TWI422824B - Human motion identification and locating method - Google Patents

Human motion identification and locating method Download PDF

Info

Publication number
TWI422824B
TWI422824B TW99142308A TW99142308A TWI422824B TW I422824 B TWI422824 B TW I422824B TW 99142308 A TW99142308 A TW 99142308A TW 99142308 A TW99142308 A TW 99142308A TW I422824 B TWI422824 B TW I422824B
Authority
TW
Taiwan
Prior art keywords
user
sensing signal
signal
angular velocity
human motion
Prior art date
Application number
TW99142308A
Other languages
Chinese (zh)
Other versions
TW201224459A (en
Inventor
Chi Wen Teng
Tung Wu Lu
Original Assignee
Inst Information Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inst Information Industry filed Critical Inst Information Industry
Priority to TW99142308A priority Critical patent/TWI422824B/en
Publication of TW201224459A publication Critical patent/TW201224459A/en
Application granted granted Critical
Publication of TWI422824B publication Critical patent/TWI422824B/en

Links

Landscapes

  • Navigation (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

人體運動特徵辨識與定位方法Human motion feature recognition and localization method

本發明為一種人體運動特徵辨識與定位方法,特別是一種利用慣性量測裝置的人體運動特徵辨識與定位方法。The invention relates to a human body motion feature recognition and positioning method, in particular to a human body motion feature recognition and positioning method using an inertial measurement device.

目前的行動定位技術大多利用接收全球定位系統(global positioning system,簡稱GPS)或無線區域網路(wireless local area network,簡稱wireless LAN)之訊號以提供定位數據,然而當GPS被建築或森林阻隔時,便無法接收定位訊號;wireless LAN的定位也會因空間幾何的複雜性(例如大量的遊客)而嚴重影響其精度。Most of the current mobile positioning technologies use signals from a global positioning system (GPS) or a wireless local area network (wireless local area network) to provide positioning data. However, when the GPS is blocked by buildings or forests, The positioning signal cannot be received; the positioning of the wireless LAN will also seriously affect the accuracy due to the complexity of the space geometry (such as a large number of tourists).

慣性定位則偵測移動物體加速度進以計算其位移,因此不受外界環境影響。加速度儀對移動物體加速度之偵測精確度越高則價格越貴。Inertial positioning detects the acceleration of the moving object to calculate its displacement, so it is not affected by the external environment. The higher the accuracy of the accelerometer's detection of the acceleration of a moving object, the more expensive it is.

由於加速度儀測量加速度會產生誤差,在時間上對加速度作二次積分所得之位移誤差會雖著時間而更加放大。Since the accelerometer measures the acceleration to produce an error, the displacement error obtained by quadratic integration of the acceleration in time will be more amplified with time.

另外,不受外界環境影響的慣性定位多用於飛機、汽車等機械,由於其運動之加減速度明顯且平順。對於運動模式複雜的行動者(例如動物、人類等)而言,不能套用傳統慣性定位。In addition, inertial positioning that is not affected by the external environment is mostly used in aircraft, automobiles, and other machinery, because the acceleration and deceleration of its motion is obvious and smooth. For inert actors with motion patterns (eg animals, humans, etc.), traditional inertial positioning cannot be applied.

本發明的一實施例提供一種人體運動特徵辨識方法,用以辨識一使用者的一運動狀態,包括:接收配戴在該使用者的一腰部以上的一第一慣性量測裝置傳送的一第一加速度與一第一角速度;接收配戴在該使用者的一小腿或一腳踝上的一第二慣性量測裝置傳送的一第二角速度;根據該第一加速度與該第一加速度的一變化量,判斷該使用者的該運動狀態。An embodiment of the present invention provides a human body motion feature recognition method for identifying a motion state of a user, including: receiving a first child inertial measurement device that is worn over a waist of the user. An acceleration and a first angular velocity; receiving a second angular velocity transmitted by a second inertial measurement device mounted on a lower leg or an ankle of the user; and a change according to the first acceleration and the first acceleration The amount is determined by the user's state of motion.

本發明的另一實施例提供一種人體運動特徵辨識與定位方法,包括:透過配戴在使用者的腰部或腰部以上的一第一慣性量測裝置量測一垂直方向的一加速度並得到一第一感測信號以及量測一水平方向的一角速度並得到一第二感測信號;根據該第一感測信號與該第二感測信號執行一腳跟偵測程序;根據該第一感測信號與該第二感測信號執行一行為辨識程序以產生一行為辨識結果;儲存兩次腳跟著地之間的複數個資料;接收配戴在該使用者的一小腿或一腳踝上的一第二慣性量測裝置傳送的一第三感測信號;根據該第三感測信號計算一垂直角速度;根據該等資料與該垂直角速度計算該使用者的一移動距離並產生一定位資訊。Another embodiment of the present invention provides a human body motion feature recognition and positioning method, including: measuring an acceleration in a vertical direction by a first inertial measurement device worn on a waist or waist of a user and obtaining a first a sensing signal and measuring an angular velocity in a horizontal direction and obtaining a second sensing signal; performing a heel detection procedure according to the first sensing signal and the second sensing signal; according to the first sensing signal Performing a behavior recognition program with the second sensing signal to generate a behavior recognition result; storing a plurality of data between the heel strikes; receiving a second worn on the user's calf or an ankle a third sensing signal transmitted by the inertia measuring device; calculating a vertical angular velocity according to the third sensing signal; calculating a moving distance of the user from the vertical angular velocity according to the data and generating a positioning information.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is for the purpose of illustration and not limitation.

第1圖為根據本發明之人體運動特徵辨識與定位方法所需的慣性量測裝置的配戴示意圖。在本發明中,人體運動特徵辨識與定位方法需利用兩個慣性量測裝置(initial measurement unit,IMU)來完成,其中一第一慣性量測裝置必須配戴在使用者的上半身(腰部或腰部以上的位置),如配戴位置11與12。而一第二慣性量測裝置則配戴在使用者的小腿或腳踝上,如配戴位置13。第一慣性量測裝置用以量測使用者的一垂直加速度與一水平方向的第一角速度,用以判斷使用者的一運動狀態。第二慣性量測裝置用以量測使用者的一垂直方向的第二角速度,用以判斷使用者的移動距離,做為一定位的參考。該運動狀態包括上樓梯、下樓梯、起立、坐下...等等。慣性量測裝置可以被一外殼(housing)包覆。Fig. 1 is a schematic view showing the wearing of the inertial measurement device required for the human body motion feature recognition and positioning method according to the present invention. In the present invention, the human motion feature recognition and positioning method is completed by using two initial measurement units (IMUs), wherein a first inertial measurement device must be worn on the upper body (waist or waist) of the user. Above position), such as wearing positions 11 and 12. A second inertial measurement device is worn on the user's lower leg or ankle, such as the wearing position 13. The first inertial measuring device is configured to measure a vertical acceleration of the user and a first angular velocity in a horizontal direction for determining a motion state of the user. The second inertial measurement device is configured to measure a second angular velocity of the user in a vertical direction to determine the moving distance of the user as a reference for positioning. The state of motion includes going up the stairs, going down the stairs, standing up, sitting down, etc. The inertial measurement device can be covered by a housing.

第2圖為根據本發明之一人體運動特徵辨識方法的流程圖。在步驟S21中,一電子裝置接收配戴在使用者的腰部或腰部以上的一第一慣性量測裝置傳送的一第一加速度與一第一角速度。在步驟S22中,該電子裝置接收配戴在使用者的小腿或腳踝上的一第二慣性量測裝置傳送的一第二角速度。第一加速度為使用者的一垂直加速度,第一角速度為使用者的水平方向角速度,第二角速度為一垂直方向的角速度。在步驟S23中,對接收到的第一加速度、第一角速度與第二角速度進行信號轉換,信號轉換的方式可能是小波轉換或是類比數位信號轉換。接著,在步驟S24中,根據該第一加速度、該第一角速度與該第二角速度判斷使用者的一運動狀態。Fig. 2 is a flow chart showing a method for recognizing human motion characteristics according to the present invention. In step S21, an electronic device receives a first acceleration and a first angular velocity transmitted by a first inertial measurement device that is worn over the waist or waist of the user. In step S22, the electronic device receives a second angular velocity transmitted by a second inertial measurement device that is worn on the user's lower leg or ankle. The first acceleration is a vertical acceleration of the user, the first angular velocity is the horizontal angular velocity of the user, and the second angular velocity is an angular velocity in the vertical direction. In step S23, signal conversion is performed on the received first acceleration, the first angular velocity and the second angular velocity, and the manner of signal conversion may be wavelet conversion or analog digital signal conversion. Next, in step S24, a motion state of the user is determined based on the first acceleration, the first angular velocity, and the second angular velocity.

第3圖為根據本發明之一慣性量測裝置的一實施例的示意圖。慣性量測裝置31為配戴在使用者的腰部或腰部以上的慣性量測裝置,包括加速度感測器32、角速度感測器33、控制單元34與發送單元35。加速度感測器32用以感測使用者的一垂直加速度並產生一第一感測信號。角速度感測器33用以感測使用者的水平方向的一角速度並產生一第二感測信號。控制單元34接收該第一感測信號與該第二感測信號,產生一垂直加速度值與一水平角速度值,並透過發送單元35傳送到一接收裝置。發送單元35利用一無線網路界面,藍芽傳輸界面,紅外線界面,無線射頻界面或是其他非接觸式的連接方式與接收裝置進行溝通。Figure 3 is a schematic illustration of an embodiment of an inertial measurement device in accordance with the present invention. The inertia measurement device 31 is an inertial measurement device that is worn over the waist or waist of the user, and includes an acceleration sensor 32, an angular velocity sensor 33, a control unit 34, and a transmission unit 35. The acceleration sensor 32 is configured to sense a vertical acceleration of the user and generate a first sensing signal. The angular velocity sensor 33 is configured to sense an angular velocity of the user in a horizontal direction and generate a second sensing signal. The control unit 34 receives the first sensing signal and the second sensing signal, generates a vertical acceleration value and a horizontal angular velocity value, and transmits the signal to a receiving device through the transmitting unit 35. The sending unit 35 communicates with the receiving device by using a wireless network interface, a Bluetooth transmission interface, an infrared interface, a wireless RF interface or other non-contact connection.

第4圖為根據本發明之一慣性量測裝置的另一實施例的示意圖。慣性量測裝置41為配戴在使用者的小腿或腳踝上的一慣性量測裝置,包括角速度感測器42、控制單元43與發送單元44。角速度感測器42用以量測使用者的一垂直方向的角速度,並產生一第三感測信號。控制單元43接收並轉換該第三感測信號為一垂直角速度值,並透過發送單元44傳送到一接收裝置。發送單元44利用一無線網路界面,藍芽傳輸界面,紅外線界面,無線射頻界面或是其他非接觸式的連接方式與接收裝置進行溝通。Figure 4 is a schematic illustration of another embodiment of an inertial measurement device in accordance with the present invention. The inertia measurement device 41 is an inertial measurement device worn on the user's lower leg or ankle, and includes an angular velocity sensor 42, a control unit 43, and a transmission unit 44. The angular velocity sensor 42 is configured to measure an angular velocity of a vertical direction of the user and generate a third sensing signal. The control unit 43 receives and converts the third sensing signal to a vertical angular velocity value and transmits it to a receiving device through the transmitting unit 44. The sending unit 44 communicates with the receiving device by using a wireless network interface, a Bluetooth transmission interface, an infrared interface, a wireless RF interface or other non-contact connection.

第5圖為根據本發明之一人體運動特徵辨識方法的一實施例的流程圖。在步驟S51中,先透過配戴在使用者的腰部或腰部以上的一第一慣性量測裝置量測一垂直加速度,並得到一第一感測信號。接著在步驟S52中,對該第一感測信號進行信號轉換,如小波信號轉換,以得到一垂直加速度值。在步驟S53中,判斷該垂直加速度值是否大於一第一臨界值,若是,則可判斷此時使用者的運動狀態為一下樓梯狀態,若否,則進入步驟S55。在步驟S54中,量測一中間加速度(antero-posterior acceleration),並得到一第二感測信號。接著著在步驟S55中,對該第二感測信號進行信號轉換,如小波信號轉換,以得到一中間加速度值。在步驟S56中,判斷該中間加速度值是否大於一第二臨界值,若是,則則可判斷此時使用者的運動狀態為一走路狀態。若不是,則進入步驟S57,執行一運動模式比對程序。在步驟S57中,利用多個比對規則以判斷使用者目前的運動狀態,而在本實施例中,透過預設的比對規則可以判斷出使用者目前的運動狀態是上樓梯狀況、起立狀態或坐下狀態,但非將本發明限於此。起立狀態是指使用者原本是坐著,後來站起來的狀態。坐下狀態是指使用者原本是站著,後來坐下的狀態。Fig. 5 is a flow chart showing an embodiment of a human body motion feature recognition method according to the present invention. In step S51, a vertical acceleration is first measured by a first inertial measuring device worn on the waist or waist of the user, and a first sensing signal is obtained. Next, in step S52, the first sensing signal is subjected to signal conversion, such as wavelet signal conversion, to obtain a vertical acceleration value. In step S53, it is determined whether the vertical acceleration value is greater than a first threshold value. If so, it can be determined that the user's motion state is a stair state at this time, and if no, the process proceeds to step S55. In step S54, an antero-posterior acceleration is measured and a second sensing signal is obtained. Next, in step S55, the second sensing signal is subjected to signal conversion, such as wavelet signal conversion, to obtain an intermediate acceleration value. In step S56, it is determined whether the intermediate acceleration value is greater than a second threshold, and if so, it can be determined that the user's motion state is a walking state. If not, the process proceeds to step S57, where a motion mode comparison program is executed. In step S57, a plurality of comparison rules are used to determine the current state of motion of the user. In the embodiment, the current comparison state of the user is determined by the preset comparison rule to be the state of going up the stairs and standing up. Or sit down, but the invention is not limited thereto. The standing state refers to a state in which the user originally sat and then stood up. The sitting state refers to the state in which the user originally stood and then sat down.

第6圖為根據本發明之一人體運動特徵辨識與定位方法的一實施例的流程圖。在步驟S61中,透過配戴在使用者的腰部或腰部以上的一第一慣性量測裝置量測一垂直加速度並得到一第一感測信號以及量測一水平角速度並得到一第二感測信號。接著,在步驟S62中,對該第一感測信號與該第二感測信號進行雜訊過濾。在步驟S63中,對濾過雜訊的該第一感測信號與該第二感測信號進行信號轉換,如小波轉換或類比數位轉換。接著在步驟S64中對轉換後的信號進行信號處理,以產生複數個處理值。在步驟S65中,執行一腳跟著地偵測程序,用以偵測使用者的走路狀態,以做為計算使用者行走距離的參考。Fig. 6 is a flow chart showing an embodiment of a method for recognizing and locating a human body motion feature according to the present invention. In step S61, a vertical acceleration is measured by a first inertial measuring device worn on the waist or waist of the user, and a first sensing signal is obtained and a horizontal angular velocity is measured and a second sensing is obtained. signal. Next, in step S62, noise filtering is performed on the first sensing signal and the second sensing signal. In step S63, the first sensing signal filtered by the noise and the second sensing signal are subjected to signal conversion, such as wavelet conversion or analog-to-digital conversion. Signal processing is then performed on the converted signal in step S64 to generate a plurality of processed values. In step S65, a heel strike detection program is executed to detect the user's walking state as a reference for calculating the user's walking distance.

在步驟S66中,接收轉換後的信號並執行一行為辨識程序,用以辨識使用者目前的運動狀態。在步驟S67中,接收該行為辨識程序的一辨識結果。在步驟S68中,根據該辨識結果與該腳跟著地偵測結果,計算兩次腳跟著地間,使用者的行走距離。In step S66, the converted signal is received and a behavior recognition program is executed to identify the current motion state of the user. In step S67, a recognition result of the behavior recognition program is received. In step S68, based on the identification result and the heel strike detection result, the distance traveled between the heel strikes and the user is calculated.

為更清楚說明,請參考第7圖。第7圖為根據本發明之一腳跟著地偵測的一實施例的流程圖。在步驟S71中,接收來自配戴在使用者的小腿或腳踝上的一慣性量測裝置傳送的對應一加速度的一感測信號。在步驟S72中,對該感測信號進行取樣,取樣頻率可能為50Hz。接著在步驟S73中,對取樣後的信號進行雜訊過濾。在步驟S74中,根據過濾後的雜訊計算一偵測值。在步驟S75中,判斷該偵測值是否大於一臨界值。在本實施例中,臨界值為0.5且偵測值的範圍位於0與1之間。若偵測值沒有大於0.5,則回到步驟S71中。若偵測值大於0.5,產生一腳跟著地信號,並儲存兩次腳跟著地信號間的資料,做為後續計算使用者移動距離的參考。For a clearer explanation, please refer to Figure 7. Figure 7 is a flow diagram of an embodiment of heel landing detection in accordance with the present invention. In step S71, a sensing signal corresponding to an acceleration transmitted from an inertial measuring device worn on the user's lower leg or ankle is received. In step S72, the sensing signal is sampled, and the sampling frequency may be 50 Hz. Next, in step S73, noise filtering is performed on the sampled signal. In step S74, a detected value is calculated based on the filtered noise. In step S75, it is determined whether the detected value is greater than a critical value. In this embodiment, the threshold is 0.5 and the range of detected values is between 0 and 1. If the detected value is not greater than 0.5, the process returns to step S71. If the detected value is greater than 0.5, a heel strike signal is generated, and the data between the heel strike signals is stored twice as a reference for subsequent calculation of the user's moving distance.

第8圖為根據本發明之一使用者定位方法的一實施例的流程圖。在步驟S81中,接收使用者兩次腳跟著地間的資料。接著,在步驟S82中,計算使用者的移動距離。接著,在步驟S83中,根據配戴在使用者的腰部或腰部以上的一慣性量測裝置傳送來的一角速度值與使用者的一初始方向,計算使用者的一方向。在步驟S84中,進行一地圖校正程序。地圖校正程序是根據使用者的方向與移動距離,判斷使用者的行進方向是否有大方向的改變,如轉彎。如果有發現到的話,則透過該程序會將使用者先前的記錄資料清空,重新接收新的資料。如此一來,對於使用者的定位的準確度是可以提高的。接著在步驟S85中,根據使用者的一初始位置、移動距離與方向,轉換為一坐標資訊,並且在步驟S86中,根據該坐標資訊於該地圖上顯示使用者的位置。Figure 8 is a flow diagram of an embodiment of a user positioning method in accordance with the present invention. In step S81, the user's data between the heel and the ground is received twice. Next, in step S82, the moving distance of the user is calculated. Next, in step S83, a direction of the user is calculated based on an angular velocity value transmitted from an inertial measurement device worn above the waist or waist of the user and an initial direction of the user. In step S84, a map correction procedure is performed. The map correction program determines whether the user's direction of travel changes in a large direction, such as a turn, based on the direction and distance of the user. If it is found, the user will clear the previous record data and re-receive the new data through the program. As a result, the accuracy of the positioning of the user can be improved. Next, in step S85, a coordinate information is converted according to an initial position, a moving distance and a direction of the user, and in step S86, the position of the user is displayed on the map according to the coordinate information.

第9A圖為一計算使用者移動距離的一實施例的示意圖。透過配戴在使用者的小腿或腳踝上的一慣性量測裝置傳送的一角加速度,可以計算出夾角φ1與φ2。φ1是垂直地面方向的一鉛垂線與前腿的夾角。φ2是垂直地面方向的一鉛垂線與後腿的夾角。在本實施例中,使用者的步長是利用一人體運動數學模型進行計算所得到,人體運動數學模型如下所示:Figure 9A is a schematic diagram of an embodiment of calculating the distance traveled by a user. The angles φ1 and φ2 can be calculated by an angular acceleration transmitted by an inertial measuring device worn on the user's lower leg or ankle. Φ1 is the angle between a vertical line and the front leg in the vertical ground direction. Φ2 is the angle between a vertical line and the rear leg in the vertical ground direction. In this embodiment, the user's step size is obtained by using a mathematical model of human motion, and the mathematical model of the human motion is as follows:

d mod el =f (L ,P ,Φ 1,Φ 2,θ )=N (l sinΦ 1+L sinΦ 2+P sinθ ) d mod el = f ( L , P , Φ 1, Φ 2, θ )= N ( l sin Φ 1+ L sin Φ 2+ P sin θ )

參數說明如下:The parameters are as follows:

φ1:垂直地面方向的一鉛垂線與前腿的夾角Φ1: the angle between a vertical line and the front leg in the vertical ground direction

φ2:垂直地面方向的一鉛垂線與後腿的夾角Φ2: the angle between a vertical line and the rear leg in the vertical ground direction

θ:骨盆旋轉的角度θ: angle of pelvic rotation

N:腳跟著地的次數N: The number of heels hitting the ground

L、P:腿長與骨盆寬L, P: leg length and pelvic width

第9B圖為一使用者上樓的示意圖。為計算使用者上樓的移動距離,利用另一數學模型來計算使用者的移動距離。數學模型如下所示:Figure 9B is a schematic diagram of a user going upstairs. In order to calculate the moving distance of the user upstairs, another mathematical model is used to calculate the moving distance of the user. The mathematical model is as follows:

d=(L-0.18)tan(Φ 1+Φ 2)d=(L-0.18)tan( Φ 1+ Φ 2)

第9C圖為一使用者下樓的示意圖。為計算使用者下樓的移動距離,利用另一數學模型來計算使用者的移動距離。數學模型如下所示:Figure 9C is a schematic diagram of a user going downstairs. In order to calculate the moving distance of the user downstairs, another mathematical model is used to calculate the moving distance of the user. The mathematical model is as follows:

d=1.7P sin(Φ 1+Φ 2)d=1.7 P sin( Φ 1+ Φ 2)

要注意的是,使用者在上下樓梯時,其後腳與垂直地面方向的鉛垂線之間的夾角應大於其前腳與垂直地面方向的鉛垂線之間的夾角。也就是φ2>φ1。因此,可以利用這樣的特徵,設計一判斷機制,用以避免計算接收到錯誤的資訊。請參考第9D圖。第9D圖為根據本發明之一步長計算裝置的一實施例的示意圖。步長計算單元91包括角度計算裝置92、判斷單元93以及步長計算模組94。角度計算裝置92接收配戴在使用者的小腿或腳踝上的一慣性量測裝置傳送的一角加速度,計算垂直地面方向的一鉛垂線與使用者前腿的夾角φ1,與垂直地面方向的鉛垂線與使用者後腿的夾角φ2。判斷單元93先比較角度φ1與φ2的大小。若φ1大於φ2,則表示角度計算裝置92的計算結果有誤,不會將計算結果傳送給步長計算模組94。若φ1小於φ2,則表示角度計算裝置92的計算結果正確,將計算結果傳送給步長計算模組94,以計算使用者的步長。It should be noted that when the user goes up and down the stairs, the angle between the rear foot and the vertical line in the vertical ground direction should be larger than the angle between the front foot and the vertical line in the vertical ground direction. That is, φ2>φ1. Therefore, such a feature can be utilized to design a decision mechanism to avoid calculating the information that received the error. Please refer to Figure 9D. Figure 9D is a schematic illustration of an embodiment of a step size computing device in accordance with the present invention. The step size calculation unit 91 includes an angle calculation device 92, a determination unit 93, and a step size calculation module 94. The angle calculating device 92 receives an angular acceleration transmitted by an inertial measuring device worn on the lower leg or the ankle of the user, and calculates an angle φ1 between a vertical line in the vertical ground direction and the front leg of the user, and a vertical line in the vertical ground direction. The angle φ2 with the user's hind legs. The judging unit 93 first compares the magnitudes of the angles φ1 and φ2. If φ1 is larger than φ2, it means that the calculation result of the angle calculating means 92 is incorrect, and the calculation result is not transmitted to the step size calculation module 94. If φ1 is smaller than φ2, it means that the calculation result of the angle calculating means 92 is correct, and the calculation result is transmitted to the step size calculation module 94 to calculate the step size of the user.

第10圖為一使用者方向計算方法的一實施例的流程圖。在步驟S101中,先給定使用者一初始方向。接著在步驟S102中,接收配戴在使用者的腰部或腰部以上的一慣性量測裝置傳送來的一角速度值,計算使用者的一轉向角度。接著在步驟S103中,根據初始方向與該轉向角度,計算使用者的一目前方向。Figure 10 is a flow chart of an embodiment of a user direction calculation method. In step S101, the user is given an initial direction. Next, in step S102, an angular velocity value transmitted by an inertial measuring device worn on the waist or waist of the user is received, and a steering angle of the user is calculated. Next, in step S103, a current direction of the user is calculated based on the initial direction and the steering angle.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

11、12、13‧‧‧配戴位置11, 12, 13‧‧‧ wearing position

31‧‧‧慣性量測裝置31‧‧‧Inertial measuring device

32‧‧‧加速度感測器32‧‧‧Acceleration sensor

33‧‧‧角速度感測器33‧‧‧Angle speed sensor

34‧‧‧控制單元34‧‧‧Control unit

35‧‧‧發送單元35‧‧‧Send unit

41‧‧‧慣性量測裝置41‧‧‧Inertial measuring device

42‧‧‧角速度感測器42‧‧‧Angle speed sensor

43‧‧‧控制單元43‧‧‧Control unit

44‧‧‧發送單元44‧‧‧Send unit

91‧‧‧步長計算單元91‧‧‧Step calculation unit

92‧‧‧角度計算裝置92‧‧‧Angle computing device

93‧‧‧判斷單元93‧‧‧judging unit

94‧‧‧步長計算模組94‧‧‧Step calculation module

第1圖為根據本發明之人體運動特徵辨識與定位方法所需的慣性量測裝置的配戴示意圖。Fig. 1 is a schematic view showing the wearing of the inertial measurement device required for the human body motion feature recognition and positioning method according to the present invention.

第2圖為根據本發明之一人體運動特徵辨識方法的流程圖。Fig. 2 is a flow chart showing a method for recognizing human motion characteristics according to the present invention.

第3圖為根據本發明之一慣性量測裝置的一實施例的示意圖。Figure 3 is a schematic illustration of an embodiment of an inertial measurement device in accordance with the present invention.

第4圖為根據本發明之一慣性量測裝置的另一實施例的示意圖。Figure 4 is a schematic illustration of another embodiment of an inertial measurement device in accordance with the present invention.

第5圖為根據本發明之一人體運動特徵辨識方法的一實施例的流程圖。Fig. 5 is a flow chart showing an embodiment of a human body motion feature recognition method according to the present invention.

第6圖為根據本發明之一人體運動特徵辨識與定位方法的一實施例的流程圖。Fig. 6 is a flow chart showing an embodiment of a method for recognizing and locating a human body motion feature according to the present invention.

第7圖為根據本發明之一腳跟著地偵測的一實施例的流程圖。Figure 7 is a flow diagram of an embodiment of heel landing detection in accordance with the present invention.

第8圖為根據本發明之一使用者定位方法的一實施例的流程圖。Figure 8 is a flow diagram of an embodiment of a user positioning method in accordance with the present invention.

第9A圖為一計算使用者移動距離的一實施例的示意圖。Figure 9A is a schematic diagram of an embodiment of calculating the distance traveled by a user.

第9B圖為一使用者上樓的示意圖。Figure 9B is a schematic diagram of a user going upstairs.

第9C圖為一使用者下樓的示意圖。Figure 9C is a schematic diagram of a user going downstairs.

第9D圖為根據本發明之一步長計算裝置的一實施例的示意圖。Figure 9D is a schematic illustration of an embodiment of a step size computing device in accordance with the present invention.

第10圖為一使用者方向計算方法的一實施例的流程圖Figure 10 is a flow chart of an embodiment of a user direction calculation method

Claims (4)

一種人體運動特徵辨識與定位方法,包括:透過配戴在使用者的腰部或腰部以上的一第一慣性量測裝置量測一垂直方向的一加速度並得到一第一感測信號以及量測一水平方向的一角速度並得到一第二感測信號;根據該第一感測信號與該第二感測信號執行一腳跟偵測程序;根據該第一感測信號與該第二感測信號執行一行為辨識程序以產生一行為辨識結果;儲存兩次腳跟著地之間的複數個資料;接收配戴在該使用者的一小腿或一腳踝上的一第二慣性量測裝置傳送的一第三感測信號;根據該第三感測信號計算一垂直角速度;根據該等資料與該垂直角速度計算該使用者的一移動距離並產生一定位資訊;設定該使用者的一初始方向;根據該第一感測信號產生一垂直加速度;根據該第二感測信號產生一水平角速度;根據該水平角速度計算該使用者的一轉向角度;以及根據該初始方向與該轉向角度產生該使用者的一目前方向。A human motion feature recognition and positioning method includes: measuring a vertical acceleration by a first inertial measurement device worn on a waist or waist of a user and obtaining a first sensing signal and measuring one And a second sensing signal is obtained at a corner speed in the horizontal direction; performing a heel detection procedure according to the first sensing signal and the second sensing signal; performing according to the first sensing signal and the second sensing signal a behavior recognition program to generate a behavior identification result; storing a plurality of data between the heel strikes; receiving a second inertial measurement device worn on a lower leg or an ankle of the user a three sensing signal; calculating a vertical angular velocity according to the third sensing signal; Calculating a moving distance of the user according to the vertical angular velocity and generating a positioning information; setting an initial direction of the user; generating a vertical acceleration according to the first sensing signal; and according to the second sensing signal Generating a horizontal angular velocity; calculating a steering angle of the user based on the horizontal angular velocity; and generating a current direction of the user based on the initial direction and the steering angle. 如申請專利範圍第1項所述之人體運動特徵辨識與定位方法,其中該定位資訊更依據該使用者的該初始方向與目前方向所決定。 The method for identifying and locating a human motion feature according to claim 1, wherein the positioning information is determined according to the initial direction and the current direction of the user. 如申請專利範圍第1項所述之人體運動特徵辨識與 定位方法,其中該腳跟偵測程序包括:對該第一感測信號與該第二感測信號進行一取樣程序以產生一第一取樣信號與一第二取樣信號;根據該第一取樣信號與該第二取樣信號產生複數個偵測值;以及當該偵測值大於一臨界值時,產生一腳跟著地信號。 Identification of human motion characteristics as described in item 1 of the patent application scope The positioning method includes: performing a sampling process on the first sensing signal and the second sensing signal to generate a first sampling signal and a second sampling signal; according to the first sampling signal The second sampled signal generates a plurality of detected values; and when the detected value is greater than a threshold, a heel strike signal is generated. 如申請專利範圍第3項所述之人體運動特徵辨識與定位方法,其中該臨界值為0.5。 The method for identifying and locating a human motion feature according to claim 3, wherein the threshold is 0.5.
TW99142308A 2010-12-06 2010-12-06 Human motion identification and locating method TWI422824B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99142308A TWI422824B (en) 2010-12-06 2010-12-06 Human motion identification and locating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99142308A TWI422824B (en) 2010-12-06 2010-12-06 Human motion identification and locating method

Publications (2)

Publication Number Publication Date
TW201224459A TW201224459A (en) 2012-06-16
TWI422824B true TWI422824B (en) 2014-01-11

Family

ID=46725870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99142308A TWI422824B (en) 2010-12-06 2010-12-06 Human motion identification and locating method

Country Status (1)

Country Link
TW (1) TWI422824B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716258B (en) * 2019-01-24 2021-01-11 日商富士通股份有限公司 Information processing program, information processing method and information processing system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468646B (en) * 2012-07-11 2015-01-11 Univ Nat Cheng Kung Calculation method of step distance of computing device
CN110260860B (en) * 2019-06-20 2023-06-23 武汉大学 Indoor movement measurement positioning and attitude determination method and system based on foot inertial sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725380A (en) * 2005-12-16 2007-07-01 Ind Tech Res Inst Motion recognition system and method for controlling electronic devices
TW200745514A (en) * 2006-04-21 2007-12-16 Andrea Wimmer Pedometer
US20080146968A1 (en) * 2006-12-14 2008-06-19 Masuo Hanawaka Gait analysis system
CN101579238A (en) * 2009-06-15 2009-11-18 吴健康 Human motion capture three dimensional playback system and method thereof
CN201387660Y (en) * 2009-04-28 2010-01-20 中国科学院合肥物质科学研究院 Automatic detecting and alarming system for human body falling-over
CN101743478A (en) * 2007-05-14 2010-06-16 星克跃尔株式会社 Method and apparatus for decide vertical travel condition using sensor
US20100280792A1 (en) * 2008-01-17 2010-11-04 Miguel Fernando Paiva Velhote Correia Portable device and method for measurement and calculation of dynamic parameters of pedestrian locomotion
CN101894252A (en) * 2010-03-29 2010-11-24 天津大学 Walking movement classification method based on triaxial acceleration transducer signals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725380A (en) * 2005-12-16 2007-07-01 Ind Tech Res Inst Motion recognition system and method for controlling electronic devices
TW200745514A (en) * 2006-04-21 2007-12-16 Andrea Wimmer Pedometer
US20080146968A1 (en) * 2006-12-14 2008-06-19 Masuo Hanawaka Gait analysis system
CN101743478A (en) * 2007-05-14 2010-06-16 星克跃尔株式会社 Method and apparatus for decide vertical travel condition using sensor
US20100280792A1 (en) * 2008-01-17 2010-11-04 Miguel Fernando Paiva Velhote Correia Portable device and method for measurement and calculation of dynamic parameters of pedestrian locomotion
CN201387660Y (en) * 2009-04-28 2010-01-20 中国科学院合肥物质科学研究院 Automatic detecting and alarming system for human body falling-over
CN101579238A (en) * 2009-06-15 2009-11-18 吴健康 Human motion capture three dimensional playback system and method thereof
CN101894252A (en) * 2010-03-29 2010-11-24 天津大学 Walking movement classification method based on triaxial acceleration transducer signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716258B (en) * 2019-01-24 2021-01-11 日商富士通股份有限公司 Information processing program, information processing method and information processing system

Also Published As

Publication number Publication date
TW201224459A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
TWI490497B (en) Inertial device, method, and storage medium
CA3023844C (en) Dead-reckoning drift compensation using personal gait
CN107636420B (en) Techniques for pedestrian dead reckoning
JP5644312B2 (en) Walking state display system
JP5728815B2 (en) Object detection device
CN107218938A (en) The Wearable pedestrian navigation localization method and equipment aided in based on modelling of human body motion
Tumkur et al. Modeling human walking for step detection and stride determination by 3-axis accelerometer readings in pedometer
TW200916730A (en) Augmented navigation system and method of a moving object
US20210093917A1 (en) Detecting outdoor walking workouts on a wearable device
CN109009142B (en) Running posture judgment method and system, intelligent wearable device and storage medium
TW201403029A (en) Method of calculating step length of a computing device
JP2016034479A (en) On-running landing position evaluation method, on-running landing position evaluation apparatus, detection method, detection apparatus, running motion evaluation method, and running motion evaluation apparatus
JP2016150193A (en) Motion analysis device
CN106767790A (en) Human body lower limbs motion model merges the method for estimating pedestrian's mobile tracking with Kalman filtering
KR101642286B1 (en) Heading Orientation Estimation Method Using Pedestrian Characteristics in Indoor Environment
TWI422824B (en) Human motion identification and locating method
JP2015014587A (en) Information processor, position determination method and position determination program
KR101609813B1 (en) Apparatus and method for counting step in smartphone
JP2015224931A (en) Information processing device, information processing method, and computer program
KR101301462B1 (en) Pedestiran dead-reckoning apparatus using low cost inertial measurement unit and method thereof
Kim et al. An electronic traveler aid for the blind using multiple range sensors
Chen et al. Pedestrian positioning with physical activity classification for indoors
JP2016158699A (en) Landing position evaluation method and landing position evaluation apparatus
JP2006170879A (en) Vertical movement detector, height detector, navigation system, program, and mobile radio telephone terminal device
KR102581198B1 (en) Apparatus for pedestrian dead reckoning using shoe model and method for the same