分之圖案化氧化物半導體層14之通道區14C,並暴露出部分之圖案化氧化物半導體層14之通道區14C,以確保有效降低圖案化氧化物半導體層14與源極電極13A/汲極電極13B之間的接觸阻抗。Please refer to Figures 3A to 3F. 3A to 3F are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention. First, as shown in Fig. 3A, a substrate 10 is provided. Next, a gate electrode 11 is formed on the substrate 10. In the present embodiment, the substrate 10 includes a rigid substrate such as a glass substrate or a flexible substrate, but is not limited thereto. Then, as shown in FIG. 3B, a gate dielectric layer 12 is formed on the substrate 10 and the gate electrode 11. The material of the gate dielectric layer 12 includes barium hydrogen hydride, barium hydroxide, and hydrogen-containing nitrogen. Cerium oxide or other suitable material. Next, as shown in FIG. 3C, a source electrode 13A and a drain electrode 13B are formed on the gate dielectric layer 12, wherein the source electrode 13A has an upper surface 13A1 and a side surface 13A2, and a drain electrode 13B. There is an upper surface 13B1 and a side surface 13B2. Next, as shown in FIG. 3D, a patterned oxide semiconductor layer 14 is formed on the source electrode 13A, the drain electrode 13B, and the gate dielectric layer 12. The patterned oxide semiconductor layer 14 has a channel region 14C. And a non-channel region 14D, wherein the non-channel region 14D at least partially covers an upper surface 13A1 and a side surface 13A2 of the source electrode 13A and at least partially covers an upper surface 13B1 and a side surface 13B2 of the drain electrode 13B, and the channel The region 14C is located above the gate dielectric layer 12 between the source electrode 13A and the drain electrode 13B. Then, as shown in FIG. 3E, a patterned hydrogen-containing material layer 15 is formed on the patterned oxide semiconductor layer 14, wherein the patterned hydrogen-containing material layer 15 covers at least a portion of the non-channel of the patterned oxide semiconductor layer 14. Zone 14D. For example, in the present embodiment, the patterned hydrogen-containing material layer 15 covers the non-channel region 14D of the patterned oxide semiconductor layer 14 in a comprehensive manner, but the invention is not limited thereto. Finally, as shown in FIG. 3F, an annealing process 16 is performed. Wherein the portion of the patterned oxide semiconductor layer 14 covered by the patterned hydrogen-containing material layer 15 is defined as a footprint 14A, a portion of the patterned oxide semiconductor layer 14 not covered by the patterned hydrogen-containing material layer 15. It is defined as uncovered area 14B. The annealing process 16 is used to drive the hydrogen of the patterned hydrogen-containing material layer 15 downward into the footprint 14A such that the resistivity of the footprint 14A is less than the resistivity of the uncovered region 14B, as shown in FIG. The oxide semiconductor thin film transistor 20. In the present embodiment, the annealing process 16 includes an Excimer Laser Annealing (ELA) process or a high temperature annealing process, but is not limited thereto. In addition, in the present embodiment, the material of the patterned oxide semiconductor layer 14 includes indium gallium zinc oxide or zinc oxide, but not limited thereto may be other types of oxide semiconductor materials. The preferred thickness of the patterned oxide semiconductor layer 14 is generally between 10 nm and 60 nm. The material for patterning the hydrogen-containing material layer 15 includes barium hydrogen hydride containing, barium hydroxide or barium hydrogen hydride. It should be noted that in the present embodiment, the patterned hydrogen-containing material layer 15 may cover a portion of the channel region 14C of the patterned oxide semiconductor layer 14 and expose a portion of the channel region of the patterned oxide semiconductor layer 14. 14C to ensure effective reduction of the contact resistance between the patterned oxide semiconductor layer 14 and the source electrode 13A/drain electrode 13B.

請參考第4圖,並一併參考第3F圖。第4圖繪示了本發明一較佳實施例之準分子雷射退火製程之能量大小與圖案化氧化物半導體層14之厚度關係示意圖。第4圖中所描述對圖案化氧化物半導體層14的影響,主要指的是如第3F圖中所示在進行準分子雷射退火製程時,該準分子雷射退火製程對於未覆蓋區14B所造成之影響。如第4圖所示,其中橫座標標示出圖案化氧化物半導體層14之厚度,而縱座標則標示出該準分子雷射退火製程的能量大小。第4圖中的曲線代表未覆蓋區14B在不同厚度下,準分子雷射退火製程造成圖案化氧化物半導體層14由非晶相(amorphous)轉變為結晶相(crystal)之臨界能量值。換句話說,根據第4圖所示,於橫座標上選定一圖案化氧化物半導體層14之厚度值,垂直向上與該曲線相交於一點,則該點之縱座標值即為此圖案化氧化物半導體層14之厚度下,由非晶相轉變為結晶相之臨界能量值。當該準分子雷射退火製程所施加的能量值大於此臨界能量值時,將使原先呈現非晶相的圖案化氧化物半導體層14轉變為結晶相。在本發明中,需利用此準分子雷射退火製程提供相當之能量,將圖案化含氫材料層15之氫向下驅入至覆蓋區14A內,以使得覆蓋區14A之電阻率小於未覆蓋區14B之電阻率。但進行此準分子雷射退火製程時亦須同時考量控制該準分子雷射退火製程的能量不能過大到使得未覆蓋區14B由非晶相轉變為結晶相,而影響到此氧化物半導體薄膜電晶體的半導體特性。故在本實施例中,該準分子雷射退火製程的較佳能量範圍大體上係介於50mJ/cm2 至600mJ/cm2 之間,此較佳能量範圍係對照圖案化氧化物半導體層14的較佳厚度值大體上係介於10奈米至60奈米之間而定。Please refer to Figure 4 and refer to Figure 3F together. FIG. 4 is a schematic view showing the relationship between the energy level of the excimer laser annealing process and the thickness of the patterned oxide semiconductor layer 14 according to a preferred embodiment of the present invention. The effect on the patterned oxide semiconductor layer 14 described in FIG. 4 mainly refers to the excimer laser annealing process for the uncovered region 14B when performing the excimer laser annealing process as shown in FIG. 3F. The impact. As shown in FIG. 4, the abscissa indicates the thickness of the patterned oxide semiconductor layer 14, and the ordinate indicates the amount of energy of the excimer laser annealing process. The curve in Fig. 4 represents the critical energy value of the uncoated region 14B at different thicknesses, and the excimer laser annealing process causes the patterned oxide semiconductor layer 14 to change from an amorphous phase to a crystalline phase. In other words, according to Fig. 4, the thickness value of a patterned oxide semiconductor layer 14 is selected on the abscissa, and vertically intersects the curve at a point, and the ordinate value of the point is patterned oxidation for this purpose. At the thickness of the semiconductor layer 14, the amorphous phase is converted to the critical energy value of the crystalline phase. When the energy value applied by the excimer laser annealing process is greater than the critical energy value, the patterned oxide semiconductor layer 14 which originally exhibits an amorphous phase is converted into a crystalline phase. In the present invention, the excimer laser annealing process is required to provide a considerable amount of energy to drive the hydrogen of the patterned hydrogen-containing material layer 15 downward into the footprint 14A so that the resistivity of the footprint 14A is less than that of the uncovered layer. The resistivity of zone 14B. However, in the excimer laser annealing process, it is also necessary to simultaneously consider that the energy of the excimer laser annealing process should not be too large to convert the uncovered region 14B from an amorphous phase to a crystalline phase, thereby affecting the oxide semiconductor thin film. The semiconductor properties of the crystal. Therefore, in this embodiment, the preferred energy range of the excimer laser annealing process is substantially between 50 mJ/cm 2 and 600 mJ/cm 2 , and the preferred energy range is the control patterned oxide semiconductor layer 14 . The preferred thickness value is generally between 10 nm and 60 nm.

請參考第5A圖與第5B圖。第5A圖至第5B圖繪示了本發明另一較佳實施例之氧化物半導體薄膜電晶體的製作方法示意圖。首先,如第5A圖所示,提供一基板10。接著,於基板10上形成一源極電極13A與一汲極電極13B,其中源極電極13A具有一上表面13A1與一側表面13A2,汲極電極13B具有一上表面13B1與一側表面13B2。在本實施例中,基板10包括硬質基板例如玻璃基板或可撓式基板,但並不以此為限。然後,於源極電極13A、汲極電極13B與基板10上形成一圖案化氧化物半導體層14,圖案化氧化物半導體層14具有一通道區14C以及一非通道區14D,其中非通道區14D至少部分覆蓋源極電極13A之一上表面13A1與一側表面13A2以及至少部分覆蓋汲極電極13B之一上表面13B1與一側表面13B2,且通道區14C係位於源極電極13A與汲極電極13B之間的基板10上。然後,於圖案化氧化物半導體層14上形成一圖案化含氫材料層15,其中圖案化含氫材料層15至少覆蓋部分之圖案化氧化物半導體層14之非通道區14D。例如在本實施例中,圖案化含氫材料層15係全面性地覆蓋圖案化氧化物半導體層14之非通道區14D,但本發明並不以此為限。接著,如第5B圖所示,進行一退火製程16。其中,被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為覆蓋區14A,未被圖案化含氫材料層15所覆蓋之圖案化氧化物半導體層14的部分係定義為未覆蓋區14B。退火製程16係用來將圖案化含氫材料層15之氫向下驅入至覆蓋區14A內,以使得覆蓋區14A之電阻率小於未覆蓋區14B之電阻率。接著請參考第2圖,於退火製程16之後,如第2圖所示,於基板10、源極電極13A、汲極電極13B、圖案化氧化物半導體層14、以及圖案化含氫材料層15之上形成一閘極介電層12。閘極介電層12之材料可包括氮化矽、氧化矽、氮氧化矽或其它適合之材料。最後,於閘極介電層12上形成一閘極電極11以完成如第2圖所示之氧化物半導體薄膜電晶體21。Please refer to Figures 5A and 5B. 5A to 5B are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to another preferred embodiment of the present invention. First, as shown in Fig. 5A, a substrate 10 is provided. Next, a source electrode 13A and a drain electrode 13B are formed on the substrate 10. The source electrode 13A has an upper surface 13A1 and a side surface 13A2. The drain electrode 13B has an upper surface 13B1 and a side surface 13B2. In this embodiment, the substrate 10 includes a rigid substrate such as a glass substrate or a flexible substrate, but is not limited thereto. Then, a patterned oxide semiconductor layer 14 is formed on the source electrode 13A, the drain electrode 13B and the substrate 10. The patterned oxide semiconductor layer 14 has a channel region 14C and a non-channel region 14D, wherein the non-channel region 14D At least partially covering an upper surface 13A1 and a side surface 13A2 of the source electrode 13A and at least partially covering an upper surface 13B1 and a side surface 13B2 of the drain electrode 13B, and the channel region 14C is located at the source electrode 13A and the drain electrode On the substrate 10 between 13B. Then, a patterned hydrogen-containing material layer 15 is formed on the patterned oxide semiconductor layer 14, wherein the patterned hydrogen-containing material layer 15 covers at least a portion of the non-channel region 14D of the patterned oxide semiconductor layer 14. For example, in the present embodiment, the patterned hydrogen-containing material layer 15 covers the non-channel region 14D of the patterned oxide semiconductor layer 14 in a comprehensive manner, but the invention is not limited thereto. Next, as shown in FIG. 5B, an annealing process 16 is performed. Wherein the portion of the patterned oxide semiconductor layer 14 covered by the patterned hydrogen-containing material layer 15 is defined as a footprint 14A, a portion of the patterned oxide semiconductor layer 14 not covered by the patterned hydrogen-containing material layer 15. It is defined as uncovered area 14B. The annealing process 16 is used to drive the hydrogen of the patterned hydrogen-containing material layer 15 down into the footprint 14A such that the resistivity of the footprint 14A is less than the resistivity of the uncovered region 14B. Next, referring to FIG. 2, after the annealing process 16, as shown in FIG. 2, the substrate 10, the source electrode 13A, the drain electrode 13B, the patterned oxide semiconductor layer 14, and the patterned hydrogen-containing material layer 15 are formed. A gate dielectric layer 12 is formed thereon. The material of the gate dielectric layer 12 may include tantalum nitride, hafnium oxide, hafnium oxynitride or other suitable materials. Finally, a gate electrode 11 is formed on the gate dielectric layer 12 to complete the oxide semiconductor thin film transistor 21 as shown in FIG.

本發明利用於圖案化氧化物半導體層上部分覆蓋一圖案化含氫材料層,搭配一退火製程來降低被圖案化含氫材料層所覆蓋之圖案化氧化物半導體層之電阻率,同時控制其退火製程所施加的能量大小避免影響氧化物半導體層的半導體特性,進而達到降低氧化物半導體層與源極電極/汲極電極之間的接觸阻抗以提升其電子遷移率之目的。The invention utilizes a portion of the patterned oxide semiconductor layer covered with a patterned hydrogen-containing material layer, and an annealing process to reduce the resistivity of the patterned oxide semiconductor layer covered by the patterned hydrogen-containing material layer while controlling The amount of energy applied by the annealing process avoids affecting the semiconductor characteristics of the oxide semiconductor layer, thereby achieving the purpose of reducing the contact resistance between the oxide semiconductor layer and the source/drain electrodes to enhance their electron mobility.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...基板10. . . Substrate

11...閘極電極11. . . Gate electrode

12...閘極介電層12. . . Gate dielectric layer

13A...源極電極13A. . . Source electrode

13B...汲極電極13B. . . Bipolar electrode

13A1...上表面13A1. . . Upper surface

13A2...側表面13A2. . . Side surface

13B1...上表面13B1. . . Upper surface

13B2...側表面13B2. . . Side surface

14...圖案化氧化物半導體層14. . . Patterned oxide semiconductor layer

14A...覆蓋區14A. . . Coverage area

14B...未覆蓋區14B. . . Uncovered area

14C...通道區14C. . . Channel area

14D...非通道區14D. . . Non-channel area

15...圖案化含氫材料層15. . . Patterned hydrogen-containing material layer

16...退火製程16. . . Annealing process

20...氧化物半導體薄膜電晶體20. . . Oxide semiconductor thin film transistor

21...氧化物半導體薄膜電晶體twenty one. . . Oxide semiconductor thin film transistor

第1圖繪示了本發明一較佳實施例之氧化物半導體薄膜電晶體的示意圖。FIG. 1 is a schematic view showing an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention.

第2圖繪示了本發明另一較佳實施例之氧化物半導體薄膜電晶體的示意圖。2 is a schematic view showing an oxide semiconductor thin film transistor of another preferred embodiment of the present invention.

第3A圖至第3F圖繪示了本發明一較佳實施例之氧化物半導體薄膜電晶體的製作方法示意圖。3A to 3F are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a preferred embodiment of the present invention.

第4圖繪示了本發明一較佳實施例之準分子雷射退火製程能量與圖案化氧化物半導體層厚度關係示意圖。FIG. 4 is a schematic view showing the relationship between the energy of the excimer laser annealing process and the thickness of the patterned oxide semiconductor layer according to a preferred embodiment of the present invention.

第5A圖至第5B圖繪示了本發明另一較佳實施例之氧化物半導體薄膜電晶體的製作方法示意圖。5A to 5B are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to another preferred embodiment of the present invention.

10...基板10. . . Substrate

11...閘極電極11. . . Gate electrode

12...閘極介電層12. . . Gate dielectric layer

13A...源極電極13A. . . Source electrode

13B...汲極電極13B. . . Bipolar electrode

13A1...上表面13A1. . . Upper surface

13A2...側表面13A2. . . Side surface

13B1...上表面13B1. . . Upper surface

13B2...側表面13B2. . . Side surface

14...圖案化氧化物半導體層14. . . Patterned oxide semiconductor layer

14A...覆蓋區14A. . . Coverage area

14B...未覆蓋區14B. . . Uncovered area

14C...通道區14C. . . Channel area

14D...非通道區14D. . . Non-channel area

15...圖案化含氫材料層15. . . Patterned hydrogen-containing material layer

16...退火製程16. . . Annealing process

Claims (12)

一種氧化物半導體薄膜電晶體,包括:一基板;一閘極電極,設置於該基板上;一源極電極與一汲極電極,設置於該基板上,其中該源極電極與該汲極電極分別具有一上表面與一側表面;一閘極介電層,設置於該閘極電極與該源極電極/汲極電極之間;一圖案化氧化物半導體層,設置於該基板上,其中該圖案化氧化物半導體層具有一通道區以及一非通道區,該非通道區至少部分覆蓋該源極電極之該上表面與該側表面以及至少部分覆蓋該汲極電極之該上表面與該側表面,該通道區係位於該源極電極與該汲極電極之間的該基板之上;以及一圖案化含氫材料層,設置於該圖案化氧化物半導體層上,其中該圖案化含氫材料層至少覆蓋部分之該圖案化氧化物半導體層之該非通道區,且被該圖案化含氫材料層所覆蓋之該圖案化氧化物半導體層之電阻率小於未被該圖案化含氫材料層所覆蓋之該圖案化氧化物半導體層之電阻率,其中該圖案化含氫材料層更覆蓋部分之該圖案化氧化物半導體層之該通道區,並暴露出部分之該圖案化氧化物半導體層之該通道區。 An oxide semiconductor thin film transistor includes: a substrate; a gate electrode disposed on the substrate; a source electrode and a drain electrode disposed on the substrate, wherein the source electrode and the drain electrode Each has an upper surface and a side surface; a gate dielectric layer disposed between the gate electrode and the source/drain electrode; a patterned oxide semiconductor layer disposed on the substrate, wherein The patterned oxide semiconductor layer has a channel region and a non-channel region, the non-channel region at least partially covering the upper surface and the side surface of the source electrode and at least partially covering the upper surface and the side of the gate electrode a surface of the substrate between the source electrode and the gate electrode; and a patterned hydrogen-containing material layer disposed on the patterned oxide semiconductor layer, wherein the patterned hydrogen-containing layer The material layer covers at least a portion of the non-channel region of the patterned oxide semiconductor layer, and the resistivity of the patterned oxide semiconductor layer covered by the patterned hydrogen-containing material layer is less than And patterning the resistivity of the patterned oxide semiconductor layer covered by the hydrogen-containing material layer, wherein the patterned hydrogen-containing material layer further covers a portion of the channel region of the patterned oxide semiconductor layer, and exposing a portion thereof The channel region of the patterned oxide semiconductor layer. 如請求項第1項所述之氧化物半導體薄膜電晶體,其中該源極電極與該汲極電極係設置於該基板上,該閘極介電層係設置於該源 極電極與該汲極電極上,且該閘極電極係設置於該閘極介電層上。 The oxide semiconductor thin film transistor according to claim 1, wherein the source electrode and the drain electrode are disposed on the substrate, and the gate dielectric layer is disposed on the source The pole electrode and the drain electrode are disposed on the gate dielectric layer. 如請求項第1項所述之氧化物半導體薄膜電晶體,其中該閘極電極係設置於該基板上,該閘極介電層係設置於該閘極電極上,且該源極電極與該汲極電極係設置於該閘極介電層上。 The oxide semiconductor thin film transistor according to claim 1, wherein the gate electrode is disposed on the substrate, the gate dielectric layer is disposed on the gate electrode, and the source electrode is A drain electrode is disposed on the gate dielectric layer. 如請求項第1項所述之氧化物半導體薄膜電晶體,其中該圖案化氧化物半導體層之材料包括氧化銦鎵鋅(InGaZnOx,IGZO)或氧化鋅(ZnOx)。 The oxide semiconductor thin film transistor according to claim 1, wherein the material of the patterned oxide semiconductor layer comprises indium gallium zinc oxide (InGaZnOx, IGZO) or zinc oxide (ZnOx). 如請求項第4項所述之氧化物半導體薄膜電晶體,其中該圖案化氧化物半導體層之厚度大體上係介於10奈米至60奈米之間。 The oxide semiconductor thin film transistor according to claim 4, wherein the patterned oxide semiconductor layer has a thickness substantially between 10 nm and 60 nm. 如請求項第1項所述之氧化物半導體薄膜電晶體,其中該圖案化含氫材料層之材料包括含氫氮化矽、含氫氧化矽或含氫氮氧化矽。 The oxide semiconductor thin film transistor according to claim 1, wherein the material of the patterned hydrogen-containing material layer comprises cesium hydrogen hydride hydride, cesium hydroxide or bismuth oxyhydroxide. 一種製作氧化物半導體薄膜電晶體之方法,包括:提供一基板;於該基板上形成一閘極電極;於該基板及該閘極電極上形成一閘極介電層;於該閘極介電層上形成一源極電極與一汲極電極,其中該源極電 極與該汲極電極分別具有一上表面與一側表面;於該源極電極、該汲極電極與該閘極介電層上形成一圖案化氧化物半導體層,其中該圖案化氧化物半導體層具有一通道區以及一非通道區,該非通道區至少部分覆蓋該源極電極之一上表面與一側表面以及至少部分覆蓋該汲極電極之一上表面與一側表面,該通道區係位於該源極電極與該汲極電極之間的該閘極介電層上;於該圖案化氧化物半導體層上形成一圖案化含氫材料層,其中該圖案化含氫材料層至少覆蓋部分之該圖案化氧化物半導體層之該非通道區,該圖案化含氫材料層更覆蓋部分之該圖案化氧化物半導體層之該通道區,並暴露出部分之該圖案化氧化物半導體層之該通道區;以及進行一退火製程,將該圖案化含氫材料層之氫向下驅入至該圖案化氧化物半導體層內,以使得被該圖案化含氫材料層所覆蓋之該圖案化氧化物半導體層之電阻率小於未被該圖案化含氫材料層所覆蓋之該圖案化氧化物半導體層之電阻率。 A method for fabricating an oxide semiconductor thin film transistor, comprising: providing a substrate; forming a gate electrode on the substrate; forming a gate dielectric layer on the substrate and the gate electrode; and dielectrically blocking the gate Forming a source electrode and a drain electrode on the layer, wherein the source is electrically The pole and the drain electrode respectively have an upper surface and a side surface; and a patterned oxide semiconductor layer is formed on the source electrode, the drain electrode and the gate dielectric layer, wherein the patterned oxide semiconductor The layer has a channel region and a non-channel region, the non-channel region at least partially covering an upper surface and a side surface of the source electrode and at least partially covering an upper surface and a side surface of the gate electrode, the channel region a gate dielectric layer between the source electrode and the drain electrode; forming a patterned hydrogen-containing material layer on the patterned oxide semiconductor layer, wherein the patterned hydrogen-containing material layer covers at least a portion The non-channel region of the patterned oxide semiconductor layer, the patterned hydrogen-containing material layer further covering a portion of the channel region of the patterned oxide semiconductor layer, and exposing a portion of the patterned oxide semiconductor layer a channel region; and performing an annealing process to drive hydrogen of the patterned hydrogen-containing material layer into the patterned oxide semiconductor layer to be covered by the patterned hydrogen-containing material layer The resistivity of the patterned oxide semiconductor layer is not smaller than the resistivity of the semiconductor layer of the patterned oxide covered by the patterned layer of hydrogen-containing material. 如請求項第7項所述之製作氧化物半導體薄膜電晶體之方法,其中該退火製程包括一準分子雷射退火(Excimer Laser Annealing,ELA)製程。 The method of fabricating an oxide semiconductor thin film transistor according to claim 7, wherein the annealing process comprises an Excimer Laser Annealing (ELA) process. 如請求項第8項所述之製作氧化物半導體薄膜電晶體之方法,其中該準分子雷射退火製程的能量大體上係介於50mJ/cm2 至 600mJ/cm2 之間。The method of producing an oxide semiconductor thin film transistor according to claim 8, wherein the energy of the excimer laser annealing process is substantially between 50 mJ/cm 2 and 600 mJ/cm 2 . 如請求項第7項所述之製作氧化物半導體薄膜電晶體之方法,其中該圖案化氧化物半導體層之材料包括氧化銦鎵鋅(InGaZnOx,IGZO)或氧化鋅(ZnOx)。 The method for producing an oxide semiconductor thin film transistor according to claim 7, wherein the material of the patterned oxide semiconductor layer comprises indium gallium zinc oxide (InGaZnOx, IGZO) or zinc oxide (ZnOx). 如請求項第10項所述之氧化物半導體薄膜電晶體,其中該圖案化氧化物半導體層之厚度大體上係介於10奈米至60奈米之間。 The oxide semiconductor thin film transistor according to claim 10, wherein the patterned oxide semiconductor layer has a thickness substantially between 10 nm and 60 nm. 如請求項第7項所述之製作氧化物半導體薄膜電晶體之方法,其中該圖案化含氫材料層之材料包括含氫氮化矽、含氫氧化矽或含氫氮氧化矽。 The method for producing an oxide semiconductor thin film transistor according to claim 7, wherein the material for patterning the hydrogen-containing material layer comprises cesium hydrogen hydride hydride, cesium hydroxide or bismuth oxyhydroxide.
TW99142992A 2010-12-09 2010-12-09 Oxide semiconductor thin film transistor and manufacturing method thereof TWI423449B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99142992A TWI423449B (en) 2010-12-09 2010-12-09 Oxide semiconductor thin film transistor and manufacturing method thereof
CN 201110009601 CN102122672A (en) 2010-12-09 2011-01-12 Oxide semiconductor thin film transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99142992A TWI423449B (en) 2010-12-09 2010-12-09 Oxide semiconductor thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201225301A TW201225301A (en) 2012-06-16
TWI423449B true TWI423449B (en) 2014-01-11

Family

ID=44251183

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99142992A TWI423449B (en) 2010-12-09 2010-12-09 Oxide semiconductor thin film transistor and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN102122672A (en)
TW (1) TWI423449B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY167301A (en) 2012-01-31 2018-08-16 Sharp Kk Semiconductor device and method for producing same
CN102738243B (en) * 2012-06-06 2016-07-06 北京京东方光电科技有限公司 Transistor, array base palte and manufacture method, liquid crystal panel and display device
CN103187423B (en) * 2013-02-04 2016-03-23 合肥京东方光电科技有限公司 A kind of oxide film transistor array substrate and preparation method thereof, display floater
WO2015076334A1 (en) * 2013-11-21 2015-05-28 株式会社ニコン Transistor manufacturing method and transistor
CN107706242B (en) * 2016-08-09 2021-03-12 元太科技工业股份有限公司 Transistor and method of manufacturing the same
CN107248516B (en) * 2017-07-21 2020-04-03 上海天马微电子有限公司 Array substrate, manufacturing method of array substrate, display panel and display device
TWI651765B (en) * 2018-03-29 2019-02-21 友達光電股份有限公司 Method for producing crystalline metal oxide layer, method for manufacturing active device substrate, and active device substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001710A (en) * 2008-01-23 2010-01-01 Canon Kk Thin film transistor and method of producing same
TW201005950A (en) * 2008-05-07 2010-02-01 Canon Kk Thin film transistor and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110803B2 (en) * 2006-03-17 2012-12-26 キヤノン株式会社 FIELD EFFECT TRANSISTOR USING OXIDE FILM FOR CHANNEL AND METHOD FOR MANUFACTURING THE SAME
EP2202802B1 (en) * 2008-12-24 2012-09-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201001710A (en) * 2008-01-23 2010-01-01 Canon Kk Thin film transistor and method of producing same
TW201005950A (en) * 2008-05-07 2010-02-01 Canon Kk Thin film transistor and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hsiao-Wen Zan et al., "Irradiation on Amorphous IGZO Thin-Film Transistors Low Temperature Annealing with Solid-State Laser or UV Lamp", Electrochemical and Solid-State Letters, Vol. 13, No. 5, pp. H144-H146, 2010. *

Also Published As

Publication number Publication date
CN102122672A (en) 2011-07-13
TW201225301A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP7039742B2 (en) Transistor
TWI423449B (en) Oxide semiconductor thin film transistor and manufacturing method thereof
JP6651048B1 (en) Display device
TWI437339B (en) Liquid crystal display device and electronic device provided with the same
US20120282734A1 (en) Oxide thin film transistor and method of manufacturing the same
US9559159B2 (en) Low-temperature polysilicon membrane and preparation method thereof, thin-film transistor and display device
JP2009260002A (en) Semiconductor device, and method for manufacturing the same
WO2018214771A1 (en) Oled array substrate, preparation method therefor, and oled display device
WO2013001676A1 (en) Thin film transistor device and method for producing thin film transistor device
US9887213B2 (en) Method for manufacturing thin film transistor and related active layer for thin film transistor, thin film transistor, array substrate, and display apparatus
TW201029174A (en) System for displaying images and fabrication method thereof
US8299471B2 (en) Organic electroluminescent device and fabrication method thereof
US20210343543A1 (en) Manufacturing method of thin film transistor
JP2011119451A (en) Thin-film transistor and method of manufacturing the same
US8026535B2 (en) Thin film transistor and organic electroluminescence display using the same
US20120231588A1 (en) Manufacturing method of thin film transistor
Lin et al. P‐1.7: High Performance 12.7 inch 3K* 2K DEMUX TDDI TPC LCD Fabricated by TGSA bilayer Oxide TFT Technology

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees