TWI423237B - Driving method of lcd panel - Google Patents

Driving method of lcd panel Download PDF

Info

Publication number
TWI423237B
TWI423237B TW99113471A TW99113471A TWI423237B TW I423237 B TWI423237 B TW I423237B TW 99113471 A TW99113471 A TW 99113471A TW 99113471 A TW99113471 A TW 99113471A TW I423237 B TWI423237 B TW I423237B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
voltage
gamma
image
crystal display
Prior art date
Application number
TW99113471A
Other languages
Chinese (zh)
Other versions
TW201137836A (en
Inventor
Ming Chia Shih
Fu Chi Yang
Chien Cheng Liu
Original Assignee
Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Corp filed Critical Innolux Corp
Priority to TW99113471A priority Critical patent/TWI423237B/en
Publication of TW201137836A publication Critical patent/TW201137836A/en
Application granted granted Critical
Publication of TWI423237B publication Critical patent/TWI423237B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Description

液晶顯示面板的驅動方法 Driving method of liquid crystal display panel

本發明是有關於一種驅動方法,且特別是有關於一種液晶顯示面板的驅動方法。 The present invention relates to a driving method, and in particular to a driving method of a liquid crystal display panel.

隨著現代視訊技術的進步,液晶顯示裝置已被大量地使用於手機(mobile phone)、筆記型電腦(notebook)、個人電腦(personal computer,NC)及個人數位助理(personal digital assistant,NDA)等消費性電子產品的顯示螢幕上。然而,由於液晶顯示裝置之液晶顯示面板本身並不具有發光的功能,因此需要配置背光模組以提供液晶顯示面板所需要之光源,進而使液晶顯示面板達到顯示的效果。目前市場上的背光模組的光源有平面螢光燈、冷陰極螢光燈管(Cold Cathode Fluorescent Lamp,CCFL)及發光二極體(Light Emitting Diode,LED)等等。 With the advancement of modern video technology, liquid crystal display devices have been widely used in mobile phones, notebooks, personal computers (NCs), personal digital assistants (NDAs), etc. The display of consumer electronics is on the screen. However, since the liquid crystal display panel of the liquid crystal display device itself does not have the function of emitting light, it is necessary to configure the backlight module to provide a light source required for the liquid crystal display panel, thereby enabling the liquid crystal display panel to achieve the display effect. The backlights of the backlight modules on the market currently include flat fluorescent lamps, Cold Cathode Fluorescent Lamps (CCFLs), and Light Emitting Diodes (LEDs).

一般而言,背光模組在運作時光源會產生熱能,以致於光源周遭的溫度會升高。液晶顯示面板通常貼近背光模組,並且由於液晶的特性會感受到光源周遭溫度的升高而改變,以致於液晶顯示面板的顯示效果會改變。以直下式的背光模組而言,背光模組的光源會平均分佈於液晶顯示面板後方,因此液晶顯示面板上的液晶會因為感受到光源周遭溫度的上升而同步改變,以致於液晶顯示面板的顯示效果的改變並不會造成明顯誤差而影響觀看的效果。 In general, when the backlight module is in operation, the light source generates heat energy, so that the temperature around the light source increases. The liquid crystal display panel is usually close to the backlight module, and changes in the temperature of the liquid crystal due to the characteristics of the liquid crystal, so that the display effect of the liquid crystal display panel changes. In the case of a direct-lit backlight module, the light source of the backlight module is evenly distributed behind the liquid crystal display panel. Therefore, the liquid crystal on the liquid crystal display panel is synchronously changed due to the temperature rise of the light source, so that the liquid crystal display panel is The change in display effect does not cause significant errors and affects the viewing effect.

以側邊入光式的背光模組而言,背光光源通常會配置於液晶顯示面板的一側或兩側,並且液晶會因為與背光光源距離的遠近,而所感受到溫度變化的大小不同,亦即液晶顯示效果的改變會因與背光光源的距離不同而有所差異。因此,側邊入光式的背光模組在運作時,會導致液晶顯示面板的顯示效果不均勻。尤其在液晶顯示面板顯示暗態畫面(如全黑畫面)時,會使得靠近背光光源的液晶的亮度會不同於液晶顯示面板中其他部分液晶所顯示的亮度。 In the case of a side-lit backlight module, the backlight source is usually disposed on one side or both sides of the liquid crystal display panel, and the liquid crystal may be different in temperature and temperature due to the distance from the backlight source. That is, the change in the liquid crystal display effect varies depending on the distance from the backlight source. Therefore, when the side-lit backlight module is in operation, the display effect of the liquid crystal display panel is not uniform. Especially when the liquid crystal display panel displays a dark state picture (such as a full black picture), the brightness of the liquid crystal close to the backlight source may be different from the brightness displayed by other parts of the liquid crystal display panel.

本發明提供一種驅動方法,可以在液晶顯示面板的液晶因溫度變化而改變特性時,依據液晶的特性變化程度的不同決定每一影像灰階值的畫素電壓,並據此提升面板的面內均勻度。 The present invention provides a driving method for determining the pixel voltage of each image grayscale value according to the degree of change in the characteristics of the liquid crystal when the liquid crystal of the liquid crystal display panel changes characteristics due to temperature changes, and thereby improving the in-plane of the panel. Evenness.

本發明提出一種驅動方法,適用於液晶顯示裝置,此驅動方法包括下列步驟。接收畫面資料。依據畫面資料取得對應目標畫素的影像灰階值,其中目標畫素為液晶顯示裝置的液晶顯示面板的多個畫素的其中之一。依據目標畫素的當下溫度決定影像灰階值所對應的畫素電壓。將影像灰階值所對應的畫素電壓寫入目標畫素。 The present invention provides a driving method suitable for a liquid crystal display device, and the driving method includes the following steps. Receive picture data. Obtaining an image grayscale value corresponding to the target pixel according to the screen data, wherein the target pixel is one of a plurality of pixels of the liquid crystal display panel of the liquid crystal display device. The pixel voltage corresponding to the gray scale value of the image is determined according to the current temperature of the target pixel. Write the pixel voltage corresponding to the image grayscale value to the target pixel.

在本發明之一實施例中,上述之目標畫素的當下溫度決定於目標畫素與液晶顯示裝置的背光模組的發光元件間的最短距離。 In an embodiment of the invention, the current temperature of the target pixel is determined by the shortest distance between the target pixel and the light-emitting elements of the backlight module of the liquid crystal display device.

在本發明之一實施例中,當影像灰階值小於等於灰階臨界值時,影像灰階值於不同當下溫度的目標畫素中對應不同的畫素電壓。當影像灰階值大於灰階臨界值時,影像灰階值於不同當下溫度的目標畫素中對應相同的畫素電壓。 In an embodiment of the invention, when the grayscale value of the image is less than or equal to the grayscale threshold, the grayscale value of the image corresponds to different pixel voltages in the target pixel of different current temperatures. When the image grayscale value is greater than the grayscale threshold, the image grayscale value corresponds to the same pixel voltage in the target pixel of different current temperatures.

在本發明之一實施例中,上述之依據目標畫素的當下溫度決定影像灰階值所對應的畫素電壓的步驟包括:當目標畫素的當下溫度為第一溫度時,依據第一對照表取得對應影像灰階值的第一色彩灰階值,影像灰階值以第一色彩灰階值所對應的電壓作為其對應的畫素電壓;當目標畫素的當下溫度為第二溫度時,依據第二對照表取得對應影像灰階值的第二色彩灰階值,影像灰階值以第二色彩灰階值所對應的電壓作為其對應的畫素電壓。 In an embodiment of the present invention, the step of determining the pixel voltage corresponding to the grayscale value of the image according to the current temperature of the target pixel includes: when the current temperature of the target pixel is the first temperature, according to the first comparison The table obtains a first color grayscale value corresponding to the grayscale value of the image, and the grayscale value of the image is the voltage corresponding to the grayscale value of the first color as the corresponding pixel voltage; when the current temperature of the target pixel is the second temperature And obtaining, according to the second comparison table, a second color grayscale value corresponding to the grayscale value of the image, and the image grayscale value is a voltage corresponding to the second color grayscale value as its corresponding pixel voltage.

在本發明之一實施例中,上述之依據目標畫素的當下溫度決定影像灰階值所對應的畫素電壓的步驟更包括:當目標畫素的當下溫度介於第一溫度及第二溫度時,影像灰階值以第一色彩灰階值及第二色彩灰階值進行內插運算以取得一第三色彩灰階值,並以第三色彩灰階值所對應的電壓作為其對應的畫素電壓。 In an embodiment of the present invention, the step of determining a pixel voltage corresponding to the gray level value of the image according to the current temperature of the target pixel further includes: when the current temperature of the target pixel is between the first temperature and the second temperature The image grayscale value is interpolated by the first color grayscale value and the second color grayscale value to obtain a third color grayscale value, and the voltage corresponding to the third color grayscale value is used as the corresponding Pixel voltage.

在本發明之一實施例中,當影像灰階值小於等於灰階臨界值時,第一色彩灰階值不同於第二色彩灰階值;當影像灰階值大於灰階臨界值時,第一色彩灰階值相同於第二色彩灰階值。 In an embodiment of the present invention, when the grayscale value of the image is less than or equal to the grayscale threshold, the first color grayscale value is different from the second color grayscale value; when the grayscale value of the image is greater than the grayscale critical value, A color grayscale value is the same as the second color grayscale value.

在本發明之一實施例中,上述之依據目標畫素的當下 溫度決定影像灰階值所對應的畫素電壓的步驟包括:當目標畫素的當下溫度為第一溫度時,提供多個第一伽瑪電壓,並且選擇這些伽瑪電壓的其中之一作為影像灰階值對應的畫素電壓;當目標畫素的當下溫度為第二溫度時,提供多個第二伽瑪電壓,並且選擇這些第二伽瑪電壓的其中之一作為影像灰階值對應的畫素電壓。 In an embodiment of the invention, the above is based on the current pixel of the target The step of determining the pixel voltage corresponding to the grayscale value of the image includes: providing a plurality of first gamma voltages when the current temperature of the target pixel is the first temperature, and selecting one of the gamma voltages as the image a pixel voltage corresponding to the grayscale value; when the current temperature of the target pixel is the second temperature, providing a plurality of second gamma voltages, and selecting one of the second gamma voltages as the image grayscale value corresponding to Pixel voltage.

在本發明之一實施例中,上述之提供這些第一伽瑪電壓的步驟包括:取得對應第一溫度的多個第一伽瑪參考電壓;依據這些第一伽瑪參考電壓進行分壓以產生這些第一伽瑪電壓。 In an embodiment of the invention, the step of providing the first gamma voltage comprises: obtaining a plurality of first gamma reference voltages corresponding to the first temperature; performing voltage division according to the first gamma reference voltages to generate These first gamma voltages.

在本發明之一實施例中,上述之提供這些第二伽瑪電壓的步驟包括:取得對應第二溫度的多個第二伽瑪參考電壓;依據這些第二伽瑪參考電壓進行分壓以產生這些第二伽瑪電壓。 In an embodiment of the invention, the step of providing the second gamma voltage comprises: obtaining a plurality of second gamma reference voltages corresponding to the second temperature; performing voltage division according to the second gamma reference voltages to generate These second gamma voltages.

在本發明之一實施例中,部分的第一伽瑪參考電壓不同於第二伽瑪參考電壓中對應至同一影像灰階值的部分。 In an embodiment of the invention, the portion of the first gamma reference voltage is different from the portion of the second gamma reference voltage that corresponds to the same image grayscale value.

在本發明之一實施例中,上述之第一伽瑪參考電壓與第二伽瑪參考電壓間不同的部分所對應的影像灰階值小於等於灰階臨界值。 In an embodiment of the invention, the image grayscale value corresponding to the difference between the first gamma reference voltage and the second gamma reference voltage is less than or equal to the grayscale threshold.

在本發明之一實施例中,上述之依據目標畫素的當下溫度決定影像灰階值所對應的畫素電壓的步驟更包括:當目標畫素的當下溫度為第三溫度時,提供多個第三伽瑪電壓,並且選擇這些伽瑪電壓的其中之一作為影像灰階值對應的畫素電壓,其中這些第三伽瑪電壓為依據這些第一伽 瑪電壓及這些第二伽瑪電壓進行內插運算所取得。 In an embodiment of the present invention, the step of determining the pixel voltage corresponding to the grayscale value of the image according to the current temperature of the target pixel further includes: providing a plurality of current temperatures of the target pixel when the current temperature is the third temperature a third gamma voltage, and one of the gamma voltages is selected as a pixel voltage corresponding to the image grayscale value, wherein the third gamma voltage is based on the first gamma The voltage of the horse and the second gamma voltage are obtained by interpolation.

在本發明之一實施例中,當影像灰階值小於等於灰階臨界值時,對應此影像灰階值的第一伽瑪電壓不同於對應此影像灰階值的第二伽瑪電壓。當影像灰階值大於灰階臨界值時,對應此影像灰階值的第一伽瑪電壓相同於對應此影像灰階值的第二伽瑪電壓。 In an embodiment of the invention, when the image grayscale value is less than or equal to the grayscale threshold, the first gamma voltage corresponding to the grayscale value of the image is different from the second gamma voltage corresponding to the grayscale value of the image. When the image grayscale value is greater than the grayscale threshold, the first gamma voltage corresponding to the grayscale value of the image is the same as the second gamma voltage corresponding to the grayscale value of the image.

在本發明之一實施例中,上述之液晶顯示面板為常態顯示白色。 In an embodiment of the invention, the liquid crystal display panel is normally displayed in white.

在本發明之一實施例中,上述之液晶顯示面板為常態顯示黑色。 In an embodiment of the invention, the liquid crystal display panel is normally displayed in black.

在本發明之一實施例中,上述之液晶顯示面板為一扭轉向列型液晶顯示面板。 In an embodiment of the invention, the liquid crystal display panel is a twisted nematic liquid crystal display panel.

在本發明之一實施例中,上述之液晶顯示面板為一垂直配向型液晶顯示面板。 In an embodiment of the invention, the liquid crystal display panel is a vertical alignment type liquid crystal display panel.

基於上述,本發明的驅動方法,依據畫素的當下溫度,調整對應此畫素的影像灰階值所對應的畫素電壓。藉此,可使液晶顯示面板受到發光元件的溫度影響時,於顯示暗態畫面時不會有明顯的亮度差異,以此提升液晶顯示面板的面內均勻度。 Based on the above, the driving method of the present invention adjusts the pixel voltage corresponding to the grayscale value of the image corresponding to the pixel according to the current temperature of the pixel. Thereby, when the liquid crystal display panel is affected by the temperature of the light-emitting element, there is no significant difference in brightness when the dark state screen is displayed, thereby improving the in-plane uniformity of the liquid crystal display panel.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

圖1為依據本發明一實施例的液晶顯示裝置的系統示 意圖。請參照圖1,液晶顯示裝置100包括液晶顯示面板(LCD panel)110、發光元件121、123、時序控制器(timing controller,T-con)130、閘極驅動器(gate driver)140、源極驅動器(source driver)150、伽瑪(gamma)電壓產生器160及記憶元件170,其中背光模組(backlight module)120由發光元件121及123所組成,並且發光元件121及123可以為平面螢光燈、冷陰極螢光燈管(Cold Cathode Fluorescent Lamp,CCFL)或發光二極體(Light Emitting Diode,LED)。 1 is a system diagram of a liquid crystal display device in accordance with an embodiment of the present invention; intention. Referring to FIG. 1 , the liquid crystal display device 100 includes a liquid crystal display panel (LCD panel) 110 , light emitting elements 121 and 123 , a timing controller (T-con) 130 , a gate driver 140 , and a source driver. (source driver) 150, gamma voltage generator 160 and memory component 170, wherein a backlight module 120 is composed of light-emitting elements 121 and 123, and the light-emitting elements 121 and 123 can be flat fluorescent lamps. , Cold Cathode Fluorescent Lamp (CCFL) or Light Emitting Diode (LED).

在本實施例中,時序控制器130接收視訊信號VS,以依據視訊信號VS所傳送的畫面資料控制閘極驅動器140及源極驅動器150。並且,時序控制器130會依據準備寫入的目標畫素(如畫素P1~P6)所對應影像灰階值,再依據此影像灰階值及目標畫素的色彩輸出色彩灰階值CG至源極驅動器150。閘極驅動器140受控於時序控制器130,藉以來逐一開啟液晶顯示面板110內的每一列畫素(如畫素列L1~L6)。伽瑪電壓產生器160依據時序控制器130所產生的啟動信號STV及垂直時脈信號CKV從記憶元件170中取得對應的每一畫素列的多個伽瑪參考電壓,再將這些伽瑪參考電壓進行分壓產生多個伽瑪電壓VGM。並且,伽瑪電壓產生器160更可再依據水平時脈信號CKH取得對應的每一畫素的多個伽瑪參考電壓以產生多個伽瑪電壓VGMIn this embodiment, the timing controller 130 receives the video signal VS to control the gate driver 140 and the source driver 150 according to the picture data transmitted by the video signal VS. Moreover, the timing controller 130 outputs the color grayscale value CG according to the grayscale value of the image corresponding to the target pixel (such as pixels P1 to P6) to be written, according to the grayscale value of the image and the color of the target pixel. Source driver 150. The gate driver 140 is controlled by the timing controller 130, and each pixel (such as the pixel columns L1 to L6) in the liquid crystal display panel 110 is turned on one by one. The gamma voltage generator 160 obtains a plurality of gamma reference voltages corresponding to each pixel column from the memory element 170 according to the enable signal STV and the vertical clock signal CKV generated by the timing controller 130, and then these gamma reference The voltage is divided to generate a plurality of gamma voltages V GM . Moreover, the gamma voltage generator 160 can further obtain a plurality of gamma reference voltages corresponding to each pixel according to the horizontal clock signal CKH to generate a plurality of gamma voltages V GM .

源極驅動器150依據色彩灰階值CG選擇一個伽瑪電 壓VGM作為寫入目標畫素的畫素電壓VP,並提供給液晶顯示面板110內被閘極驅動器140開啟的每一列畫素。發光元件121及123會提供液晶顯示面板110所需的面光源,當源極驅動器150供應對應的畫素電壓VP給液晶顯示面板110內的最後一列畫素(如畫素列L6)之後,液晶顯示面板110即可顯示完整的畫面給使用者觀看。 The source driver 150 selects a gamma voltage V GM as the pixel voltage VP of the write target pixel in accordance with the color gray scale value CG, and supplies it to each column of pixels in the liquid crystal display panel 110 that is turned on by the gate driver 140. The light-emitting elements 121 and 123 provide a surface light source required by the liquid crystal display panel 110. After the source driver 150 supplies the corresponding pixel voltage VP to the last column of pixels (such as the pixel column L6) in the liquid crystal display panel 110, the liquid crystal The display panel 110 can display the complete picture for the user to watch.

如圖1所示,背光模組120的發光元件121及123分別配置於液晶顯示面板110的上側及下側,並且在發光元件121及123提供光源時亦會產生熱能,以致於液晶顯示面板110中部分液晶的溫度會升高。在此假設畫素列L1、L2的液晶感受到發光元件121所產生的熱能而使溫度升高,畫素列L5及L6的液晶感受到發光元件123所產生的熱能而使溫度升高,畫素列L3及L4的液晶的溫度不受發光元件121及123產生的熱能所影響。由於畫素列L1較靠近發光元件121,因此畫素列L1中液晶的溫度變化程度會高於畫素列L2中液晶的溫度變化程度,亦即與發光元件121不同最短距離的液晶會感受到不同的熱梯度(thermal gradient)而有不同的溫度變化。換言之,畫素列L6中液晶的溫度變化程度會高於畫素列L5中液晶的溫度變化程度。 As shown in FIG. 1 , the light-emitting elements 121 and 123 of the backlight module 120 are respectively disposed on the upper side and the lower side of the liquid crystal display panel 110 , and also generate thermal energy when the light-emitting elements 121 and 123 provide a light source, so that the liquid crystal display panel 110 The temperature of the middle part of the liquid crystal will rise. Here, it is assumed that the liquid crystals of the pixel columns L1 and L2 sense the heat energy generated by the light-emitting element 121 to increase the temperature, and the liquid crystals of the pixel columns L5 and L6 sense the heat energy generated by the light-emitting element 123 to raise the temperature. The temperatures of the liquid crystals of the columns L3 and L4 are not affected by the heat energy generated by the light-emitting elements 121 and 123. Since the pixel sequence L1 is closer to the light-emitting element 121, the temperature change of the liquid crystal in the pixel column L1 is higher than the temperature change of the liquid crystal in the pixel column L2, that is, the liquid crystal of the shortest distance from the light-emitting element 121 is felt. Different thermal gradients have different temperature changes. In other words, the temperature change of the liquid crystal in the pixel column L6 is higher than the temperature change of the liquid crystal in the pixel column L5.

一般而言,發光元件121及123的特性會不同,亦即畫素列L1及L6中液晶的溫度變化程度會不同,但在差異幅度過小的情況下,畫素列L1及L6中液晶的溫度變化程度可視為一樣。同樣地,發光元件121及123每一區段所 產生的熱能亦可能不盡相同,因此畫素列L1及L6中每一畫素的液晶其溫度變化的程度會有差距,但在差距不明顯的情況下,畫素列L1及L6中每一畫素的液晶的溫度變化程度可視為相同。 In general, the characteristics of the light-emitting elements 121 and 123 are different, that is, the temperature changes of the liquid crystals in the pixel columns L1 and L6 are different, but in the case where the difference width is too small, the temperature of the liquid crystal in the pixel columns L1 and L6 is different. The degree of change can be considered the same. Similarly, each of the light-emitting elements 121 and 123 is The generated thermal energy may also be different. Therefore, there is a difference in the temperature change of the liquid crystal of each pixel in L1 and L6, but in the case where the difference is not obvious, each of the pixels L1 and L6 The degree of temperature change of the liquid crystal of the pixel can be regarded as the same.

進一步看來,由於畫素列L1、L2、L5及L6中液晶的特性會因為溫度上升而變化,以致於畫素列L1、L2、L5及L6中液晶的顯示效果亦會改變。換言之,畫素列L1、L2、L5及L6中的液晶會因為當下溫度的升高而改變其穿透率與畫素電壓VP的關係,因此液晶顯示面板110的上下側與中央的顯示效果會不同。尤其,在顯示暗態畫面(如純黑畫面)時,由於顯示的色彩較為單純,因此液晶顯示面板110上下側所顯示的亮度會明顯不同於其於中央部分所顯示的亮度,並且亮度的差異會正比於每一液晶所感受到的熱梯度。 Further, since the characteristics of the liquid crystal in the pixel columns L1, L2, L5, and L6 change due to the temperature rise, the display effect of the liquid crystal in the pixel columns L1, L2, L5, and L6 also changes. In other words, the liquid crystals in the pixel columns L1, L2, L5, and L6 change the relationship between the transmittance and the pixel voltage VP due to the increase in the current temperature. Therefore, the display effects of the upper and lower sides and the center of the liquid crystal display panel 110 are different. In particular, when displaying a dark state picture (such as a pure black picture), since the displayed color is relatively simple, the brightness displayed on the upper and lower sides of the liquid crystal display panel 110 is significantly different from the brightness displayed in the central portion, and the difference in brightness It will be proportional to the thermal gradient felt by each liquid crystal.

此時,可依據畫素列L1、L2、L5及L6與發光元件121及123間的距離調整每一畫素列所對應的多個影像灰階值與畫素電壓VP的對應關係,亦即依據畫素列L1、L2、L5及L6的當下溫度決定每一個影像灰階值對應的畫素電壓VP,以調整液晶顯示面板110中每一畫素的液晶對應同一影像灰階值的穿透率為相似或相同。其中,畫素電壓VP可透過改變色彩灰階值CG或伽瑪電壓VGM來完成,其實現方式於下述說明。 In this case, the correspondence between the plurality of image gray scale values corresponding to each pixel column and the pixel voltage VP can be adjusted according to the distance between the pixel columns L1, L2, L5, and L6 and the light-emitting elements 121 and 123, that is, The pixel voltage VP corresponding to each image grayscale value is determined according to the current temperature of the pixel columns L1, L2, L5, and L6, so as to adjust the penetration of the liquid crystal of each pixel in the liquid crystal display panel 110 corresponding to the same image grayscale value. The rates are similar or the same. The pixel voltage VP can be completed by changing the color grayscale value CG or the gamma voltage V GM , and the implementation manner is as follows.

圖2為依據本發明一實施例的扭轉向列(Twisted Nematic,TN)型液晶的特性曲線圖。請參照圖1及圖2, 在本實施例中,液晶顯示面板110是以常態顯示白色(normally white)的扭轉向列型液晶面板為例,其中曲線210為常溫下的液晶反應曲線,曲線220為高溫下的液晶反應曲線,並且曲線210可對應至畫素列L3及L4,曲線220可對應至畫素列L1及L6。由圖示可知,在常溫狀態下,液晶於電壓V1時無穿透率,亦即液晶於畫素電壓VP為電壓V1時色彩灰階值CG為0。在高溫狀態下,液晶於電壓V2時無穿透率,亦即液晶於畫素電壓VP為電壓V2時色彩灰階值CG為0,並且液晶於畫素電壓VP為電壓V1時仍具有穿透率,在此假設於電壓V1時的穿透率對應的色彩灰階值CG為5。 2 is a characteristic diagram of a twisted nematic (TN) type liquid crystal according to an embodiment of the present invention. Please refer to Figure 1 and Figure 2, In the present embodiment, the liquid crystal display panel 110 is an example of a normally white twisted nematic liquid crystal panel, wherein the curve 210 is a liquid crystal reaction curve at a normal temperature, and the curve 220 is a liquid crystal reaction curve at a high temperature. And the curve 210 can correspond to the pixel columns L3 and L4, and the curve 220 can correspond to the pixel columns L1 and L6. As can be seen from the figure, in the normal temperature state, the liquid crystal has no transmittance at the voltage V1, that is, the liquid crystal gradation value CG is 0 when the pixel voltage VP is the voltage V1. In the high temperature state, the liquid crystal has no transmittance at the voltage V2, that is, the liquid crystal gray level value CG is 0 when the pixel voltage VP is the voltage V2, and the liquid crystal still has penetration when the pixel voltage VP is the voltage V1. The rate, here assumed that the color gradation value CG corresponding to the transmittance at the voltage V1 is 5.

在此先說明如何透過調整色彩灰階值CG來調整畫素電壓VP。請參照圖1,在時序控制器130中,會透過白平衡跟蹤對照表(如對照表1及2)取得對應每一影像灰階值的色彩灰階值CG。其中,由於相同的色彩灰階值CG於不同色彩所顯示的亮度不同,為了使不同色彩中能顯示影像灰階值所要求的亮度,影像灰階值則透過白平衡跟蹤對照表轉換為對應的色彩灰階值CG,以使目標畫素能顯示影像灰階值所欲顯示的亮度。 Here, how to adjust the pixel voltage VP by adjusting the color grayscale value CG will be described first. Referring to FIG. 1, in the timing controller 130, a color grayscale value CG corresponding to each image grayscale value is obtained through a white balance tracking comparison table (such as the comparison tables 1 and 2). Wherein, since the same color grayscale value CG is different in brightness displayed by different colors, in order to enable the brightness required for displaying the grayscale value of the image in different colors, the image grayscale value is converted into a corresponding white balance tracking table. The color grayscale value CG is such that the target pixel can display the brightness of the image grayscale value to be displayed.

並且,為了提高色彩灰階值CG對應影像灰階值的準確度,色彩灰階值CG的解析度可高於影像灰階值的解析度。在本實施例中,白平衡跟蹤對照表為用以說明畫素電壓VP的調整方式,故只以單一色彩的白平衡跟蹤對照表為例,並且色彩灰階值CG以10位元表示,影像灰階值以8位元表示。依據上述,對照表1及2為對應同一色彩,並且在此假設對照表1對應至畫素列L1及L6,對照表2對應至畫素列L3及L4。 Moreover, in order to improve the accuracy of the grayscale value of the color grayscale value CG, the resolution of the color grayscale value CG may be higher than the resolution of the grayscale value of the image. In this embodiment, the white balance tracking comparison table is used to explain the adjustment mode of the pixel voltage VP, so only the white balance tracking comparison table of a single color is taken as an example, and the color grayscale value CG is represented by 10 bits, and the image is displayed. Gray scale values are expressed in 8-bit units. According to the above, the comparison tables 1 and 2 correspond to the same color, and it is assumed here that the comparison table 1 corresponds to the pixel columns L1 and L6, and the comparison table 2 corresponds to the pixel columns L3 and L4.

由於畫素列L1及L6於畫素電壓VP為電壓V1(即寫入對應色彩灰階值0的畫素電壓VP)時的穿透率近似於常溫下的色彩灰階值5,亦即在顯示影像灰階值0時,處於高溫(即第一溫度)的畫素列L1及L6的畫素所寫入的畫素電壓VP對應色彩灰階值0,處於常溫(即第二溫度)的畫素列L3及L4的畫素為所寫入的畫素電壓VP對應色彩灰階值5,如此液晶顯示面板110的畫素列L1、L3、L4及L6的畫素在顯示影像灰階值0時才會顯示相近或相 同的亮度。 Since the pixel sequences L1 and L6 have a pixel gray voltage value of 5 at a normal temperature when the pixel voltage VP is a voltage V1 (that is, a pixel voltage VP corresponding to a color grayscale value of 0), that is, When the grayscale value of the image is displayed as 0, the pixel voltage VP written by the pixels of the pixel columns L1 and L6 at the high temperature (ie, the first temperature) corresponds to the color grayscale value of 0, and is at normal temperature (ie, the second temperature). The pixel of the pixel sequence L3 and L4 is the color gradation value 5 corresponding to the written pixel voltage VP, so that the pixels of the pixel columns L1, L3, L4, and L6 of the liquid crystal display panel 110 display the grayscale value of the image. 0 will show similar or phase The same brightness.

因此,對照表1中影像灰階值0對應的色彩灰階值CG為0,對照表2中影像灰階值0對應的色彩灰階值CG為5。並且,再分別調整對照表1及2中對應影像灰階值1的色彩灰階值CG為4及7,以使畫素列L1、L3、L4及L6的畫素在顯示影像灰階值1時才會顯示相近或相同的亮度。其餘可參照對照表1及2所示,並且不再贅述。並且,假設對照表1為標準的白平衡跟蹤對照表,則對照表2為經調整的白平衡跟蹤對照表。 Therefore, the color grayscale value CG corresponding to the image grayscale value 0 in Table 1 is 0, and the color grayscale value CG corresponding to the image grayscale value 0 in Table 2 is 5. Moreover, the color grayscale values CG of the corresponding image grayscale values 1 in the comparison tables 1 and 2 are adjusted to be 4 and 7, respectively, so that the pixels of the pixel columns L1, L3, L4, and L6 are displayed in the grayscale value of the image 1 Similar or identical brightness will be displayed. The rest can be referred to the comparison tables 1 and 2, and will not be described again. Also, assuming that the comparison table 1 is a standard white balance tracking comparison table, the comparison table 2 is an adjusted white balance tracking comparison table.

此外,在決定畫素列L2及L4的畫素所寫入的畫素電壓VP對應的色彩灰階值CG時,由於畫素列L2及L4的畫素的溫度介於畫素列L1及L6與畫素列L3及L4之間,則可依據對照表1及2中對應的色彩灰階值CG進行內插運算,依據運算結果所取得的色彩灰階值CG作為寫入畫素列L2及L4中畫素的畫素電壓VP對應色彩灰階值CG。舉例來說,在顯示影像灰階值0時,畫素列L2及L4的畫素為寫入對應色彩灰階值CG為2.5(即(0+5)/2)的畫素電壓VP,其餘影像灰階值則依此類推。 Further, when the color grayscale value CG corresponding to the pixel voltage VP written by the pixels of the pixel columns L2 and L4 is determined, the temperature of the pixels of the pixel columns L2 and L4 is between the pixel columns L1 and L6. Between the pixel sequence L3 and L4, the interpolation operation can be performed according to the corresponding color grayscale value CG in the comparison tables 1 and 2, and the color grayscale value CG obtained according to the calculation result is used as the write pixel column L2 and The pixel voltage VP of the L4 medium pixel corresponds to the color gray scale value CG. For example, when the grayscale value of the image is displayed as 0, the pixels of the pixel columns L2 and L4 are written to the pixel voltage VP corresponding to the color grayscale value CG of 2.5 (ie, (0+5)/2), and the rest. Image grayscale values are analogous.

換言之,當目標畫素為畫素P1或P6時,則依據對照表1取得影像灰階值對應的色彩灰階值CG,並以對應此色彩灰階值CG的電壓作為影像灰階值對應的畫素電壓VP。當目標畫素為畫素P3或P4時,依據對照表2取得影像灰階值所對應的色彩灰階值CG,並以對應此色彩灰階值CG的電壓作為影像灰階值對應的畫素電壓VP。當目標 畫素為畫素P2或P4時,依據對照表1、2及影像灰階值取得兩個色彩灰階值CG並進行內插運算以取得對應的色彩灰階值CG,並以對應的此色彩灰階值CG的電壓作為影像灰階值所對應的畫素電壓VP。 In other words, when the target pixel is the pixel P1 or P6, the color grayscale value CG corresponding to the grayscale value of the image is obtained according to the comparison table 1, and the voltage corresponding to the grayscale value CG of the color is used as the grayscale value of the image. Pixel voltage VP. When the target pixel is the pixel P3 or P4, the color grayscale value CG corresponding to the grayscale value of the image is obtained according to the comparison table 2, and the voltage corresponding to the grayscale value CG of the color is used as the pixel corresponding to the grayscale value of the image. Voltage VP. When the target When the pixel is a pixel P2 or P4, two color grayscale values CG are obtained according to the comparison table 1, 2 and the image grayscale value, and an interpolation operation is performed to obtain a corresponding color grayscale value CG, and the corresponding color is obtained. The voltage of the grayscale value CG is used as the pixel voltage VP corresponding to the image grayscale value.

藉此,當液晶顯示面板110顯示畫面時,其中央與上下側於相同影像灰階值所顯示的亮度會相似或相同,以此提高液晶顯示面板110的面內均勻度,並且可在不降低對比度的情況下提高液晶顯示面板110的面內均勻度。 Therefore, when the liquid crystal display panel 110 displays a screen, the brightness displayed by the center and the upper and lower sides at the same image gray scale value may be similar or the same, thereby improving the in-plane uniformity of the liquid crystal display panel 110, and may not be lowered. In the case of contrast, the in-plane uniformity of the liquid crystal display panel 110 is improved.

值得一提的是,由於亮度的差異在暗態時會比較明顯,因此對照表2可只修正暗態的部分。在此以影像灰階值5作為是否為暗態的灰階臨界值,所以對照表2可僅修正影像灰階值0~5所對應的色彩灰階值CG,以使對照表1及2中影像灰階值0~5對應至不同的色彩灰階值CG,而對照表2中大於影像灰階值5的部分可與對照表1的相同。也就是說,在影像灰階值小於等於灰階臨界值5的部分,每一影像灰階值於不同溫度的畫素中對應不同的畫素電壓VP;在影像灰階值大於灰階臨界值5的部分,每一影像灰階值於不同溫度的畫素中對應相同的畫素電壓VP。 It is worth mentioning that since the difference in brightness is more obvious in the dark state, the table 2 can only correct the dark portion. Here, the image grayscale value 5 is used as the grayscale threshold value of whether it is a dark state, so the comparison table 2 can only correct the color grayscale value CG corresponding to the image grayscale value 0~5, so that the comparison table 1 and 2 The image grayscale values 0~5 correspond to different color grayscale values CG, and the portion of the comparison table 2 that is larger than the image grayscale value 5 can be the same as that of the comparison table 1. That is to say, in the portion where the grayscale value of the image is less than or equal to the grayscale threshold value of 5, each image grayscale value corresponds to a different pixel voltage VP in pixels of different temperatures; the grayscale value of the image is greater than the grayscale critical value. In the portion of 5, the grayscale value of each image corresponds to the same pixel voltage VP in pixels of different temperatures.

下述說明如何透過調整伽瑪電壓VGM來調整畫素電壓VP,並且由於伽瑪電壓VGM可透過伽瑪曲線來取得,因此調整伽瑪電壓VGM的效果如同調整伽瑪曲線。圖3為依據本發明一實施例的伽瑪電壓產生器耦接記憶元件的系統示意圖。請參照圖3,伽瑪電壓產生器160由電壓產生單元410及分壓單元420所組成。 The following explains how to adjust the pixel voltage VP by adjusting the gamma voltage V GM , and since the gamma voltage V GM can be obtained by the gamma curve, the effect of adjusting the gamma voltage V GM is like adjusting the gamma curve. 3 is a schematic diagram of a system in which a gamma voltage generator is coupled to a memory element in accordance with an embodiment of the invention. Referring to FIG. 3, the gamma voltage generator 160 is composed of a voltage generating unit 410 and a voltage dividing unit 420.

電壓產生單元410依據啟動信號STV及垂直時脈信號CKV從記憶元件170中取得對應的每一畫素列的伽瑪參考電壓VR1~VR12及共同電壓Vcom,或者依據啟動信號STV、垂直時脈信號CKV、水平時脈信號CKH從記憶元件170取得對應的每一畫素的伽瑪參考電壓VR1~VR12及共同電壓Vcom。並且,電壓產生單元410輸出伽瑪參考電壓VR1~VR12及共同電壓Vcom至分壓單元420,以透過分壓單元420進行分壓產生多個伽瑪電壓VGM。其中,伽瑪參考電壓VR1為對應色彩灰階值0的負電壓(如括號所示,標記為-0),伽瑪參考電壓VR2為對應色彩灰階值4的負電壓(如括號所示,標記為-4),其餘則參照圖示自行理解。為了便於說明,在此為假設色彩灰階值CG的解析度與影像灰階值相同,亦即在此色彩灰階值CG的解析度以8位元為例,並且影像灰階值與其對應的色彩灰階值CG同值。 The voltage generating unit 410 obtains the corresponding gamma reference voltages VR1 VR12 and VR12 of each pixel column and the common voltage Vcom from the memory element 170 according to the start signal STV and the vertical clock signal CKV, or according to the start signal STV and the vertical clock signal. The CKV and the horizontal clock signal CKH acquire the corresponding gamma reference voltages VR1 to VR12 and the common voltage Vcom of each pixel from the memory element 170. Moreover, the voltage generating unit 410 outputs the gamma reference voltages VR1 VRVR12 and the common voltage Vcom to the voltage dividing unit 420 to perform voltage division by the voltage dividing unit 420 to generate a plurality of gamma voltages V GM . Wherein, the gamma reference voltage VR1 is a negative voltage corresponding to the color grayscale value 0 (as indicated by the parenthesis, marked as -0), and the gamma reference voltage VR2 is a negative voltage corresponding to the color grayscale value 4 (as indicated by the brackets, Marked as -4), the rest is understood by reference to the illustration. For convenience of explanation, here, the resolution of the assumed color grayscale value CG is the same as the image grayscale value, that is, the resolution of the color grayscale value CG is exemplified by 8 bits, and the image grayscale value corresponds thereto. The color grayscale value CG is the same value.

請參照圖1、圖2及圖3,依據上述,在常溫狀態下,液晶在電壓V1時無穿透率(亦即影像灰階值為0),在高溫狀態下,液晶在電壓V2時無穿透率(亦即影像灰階值為0),其中假設電壓V1為5伏特,電壓V2為5.3伏特。因此,若要對處於高溫的畫素列L1及L6的畫素進行畫素電壓VP的寫入時,此時伽瑪電壓VGM的電壓範圍設定為0~5.3伏特,亦即對應色彩灰階值255的伽瑪參考電壓VR6及VR7為0伏特,對應色彩灰階值0的伽瑪參考電壓VR1及VR12為5.3伏特,並且伽瑪參考電壓VR2~VR5及 VR8~VR11依據此電壓範圍及對應的色彩灰階值CG決定其電壓值。 Referring to FIG. 1 , FIG. 2 and FIG. 3 , according to the above, in the normal temperature state, the liquid crystal has no transmittance at the voltage V1 (that is, the image gray scale value is 0), and in the high temperature state, the liquid crystal does not have the voltage V2. The transmittance (i.e., the image grayscale value is 0), wherein the voltage V1 is assumed to be 5 volts and the voltage V2 is 5.3 volts. Therefore, if the pixel of the pixel columns L1 and L6 at high temperature is to be written with the pixel voltage VP, the voltage range of the gamma voltage V GM is set to 0 to 5.3 volts, that is, the corresponding color gray scale. The gamma reference voltages VR6 and VR7 with a value of 255 are 0 volts, the gamma reference voltages VR1 and VR12 corresponding to the color grayscale value 0 are 5.3 volts, and the gamma reference voltages VR2 to VR5 and VR8 to VR11 are based on this voltage range and corresponding The color grayscale value CG determines its voltage value.

此外,若要對處於常溫的畫素列L3及L4的畫素進行畫素電壓VP的寫入時,此時伽瑪電壓VGM的電壓範圍設定為0~5伏特,亦即對應色彩灰階值255的伽瑪參考電壓VR6及VR7為0伏特,對應色彩灰階值0的伽瑪參考電壓VR1及VR12為5伏特,並且伽瑪參考電壓VR2~VR5及VR8~VR11同樣依據此電壓範圍及對應的色彩灰階值CG決定其電壓值。 In addition, if the pixel of the pixel columns L3 and L4 at normal temperature is to be written into the pixel voltage VP, the voltage range of the gamma voltage V GM is set to 0 to 5 volts, that is, the corresponding color gray scale. The gamma reference voltages VR6 and VR7 of value 255 are 0 volts, the gamma reference voltages VR1 and VR12 corresponding to the color gray scale value 0 are 5 volts, and the gamma reference voltages VR2 VR5 and VR8 VR11 are also based on this voltage range and The corresponding color grayscale value CG determines its voltage value.

若要對介於常溫及高溫之間的畫素列L3及L4的畫素進行畫素電壓VP的寫入時,此時伽瑪電壓VGM的電壓範圍可設定為0~5.15伏特,亦即對應色彩灰階值255的伽瑪參考電壓VR6及VR7為0伏特,對應色彩灰階值0的伽瑪參考電壓VR1及VR12為5.15伏特,並且伽瑪參考電壓VR2~VR5及VR8~VR11同樣依據此電壓範圍及對應的色彩灰階值CG決定其電壓值。換言之,將對應高溫的伽瑪電壓VGM與對應常溫的伽瑪電壓VGM依據所要寫入的畫素的當下溫度進行內插運算,以取得對應所要寫入的畫素的當下溫度的伽瑪電壓VGMTo write the pixel voltage VP to the pixels of the pixel columns L3 and L4 between the normal temperature and the high temperature, the voltage range of the gamma voltage V GM can be set to 0 to 5.15 volts, that is, The gamma reference voltages VR6 and VR7 corresponding to the color grayscale value 255 are 0 volts, the gamma reference voltages VR1 and VR12 corresponding to the color grayscale value 0 are 5.15 volts, and the gamma reference voltages VR2 to VR5 and VR8 to VR11 are also based on This voltage range and the corresponding color grayscale value CG determine its voltage value. In other words, the pixel current corresponding to the temperature of the high temperature and the gamma voltages V GM gamma voltage corresponding to a normal V GM is to be written based on the gamma interpolation calculation to obtain the temperature corresponding to the current pixel is to be written Voltage V GM .

其中,上述電壓值會儲存於記憶元件170中,並且電壓產生單元410會依據每一畫素列的當下溫度取得對應的多個電壓值作為伽瑪參考電壓VR1~VR12。藉此,由於伽瑪電壓VGM會依據畫素列的當下溫度而決定其電壓值,因此在液晶顯示面板110顯示畫面時,其中央與上下側於相 同影像灰階值所顯示的亮度會相似或相同,以此提高液晶顯示面板110的面內均勻度。 The voltage value is stored in the memory component 170, and the voltage generating unit 410 obtains a corresponding plurality of voltage values as the gamma reference voltages VR1 to VR12 according to the current temperature of each pixel column. Therefore, since the gamma voltage V GM determines the voltage value according to the current temperature of the pixel column, when the liquid crystal display panel 110 displays the screen, the brightness displayed by the center and the upper and lower sides at the same image gray scale value is similar. Or the same, thereby improving the in-plane uniformity of the liquid crystal display panel 110.

如上所述,由於液晶顯示面板110在顯示暗態畫面時的亮度差異會比較明顯,因此可只修正顯示暗態的部分。在此以色彩灰階值4作為是否為暗態的灰階臨界值,所以可僅調整對應每一畫素列的伽瑪參考電壓VR1、VR2、VR11及VR12,以使對應畫素列L3及L4的伽瑪參考電壓VR1、VR2、VR11及VR12、對應畫素列L2及L5的伽瑪參考電壓VR1、VR2、VR11及VR12、以及對應畫素列L1及L6的伽瑪參考電壓VR1、VR2、VR11及VR12中相同的伽瑪參考電壓的電壓值互不相同。也就是說,在色彩灰階值CG小於等於灰階臨界值4的部分,每一色彩灰階值CG於不同溫度的畫素中對應不同的畫素電壓VP;在色彩灰階值CG大於灰階臨界值4的部分,每一色彩灰階值CG於不同溫度的畫素中對應相同的畫素電壓VP。 As described above, since the difference in luminance of the liquid crystal display panel 110 when displaying a dark state picture is relatively remarkable, only the portion displaying the dark state can be corrected. Here, the color grayscale value 4 is used as the grayscale threshold value of whether it is a dark state, so only the gamma reference voltages VR1, VR2, VR11, and VR12 corresponding to each pixel column can be adjusted so that the corresponding pixel column L3 and L4 gamma reference voltages VR1, VR2, VR11 and VR12, gamma reference voltages VR1, VR2, VR11 and VR12 of corresponding pixel columns L2 and L5, and gamma reference voltages VR1, VR2 of corresponding pixel columns L1 and L6 The voltage values of the same gamma reference voltages in VR11 and VR12 are different from each other. That is to say, in the portion where the color grayscale value CG is less than or equal to the grayscale threshold value 4, each color grayscale value CG corresponds to a different pixel voltage VP in pixels of different temperatures; the color grayscale value CG is greater than gray. For the portion of the threshold value 4, each color grayscale value CG corresponds to the same pixel voltage VP in pixels of different temperatures.

此外,由於在液晶顯示裝置100啟動之初,發光元件121及123所不會立即產生大量熱能,此時發光元件121及123的溫度會保持在常溫,其中溫度的量測可透過溫度感測器來完成。此時,液晶顯示面板110中的液晶並不會受溫度的影響而改變其特性,亦即液晶顯示面板110在顯示暗態畫面時不會有亮度差異。並且,可設定一溫度臨界值來判斷發光元件121及123所產生的熱能是否影響液晶顯示面板110中的液晶,而使液晶顯示面板110在顯示暗態畫面的亮度有明顯的差異。也就是說,在液晶顯示裝置 100啟動之初至發光元件121及123的溫度到達溫度臨界值之前,並不需要依據目標畫素的溫度調整其每一影像灰階值所對應的畫素電壓VP,亦即每一影像灰階值於不同溫度的畫素中對應至相同的畫素電壓VP。 In addition, since the light-emitting elements 121 and 123 do not immediately generate a large amount of thermal energy at the beginning of the liquid crystal display device 100, the temperature of the light-emitting elements 121 and 123 is maintained at a normal temperature, and the temperature is measured through the temperature sensor. To be done. At this time, the liquid crystal in the liquid crystal display panel 110 is not affected by the temperature and changes its characteristics, that is, the liquid crystal display panel 110 does not have a brightness difference when displaying a dark state picture. Moreover, a temperature threshold can be set to determine whether the thermal energy generated by the light-emitting elements 121 and 123 affects the liquid crystal in the liquid crystal display panel 110, and the liquid crystal display panel 110 has a significant difference in the brightness of the display dark state screen. That is, in a liquid crystal display device Before the temperature of the light-emitting elements 121 and 123 reaches the temperature threshold value, it is not necessary to adjust the pixel voltage VP corresponding to each image gray scale value according to the temperature of the target pixel, that is, each image gray scale Values in different temperatures correspond to the same pixel voltage VP.

在液晶顯示裝置100啟動一段時候後,假設發光元件121及123的溫度超過溫度臨界值,此時則依據目標畫素的溫度調整暗態部分中每一影像灰階值所對應的畫素電壓VP。也就是說,當發光元件121及123的溫度超過溫度臨界值時,在影像灰階值小於等於灰階臨界值的部分中,每一影像灰階值於不同溫度的畫素中對應不同的畫素電壓VP,在影像灰階值大於灰階臨界值的部分中,每一影像灰階值於不同溫度的畫素中對應相同的畫素電壓VP。 After the liquid crystal display device 100 is activated for a while, it is assumed that the temperature of the light-emitting elements 121 and 123 exceeds the temperature threshold value, and at this time, the pixel voltage VP corresponding to each image grayscale value in the dark state portion is adjusted according to the temperature of the target pixel. . That is to say, when the temperature of the light-emitting elements 121 and 123 exceeds the temperature threshold, in the portion where the image grayscale value is less than or equal to the grayscale threshold, each image grayscale value corresponds to a different painting in different temperature pixels. The prime voltage VP, in the portion where the image grayscale value is greater than the grayscale threshold, each image grayscale value corresponds to the same pixel voltage VP in pixels of different temperatures.

值得一提的是,在圖1中發光元件121及123為配置於液晶顯示面板110的上下側,所以液晶顯示面板110的溫度呈現垂直分佈變化,因此可依據目標畫素的垂直位置調整暗態部分中每一影像灰階值CG所對應的畫素電壓VP。若發光元件121及123為配置於液晶顯示面板110的左右側,則液晶顯示面板110的溫度呈現水平分佈變化,因此可依據目標畫素的水平位置調整暗態部分中每一影像灰階值所對應的畫素電壓VP。在其他實施例中,發光元件可僅配置於液晶顯示面板110的一側(如上、下、左或右),並且可依據上述實施例理解其畫素電壓VP的調整方式。 It should be noted that, in FIG. 1 , the light-emitting elements 121 and 123 are disposed on the upper and lower sides of the liquid crystal display panel 110 , so the temperature of the liquid crystal display panel 110 changes vertically, so that the dark state can be adjusted according to the vertical position of the target pixel. The pixel voltage VP corresponding to each image grayscale value CG in the portion. When the light-emitting elements 121 and 123 are disposed on the left and right sides of the liquid crystal display panel 110, the temperature of the liquid crystal display panel 110 changes horizontally. Therefore, the grayscale value of each image in the dark state portion can be adjusted according to the horizontal position of the target pixel. Corresponding pixel voltage VP. In other embodiments, the light emitting element may be disposed only on one side (upper, lower, left, or right) of the liquid crystal display panel 110, and the manner in which the pixel voltage VP is adjusted may be understood according to the above embodiment.

上述實施例為應用於常態顯示黑色的液晶面板中,除 此之外,本發明亦可應用於常態顯示黑色(normally black)的液晶面板中,以下以垂直配向(Vertical Alignment,VA)型液晶顯示面板為例作說明。圖4為依據本發明一實施例的垂直配向型液晶的特性曲線圖。請參照圖1及圖4,在垂直配向型液晶中,其穿透率可能隨著溫度的上升而上升,但也可能隨著溫度的上升而下降,以下則依據不同狀況分別說明。 The above embodiment is applied to a liquid crystal panel that displays black in a normal state, except In addition, the present invention can also be applied to a normally black liquid crystal panel. Hereinafter, a vertical alignment (VA) type liquid crystal display panel will be described as an example. 4 is a characteristic diagram of a vertical alignment type liquid crystal according to an embodiment of the present invention. Referring to FIG. 1 and FIG. 4, in the vertical alignment type liquid crystal, the transmittance may increase as the temperature rises, but may decrease as the temperature rises, and the following description will be respectively made according to different conditions.

依據上述,在此假設曲線510為常溫下的液晶反應曲線,曲線520為高溫下的液晶反應曲線,其中曲線510可對應至畫素列L3及L4,曲線520可對應至畫素列L1及L6。若透過調整色彩灰階值CG來調整畫素電壓VP的話,則處於高溫的畫素列L1及L6所依據的對照表可參照對照表2,以此調整畫素列L1及L6中每一影像灰階值所對應的畫素電壓VP。並且,處於常溫的畫素列L3及L4所依據的對照表可參照對照表1,以此取得畫素列L3及L4中每一影像灰階值所對應的畫素電壓VP。若透過調整伽瑪電壓VGM來調整畫素電壓VP的話,則畫素列L1及L6的伽瑪電壓的電壓範圍為電壓V3~5伏特,畫素列L3及L4的伽瑪電壓的電壓範圍為0~5伏特。 According to the above, it is assumed here that the curve 510 is a liquid crystal reaction curve at normal temperature, and the curve 520 is a liquid crystal reaction curve at a high temperature, wherein the curve 510 can correspond to the pixel columns L3 and L4, and the curve 520 can correspond to the pixel columns L1 and L6. . If the pixel voltage VP is adjusted by adjusting the color grayscale value CG, the comparison table according to the high temperature pixel columns L1 and L6 can refer to the comparison table 2, thereby adjusting each image in the pixel columns L1 and L6. The pixel voltage VP corresponding to the grayscale value. Further, the comparison table on which the pixel sequences L3 and L4 at normal temperature are based can be referred to the comparison table 1, thereby obtaining the pixel voltage VP corresponding to each image grayscale value in the pixel columns L3 and L4. If the pixel voltage VP is adjusted by adjusting the gamma voltage V GM , the voltage range of the gamma voltage of the pixel columns L1 and L6 is the voltage range of V3 to 5 volts, and the voltage range of the gamma voltage of the pixel columns L3 and L4. It is 0~5 volts.

另一方面,假設曲線510為高溫下的液晶反應曲線,曲線520為常溫下的液晶反應曲線,其中曲線510可對應至畫素列L1及L6,曲線520可對應至畫素列L3及L4。若透過調整色彩灰階值CG來調整畫素電壓VP的話,則處於常溫的畫素列L3及L4所依據的對照表可參照對照表 2,以此調整畫素列L3及L4中每一影像灰階值所對應的畫素電壓VP。並且,處於高溫的畫素列L1及L6所依據的對照表可參照對照表1,以此取得畫素列L1及L6中每一影像灰階值所對應的畫素電壓VP。若透過調整伽瑪電壓VGM來調整畫素電壓VP的話,則畫素列L1及L6的伽瑪電壓的電壓範圍為0~5伏特,畫素列L3及L4的伽瑪電壓的電壓範圍為電壓V3~5伏特。 On the other hand, it is assumed that the curve 510 is a liquid crystal reaction curve at a high temperature, and the curve 520 is a liquid crystal reaction curve at a normal temperature, wherein the curve 510 may correspond to the pixel columns L1 and L6, and the curve 520 may correspond to the pixel columns L3 and L4. If the pixel voltage VP is adjusted by adjusting the color grayscale value CG, the comparison table according to the normal temperature pixel columns L3 and L4 can refer to the comparison table 2, thereby adjusting each image in the pixel columns L3 and L4. The pixel voltage VP corresponding to the grayscale value. Further, the comparison table on which the pixel columns L1 and L6 at a high temperature are based can refer to the comparison table 1 to obtain the pixel voltage VP corresponding to each image grayscale value in the pixel columns L1 and L6. If the pixel voltage VP is adjusted by adjusting the gamma voltage V GM , the voltage range of the gamma voltage of the pixel columns L1 and L6 is 0 to 5 volts, and the voltage range of the gamma voltage of the pixel columns L3 and L4 is Voltage V3~5 volts.

依據上述,可彙整出適用液晶顯示裝置100的一驅動方法。圖5為依據本發明一實施例的驅動方法的流程圖。請參照圖5,首先接收畫面資料(步驟S610),並且依據畫面資料取得對應目標畫素的影像灰階值(步驟S620),其中目標畫素為液晶顯示裝置100的液晶顯示面板110的多個畫素的其中之一。接著,依據目標畫素的當下溫度決定每一影像灰階值所對應的畫素電壓VP(步驟S630)。最後,將此影像灰階值所對應的畫素電壓寫入目標畫素(步驟S640)。其中,各步驟的細節可參照上述實施例的說明,在此則不再贅述。 According to the above, a driving method suitable for the liquid crystal display device 100 can be integrated. FIG. 5 is a flow chart of a driving method according to an embodiment of the present invention. Referring to FIG. 5, the screen data is first received (step S610), and the image grayscale value corresponding to the target pixel is obtained according to the screen data (step S620), wherein the target pixel is a plurality of liquid crystal display panels 110 of the liquid crystal display device 100. One of the pixels. Next, the pixel voltage VP corresponding to each image grayscale value is determined according to the current temperature of the target pixel (step S630). Finally, the pixel voltage corresponding to the image grayscale value is written to the target pixel (step S640). For details of the steps, reference may be made to the description of the above embodiments, and details are not described herein again.

綜上所述,本發明的驅動方法,依據畫素與發光元件的距離,研判畫素中液晶溫度上升的程度及其特性的變化程度,再依據液晶因溫度而導致的特性變化程度調整畫素於暗態畫面中每一影像灰階值所對應的畫素電壓。藉此,可調整每一影像灰階值於不同溫度的畫素中所對應的畫素電壓,使得液晶顯示面板在顯示暗態畫面時不會有明顯的亮度差異,以此提升液晶顯示面板的面內均勻度。並且, 若透過調整影像灰階值所對應的色彩灰階值來調整其對應的畫素電壓,則可在維持對比度不變的情況下提升液晶顯示面板的面內均勻度。 In summary, the driving method of the present invention determines the degree of liquid crystal temperature rise and the degree of change of characteristics in the pixel according to the distance between the pixel and the light-emitting element, and then adjusts the pixel according to the degree of change of the characteristic change of the liquid crystal due to temperature. The pixel voltage corresponding to the grayscale value of each image in the dark state picture. Thereby, the pixel voltage corresponding to each image grayscale value in different temperature pixels can be adjusted, so that the liquid crystal display panel does not have obvious brightness difference when displaying the dark state image, thereby improving the liquid crystal display panel. In-plane uniformity. and, If the corresponding pixel voltage is adjusted by adjusting the color grayscale value corresponding to the grayscale value of the image, the in-plane uniformity of the liquid crystal display panel can be improved while maintaining the contrast.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧液晶顯示裝置 100‧‧‧Liquid crystal display device

110‧‧‧液晶顯示面板 110‧‧‧LCD panel

120‧‧‧背光模組 120‧‧‧Backlight module

121、123‧‧‧發光元件 121, 123‧‧‧Lighting elements

130‧‧‧時序控制器 130‧‧‧Sequence Controller

140‧‧‧閘極驅動器 140‧‧‧gate driver

150‧‧‧源極驅動器 150‧‧‧Source Driver

160‧‧‧伽瑪電壓產生器 160‧‧‧Gamma Voltage Generator

170‧‧‧記憶元件 170‧‧‧ memory components

210、220、510、520‧‧‧曲線 210, 220, 510, 520‧‧‧ curves

410‧‧‧電壓產生單元 410‧‧‧Voltage generating unit

420‧‧‧分壓單元 420‧‧ ‧pressure unit

CG‧‧‧色彩灰階值 CG‧‧‧Color grayscale value

CKV‧‧‧垂直時脈信號 CKV‧‧‧ vertical clock signal

CKH‧‧‧水平時脈信號 CKH‧‧‧ horizontal clock signal

Vcom‧‧‧共同電壓 Vcom‧‧‧Common voltage

STV‧‧‧啟動信號 STV‧‧‧ start signal

V1、V2、V3‧‧‧電壓 V1, V2, V3‧‧‧ voltage

VS‧‧‧視訊信號 VS‧‧‧ video signal

VR1~VR12‧‧‧伽瑪參考電壓 VR1~VR12‧‧‧ gamma reference voltage

VP‧‧‧畫素電壓 VP‧‧‧ pixel voltage

VGM‧‧‧伽瑪電壓 V GM ‧‧ gamma voltage

P1~P6‧‧‧畫素 P1~P6‧‧‧ pixels

L1~L6‧‧‧畫素列 L1~L6‧‧‧画素

S610~S650‧‧‧步驟 S610~S650‧‧‧Steps

圖1為依據本發明一實施例的液晶顯示裝置的系統示意圖。 1 is a system diagram of a liquid crystal display device in accordance with an embodiment of the present invention.

圖2為依據本發明一實施例的扭轉向列型液晶的特性曲線圖。 2 is a characteristic diagram of a twisted nematic liquid crystal according to an embodiment of the present invention.

圖3為依據本發明一實施例的伽瑪電壓產生器耦接記憶元件的系統示意圖。 3 is a schematic diagram of a system in which a gamma voltage generator is coupled to a memory element in accordance with an embodiment of the invention.

圖4為依據本發明一實施例的垂直配向型液晶的特性曲線圖。 4 is a characteristic diagram of a vertical alignment type liquid crystal according to an embodiment of the present invention.

圖5為依據本發明一實施例的驅動方法的流程圖。 FIG. 5 is a flow chart of a driving method according to an embodiment of the present invention.

S610~S640‧‧‧步驟 S610~S640‧‧‧Steps

Claims (17)

一種驅動方法,適用於一液晶顯示裝置,包括:接收一畫面資料;依據該畫面資料取得對應一目標畫素的一影像灰階值,其中該目標畫素為該液晶顯示裝置的一液晶顯示面板的多個畫素的其中之一;當該目標畫素的當下溫度為一第一溫度時,提供多個第一伽瑪電壓,並且選擇該些伽瑪電壓的其中之一作為該影像灰階值對應的畫素電壓;當該目標畫素的當下溫度為一第二溫度時,提供多個第二伽瑪電壓,並且選擇該些第二伽瑪電壓的其中之一作為該影像灰階值對應的畫素電壓;當該目標畫素的當下溫度為一第三溫度時,提供多個第三伽瑪電壓,並且選擇該些伽瑪電壓的其中之一作為該影像灰階值對應的畫素電壓,其中該些第三伽瑪電壓為依據該些第一伽瑪電壓及該些第二伽瑪電壓進行內插運算所取得;以及將該影像灰階值所對應的畫素電壓寫入該目標畫素。 A driving method is applicable to a liquid crystal display device, comprising: receiving a picture data; obtaining an image gray level value corresponding to a target pixel according to the picture data, wherein the target pixel is a liquid crystal display panel of the liquid crystal display device One of the plurality of pixels; when the current temperature of the target pixel is a first temperature, providing a plurality of first gamma voltages, and selecting one of the gamma voltages as the image gray scale a pixel voltage corresponding to the value; when the current temperature of the target pixel is a second temperature, providing a plurality of second gamma voltages, and selecting one of the second gamma voltages as the image grayscale value Corresponding pixel voltage; when the current temperature of the target pixel is a third temperature, providing a plurality of third gamma voltages, and selecting one of the gamma voltages as the corresponding grayscale value of the image a voltage, wherein the third gamma voltage is obtained by performing an interpolation operation according to the first gamma voltage and the second gamma voltage; and writing a pixel voltage corresponding to the grayscale value of the image The head Pixel. 如申請專利範圍第1項所述之驅動方法,其中該目標畫素的當下溫度決定於該目標畫素與該液晶顯示裝置的一背光模組的一發光元件間的最短距離。 The driving method of claim 1, wherein the current temperature of the target pixel is determined by a shortest distance between the target pixel and a light-emitting element of a backlight module of the liquid crystal display device. 如申請專利範圍第1項所述之驅動方法,其中當該影像灰階值小於等於一灰階臨界值時,該影像灰階值於不同當下溫度的該目標畫素中對應不同的畫素電壓,當該影 像灰階值大於該灰階臨界值時,該影像灰階值於不同當下溫度的該目標畫素中對應相同的畫素電壓。 The driving method of claim 1, wherein when the grayscale value of the image is less than or equal to a grayscale threshold, the grayscale value of the image corresponds to different pixel voltages in the target pixel at different current temperatures. When the shadow When the grayscale value is greater than the grayscale threshold, the grayscale value of the image corresponds to the same pixel voltage in the target pixel of different current temperatures. 如申請專利範圍第1項所述之驅動方法,其中提供該些第一伽瑪電壓的步驟包括:取得對應該第一溫度的多個第一伽瑪參考電壓;以及依據該些第一伽瑪參考電壓進行分壓以產生該些第一伽瑪電壓。 The driving method of claim 1, wherein the providing the first gamma voltage comprises: obtaining a plurality of first gamma reference voltages corresponding to the first temperature; and according to the first gamma The reference voltage is divided to generate the first gamma voltages. 如申請專利範圍第4項所述之驅動方法,其中提供該些第二伽瑪電壓的步驟包括:取得對應該第二溫度的多個第二伽瑪參考電壓;以及依據該些第二伽瑪參考電壓進行分壓以產生該些第二伽瑪電壓。 The driving method of claim 4, wherein the providing the second gamma voltage comprises: obtaining a plurality of second gamma reference voltages corresponding to the second temperature; and according to the second gamma The reference voltage is divided to generate the second gamma voltages. 如申請專利範圍第5項所述之驅動方法,其中部分的該些第一伽瑪參考電壓不同於該些第二伽瑪參考電壓中對應至同一影像灰階值的部分。 The driving method of claim 5, wherein the portions of the first gamma reference voltages are different from the portions of the second gamma reference voltages corresponding to the same image grayscale value. 如申請專利範圍第6項所述之驅動方法,其中該些第一伽瑪參考電壓與該些第二伽瑪參考電壓間不同的部分所對應的影像灰階值小於等於一灰階臨界值。 The driving method of claim 6, wherein the image grayscale value corresponding to the portion between the first gamma reference voltage and the second gamma reference voltage is less than or equal to a grayscale threshold. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為常態顯示白色(normally white)。 The driving method of claim 1, wherein the liquid crystal display panel is normally white. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為常態顯示黑色(normally black)。 The driving method of claim 1, wherein the liquid crystal display panel is normally black. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為一扭轉向列(Twisted Nematic,TN)型液 晶顯示面板。 The driving method of claim 1, wherein the liquid crystal display panel is a twisted nematic (TN) type liquid Crystal display panel. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為一垂直配向(Vertical Alignment,VA)型液晶顯示面板。 The driving method of claim 1, wherein the liquid crystal display panel is a vertical alignment (VA) type liquid crystal display panel. 一種驅動方法,適用於一液晶顯示裝置,包括:接收一畫面資料;依據該畫面資料取得對應一目標畫素的一影像灰階值,其中該目標畫素為該液晶顯示裝置的一液晶顯示面板的多個畫素的其中之一;當該目標畫素的當下溫度為一第一溫度時,提供多個第一伽瑪電壓,並且選擇該些伽瑪電壓的其中之一作為該影像灰階值對應的畫素電壓;當該目標畫素的當下溫度為一第二溫度時,提供多個第二伽瑪電壓,並且選擇該些第二伽瑪電壓的其中之一作為該影像灰階值對應的畫素電壓;以及將該影像灰階值所對應的畫素電壓寫入該目標畫素;其中,當該影像灰階值小於等於一灰階臨界值時,對應該影像灰階值的第一伽瑪電壓不同於對應該影像灰階值的第二伽瑪電壓,當該影像灰階值大於該灰階臨界值時,對應該影像灰階值的該第一伽瑪電壓相同於對應該影像灰階值的該第二伽瑪電壓。 A driving method is applicable to a liquid crystal display device, comprising: receiving a picture data; obtaining an image gray level value corresponding to a target pixel according to the picture data, wherein the target pixel is a liquid crystal display panel of the liquid crystal display device One of the plurality of pixels; when the current temperature of the target pixel is a first temperature, providing a plurality of first gamma voltages, and selecting one of the gamma voltages as the image gray scale a pixel voltage corresponding to the value; when the current temperature of the target pixel is a second temperature, providing a plurality of second gamma voltages, and selecting one of the second gamma voltages as the image grayscale value Corresponding pixel voltage; and writing a pixel voltage corresponding to the grayscale value of the image to the target pixel; wherein, when the grayscale value of the image is less than or equal to a grayscale threshold, corresponding to the grayscale value of the image The first gamma voltage is different from the second gamma voltage corresponding to the grayscale value of the image. When the grayscale value of the image is greater than the grayscale threshold, the first gamma voltage corresponding to the grayscale value of the image is the same as the pair Should image The second gamma voltage level values. 如申請專利範圍第12項所述之驅動方法,其中該目標畫素的當下溫度決定於該目標畫素與該液晶顯示裝置的一背光模組的一發光元件間的最短距離。 The driving method of claim 12, wherein the current temperature of the target pixel is determined by a shortest distance between the target pixel and a light-emitting element of a backlight module of the liquid crystal display device. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為常態顯示白色(normally white)。 The driving method of claim 1, wherein the liquid crystal display panel is normally white. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為常態顯示黑色(normally black)。 The driving method of claim 1, wherein the liquid crystal display panel is normally black. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為一扭轉向列(Twisted Nematic,TN)型液晶顯示面板。 The driving method of claim 1, wherein the liquid crystal display panel is a twisted nematic (TN) type liquid crystal display panel. 如申請專利範圍第1項所述之驅動方法,其中該液晶顯示面板為一垂直配向(Vertical Alignment,VA)型液晶顯示面板。 The driving method of claim 1, wherein the liquid crystal display panel is a vertical alignment (VA) type liquid crystal display panel.
TW99113471A 2010-04-28 2010-04-28 Driving method of lcd panel TWI423237B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99113471A TWI423237B (en) 2010-04-28 2010-04-28 Driving method of lcd panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99113471A TWI423237B (en) 2010-04-28 2010-04-28 Driving method of lcd panel

Publications (2)

Publication Number Publication Date
TW201137836A TW201137836A (en) 2011-11-01
TWI423237B true TWI423237B (en) 2014-01-11

Family

ID=46759691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99113471A TWI423237B (en) 2010-04-28 2010-04-28 Driving method of lcd panel

Country Status (1)

Country Link
TW (1) TWI423237B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567709B (en) * 2015-10-26 2017-01-21 友達光電股份有限公司 Display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW583624B (en) * 2000-09-27 2004-04-11 Ind Tech Res Inst Automatic Gamma correction system for display
TW200539099A (en) * 2004-03-19 2005-12-01 Sharp Kk Liquid crystal display device, driving method thereof, and electronic device
US20060007207A1 (en) * 2004-04-01 2006-01-12 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device and method of driving liquid crystal display device
US20090015532A1 (en) * 2007-07-12 2009-01-15 Renesas Technology Corp. Display device and driving circuit thereof
TW201013614A (en) * 2008-09-26 2010-04-01 Chi Mei Optoelectronics Corp Flat panel display apparatus and driving method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW583624B (en) * 2000-09-27 2004-04-11 Ind Tech Res Inst Automatic Gamma correction system for display
TW200539099A (en) * 2004-03-19 2005-12-01 Sharp Kk Liquid crystal display device, driving method thereof, and electronic device
US20060007207A1 (en) * 2004-04-01 2006-01-12 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device and method of driving liquid crystal display device
US20090015532A1 (en) * 2007-07-12 2009-01-15 Renesas Technology Corp. Display device and driving circuit thereof
TW201013614A (en) * 2008-09-26 2010-04-01 Chi Mei Optoelectronics Corp Flat panel display apparatus and driving method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567709B (en) * 2015-10-26 2017-01-21 友達光電股份有限公司 Display panel

Also Published As

Publication number Publication date
TW201137836A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
US8803925B2 (en) Liquid crystal display and scanning back light driving method thereof
US9240144B2 (en) Liquid crystal display and local dimming control method thereof
US8982036B2 (en) Liquid crystal display and local dimming control method thereof capable of reducing the size of an operation algorithm
US9019194B2 (en) Display device and driving method to control frequency of PWM signal
CN111210775B (en) Display device and driving method thereof
US9218772B2 (en) Backlight driver of liquid crystal display device and method of driving the same
KR101560240B1 (en) Backlight driver and method for driving the same and liquid crystal display device using the same
US7864152B2 (en) Liquid crystal display of field sequential color type and method for driving the same
TWI426492B (en) Liquid crystal display and method of local dimming thereof
KR101308207B1 (en) Liquid crystal display device and method driving of the same
US8654052B2 (en) Method and device for driving local dimming in liquid crystal display device
WO2013080985A1 (en) Control unit, display device including control unit, and control method
KR101324552B1 (en) liquid crystal display device and method of driving the same
JP2019040036A (en) Electronic apparatus, display, and display control method
JP4559899B2 (en) Liquid crystal display device and driving method of liquid crystal display device
KR20120054959A (en) Methode for compensating data and display apparatus performing the method
KR101705903B1 (en) Liquid crystal display
KR102349501B1 (en) Liquid Crystal Display Device and Driving Method thereof
TWI423237B (en) Driving method of lcd panel
KR101615757B1 (en) Liquid crystal display and overdrive compensation method thereof
KR101076449B1 (en) Global backlight dimming method and liquid crystal display using the same
KR20090058055A (en) Driving circuit and liquid crystal display device including the same
KR102135915B1 (en) Liquid Crystal Display Device and Gamma Correction Method thereof
KR101635220B1 (en) Liquid crystal display and driving method thereof
KR101615769B1 (en) Liquid Crystal Display And Driving Method Thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees