TWI418132B - Frequency control circuit and method for a ripple regulator - Google Patents

Frequency control circuit and method for a ripple regulator Download PDF

Info

Publication number
TWI418132B
TWI418132B TW100104813A TW100104813A TWI418132B TW I418132 B TWI418132 B TW I418132B TW 100104813 A TW100104813 A TW 100104813A TW 100104813 A TW100104813 A TW 100104813A TW I418132 B TWI418132 B TW I418132B
Authority
TW
Taiwan
Prior art keywords
voltage
frequency
frequency control
signal
value
Prior art date
Application number
TW100104813A
Other languages
Chinese (zh)
Other versions
TW201234753A (en
Inventor
Chih Hao Yang
An Tung Chen
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW100104813A priority Critical patent/TWI418132B/en
Publication of TW201234753A publication Critical patent/TW201234753A/en
Application granted granted Critical
Publication of TWI418132B publication Critical patent/TWI418132B/en

Links

Description

漣波調節器的頻率控制電路及方法Frequency control circuit and method for chopper regulator

本發明係有關一種漣波(ripple)調節器的頻率控制電路,特別是關於一種不因負載變化而改變頻率的頻率控制電路。The present invention relates to a frequency control circuit for a ripple regulator, and more particularly to a frequency control circuit that does not change the frequency due to load changes.

圖1係傳統的漣波調節器,其運作方式如圖2所示,當與輸出電壓Vout具有比例關係的回授信號FB低於參考電壓Vref時,如時間t1所示,比較器24的輸出Comp_out由高準位轉為低準位,控制電路22因而送出信號S1,單擊電路12根據信號S1及固定時間產生器10所設定的固定時間Ton產生具有固定時間Ton的控制信號S2,進而使驅動器16觸發具有固定時間Ton的控制信號UG使上橋開關M1打開(turn on)固定時間Ton,同時,反相器14根據控制信號S2產生控制信號S3給驅動器18使下橋開關M2關閉(turn off)固定時間Ton。在固定時間Ton結束後,上橋開關M1關閉而下橋開關M2打開,直至回授信號FB再次低於參考電壓Vref。由於此漣波調節器的上橋開關M1每次都打開固定時間Ton,因此此漣波調節器也稱為固定工作時間(constant on-time)切換式調節器。相反的,若上橋開關M1每次都關閉固定時間,則稱此漣波調節器為固定非工作時間(constant off-time)切換式調節器。1 is a conventional chopper regulator, which operates as shown in FIG. 2. When the feedback signal FB having a proportional relationship with the output voltage Vout is lower than the reference voltage Vref, the output of the comparator 24 is shown as time t1. Comp_out is switched from the high level to the low level, the control circuit 22 thus sends the signal S1, and the click circuit 12 generates the control signal S2 having the fixed time Ton according to the signal S1 and the fixed time Ton set by the fixed time generator 10, thereby The driver 16 triggers the control signal UG having a fixed time Ton to turn the upper bridge switch M1 on for a fixed time Ton, while the inverter 14 generates a control signal S3 according to the control signal S2 to the driver 18 to turn off the lower bridge switch M2 (turn) Off) Fixed time Ton. After the fixed time Ton ends, the upper bridge switch M1 is turned off and the lower bridge switch M2 is turned on until the feedback signal FB is again lower than the reference voltage Vref. Since the upper bridge switch M1 of the chopper regulator is turned on for a fixed time Ton each time, the chopper regulator is also referred to as a constant on-time switching regulator. Conversely, if the upper bridge switch M1 is turned off for a fixed time each time, the chopper regulator is referred to as a fixed off-time switching regulator.

圖1的漣波調節器與脈寬調變(PWM)調節器相比有幾項優點:(1)控制架構簡單,不需要誤差放大器;(2)快速的暫態反應。然而,此漣波調節器是在回授信號FB低於參考電壓Vref時打開上橋開關M1,不同於PWM調節器有內部的振盪器控制何時打開上橋開關,因此圖1的漣波調節器並不是定頻的架構。The chopper regulator of Figure 1 has several advantages over the pulse width modulation (PWM) regulator: (1) the control architecture is simple, no error amplifier is required; and (2) fast transient response. However, the chopper regulator turns on the upper bridge switch M1 when the feedback signal FB is lower than the reference voltage Vref, unlike the PWM regulator having an internal oscillator to control when the upper bridge switch is turned on, so the chopper regulator of FIG. Not a fixed frequency architecture.

如圖3所示,為了使漣波調節器可以達成定頻,一般係藉由固定時間調整電路26偵測輸入電壓Vin及輸出電壓Vout並據以調整固定時間Ton。圖4顯示圖3的固定時間調整電路26,其中電流源28連接電容C並根據輸入電壓Vin產生充電電流I1=K×Vin,其中K為常數,開關SW1與電容C並聯,用以控制電容C的充放電以產生電壓V1,比較器30比較電壓V1及輸出電壓Vout決定固定時間As shown in FIG. 3, in order to enable the chopper regulator to achieve a fixed frequency, the fixed time adjustment circuit 26 generally detects the input voltage Vin and the output voltage Vout and adjusts the fixed time Ton accordingly. 4 shows the fixed time adjustment circuit 26 of FIG. 3, wherein the current source 28 is connected to the capacitor C and generates a charging current I1=K×Vin according to the input voltage Vin, wherein K is a constant, and the switch SW1 is connected in parallel with the capacitor C to control the capacitor C. Charge and discharge to generate voltage V1, comparator 30 compares voltage V1 and output voltage Vout to determine fixed time

Ton=(C/K)×(Vout/Vin)。 公式1Ton=(C/K)×(Vout/Vin). Formula 1

圖3的漣波調節器在理想狀態下,當上橋開關M1打開時,如圖5的時間t2至t3,上橋及下橋開關M1及M2之間的相節點上的相節點電壓Phs等於Vin,當下橋開關M2打開時,如圖5的時間t3至t4,相節點電壓Phs等於GND=0,又輸出電壓Vout等於相節點電壓Phs的平均值,故可得The chopper regulator of Fig. 3 is in an ideal state, when the upper bridge switch M1 is turned on, as shown in time t2 to t3 of Fig. 5, the phase node voltage Phs on the phase node between the upper and lower bridge switches M1 and M2 is equal to Vin, when the lower bridge switch M2 is turned on, as shown in time t3 to t4 of FIG. 5, the phase node voltage Phs is equal to GND=0, and the output voltage Vout is equal to the average value of the phase node voltage Phs, so

Vout=Vin×D=Vin×(Ton/T), 公式2Vout=Vin×D=Vin×(Ton/T), Equation 2

其中,T為控制信號UG的週期,D=Ton/T為責任週期比(duty)。根據公式2可推得Where T is the period of the control signal UG, and D=Ton/T is the duty cycle ratio (duty). According to formula 2, it can be derived

T=Ton×(Vin/Vout), 公式3T=Ton×(Vin/Vout), Equation 3

將公式1代入公式3可得週期T=C/K,因此,只要控制C及K的值,便可控制漣波調節器的操作頻率,同樣的,只要C及K為定值,則漣波調節器的操作頻率固定。Substituting the formula 1 into the formula 3 can obtain the period T=C/K. Therefore, as long as the values of C and K are controlled, the operating frequency of the chopper regulator can be controlled. Similarly, as long as C and K are constant values, the chopping is performed. The operating frequency of the regulator is fixed.

然而,相節點電壓Phs實際上的高點及低點並不是Vin及0,相節點電壓Phs的高點及低點會受到漣波調節器的負載影響而分別變成Vin-(IL×Ron_UG)及-IL×Ron_LG,其中IL為負載電流,Ron_UG為上橋開關M1的導通阻值,Ron_LG為下橋開關M2的導通阻值。換言之,圖3的漣波調節器的操作頻率將受到負載的影響而變化,在不同的負載下,操作頻率會有偏移的現象發生,尤其是在負載及導通阻值Ron_UG及Ron_LG都很大的情況。However, the actual high and low voltages of the phase node voltage Phs are not Vin and 0. The high and low points of the phase node voltage Phs are affected by the load of the chopper regulator and become Vin-(IL×Ron_UG) and -IL x Ron_LG, where IL is the load current, Ron_UG is the conduction resistance of the upper bridge switch M1, and Ron_LG is the conduction resistance of the lower bridge switch M2. In other words, the operating frequency of the chopper regulator of Figure 3 will be affected by the load. Under different loads, the operating frequency will shift, especially when the load and conduction resistance values Ron_UG and Ron_LG are large. Case.

為改善此問題,美國專利號第6,774,611號提出一種使用鎖相迴路(Phase Locked Loop;PLL)來穩定操作頻率的方法,其可以改善暫態響應,但是使用PLL會使成本大幅上升。美國專利號第7,508,180號提出另一種方法,其利用誤差放大器來穩定操作頻率以避免操作頻率被負載影響,但是當系統進入省電模式時,此方法將因操作頻率驟降產生錯誤的輸出信號而產生錯誤的固定時間Ton,會使固定時間Ton異常的加大,使操作頻率更進一步下降,且漣波電壓可能過大,造成問題。In order to improve the problem, U.S. Patent No. 6,774,611 proposes a method of using a Phase Locked Loop (PLL) to stabilize the operating frequency, which can improve the transient response, but the use of the PLL causes a significant increase in cost. Another method is proposed by U.S. Patent No. 7,508,180, which utilizes an error amplifier to stabilize the operating frequency to prevent the operating frequency from being affected by the load, but when the system enters the power saving mode, the method will produce an erroneous output signal due to a dip in the operating frequency. A fixed time Ton that produces an error will increase the abnormality of the fixed time Ton, causing the operating frequency to further decrease, and the chopping voltage may be too large, causing a problem.

本發明的目的之一,在於提出一種漣波調節器的頻率控制電路。One of the objects of the present invention is to provide a frequency control circuit for a chopper regulator.

本發明的目的之一,在於提出一種不因負載的變化而改變頻率的頻率控制電路。One of the objects of the present invention is to provide a frequency control circuit that does not change the frequency due to a change in load.

本發明的目的之一,在於提出一種改善省電模式效能的頻率控制電路。One of the objects of the present invention is to provide a frequency control circuit that improves the performance of the power saving mode.

根據本發明,一種漣波調節器的頻率控制電路及方法偵測及量化該漣波調節器的操作頻率產生頻率感測信號,並據以調整用以驅動該漣波調節器的功率輸出級的控制信號的固定時間,進而使該操作頻率維持穩定。當該漣波調節器進入省電模式時,該頻率控制電路及方法使該固定時間維持不變或變化緩慢,以改善省電模式時的效能。According to the present invention, a chopper regulator frequency control circuit and method for detecting and quantifying an operating frequency of the chopper regulator generates a frequency sensing signal, and accordingly adjusting a power output stage for driving the chopper regulator The fixed time of the control signal, which in turn stabilizes the operating frequency. When the chopper regulator enters the power saving mode, the frequency control circuit and method keep the fixed time constant or change slowly to improve the performance in the power saving mode.

圖6顯示本發明頻率控制電路32的實施例,圖6的漣波調節器除了頻率控制電路32之外,其還包括圖1電路中的單擊電路12、反相器14、驅動器16及18、功率輸出級20、控制電路22以及比較器24。頻率控制電路32包括頻率感測器34及時間調整電路36,其中頻率感測器34偵測相節點電壓Phs以偵測漣波調節器的操作頻率,並將所偵測到的操作頻率量化產生頻率感測信號VC,時間調整電路36根據頻率感測信號VC判斷操作頻率的大小,當操作頻率過高時,時間調整電路36將加長固定時間Ton以降低操作頻率,當操作頻率過低時,時間調整電路36將縮短固定時間Ton以提高操作頻率。由此可知,只要將頻率感測信號VC鎖定在某個值,則調整漣波調節器的操作頻率便可維持固定。此外,當漣波調節器進入省電模式後,時間調整電路36將不再調整固定時間Ton,或者緩慢的調整固定時間Ton,以避免因操作頻率驟降而產生錯誤的固定時間Ton。在其他實施例中,頻率感測器34也可以從漣波調節器中任何與操作頻率有關的信號來取得操作頻率之資訊。圖6所示的漣波調節器係固定工作時間切換式調節器,本發明的頻率控制電路32也可以應用在固定非工作時間切換式調節器中。6 shows an embodiment of the frequency control circuit 32 of the present invention. The chopper regulator of FIG. 6 includes, in addition to the frequency control circuit 32, a click circuit 12, an inverter 14, and drivers 16 and 18 in the circuit of FIG. The power output stage 20, the control circuit 22, and the comparator 24. The frequency control circuit 32 includes a frequency sensor 34 and a time adjustment circuit 36. The frequency sensor 34 detects the phase node voltage Phs to detect the operating frequency of the chopper regulator and quantizes the detected operating frequency. The frequency sensing signal VC, the time adjusting circuit 36 determines the magnitude of the operating frequency according to the frequency sensing signal VC. When the operating frequency is too high, the time adjusting circuit 36 will lengthen the fixed time Ton to lower the operating frequency. When the operating frequency is too low, The time adjustment circuit 36 will shorten the fixed time Ton to increase the operating frequency. Therefore, as long as the frequency sensing signal VC is locked to a certain value, the operating frequency of the chopper regulator can be adjusted to be constant. In addition, when the chopper regulator enters the power saving mode, the time adjustment circuit 36 will not adjust the fixed time Ton or slowly adjust the fixed time Ton to avoid an erroneous fixed time Ton due to the dip in the operating frequency. In other embodiments, frequency sensor 34 may also obtain information on the operating frequency from any of the chopping regulator related signals of the operating frequency. The chopper regulator shown in Figure 6 is a fixed operating time switching regulator, and the frequency control circuit 32 of the present invention can also be used in a fixed off-time switching regulator.

在圖6的時間調整電路36中,比較器38比較頻率感測信號VC及參考值Vref1產生比較信號Sc1,升降計數器40根據比較信號Sc1增加或減少計數值Dc,數位類比轉換器42將計數值Dc轉換為電壓Vdac,電流源46連接電容C2,用以提供充電電流I2,開關SW2與電容C2並聯,因應信號Ssw2控制電容C2的充放電以產生電壓V2,比較器44比較電壓Vdac及V2決定固定時間Ton。在此實施例中,升降計數器40根據控制信號UG改變計數值Dc,每當上橋開關M1打開一次時,升降計數器40改變計數值Dc一個位元,在其他實施例中,也可以提供其他內部週期性的信號給該升降計數器40以取代控制信號UG。當頻率感測信號VC大於參考值Vref1時,表示操作頻率過高,升降計數器40將使計數值Dc上升一個位元,以使電壓Vdac上升,進而增加固定時間Ton,降低操作頻率,相反的,當頻率感測信號VC小於參考值Vref1時,表示操作頻率過低,升降計數器40將計數值Dc調降一個位元,使得電壓Vdac下降以縮短固定時間Ton,進而提高操作頻率,因此時間調整電路36逐次的將頻率感測信號VC調整到參考值Vref1,並維持穩定。當漣波調節器進入省電模式時,由於升降計數器40每當上橋開關M1打開一次時才改變計數值Dc一個位元,故固定時間Ton將緩慢的改變,進而避免操作頻率突然增加使得省電模式的效能降低。較佳者,當漣波調節器進入省電模式時,漣波調節器提供休眠信號PSM給升降計數器40使升降計數器40停止計數,同時升降計數器40儲存目前的計數值Dc,因此,在省電模式期間,升降計數器40所提供的計數值Dc維持不變,故數位類比轉換器42所提供的電壓Vdac也維持不變,固定時間Ton因而也維持不變。In the time adjustment circuit 36 of FIG. 6, the comparator 38 compares the frequency sensing signal VC and the reference value Vref1 to generate a comparison signal Sc1, and the up/down counter 40 increases or decreases the count value Dc according to the comparison signal Sc1, and the digital analog converter 42 counts the count value. Dc is converted to voltage Vdac, current source 46 is connected to capacitor C2 for providing charging current I2, switch SW2 is connected in parallel with capacitor C2, and signal Ssw2 is controlled to charge and discharge capacitor C2 to generate voltage V2, and comparator 44 determines voltage Vdac and V2. Fixed time Ton. In this embodiment, the up-down counter 40 changes the count value Dc according to the control signal UG. Whenever the upper bridge switch M1 is turned on once, the up-down counter 40 changes the count value Dc by one bit. In other embodiments, other internals may also be provided. A periodic signal is sent to the up-down counter 40 in place of the control signal UG. When the frequency sensing signal VC is greater than the reference value Vref1, indicating that the operating frequency is too high, the up-down counter 40 will cause the count value Dc to rise by one bit, so that the voltage Vdac rises, thereby increasing the fixed time Ton, lowering the operating frequency, and vice versa, When the frequency sensing signal VC is less than the reference value Vref1, indicating that the operating frequency is too low, the up-down counter 40 lowers the count value Dc by one bit, so that the voltage Vdac falls to shorten the fixed time Ton, thereby increasing the operating frequency, and thus the time adjusting circuit 36 successively adjusts the frequency sensing signal VC to the reference value Vref1 and maintains stability. When the chopper regulator enters the power saving mode, since the up/down counter 40 changes the count value Dc one bit each time the upper bridge switch M1 is turned on once, the fixed time Ton will slowly change, thereby avoiding a sudden increase in the operating frequency. The performance of the electrical mode is reduced. Preferably, when the chopper regulator enters the power saving mode, the chopper regulator provides the sleep signal PSM to the up/down counter 40 to stop the up counter 40, and the up counter 40 stores the current count value Dc, thereby saving power During the mode, the count value Dc provided by the up-down counter 40 remains unchanged, so the voltage Vdac supplied from the digital analog converter 42 remains unchanged, and the fixed time Ton thus remains unchanged.

在圖6的時間調整電路36中,電壓Vdac的最大值及最小值係分別受限於數位類比轉換器42的正偏壓VH及負偏壓VL。為了讓漣波調節器在啟動時,操作頻率可以快速達到目標值,可以設定充電電流I2正比於輸入電壓Vin,而正偏壓VH及負偏壓VL皆正比於輸出電壓Vout。或者,也可以讓充電電流I2為定值,而正偏壓VH及負偏壓VL皆正比於輸出電壓Vout及輸入電壓Vin的比值Vout/Vin或責任週期比D。In the time adjustment circuit 36 of FIG. 6, the maximum value and the minimum value of the voltage Vdac are limited by the positive bias voltage VH and the negative bias voltage VL of the digital analog converter 42, respectively. In order to make the chopper regulator start up, the operating frequency can quickly reach the target value, the charging current I2 can be set proportional to the input voltage Vin, and the positive bias voltage VH and the negative bias voltage VL are all proportional to the output voltage Vout. Alternatively, the charging current I2 may be set to a constant value, and the positive bias voltage VH and the negative bias voltage VL are proportional to the ratio Vout/Vin or the duty cycle ratio D of the output voltage Vout and the input voltage Vin.

圖6的頻率感測器34的實現方式有很多種,圖7係頻率感測器34的其中一種實施例,其包括單擊電路38以及由電阻R3及C1組成的低通濾波器(Low Pass Filter;LPF)40,單擊電路38根據相節點電壓Phs觸發短脈衝信號Ssp,而此短脈衝信號Ssp再經LPF 40過濾後產生頻率感測信號VC。當操作頻率較高時,相節點電壓Phs的頻率也較高,因此短脈衝信號Ssp的脈波較密集的出現,故頻率感測信號VC較大,相反的,當操作頻率較低時,相節點電壓Phs的頻率也較低,因此頻率感測信號VC較小。在圖7的實施例中,頻率感測信號VC的值與操作頻率成正比,但在其他實施例中,頻率感測信號VC的值也可以跟操作頻率成反比、線性關係或非線性關係。The frequency sensor 34 of Figure 6 can be implemented in a variety of ways. Figure 7 is an embodiment of a frequency sensor 34 that includes a click circuit 38 and a low pass filter consisting of resistors R3 and C1 (Low Pass). Filter; LPF) 40, the click circuit 38 triggers the short pulse signal Ssp according to the phase node voltage Phs, and the short pulse signal Ssp is filtered by the LPF 40 to generate the frequency sensing signal VC. When the operating frequency is high, the frequency of the phase node voltage Phs is also high, so the pulse wave of the short pulse signal Ssp appears densely, so the frequency sensing signal VC is large, and conversely, when the operating frequency is low, the phase The frequency of the node voltage Phs is also low, so the frequency sensing signal VC is small. In the embodiment of FIG. 7, the value of the frequency sensing signal VC is proportional to the operating frequency, but in other embodiments, the value of the frequency sensing signal VC may also be inversely proportional, linear, or non-linear to the operating frequency.

在圖6的時間調整電路36中,只使用一個比較器38來偵測頻率感測信號VC,但在其他實施例也可以使用多個比較器來偵測頻率感測信號VC,如圖8所示,其增加比較器48比較頻率感測信號VC及參考值Vref2產生比較信號Sc2,升降計數器40再根據比較器38及48所輸出的比較信號Sc1及Sc2增加或減少計數值Dc。In the time adjustment circuit 36 of FIG. 6, only one comparator 38 is used to detect the frequency sensing signal VC. However, in other embodiments, multiple comparators may be used to detect the frequency sensing signal VC, as shown in FIG. The comparison comparator 48 compares the frequency sensing signal VC and the reference value Vref2 to generate a comparison signal Sc2, and the up/down counter 40 further increases or decreases the count value Dc according to the comparison signals Sc1 and Sc2 output by the comparators 38 and 48.

以上對於本發明之較佳實施例所作的敘述係為闡明之目的,而無意限定本發明精確地為所揭露的形式,基於以上的教導或從本發明的實施例學習而作修改或變化是可能的,實施例係為解說本發明的原理以及讓熟習該項技術者以各種實施例利用本發明在實際應用上而選擇及敘述,本發明的技術思想企圖由以下的申請專利範圍及其均等來決定。The above description of the preferred embodiments of the present invention is intended to be illustrative, and is not intended to limit the scope of the invention to the disclosed embodiments. It is possible to make modifications or variations based on the above teachings or learning from the embodiments of the present invention. The embodiments are described and illustrated in the practical application of the present invention in various embodiments, and the technical idea of the present invention is intended to be equivalent to the scope of the following claims. Decide.

10...固定時間產生器10. . . Fixed time generator

12...單擊電路12. . . Click circuit

14...反相器14. . . inverter

16...驅動器16. . . driver

18...驅動器18. . . driver

20...功率輸出級20. . . Power output stage

22...控制電路twenty two. . . Control circuit

24...比較器twenty four. . . Comparators

26...固定時間調整電路26. . . Fixed time adjustment circuit

28...電流源28. . . Battery

30...比較器30. . . Comparators

32...頻率控制電路32. . . Frequency control circuit

34...頻率感測器34. . . Frequency sensor

36...時間調整電路36. . . Time adjustment circuit

38...比較器38. . . Comparators

40...升降計數器40. . . Lift counter

42...數位類比轉換器42. . . Digital analog converter

44...比較器44. . . Comparators

46...電流源46. . . Battery

48...比較器48. . . Comparators

圖1係傳統的漣波調節器;Figure 1 is a conventional chopper regulator;

圖2顯示圖1的信號波形;Figure 2 shows the signal waveform of Figure 1;

圖3係另一習知的漣波調節器;Figure 3 is another conventional chopper regulator;

圖4顯示圖3的固定時間調整電路;Figure 4 shows the fixed time adjustment circuit of Figure 3;

圖5顯示理想狀況下的相節點電壓Phs的波形;Figure 5 shows the waveform of the phase node voltage Phs under ideal conditions;

圖6顯示本發明頻率控制電路;Figure 6 shows the frequency control circuit of the present invention;

圖7顯示圖6中的頻率感測器的實施例;以及Figure 7 shows an embodiment of the frequency sensor of Figure 6;

圖8顯示圖6中時間調整電路的另一實施例。Figure 8 shows another embodiment of the time adjustment circuit of Figure 6.

12...單擊電路12. . . Click circuit

14...反相器14. . . inverter

16...驅動器16. . . driver

18...驅動器18. . . driver

20...功率輸出級20. . . Power output stage

22...控制電路twenty two. . . Control circuit

24...比較器twenty four. . . Comparators

32...頻率控制電路32. . . Frequency control circuit

34...頻率感測器34. . . Frequency sensor

36...時間調整電路36. . . Time adjustment circuit

38...比較器38. . . Comparators

40...升降計數器40. . . Lift counter

42...數位類比轉換器42. . . Digital analog converter

44...比較器44. . . Comparators

46...電流源46. . . Battery

Claims (11)

一種漣波調節器的頻率控制電路,該漣波調節器包含功率輸出級因應控制信號將輸入電壓轉換為輸出電壓,以及單擊電路為該控制信號觸發固定時間,該頻率控制電路包括:頻率感測器,偵測該漣波調節器的操作頻率產生頻率感測信號;以及時間調整電路,連接該頻率感測器,根據該頻率感測信號調整該固定時間的寬度以調整該操作頻率,該時間調整電路包含:至少一第一比較器,連接該頻率感測器,比較該頻率感測信號及一參考值;升降計數器,連接該至少一第一比較器,根據該至少一第一比較器的輸出決定計數值;數位類比轉換器,連接該升降計數器,將該計數值轉換為第一電壓;電容;電流源,連接該電容,提供充電電流;開關,與該電容並聯,用以控制該電容的充放電以產生第二電壓;以及第二比較器,連接該數位類比轉換器及電容,比較該第一電壓及第二電壓以決定該固定時間的寬度。 A frequency control circuit for a chopper regulator, the chopper regulator comprising a power output stage for converting an input voltage into an output voltage according to a control signal, and a click circuit for triggering a fixed time for the control signal, the frequency control circuit comprising: a sense of frequency a detector that detects a frequency of operation of the chopper regulator to generate a frequency sensing signal; and a time adjustment circuit that is coupled to the frequency sensor, and adjusts a width of the fixed time according to the frequency sensing signal to adjust the operating frequency, The time adjustment circuit includes: at least one first comparator connected to the frequency sensor, comparing the frequency sensing signal and a reference value; and a rising counter connected to the at least one first comparator, according to the at least one first comparator The output determines the count value; the digital analog converter is connected to the up/down counter, and the count value is converted into a first voltage; a capacitor; a current source connected to the capacitor to provide a charging current; and a switch connected in parallel with the capacitor to control the Capacitor charging and discharging to generate a second voltage; and a second comparator connecting the digital analog converter and the capacitor The first voltage and the second voltage to determine the width of a fixed time. 如請求項1之頻率控制電路,其中該頻率感測器包括:第二單擊電路,根據該功率輸出級的相節點電壓觸發短脈 衝信號;以及低通濾波器,連接該第二單擊電路,濾波該短脈衝信號產生該頻率感測信號。 The frequency control circuit of claim 1, wherein the frequency sensor comprises: a second click circuit, triggering a short pulse according to a phase node voltage of the power output stage And a low pass filter connected to the second click circuit to filter the short pulse signal to generate the frequency sensing signal. 如請求項1之頻率控制電路,其中該升降計數器在省電模式時停止計數。 The frequency control circuit of claim 1, wherein the up/down counter stops counting when in the power saving mode. 如請求項1之頻率控制電路,其中該升降計數器儲存該計數值。 The frequency control circuit of claim 1, wherein the up/down counter stores the count value. 如請求項1之頻率控制電路,其中該充電電流正比於該輸入電壓,而且該數位類比轉換器限制該第一電壓的最大值及最小值,該最大值及該最小值正比於該輸出電壓。 The frequency control circuit of claim 1, wherein the charging current is proportional to the input voltage, and the digital analog converter limits a maximum value and a minimum value of the first voltage, the maximum value and the minimum value being proportional to the output voltage. 如請求項1之頻率控制電路,其中該數位類比轉換器限制該第一電壓的最大值及最小值,而且該最大值及該最小值正比於該輸出電壓與該輸入電壓的比值。 The frequency control circuit of claim 1, wherein the digital analog converter limits a maximum value and a minimum value of the first voltage, and the maximum value and the minimum value are proportional to a ratio of the output voltage to the input voltage. 一種漣波調節器的頻率控制方法,該漣波調節器包含功率輸出級因應控制信號將輸入電壓轉換為輸出電壓,以及單擊電路為該控制信號觸發固定時間,該頻率控制方法包括下列步驟:(A)偵測該漣波調節器的操作頻率產生頻率感測信號;(B)比較該頻率感測信號及一參考值產生比較信號;(C)根據該比較信號決定計數值;(D)將該計數值轉換為第一電壓;(E)控制一電容的充放電產生第二電壓;以及(F)比較該第一電壓及第二電壓以決定該固定時間的寬度以調整該操作頻率。 A frequency control method for a chopper regulator, the chopper regulator includes a power output stage for converting an input voltage into an output voltage according to a control signal, and a click circuit triggering a fixed time for the control signal, the frequency control method comprising the following steps: (A) detecting the operating frequency of the chopper regulator to generate a frequency sensing signal; (B) comparing the frequency sensing signal with a reference value to generate a comparison signal; (C) determining a count value according to the comparison signal; (D) Converting the count value to a first voltage; (E) controlling charging and discharging of a capacitor to generate a second voltage; and (F) comparing the first voltage and the second voltage to determine a width of the fixed time to adjust the operating frequency. 如請求項7之頻率控制方法,其中該步驟A包括:根據該功率輸出級的相節點電壓觸發短脈衝信號;以及濾波該短脈衝信號產生該頻率感測信號。 The frequency control method of claim 7, wherein the step A comprises: triggering the short pulse signal according to the phase node voltage of the power output stage; and filtering the short pulse signal to generate the frequency sensing signal. 如請求項7之頻率控制方法,其中更包括:儲存該計數值;以及在省電模式時,停止調整該計數值,並根據所儲存的計數值決定該第一電壓。 The frequency control method of claim 7, further comprising: storing the count value; and in the power saving mode, stopping adjusting the count value, and determining the first voltage according to the stored count value. 如請求項7之頻率控制方法,更包括:使對該電容充電的充電電流正比於該輸入電壓;以及限制該第一電壓的最大值及最小值,其中該最大值及該最小值正比於該輸出電壓。 The frequency control method of claim 7, further comprising: causing a charging current to charge the capacitor to be proportional to the input voltage; and limiting a maximum value and a minimum value of the first voltage, wherein the maximum value and the minimum value are proportional to the The output voltage. 如請求項7之頻率控制方法,更包括限制該第一電壓的最大值及最小值,其中該最大值及該最小值正比於該輸出電壓與該輸入電壓的比值。The frequency control method of claim 7, further comprising limiting a maximum value and a minimum value of the first voltage, wherein the maximum value and the minimum value are proportional to a ratio of the output voltage to the input voltage.
TW100104813A 2011-02-14 2011-02-14 Frequency control circuit and method for a ripple regulator TWI418132B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100104813A TWI418132B (en) 2011-02-14 2011-02-14 Frequency control circuit and method for a ripple regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100104813A TWI418132B (en) 2011-02-14 2011-02-14 Frequency control circuit and method for a ripple regulator

Publications (2)

Publication Number Publication Date
TW201234753A TW201234753A (en) 2012-08-16
TWI418132B true TWI418132B (en) 2013-12-01

Family

ID=47070172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104813A TWI418132B (en) 2011-02-14 2011-02-14 Frequency control circuit and method for a ripple regulator

Country Status (1)

Country Link
TW (1) TWI418132B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511426B (en) * 2013-08-30 2015-12-01 Anpec Electronics Corp Modulation method, modulation module thereof and voltage converting device thereof
TWI657651B (en) * 2018-05-23 2019-04-21 茂達電子股份有限公司 Frequency compensation circuit used in dc voltage converter
US10969808B2 (en) 2019-04-01 2021-04-06 Texas Instruments Incorporated On-time timer circuit with external clock for switching converter control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019504B2 (en) * 2003-07-08 2006-03-28 Arques Technology Constant ON-time controller for a buck converter
US7508180B2 (en) * 2006-03-22 2009-03-24 Anpec Electronics Corporation Switching regulator for fixing a frequency
TW201001889A (en) * 2008-03-19 2010-01-01 Swatch Group Res & Dev Ltd Method of controlling a DC-DC converter in discontinuous mode
US7714556B2 (en) * 2007-01-23 2010-05-11 Richtek Technology Corp. Quick response switching regulator and control method thereof
US7876081B2 (en) * 2006-11-28 2011-01-25 Thine Electronics, Inc. DC-DC converter with substantially constant on-time and constant switching frequency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019504B2 (en) * 2003-07-08 2006-03-28 Arques Technology Constant ON-time controller for a buck converter
US7508180B2 (en) * 2006-03-22 2009-03-24 Anpec Electronics Corporation Switching regulator for fixing a frequency
US7876081B2 (en) * 2006-11-28 2011-01-25 Thine Electronics, Inc. DC-DC converter with substantially constant on-time and constant switching frequency
US7714556B2 (en) * 2007-01-23 2010-05-11 Richtek Technology Corp. Quick response switching regulator and control method thereof
TW201001889A (en) * 2008-03-19 2010-01-01 Swatch Group Res & Dev Ltd Method of controlling a DC-DC converter in discontinuous mode

Also Published As

Publication number Publication date
TW201234753A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US11750083B2 (en) Overvoltage protection circuit, integrated circuit and switching converter with the same
TWI395082B (en) Frequency control circuit and method for a non-constant frequency voltage regulator
US10263518B2 (en) System and method for switched power supply with delay measurement
US10873263B2 (en) Systems and methods of overvoltage protection for LED lighting
US7432695B2 (en) Adaptive power control for hysteretic regulators
US8766615B2 (en) DC-DC converter control circuit and DC-DC converter including same
US8067929B2 (en) High-side sensing of zero inductor current for step down DC-DC converter
US7872458B2 (en) DC-to-DC converter
TWI443344B (en) Switching regulator and operations control method thereof
JP5507980B2 (en) Switching power supply control circuit, electronic device, and switching power supply control method
US9735680B2 (en) Constant on-time pulse width control-based scheme including capabilities of fast transient response and adaptively adjusting on-time pulse width
US7876077B2 (en) Control circuit and control method of current mode control type DC-DC converter
US6671143B2 (en) Technique for limiting current through a reactive element in a voltage converter
TWI613883B (en) Constant on-time converter having fast transient response
US8760138B2 (en) DC-DC converter control circuit and DC-DC converter including same
JP2005110369A (en) Ripple converter
US20070139982A1 (en) Charge pump circuit and power supply apparatus
TWI617123B (en) Current mode voltage converter having fast transient response
CN115437440B (en) Voltage regulator and compensation method thereof
TWI418132B (en) Frequency control circuit and method for a ripple regulator
CN111262467A (en) Power inverter for reducing total harmonic distortion through duty ratio control
WO2024075442A1 (en) Control circuit, switching power supply, and control method for dc conversion circuit