TWI420704B - Method for manufacturing light-emitting semiconductor chip - Google Patents

Method for manufacturing light-emitting semiconductor chip Download PDF

Info

Publication number
TWI420704B
TWI420704B TW99142701A TW99142701A TWI420704B TW I420704 B TWI420704 B TW I420704B TW 99142701 A TW99142701 A TW 99142701A TW 99142701 A TW99142701 A TW 99142701A TW I420704 B TWI420704 B TW I420704B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
light
emitting
fabricating
Prior art date
Application number
TW99142701A
Other languages
Chinese (zh)
Other versions
TW201225338A (en
Inventor
Po Min Tu
Shih Cheng Huang
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW99142701A priority Critical patent/TWI420704B/en
Publication of TW201225338A publication Critical patent/TW201225338A/en
Application granted granted Critical
Publication of TWI420704B publication Critical patent/TWI420704B/en

Links

Landscapes

  • Led Devices (AREA)

Description

半導體發光晶片製造方法 Semiconductor light emitting wafer manufacturing method

本發明涉及一種發光晶片製造方法,特別是指一種半導體發光晶片製造方法。 The present invention relates to a method of fabricating an illuminating wafer, and more particularly to a method of fabricating a semiconductor luminescent wafer.

發光二極體作為一種新興的光源,目前已廣泛應用於多種場合之中,並大有取代傳統光源的趨勢。 As an emerging light source, light-emitting diodes have been widely used in many occasions and have a tendency to replace traditional light sources.

發光二極體中最重要的元件為發光晶片,其決定了發光二極體的各種出光參數,如強度、顏色等。習知的發光晶片通常是由依次生長在藍寶石基板的N型半導體層、發光層及P型半導體層所組成。通過外界電流的激發,發光晶片的N型半導體層的電子與P型半導體層的空穴在發光層複合而向外輻射出光線。 The most important component of the light-emitting diode is a light-emitting chip, which determines various light-emitting parameters of the light-emitting diode, such as intensity, color, and the like. A conventional light-emitting wafer is generally composed of an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer which are sequentially grown on a sapphire substrate. The electrons of the N-type semiconductor layer of the light-emitting chip and the holes of the P-type semiconductor layer are combined in the light-emitting layer to emit light outward by the excitation of the external current.

由於發光晶片的磊晶層(即N型半導體層、P型半導體層及發光層)的晶格常數通常與藍寶石基板的晶格常數並不匹配,因此在其生長過程中會由於內部應力作用而出現缺陷(dislocation)。此種缺陷會捕獲磊晶層內部的少數載流子(minority carriers),使其以非輻射再結合(nonradiative recombination)的方式以熱能釋放,影響到發光晶片的發光效率。 Since the lattice constant of the epitaxial layer of the light-emitting chip (ie, the N-type semiconductor layer, the P-type semiconductor layer, and the light-emitting layer) generally does not match the lattice constant of the sapphire substrate, it may be due to internal stress during its growth. A dislocation occurs. Such defects capture minority carriers inside the epitaxial layer, causing them to be released by thermal energy in a nonradiative recombination manner, affecting the luminous efficiency of the luminescent wafer.

因此,有必要提供一種發光效率較高的半導體發光晶片的製造方法。 Therefore, it is necessary to provide a method of manufacturing a semiconductor light-emitting wafer having high luminous efficiency.

一種半導體發光晶片製造方法,包括步驟:1)提供具有磊晶層的基板,該磊晶層包括在基板上依次生長的第一半導體層、發光層及第二半導體層,磊晶層具有貫穿第一半導體層、發光層及第二半導體層的缺陷;2)蝕刻第二半導體層表面,磊晶層的缺陷被蝕刻而形成深入發光層的凹槽;3)在第一半導體層及第二半導體層上分別製作電極。 A semiconductor light emitting wafer manufacturing method comprising the steps of: 1) providing a substrate having an epitaxial layer, the epitaxial layer comprising a first semiconductor layer, a light emitting layer and a second semiconductor layer sequentially grown on the substrate, the epitaxial layer having a through layer a defect of a semiconductor layer, a light-emitting layer and a second semiconductor layer; 2) etching a surface of the second semiconductor layer, the defects of the epitaxial layer being etched to form a recess deep into the light-emitting layer; 3) the first semiconductor layer and the second semiconductor Electrodes were fabricated on the layers.

該半導體發光晶片製造方法通過蝕刻所形成的凹槽不僅去除了影響電子與空穴結合的缺陷,還可同時增加發光層的出光面積,使更多的光線從發光層輻射而出。因此,此方法可有效提升半導體發光元件的出光效率。 The semiconductor light-emitting wafer manufacturing method not only removes defects affecting the combination of electrons and holes by etching, but also increases the light-emitting area of the light-emitting layer, so that more light is radiated from the light-emitting layer. Therefore, this method can effectively improve the light extraction efficiency of the semiconductor light emitting element.

10‧‧‧基板 10‧‧‧Substrate

12‧‧‧溝槽 12‧‧‧ trench

14‧‧‧凸脊 14‧‧‧ ridge

20‧‧‧磊晶層 20‧‧‧ epitaxial layer

22‧‧‧缺陷 22‧‧‧ Defects

24‧‧‧凹槽 24‧‧‧ Groove

30‧‧‧第一半導體層 30‧‧‧First semiconductor layer

40‧‧‧發光層 40‧‧‧Lighting layer

50‧‧‧第二半導體層 50‧‧‧Second semiconductor layer

60‧‧‧緩衝層 60‧‧‧buffer layer

70‧‧‧絕緣層 70‧‧‧Insulation

80‧‧‧透明導電層 80‧‧‧Transparent conductive layer

90‧‧‧第一電極 90‧‧‧First electrode

92‧‧‧第二電極 92‧‧‧second electrode

圖1為本發明製造半導體發光晶片方法的第一個步驟。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a first step of the method of fabricating a semiconductor light-emitting wafer of the present invention.

圖2為本發明製造半導體發光晶片方法的第二個步驟。 2 is a second step of the method of fabricating a semiconductor light-emitting wafer of the present invention.

圖3為本發明製造半導體發光晶片方法的第三個步驟。 3 is a third step of the method of fabricating a semiconductor light-emitting wafer of the present invention.

圖4為本發明製造半導體發光晶片方法的第四個步驟。 4 is a fourth step of the method of fabricating a semiconductor light-emitting wafer of the present invention.

圖5為本發明製造半導體發光晶片方法的第五個步驟。 Figure 5 is a fifth step of the method of fabricating a semiconductor light-emitting wafer of the present invention.

本發明旨在提供一種製造半導體發光晶片的方法,其能有效提升半導體發光晶片的出光效率,主要包括如下步驟:首先,如圖1所示提供一具有磊晶層20的基板10。該基板10可由藍寶石(sapphire)、碳化矽(SiC)、矽(Si)、氮化鎵(GaN)等適合的材料所製成,本實施例優選採用藍寶石作為基板10的材料。該基板10的厚度介於300μm至600μm之間,本實施例中優選為430μm。該基板10通過濕蝕刻或其他方式在其頂面形成有多道溝槽12,基板10頂面未被蝕刻的部分則形成多條凸脊14。這些溝槽12與凸脊14交替分佈於基板10頂面,即每兩個相鄰的溝槽12之間均有一凸脊14,且每兩個相鄰的凸脊14之間均有一溝槽12。該溝槽12的深度由蝕刻時間、蝕刻材料等因素所決定,其範圍介於0.3μm至1.5μm之間,優選地,本實施例中將溝槽12的深度控制在1μm左右,以在基板10表面獲得較為理想的圖案。為改善磊晶層20在基板10上的生長品質,基板10的溝槽12內藉由低溫技術生長一緩衝層60(buffer layer)。該緩衝層60的厚度優選為20nm,以利於磊晶層20生長。該緩衝層60可由氮化鋁(AlN)、氮化鎵等材料所製成,其具有與磊晶層20相匹配的晶格常數,以減少磊晶層20在生長時所出現的缺陷22。該磊晶層20包括依次生長的一第一半導體層30、一發光層40及一第二半導體層50。本實施例中第一半導體層30為一N型氮化鎵層,第二半導體層50為一P型氮化鎵層,發光層40為一多重量子阱層。該第一半導體層30的厚度優選為4μm,第二半導體層50的厚度優選為0.1μm,發光層40的厚度優選為0.125μm。為進一步減少在生長過程中所產生的缺陷22,該 磊晶層20可通過ELOG(epitaxy lateral overgrowth)、FIELO(facet-initiated ELO)、PENDEO epitaxy、FACELO(facet-controlled ELO)等技術在基板10表面生長。本實施例中優選採用FIELO技術生長磊晶層20,由此在生長過程所產生的缺陷22將聚集在基板10各凸脊14上方,而溝槽12上方則由於缺陷22發生轉向而僅有少量缺陷22分佈。這些缺陷22從第一半導體層30底部貫穿發光層40並延伸至第二半導體層50頂部。 The present invention is directed to a method for fabricating a semiconductor light-emitting wafer, which can effectively improve the light-emitting efficiency of a semiconductor light-emitting chip, and mainly includes the following steps. First, a substrate 10 having an epitaxial layer 20 is provided as shown in FIG. The substrate 10 may be made of a suitable material such as sapphire, tantalum carbide (SiC), bismuth (Si), or gallium nitride (GaN). In this embodiment, sapphire is preferably used as the material of the substrate 10. The thickness of the substrate 10 is between 300 μm and 600 μm, and is preferably 430 μm in this embodiment. The substrate 10 is formed with a plurality of trenches 12 on its top surface by wet etching or other means, and portions of the top surface of the substrate 10 that are not etched form a plurality of ridges 14. The trenches 12 and the ridges 14 are alternately distributed on the top surface of the substrate 10, that is, there is a ridge 14 between each two adjacent trenches 12, and a trench is formed between each two adjacent ridges 14. 12. The depth of the trench 12 is determined by factors such as etching time, etching material, and the like, and ranges from 0.3 μm to 1.5 μm. Preferably, the depth of the trench 12 is controlled to about 1 μm in the present embodiment to be on the substrate. 10 surface to obtain a more ideal pattern. In order to improve the growth quality of the epitaxial layer 20 on the substrate 10, a buffer layer 60 is grown in the trench 12 of the substrate 10 by a low temperature technique. The thickness of the buffer layer 60 is preferably 20 nm to facilitate the growth of the epitaxial layer 20. The buffer layer 60 may be made of a material such as aluminum nitride (AlN), gallium nitride or the like having a lattice constant matched with the epitaxial layer 20 to reduce defects 22 which occur when the epitaxial layer 20 is grown. The epitaxial layer 20 includes a first semiconductor layer 30, a light emitting layer 40, and a second semiconductor layer 50 grown in sequence. In this embodiment, the first semiconductor layer 30 is an N-type gallium nitride layer, the second semiconductor layer 50 is a P-type gallium nitride layer, and the light-emitting layer 40 is a multiple quantum well layer. The thickness of the first semiconductor layer 30 is preferably 4 μm, the thickness of the second semiconductor layer 50 is preferably 0.1 μm, and the thickness of the light-emitting layer 40 is preferably 0.125 μm. To further reduce the defects 22 generated during the growth process, The epitaxial layer 20 can be grown on the surface of the substrate 10 by techniques such as ELOG (epitaxy lateral overgrowth), FIELO (facet-initiated ELO), PENDEO epitaxy, and FACELO (facet-controlled ELO). In this embodiment, the epitaxial layer 20 is preferably grown using the FIELO technique, whereby the defects 22 generated during the growth process will collect above the ridges 14 of the substrate 10, while the upper portion of the trenches 12 is deflected due to the defects 22 Defect 22 is distributed. These defects 22 extend through the light emitting layer 40 from the bottom of the first semiconductor layer 30 and extend to the top of the second semiconductor layer 50.

然後,如圖2所示採用濕蝕刻的方法蝕刻第二半導體層50頂面而形成多個凹槽24。濕蝕刻所採用的溶劑可為KOH、H3PO4等腐蝕性材料。由於磊晶層20上缺陷22的表面能最低,最易與溶劑發生鍵結反應,因此蝕刻將首先從第二半導體層50頂面的缺陷22位置處開始並逐漸向下深入。由GaN所製成的磊晶層20的(10-1-1)晶格面的表面能相對最低,因此溶劑還將蝕刻此晶格面而形成三角狀的凹槽24。通過控制蝕刻時間,可將凹槽24的深度限定在0.1μm至1μm之間。本實施例優選將凹槽24的深度控制在0.225μm,即恰好蝕刻至發光層40的底部。通過蝕刻的作用,發光層40中影響電子與空穴結合的缺陷22被去除,從而提升了電子與空穴的結合幾率,使半導體發光晶片的出光效率得到提升。同時,由蝕刻所形成的凹槽24可增加發光層40的表面積,使更多的光線能從發光層40輻射至外部,因此進一步提升了半導體發光晶片的發光效率。此外,由於濕蝕刻所形成的凹槽24壁面為向下漸縮的傾斜狀,相比於通過幹蝕刻形成具有豎直壁面的凹槽而言,可增加光線從側面出射的幾率,進而提升半導體發光晶片的發光效率。另一方 面,除為FIELO技術提供生長圖案外,基板10上形成的凸脊14還可反射從發光層40向下輻射的光線,使其朝向上方射出,因此原本由於向下輻射而被浪費掉的光線也可重新得到利用,進而提升半導體發光晶片的發光效率(如圖5所示)。 Then, as shown in FIG. 2, the top surface of the second semiconductor layer 50 is etched by wet etching to form a plurality of grooves 24. The solvent used for the wet etching may be a corrosive material such as KOH or H 3 PO 4 . Since the surface energy of the defect 22 on the epitaxial layer 20 is the lowest, the bond reaction with the solvent is most easily performed, so the etching will first start from the position of the defect 22 on the top surface of the second semiconductor layer 50 and gradually go down. The surface energy of the (10-1-1) lattice plane of the epitaxial layer 20 made of GaN is relatively lowest, so the solvent will also etch the lattice plane to form a triangular shaped recess 24. The depth of the groove 24 can be limited to be between 0.1 μm and 1 μm by controlling the etching time. This embodiment preferably controls the depth of the recess 24 to be 0.225 μm, i.e., just etched to the bottom of the luminescent layer 40. By the action of the etching, the defects 22 in the light-emitting layer 40 that affect the bonding of electrons and holes are removed, thereby increasing the probability of the electrons and holes being combined, and improving the light-emitting efficiency of the semiconductor light-emitting chip. At the same time, the groove 24 formed by the etching can increase the surface area of the light-emitting layer 40, so that more light can be radiated from the light-emitting layer 40 to the outside, thereby further improving the luminous efficiency of the semiconductor light-emitting chip. In addition, since the wall surface of the groove 24 formed by wet etching is inclined downwardly, the probability of light exiting from the side is increased, thereby increasing the semiconductor, compared to forming a groove having a vertical wall surface by dry etching. Luminous efficiency of the luminescent wafer. On the other hand, in addition to providing a growth pattern for the FIELO technology, the ridge 14 formed on the substrate 10 can also reflect the light radiated downward from the luminescent layer 40, causing it to be emitted upward, and thus was originally wasted due to downward radiation. The light can also be reused to increase the luminous efficiency of the semiconductor light-emitting wafer (as shown in Figure 5).

隨後,如圖3所示通過電漿化學氣相沉積(PECVD)、低壓化學氣相沉積(LPCVD)、溶膠-凝膠(Sol-Gel)、電子束蒸鍍(E-beam gun evaporation)、離子束濺鍍(Ion beam sputtering)及物理氣相沉積(Physical Vapor Deposition)等方法在磊晶層20表面形成一絕緣層70。絕緣層70填滿各凹槽24並覆蓋住第二半導體層50的頂面。絕緣層70用於將電流路徑限定在被凹槽24分割為錐狀的發光層40及第二半導體層50上,防止後續制程中的導電材料進入凹槽24內而導致電流分佈不均的情況發生。該絕緣層70可由二氧化矽(SiO2)所製成,其厚度(不包括填充凹槽24的部分)優選為0.1μm至0.2μm之間。 Subsequently, as shown in FIG. 3, by plasma chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), sol-gel (Sol-Gel), electron beam evaporation (E-beam gun evaporation), ions An insulating layer 70 is formed on the surface of the epitaxial layer 20 by methods such as Ion beam sputtering and physical vapor deposition (Physical Vapor Deposition). The insulating layer 70 fills the recesses 24 and covers the top surface of the second semiconductor layer 50. The insulating layer 70 is used to limit the current path to the light-emitting layer 40 and the second semiconductor layer 50 which are divided into the tapered shape by the recess 24 to prevent the conductive material in the subsequent process from entering the recess 24 and causing uneven current distribution. occur. The insulating layer 70 may be made of cerium oxide (SiO2), and its thickness (excluding a portion filling the groove 24) is preferably between 0.1 μm and 0.2 μm.

之後,移除掉絕緣層70覆蓋住第二半導體層50頂面的部分,使第二半導體層50的頂面暴露在外,並保留絕緣層70填充凹槽24的部分。移除絕緣層70的方法包括但不限於化學機械研磨(CMP)、化學蝕刻(濕蝕刻)、物理蝕刻(幹蝕刻)等。然後,在第二半導體層50頂面通過真空蒸鍍(vacuum evaporation)、濺鍍(sputtering)、化學蒸鍍(chemical vapor deposition)、電子束(E-gun)等方法形成如圖4所示的一透明導電層80。該透明導電層80可由氧化銦錫(ITO)、鎳金合金(Ni/Au)等導電性較佳的材料所製成,以使電流能夠均勻地分佈在第二半導體層50內。由於凹槽24內絕緣層 70的阻擋,電流將從位於凹槽24間的第二半導體層50及發光層40流過並進入第一半導體層30內,從而確保半導體發光晶片的正常發光。 Thereafter, the portion of the insulating layer 70 covering the top surface of the second semiconductor layer 50 is removed, the top surface of the second semiconductor layer 50 is exposed, and the portion of the insulating layer 70 filling the recess 24 is left. Methods of removing the insulating layer 70 include, but are not limited to, chemical mechanical polishing (CMP), chemical etching (wet etching), physical etching (dry etching), and the like. Then, on the top surface of the second semiconductor layer 50, vacuum evaporation, sputtering, chemical vapor deposition, electron beam (E-gun) or the like is formed as shown in FIG. A transparent conductive layer 80. The transparent conductive layer 80 may be made of a material having good conductivity such as indium tin oxide (ITO) or nickel gold alloy (Ni/Au) so that current can be uniformly distributed in the second semiconductor layer 50. Due to the insulation inside the groove 24 With the blocking of 70, current will flow from the second semiconductor layer 50 and the light-emitting layer 40 located between the grooves 24 and into the first semiconductor layer 30, thereby ensuring normal light emission of the semiconductor light-emitting wafer.

最後,採用黃光微影技術蝕刻透明導電層80表面,定義出暴露第一半導體層30頂面的電極區域。再如圖5所示通過電子束、蒸鍍、濺鍍等方法在第一半導體層30上定義出的電極區域表面形成一第一電極90,並在透明導電層80頂面形成一第二電極92。 Finally, the surface of the transparent conductive layer 80 is etched using a yellow lithography technique to define an electrode region exposing the top surface of the first semiconductor layer 30. Further, as shown in FIG. 5, a first electrode 90 is formed on the surface of the electrode region defined on the first semiconductor layer 30 by electron beam, evaporation, sputtering, or the like, and a second electrode is formed on the top surface of the transparent conductive layer 80. 92.

採用上述方法製成的半導體發光晶片可獲得相對較高的出光效率,因此可廣泛適用於各種對於光強要求較高的場合,特別是某些大功率的照明燈具內。 The semiconductor light-emitting chip fabricated by the above method can obtain relatively high light-emitting efficiency, and thus can be widely applied to various occasions requiring high light intensity, especially in some high-power lighting fixtures.

可以理解地,本發明所稱的“半導體發光晶片”是指發光二極體晶片(light-emitting diode chip)、鐳射二極體晶片(laser diode chip)等採用半導體材料製成的具備發光功能的晶片。 It is to be understood that the term "semiconductor light-emitting chip" as used in the present invention refers to a light-emitting diode chip, a laser diode chip, or the like, which is made of a semiconductor material and has a light-emitting function. Wafer.

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims.

10‧‧‧基板 10‧‧‧Substrate

30‧‧‧第一半導體層 30‧‧‧First semiconductor layer

40‧‧‧發光層 40‧‧‧Lighting layer

50‧‧‧第二半導體層 50‧‧‧Second semiconductor layer

70‧‧‧絕緣層 70‧‧‧Insulation

80‧‧‧透明導電層 80‧‧‧Transparent conductive layer

90‧‧‧第一電極 90‧‧‧First electrode

92‧‧‧第二電極 92‧‧‧second electrode

Claims (9)

一種半導體發光晶片製造方法,包括步驟:1)提供具有磊晶層的基板,該磊晶層包括依次生長的第一半導體層、發光層及第二半導體層,磊晶層具有貫穿其第一半導體層、發光層及第二半導體層的缺陷,基板頂面具有多個溝槽及多個凸脊,缺陷位於凸脊上方;2)蝕刻磊晶層,磊晶層的缺陷被蝕刻而形成深入到發光層的凹槽;3)分別形成電連接第一半導體層及第二半導體層的第一電極及第二電極。 A semiconductor light emitting wafer manufacturing method comprising the steps of: 1) providing a substrate having an epitaxial layer, the epitaxial layer comprising a first semiconductor layer, a light emitting layer and a second semiconductor layer sequentially grown, the epitaxial layer having a first semiconductor therethrough a defect of the layer, the light-emitting layer and the second semiconductor layer, the top surface of the substrate has a plurality of trenches and a plurality of ridges, the defects are located above the ridges; 2) the epitaxial layer is etched, and the defects of the epitaxial layer are etched to form a deep a recess of the light-emitting layer; 3) forming a first electrode and a second electrode electrically connecting the first semiconductor layer and the second semiconductor layer, respectively. 如申請專利範圍第1項所述之半導體發光晶片製造方法,其中溝槽與凸脊交替分佈於基板頂面。 The method of fabricating a semiconductor light-emitting wafer according to claim 1, wherein the trench and the ridge are alternately distributed on the top surface of the substrate. 如申請專利範圍第1項所述之半導體發光晶片製造方法,其中溝槽內部形成緩衝層,緩衝層的厚度小於溝槽的深度,緩衝層位於磊晶層及基板之間。 The method for fabricating a semiconductor light-emitting wafer according to claim 1, wherein a buffer layer is formed inside the trench, the buffer layer has a thickness smaller than a depth of the trench, and the buffer layer is located between the epitaxial layer and the substrate. 如申請專利範圍第1項所述之半導體發光晶片製造方法,其中凹槽從第二半導體頂面延伸並終止於發光層底面。 The method of fabricating a semiconductor light-emitting wafer according to claim 1, wherein the recess extends from the top surface of the second semiconductor and terminates at a bottom surface of the light-emitting layer. 如申請專利範圍第4項所述之半導體發光晶片製造方法,其中凹槽的寬度自第二半導體層朝向發光層逐漸減小而形成傾斜的內壁。 The method of fabricating a semiconductor light-emitting wafer according to claim 4, wherein the width of the groove gradually decreases from the second semiconductor layer toward the light-emitting layer to form an inclined inner wall. 如申請專利範圍第1至5任一項所述之半導體發光晶片製造方法,其中步驟2)中所採用的是濕蝕刻。 The semiconductor light-emitting wafer manufacturing method according to any one of claims 1 to 5, wherein the wet etching is employed in the step 2). 如申請專利範圍第6項所述之半導體發光晶片製造方法,其中步驟2)與步驟3)之間還包括在磊晶層表面形成絕緣層的過程,絕緣層包括填滿凹槽的部分。 The method for fabricating a semiconductor light-emitting chip according to claim 6, wherein the step 2) and the step 3) further comprise a process of forming an insulating layer on the surface of the epitaxial layer, the insulating layer comprising a portion filling the groove. 如申請專利範圍第7項所述之半導體發光晶片製造方法,其中絕緣層還包括覆蓋第二半導體層頂面的部分。 The method of fabricating a semiconductor light-emitting wafer according to claim 7, wherein the insulating layer further comprises a portion covering the top surface of the second semiconductor layer. 如申請專利範圍第8項所述之半導體發光晶片製造方法,其中步驟2)與步驟3)之間還包括去除絕緣層覆蓋第二半導體層頂面的部分,並在暴露出的第二半導體層表面形成透明導電層的步驟。 The method for fabricating a semiconductor light emitting wafer according to claim 8 , wherein the step 2) and the step 3) further comprise removing a portion of the insulating layer covering the top surface of the second semiconductor layer and exposing the second semiconductor layer The step of forming a transparent conductive layer on the surface.
TW99142701A 2010-12-07 2010-12-07 Method for manufacturing light-emitting semiconductor chip TWI420704B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99142701A TWI420704B (en) 2010-12-07 2010-12-07 Method for manufacturing light-emitting semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99142701A TWI420704B (en) 2010-12-07 2010-12-07 Method for manufacturing light-emitting semiconductor chip

Publications (2)

Publication Number Publication Date
TW201225338A TW201225338A (en) 2012-06-16
TWI420704B true TWI420704B (en) 2013-12-21

Family

ID=46726141

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99142701A TWI420704B (en) 2010-12-07 2010-12-07 Method for manufacturing light-emitting semiconductor chip

Country Status (1)

Country Link
TW (1) TWI420704B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563686B (en) * 2012-12-21 2016-12-21 Hon Hai Prec Ind Co Ltd Led chip and method manufacturing the same
CN105449061B (en) 2014-09-02 2017-12-05 展晶科技(深圳)有限公司 LED crystal particle and its manufacture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141507A1 (en) * 2002-01-28 2003-07-31 Krames Michael R. LED efficiency using photonic crystal structure
TW200721555A (en) * 2005-09-30 2007-06-01 Osram Opto Semiconductors Gmbh Epitaxy substrate, procedure for its production and procedure for the production of a semiconductor chip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141507A1 (en) * 2002-01-28 2003-07-31 Krames Michael R. LED efficiency using photonic crystal structure
TW200721555A (en) * 2005-09-30 2007-06-01 Osram Opto Semiconductors Gmbh Epitaxy substrate, procedure for its production and procedure for the production of a semiconductor chip

Also Published As

Publication number Publication date
TW201225338A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
US9853185B2 (en) Method for manufacturing nano-structured semiconductor light-emitting element
US8664026B2 (en) Method for fabricating semiconductor lighting chip
JP5165276B2 (en) Vertical structure gallium nitride based light-emitting diode device and method of manufacturing the same
WO2014192237A1 (en) Semiconductor light-emitting element and semiconductor light-emitting device
US9461205B2 (en) Nanostructure semiconductor light emitting device
JP2009076896A (en) Semiconductor light-emitting element
JP2006332383A (en) Semiconductor light emitting device and its manufacturing method
JP2012500479A (en) Method for manufacturing a semiconductor light-emitting device with double-sided passivation
TW201411875A (en) Method of growing a III-V group compound material on a substrate, and a semiconductor device and a lighting apparatus comprising the III-V group compound material
JP2012142580A (en) Method for fabricating light emitting diode chip
JP2012169615A (en) Light-emitting diode having nanostructures and manufacturing method of the same
CN107437542A (en) A kind of UV LED chip and preparation method thereof
TW201312792A (en) Light emitting diode structure and method for manufacturing the same
KR100762003B1 (en) Method of manufacturing vertically structured nitride type light emitting diode
KR101525913B1 (en) Verticle light emitting diodes and its fabricating method
US8945958B2 (en) Methods for manufacturing light emitting diode and light emitting device
TWI420704B (en) Method for manufacturing light-emitting semiconductor chip
JP2007324411A (en) Semiconductor light-emitting device and manufacturing method therefor and illumination apparatus using the same
US20180375002A1 (en) Conversion element and radiation-emitting semiconductor device comprising a conversion element of said type
TWI438924B (en) Method for manufacturing light emitting chip
KR101189163B1 (en) method for manufacturing light-emitting diode
TWI458129B (en) Light emitting diode chip structure and fabrication method thereof
KR100955821B1 (en) Nitride light emitting device and the manufacturing method thereof
TWI497756B (en) Led chip manufacturing method
TWI403008B (en) Method for fabricating light emitting diode chip

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees